WO2021082927A1 - 一种电源模组及整机柜 - Google Patents

一种电源模组及整机柜 Download PDF

Info

Publication number
WO2021082927A1
WO2021082927A1 PCT/CN2020/120985 CN2020120985W WO2021082927A1 WO 2021082927 A1 WO2021082927 A1 WO 2021082927A1 CN 2020120985 W CN2020120985 W CN 2020120985W WO 2021082927 A1 WO2021082927 A1 WO 2021082927A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
dual
cabinet
load
Prior art date
Application number
PCT/CN2020/120985
Other languages
English (en)
French (fr)
Inventor
刘造
姚益民
高俊恩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021082927A1 publication Critical patent/WO2021082927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution

Definitions

  • This application relates to the field of electric power, and in particular to a power supply module and a complete cabinet.
  • the reliability of the single mains power supply into the cabinet is lower than that of the two-way cabinet, and the two-way cabinet is generally a 2N architecture, that is, the power supply is an N+N configuration.
  • the density is low.
  • the present application provides a power supply module and a complete cabinet, which solves the problem that the existing power supply solutions cannot achieve the balance of reliability, cost, and density, and realizes a power supply solution with high reliability, low cost, and high density.
  • the first aspect of the present application provides a power supply module.
  • the power supply module specifically includes a plurality of power supply units (PSUs) and two-way static transfer switches (Static Transfer Switch, STS) corresponding to the power supply units one-to-one. ), where each PSU includes a first end and a second end, where the first end can be understood as an input end for connecting to the dual STS corresponding to the PSU, and the second end can be understood as an output end for Connected to the load, when any one of the dual inputs is powered down, the STS can automatically switch the input to the other of the dual inputs to supply power to the load.
  • PSUs power supply units
  • STS Static Transfer Switch
  • the dual STS can automatically switch to the other channel, and a small amount of redundant configuration is performed on the power module without backup configuration It can realize normal power supply even when individual power modules or static transfer switches fail, with high reliability. Moreover, this solution reduces the number of power modules required for backup, reduces costs, and deploys computing nodes for the entire cabinet, etc. Provides space and improves the density of the entire cabinet.
  • the above-mentioned power supply module can be set to be detachable.
  • the power supply module can also be connected to a switch slot, and the dual STS can be plugged into the power supply through the switch slot. Module.
  • the dual-channel STS can also be removed, and the power module can be directly used to supply power to the load, which improves the compatibility of the power module.
  • the above-mentioned power supply module can also be integrated.
  • the dual-channel STS can be integrated into the power supply module. On the one hand, it can reduce assembly operations and improve assembly efficiency. On the one hand, the volume of the power module can be reduced and space is saved, and the dual-channel STS can be integrated into the power module to protect the dual-channel STS.
  • a dual STS with a shorter switching time in order to avoid the impact of dual input power failure as much as possible, you can choose to configure a dual STS with a shorter switching time. In actual applications, you can select the switching time to be less than the maximum supported by the PSU. Dual STS with long power-down time. As an example, a dual STS with a switching time of 10 milliseconds can be selected.
  • the power supply module can be compatible with different power supply scenarios, such as dual AC input Scene, AC and HVDC hybrid dual input scenario or dual HVDC input scenario.
  • the number of the power supply modules may be set to be at least larger than the load
  • the ratio of the required power to the power of a single power module is greater than 1. Assuming that the ratio of the required power of the load to the power of a single power module is N, the number of power modules in the power module is at least N+1. In this way, even if a power supply module or a dual STS fails, the load can be supplied normally.
  • N+1 can greatly reduce the number of power modules, and the reduction is close to 50%, therefore, the cost of power supply can be greatly reduced, and it also saves space for the deployment of computing nodes and other loads in the entire cabinet, and improves the density of the entire cabinet.
  • UPS Uninterruptible Power Supply
  • the second aspect of the present application provides an entire cabinet, the entire cabinet includes a load and the power supply module as described in the first aspect of the present application, wherein the power supply module and the load are arranged in the cabinet body of the entire cabinet In, the power module is used to supply power to the load based on dual inputs.
  • the power supply module and the load By integrating the power supply module and the load in a cabinet, it can flexibly configure the hardware platform according to user needs, improve the cabinet space utilization, and reduce costs. Moreover, the entire cabinet transfers most of the assembly work to the factory to complete in advance, and the entire cabinet is directly deployed for rapid on-site deployment, which greatly improves the delivery efficiency.
  • the load may specifically include servers and switches, so that non-computer architecture modules such as power supply, switching, and computer architecture modules such as servers can be integrated in a cabinet to achieve centralized power supply and heat dissipation. , Can improve the power efficiency, reduce the server energy consumption level.
  • the entire cabinet may further include a battery, and the battery may be specifically used to supply power to the load when the dual-input power fails, so as to improve the reliability of power supply.
  • the power module and the load can be connected to the entire cabinet through their corresponding terminals.
  • the cabinet body in this way, can be easily disassembled, and it is convenient to repair or replace when an individual power module or load fails.
  • FIG. 1 is a schematic diagram of a planar structure of a power module in an embodiment of the application
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a power module in an embodiment of the application
  • Fig. 3 is a circuit diagram of a static transfer switch in a power module in an embodiment of the application
  • FIG. 4 is a schematic diagram of the structure of the entire cabinet in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the power supply frame in an embodiment of the application.
  • cloud data center is a collaborative device network used to transmit, accelerate, display, calculate, and store data information on the network infrastructure. In order to avoid affecting the user experience, it is necessary to provide a highly reliable cloud data center. Power supply plan.
  • the Open Compute Project provides a cloud data center deployed with a single utility power into the cabinet. Although energy consumption is reduced to a certain extent, reliability is difficult to guarantee.
  • OCP Open Compute Project
  • ODCC Open Data Center Committee
  • a dual-channel access to the cabinet, through the N+N power supply architecture when one power supply fails, the other backup power supply can be used for power supply.
  • this N+N power architecture increases the initial equipment investment cost on the one hand, and on the other hand also increases the energy consumption cost during operation, and the power supply density is also low.
  • an embodiment of the present application provides a power module.
  • the other end of the power module is used to connect the load, so that when any one of the dual inputs is powered off , The input can be automatically switched to the other one of the dual inputs, and the power module supplies power to the load based on the other one, avoiding power-off affecting the normal operation of the load, and improving the reliability of power supply.
  • each power module is connected to dual inputs through the corresponding dual STS, instead of connecting one of the dual inputs through two power modules respectively. Therefore, there is no need to use the N+N architecture to configure the backup power module. Only a small number of redundant power modules can be configured to achieve normal power supply even when individual power modules or dual STS fail, which further improves the reliability of power supply, and greatly reduces the number of power modules that need to be configured, reducing costs and saving The cabinet space is reduced, so the power supply density can be improved.
  • the power module 10 includes a plurality of power modules 11 and dual static transfer switches 12 corresponding to the power modules, wherein each power module 11 includes a first The terminal 111 and the second terminal 112, the first terminal 111 is used to connect the corresponding two-way static transfer switch 12, and the second terminal 112 is used to connect the load 20 to supply power to the load 20.
  • the load 20 may be any device that needs power supply, such as computing devices such as servers, switching devices such as switch routers, and so on.
  • the dual-channel static transfer switch 12 input is dual-channel, which can be dual-channel mains. As shown in Figure 1, the dual-channel mains can be expressed as mains A and mains B.
  • the dual-channel static transfer switch 12 can be in dual-channel. When any one of the mains power fails, the input is automatically switched to the other one to prevent the load 20 from being affected by the power failure.
  • the dual static transfer switch 12 can set one of them, for example, mains A as the default mains.
  • the power module 11 can generally supply power to the load 20 based on the default mains.
  • the dual The static transfer switch 12 immediately switches the input to mains B.
  • the dual static switch 12 can also switch the input back to the default mains, that is, mains A.
  • dual-channel is not limited to two-channels.
  • “dual-channel” can also be multiple inputs derived from two sources, for example, four-channels derived from two sets of generator sets. Enter and so on.
  • the above-mentioned power supply module 10 can be set to be detachable. Specifically, the power supply module can also be connected to a switch slot, and the dual STS can be plugged into the power supply module through the switch slot.
  • the power module 11 and the dual static transfer switch 12 can also be connected through a board card, and the power module 10 can be disassembled and assembled by plugging and unplugging on the board card.
  • the power supply module 10 is assembled on a board card 13.
  • the board card 13 may specifically be a printed circuit board (PCB). ), the PCB board is turned on in the vertical direction, and the pins of the power module 11 and the dual static transfer switch 12 corresponding to the power module are inserted into a line in the vertical direction to realize the power module 11 and the dual static transfer switch 12's connection.
  • PCB printed circuit board
  • the corresponding lead terminal 14 in the corresponding position of the PCB board, specifically the position on the line where the power module 11 and the dual static transfer switch 12 are located, so that the lead terminal 14 and the dual static transfer switch 12 is connected, so that the dual-channel mains power can be input to the dual-channel static transfer switch 12 through the lead terminal 14.
  • the power module can be detachable.
  • the dual-channel static transfer switch can also be removed, and the power module can be directly used to supply power to the load, which improves the compatibility of the power module.
  • the dual static transfer switch can also be integrated into the power module before the dual static transfer switch leaves the factory. On the one hand, it can reduce assembly time and improve delivery efficiency. On the other hand, integrating dual static transfer switches can reduce the volume of the entire power module and save space. In addition, the protection of the dual static transfer switch can be realized through integration through packaging.
  • the dual static transfer switch takes a certain time for the dual static transfer switch to switch the mains input.
  • the dual-channel static transfer switch with the maximum power-off time supported so that when switching, the power stored in the power module itself can be supplied first. After the switching is successful, it can be powered by the switched mains input.
  • the dual static transfer switch includes two live wires, namely L1 and L2, and two neutral wires, namely N1 and N2.
  • the two live wires L1 and L2 are connected, and are in the connection position.
  • the current transformer assembly (Current Transformer Assembly, CTA) is also connected, specifically to connect CTA1, the two neutral wires N1 and N2 are connected, and each live wire or each neutral wire is connected with a relay (Relay, RLA), a current transformer CTA, and Silicon Controlled Rectifier Assembly (SCRA), specifically, for L1, it is connected with RLA1, CTA2, RLA5 and SCRA1, SCRA2, where SCRA1, SCRA2 and RLA5 are connected in parallel, and then the whole is connected in series with RLA1 and CTA2.
  • RLA2 SCRA3, SCRA4, and RLA6.
  • SCRA3, SCRA4 and RLA6 are connected in parallel, and then the whole is connected in series with RLA2.
  • the connection relationship between L2 and N2 in RLA, CTA and SCRA is the same as that of L1 and N1. Go into details again.
  • the states of RLA1 to RLA4 are respectively associated with whether there is electricity in L1, N1, L2, and N2.
  • L1 supplies power to the load by default.
  • RLA1, RLA2, RLA3, and RLA4 are closed.
  • RLA5 and RLA6 are closed, and RLA7 and RLA8 are open.
  • L1 and N1 are powered down, RLA1, RLA2, RLA5, and RLA6 are disconnected, RLA7 and RLA8 are closed, and the power supply is switched from L1 to L2.
  • the switching time when switching, the SCRA is turned on first. Since the SCRA cannot flow for a long time, the RLA connected in parallel with it is then closed to bypass the SCRA to achieve rapid dual-input switching. In some cases, the switching time can be controlled within 10 milliseconds.
  • the power supply is supplied to the load by devices such as capacitors that store charges in advance in the power module, which is not shown in FIG. 3, which realizes uninterrupted power supply and has high reliability.
  • the dual input can be dual AC (Alternating Current, AC) input, that is AC+AC; or dual high voltage direct current (HVDC) input, that is HVDC+HVDC; or It is a hybrid dual input of AC and HVDC, namely HVDC+AC.
  • AC Alternating Current
  • HVDC High voltage direct current
  • this method adopts an architecture to achieve compatibility with various input standards of the cloud data center, and has good compatibility.
  • the input standard changes, it can adaptively supply power, avoiding the manpower caused by the transformation of the data center power supply structure. Cost, time cost, material cost, etc.
  • the number of power modules is configured according to load requirements. Taking into account the need for redundant settings for power modules, in some possible implementations, the number of power modules is at least one greater than the ratio of the required power of the load to the power of a single power module.
  • the load demand can be The ratio of power to the power of a single power module is denoted as N, that is, the number of power modules is at least N+1. As an example, N+1 power modules can be configured in the power module.
  • this solution can greatly reduce the number of power modules that need to be configured. From N+N to N+1, the number of power modules is reduced by nearly 50%. In this way, the power supply cost is greatly reduced, and The reduction in the number of power modules also reserves more space for other devices in the cabinet, so that the power supply density can be increased.
  • the remaining power modules can also be used for power supply, which further improves reliability. It also provides sufficient time for replacing or repairing faulty power modules.
  • Figure 1 and Figure 2 are based on an example with a demand power of 9 kilowatts (kilowatt, KW).
  • the power of each power module is 3KW
  • the traditional power supply scheme uses 3+3 power modules.
  • the solution of this application can use 3+1 power supply modules for power supply.
  • the number of power supply modules can also change accordingly, and it is not limited to the four shown in FIGS. 1 and 2.
  • the embodiment of the present application provides a power module, which configures dual STS for the power module according to a 1:1 ratio.
  • the dual STS can be used to Automatically switch to another channel, and perform a small amount of redundant configuration on the power module, without the need for backup configuration, it can realize normal power supply when individual power modules or static transfer switches fail, with high reliability, and this solution reduces backups
  • the number of power modules required reduces costs, provides space for the deployment of computing nodes in the entire cabinet, and increases the density of the entire cabinet.
  • the embodiment of the present application also provides a complete cabinet device.
  • the complete cabinet equipment will be described in detail below with reference to the drawings.
  • the entire cabinet 40 includes the power supply module 41 and the load 42 as described above, wherein the power supply module 41 and the load 42 are arranged in the cabinet 43 of the entire cabinet 40
  • the power supply module 41 can be installed at the bottom of the cabinet 43, and the load 42 can be installed on the power supply module 41.
  • the power supply module 41 supplies power to the load 42 based on dual mains input.
  • the height of the entire cabinet can be 2000 millimeters (millimeter, mm), that is, 39 OU, where OU is a general cabinet height unit, and 1 OU is approximately equal to 44 mm, of which 3 OU space can be used to place the power supply frame.
  • the power supply frame can Refer to Figure 5, which can be formed by stacking power modules as shown in Figure 2, and the remaining space in the entire cabinet can be used to place loads.
  • This solution integrates the power supply module and the load into a cabinet, which can flexibly configure the hardware platform according to user needs, improve the cabinet space utilization, and reduce costs. Moreover, the entire cabinet transfers most of the assembly work to the factory to complete in advance, and the entire cabinet is directly deployed for rapid on-site deployment, which greatly improves the delivery efficiency.
  • the load can be specifically servers and switches.
  • 32OU servers and 4OU switches can be placed.
  • non-computer architecture modules such as power supply and switching
  • computer architecture modules such as servers in a cabinet
  • the whole cabinet 40 may also include batteries.
  • 3OU can be taken out of the 32OU server to place the battery.
  • the battery can also be used as the server Loads such as, switches, etc. provide power supply to improve power supply reliability.
  • the power module 41 and the load 42 can be connected to the cabinet 43 of the entire cabinet 40 through their corresponding terminals such as power terminals and load terminals. In this way, they can be easily disassembled. It is convenient to repair or replace in case of failure.
  • the embodiment of the present application provides a complete cabinet, which integrates a power supply module and a load in a cabinet, and each power supply module in the power supply module is equipped with a corresponding dual-channel static transfer switch.
  • the static transfer switch can receive dual mains input, and switch to the other when any one of the dual mains input loses power, so as to prevent the normal operation of the load from being affected by the power failure.
  • each power module receives dual mains input, instead of connecting one of the dual mains input through two power modules respectively. Therefore, there is no need to fully backup the power modules, and only need to add additional configuration to the normal demand.
  • a small number of power modules enables normal power supply when individual power modules fail, which improves reliability, reduces the number of power modules that need to be configured, reduces costs, and reserves space for the configuration of computing nodes in the entire cabinet. Improved power supply density.
  • connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, training device, or data.
  • the center transmits to another website, computer, training equipment, or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a training device or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Power Sources (AREA)

Abstract

一种电源模组,包括:多个电源模块(11)以及与电源模块(11)一一对应的双路静态转换开关(12),双路静态转换开关(12),用于双路输入中的任一路掉电时,将输入自动切换为双路输入中的另一路,所述多个电源模块(11)中的每个电源模块(11)包括第一端和第二端,第一端用于连接对应的所述双路静态转换开关(12),所述第二端用于连接负载(20),以为所述负载(20)供电。通过为电源模块(11)按照1:1比例配置双路静态转换开关(12)在掉电时进行输入切换,并且对电源模块(11)少量冗余配置,即可实现个别电源模块(11)故障时,也能正常供电,具有较高可靠性,而且,减少了备份所需的电源模块(11),降低了成本,为整机柜(40)部署计算节点等提供了空间,提高了整机柜(40)密度。还提供了对应的整机柜(40)。

Description

一种电源模组及整机柜
本申请要求于2019年11月1日提交中国专利局、申请号为201911060571.3、发明名称为“一种电源模组及整机柜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力领域,尤其涉及一种电源模组以及整机柜。
背景技术
随着云计算技术的发展,云数据中心的规模越来越大,企业对供电系统的密度、成本和能效要求也越来越高。服务器厂家开始规划整柜服务器来支持此类场景,目前主流的整柜服务器主要包括单市电进机柜和双路进机柜两种类型。
其中,单市电进机柜的可靠性相比双路进机柜要低,而双路进机柜一般为2N架构,即电源为N+N配置,如此导致机柜配置电源数量较多,成本较高,且密度低。
基于此,提供一种可靠性高,且成本低、密度高的供电方案成为亟待解决的问题。
发明内容
本申请提供了一种电源模组以及整机柜,解决了已有供电方案中无法实现可靠性、成本以及密度兼顾的问题,实现了可靠性高,且成本低、密度高的供电方案。
本申请第一方面提供了一种电源模组,该电源模组具体包括多个电源模块(Power Supply Unit,PSU)以及与该电源模块一一对应的双路静态转换开关(Static Transfer Switch,STS),其中,每个PSU包括第一端和第二端,其中,第一端可以理解为输入端,用于和该PSU对应的双路STS连接,第二端可以理解为输出端,用于和负载连接,当双路输入中的任一路掉电时,STS可以将输入自动切换为双路输入中的另一路,为负载供电。
通过为电源模块按照1:1比例配置双路STS,当双路输入中的任一路掉电时,通过双路STS可以自动切换至另一路,并且对电源模块进行少量冗余配置,无需备份配置即可实现个别电源模块或静态转换开关故障时,也能正常供电,具有较高可靠性,而且,该方案减少了备份所需的电源模块数量,降低了成本,为整机柜部署计算节点等提供了空间,提高了整机柜密度。
在第一方面的第一种可能的实现方式中,上述电源模组可以设置为可拆卸的,具体地,电源模块还可以连接开关插槽,双路STS可以通过该开关插槽插接于电源模块。如此,在单路输入场景下,还可以将该双路STS拆除,直接利用电源模块为负载供电,提高了电源模组的兼容性。
在第一方面的第二种可能的实现方式中,上述电源模组也可以设置为一体的,具体地,双路STS可以集成于电源模块中,一方面可以减少装配操作,提高装配效率,另一方面,可以减小电源模组的体积,节省空间,而且将双路STS集成在电源模块内部可以实现对双路STS的保护。
在第一方面的第三种可能的实现方式中,为了尽量避免双路输入掉电影响,可以选择配置切换时间较小的双路STS,在实际应用时,可以选择切换时间小于PSU支持的最长掉电时间的双路STS。作为一个示例,可以选择切换时间为10毫秒的双路STS。
结合第一方面或者第一方面的第一至三种实现方式中的任一种实现方式,在第一方面的第四种实现方式中,电源模组可以兼容不同供电场景,如双路交流输入场景、交流和高压直流的混合双路输入场景或者双路高压直流输入场景。
结合第一方面或者第一方面的第一至三种实现方式中的任一种实现方式,在第一方面的第五种实现方式中,所述电源模块的数量可以设置为至少比所述负载的需求功率与单个所述电源模块的功率的比值大1。假设负载的需求功率与单个电源模块的功率的比值为N,则该电源模组中电源模块的数量至少是N+1。如此,即使有一个电源模块或者一个双路STS发生故障,也能够实现对负载正常供电。
此外,当N取值较大时,相对于不间断电源(Uninterruptible Power Supply,UPS)中N+N的备份架构,N+1等冗余架构能够较大程度减少电源模块的数量,减少幅度近50%,因此,可以大幅降低供电成本,而且也为整机柜中部署计算节点等负载节省了空间,提高了整机柜的密度。
本申请第二方面提供了一种整机柜,所述整机柜包括负载和如本申请第一方面所述的电源模组,其中,电源模组和负载设置于整机柜的柜体之中,电源模组用于基于双路输入为负载供电。
其通过将电源模组和负载集成在一个机柜中,可以实现根据用户需求灵活配置硬件平台,提高机柜空间利用率,降低成本。而且,整机柜将大部分组装工作转移到工厂预先完成,通过整机柜直接进行现场快速部署,大大提高了交付效率。
在第二方面的第一种实现方式中,负载具体可以包括服务器和交换机,如此可以将电源、交换等非计算机体系结构模块与服务器这种计算机体系结构模块集成在一个机柜,实现集中供电和散热,可以提高电源效率,降低服务器能耗水平。
在第二方面的第二种实现方式中,所述整机柜还可以包括电池,该电池具体可以用于在双路输入掉电时,为所述负载供电,提高供电可靠性。
结合第二方面、第二方面的第一种实现方式或者第二种实现方式,在第二方面的第三种实现方式中,电源模组和负载可以通过各自对应的端子连接至整机柜的柜体,如此,可以方便拆卸,当个别电源模组或负载发生故障时方便维修或更换。
附图说明
图1为本申请实施例中电源模组的平面结构示意图;
图2为本申请实施例中电源模组的三维结构示意图;
图3为本申请实施例中电源模组中静态转换开关的电路图;
图4为本申请实施例中整机柜的结构示意图;
图5为本申请实施例中电源框的三维结构示意图。
具体实施方式
随着云计算技术的发展,互联网对数据的需求呈现爆炸式增长,这极大地促进了云数据中心的市场需求。所谓云数据中心是一种协作的设备网络,用于在网络基础设施上传递、加 速、展示、计算、存储数据信息,为了避免影响用户体验,需要针对云数据中心提供一种可靠性较高的供电方案。
开放计算项目(Open Compute Project,OCP)提供了一种单市电进机柜部署云数据中心,虽然在一定程度上减小了能耗,但是可靠性难以保障。基于此,开放数据中心委员会(Open Data Center Committee,ODCC)提出了一种双路进机柜,通过N+N的电源架构可以实现在一路电源掉电时,通过备用的另一路电源进行供电。但是这种N+N的电源架构一方面增加了初期设备投资成本,另一方面也增加了运营时的能耗成本,而且供电密度也较低。
基于此,本申请实施例提供了一种电源模组,通过在每个电源模块前端增加一双路STS,电源模块的另一端用于连接负载,如此,当双路输入中的任一路掉电时,可以将输入自动切换为双路输入中的另一路,电源模块基于该另一路为负载供电,避免掉电影响负载正常运行,提高了供电可靠性。
而且,在该方案中每个电源模块通过对应的双路STS连接双路输入,而不是通过两个电源模块分别连接双路输入中的一路,因此,无需采用N+N架构配置备份电源模块,仅配置少量的冗余电源模块即可实现在个别电源模块或双路STS故障时也能正常供电,进一步提高了供电可靠性,而且大幅减少了需要配置的电源模块的数量,降低了成本,节省了机柜空间,如此可以提高供电密度。
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
参见图1所示的电源模组的平面结构示意图,该电源模组10包括多个电源模块11和与电源模块一一对应的双路静态转换开关12,其中,每个电源模块11包括第一端111和第二端112,所述第一端111用于连接对应的所述双路静态转换开关12,所述第二端112用于连接负载20,以为负载20供电。其中,负载20可以是任意需要供电的设备,例如计算设备如服务器,交换设备如交换机路由器等。
双路静态转换开关12输入为双路,具体可以是双路市电,如图1所示,双路市电可以表示为市电A和市电B,双路静态转换开关12可以在双路市电中的任一路掉电时,将输入自动切换为另一路,避免负载20受到掉电影响。
在具体实现时,双路静态转换开关12可以设置其中一路例如市电A为默认市电,电源模块11一般可以基于该默认市电为负载20供电,当默认市电发生掉电时,双路静态转换开关12立即将输入切换为市电B。当然,在有些情况下,默认市电如市电A恢复供电时,双路静态转换开关12也可以将输入切回至默认市电即市电A。
需要说明的是,上述“双路”并不限于两路,在实际应用时,“双路”也可以是从两路源中引出的多路输入,例如从两组发电机组中引出的四路输入等等。
在实际应用时,上述电源模组10可以设置为可拆卸的,具体地,电源模块还可以连接开关插槽,双路STS可以通过该开关插槽插接于电源模块。当然,电源模块11和双路静态转换 开关12也可以通过板卡进行连接,通过在板卡上进行插拔实现电源模组10的拆装。
参见图2所示的电源模组的三维结构图,如图2所示,电源模组10是装配于板卡13之上的,该板卡13具体可以是印刷电路板(Printed Circuit Board,PCB),该PCB板在垂直方向上导通,将电源模块11以及该电源模块对应的双路静态转换开关12的引脚插入垂直方向的一条线上,可以实现电源模块11和双路静态转换开关12的连接。
进一步地,还可以在PCB板的相应位置,具体可以为电源模块11及其双路静态转换开关12所在直线上的位置,插上相应的引线端子14,使得引线端子14与双路静态转换开关12连接,如此可以将双路市电通过该引线端子14输入至双路静态转换开关12。
如此电源模组能够实现可拆卸,在单路市电输入场景下,还可以将该双路静态转换开关拆除,直接利用电源模块为负载供电,提高了电源模组的兼容性。
考虑到机柜中配置的电源模式数量较多的情况下,为了减少装配工作,节省部署时间,还可以在双路静态转换开关出厂前即将该双路静态转换开关集成于电源模块中。一方面可以减少装配时间,提高交付效率,另一方面将双路静态转换开关进行集成可以减少整个电源模组的体积,节省空间。并且,通过封装的方式进行集成可以实现对该双路静态转换开关的保护。
需要说明,双路静态转换开关进行市电输入切换需要一定时间,为了尽可能减小掉电对负载的影响,可以选择配置切换时间较小的双路静态转换开关,具体为切换时间小于电源模块支持的最大掉电时间的双路静态转换开关,如此,在进行切换时,可以由电源模块自身储存的电能先进行供电。在切换成功后,可以由切换后的市电输入进行供电。
为了便于理解,下面结合双路静态转换开关的电路图对切换过程进行详细说明。
参见图3所示的双路静态转换开关的电路图,该双路静态转换开关包括两条火线即L1和L2以及两条零线即N1和N2,两条火线L1和L2连接,并在连接位置还连接电流互感器组件(Current Transformer Assembly,CTA),具体为连接CTA1,两条零线N1和N2连接,每条火线或每条零线连接有继电器(Relay,RLA)、电流互感器CTA以及可控硅整流器组件(Silicon Controlled Rectifier Assembly,SCRA),具体地,针对L1,其连接有RLA1、CTA2、RLA5以及SCRA1、SCRA2,其中,SCRA1、SCRA2与RLA5并联,然后整体与RLA1、CTA2串联,针对N2,其连接有RLA2、SCRA3、SCRA4以及RLA6,其中,SCRA3、SCRA4与RLA6并联,然后整体与RLA2串联,L2、N2在RLA、CTA以及SCRA的连接关系与L1、N1相同,在此不再赘述。
在实际应用时,RLA1至RLA4的状态分别与L1、N1、L2、N2中是否有电相关联。当L1、N1、L2、N2有电时,默认L1给负载供电,此时,RLA1、RLA2、RLA3、RLA4闭合,此外,RLA5、RLA6闭合,RLA7、RLA8断开。当L1、N1掉电,RLA1、RLA2、RLA5、RLA6断开,RLA7、RLA8闭合,供电从L1切换到L2。
另外,考虑到切换时间,在进行切换时,SCRA先导通,由于SCRA无法长时间通流,与之并联的RLA随后闭合以旁路SCRA,实现双输入快速切换。在有些情况下,切换时间可以控制在10毫秒以内。
在该切换过程中,由电源模块中预先储存电荷的电容等器件对负载供电,图3中未示出,实现了不间断供电,具有较高可靠性。
在上述实施例中,双路输入可以是双路交流(Alternating Current,AC)输入,即AC+AC;也可以是双路高压直流(High Voltage Direct Current,HVDC)输入,即HVDC+HVDC;或者是交流和高压直流的混合双路输入,即HVDC+AC。
可见,该方法通过一种架构,实现兼容云数据中心各种输入制式,具有较好的兼容性,当输入制式发生变化时,能够自适应供电,避免了对数据中心供电架构进行改造导致的人力成本、时间成本以及材料成本等。
可以理解,电源模块的数量是根据负载需求进行配置的。考虑到需要对电源模块进行冗余设置,因此,在一些可能的实现方式中,电源模块的数量至少比负载的需求功率与单个电源模块的功率的比值大1,为了方便表述,可以将负载需求功率与单个电源模块的功率的比值记作N,也即电源模块的数量至少是N+1。作为一个示例,可以在电源模组中配置N+1个电源模块。
与传统的N+N架构相比,该方案可以大幅减少需要配置的电源模块的数量,从N+N演进到N+1,电源模块数量减少近50%,如此,大幅降低了供电成本,而且电源模块数量减少也为机柜中其他设备预留了较多空间,如此,可以提高供电密度。
当然,由于电源模块数量比正常需求多一个,因此,当电源模组中存在一个电源模块或者一个双路静态转换开关发生故障时,也能够通过剩余的电源模块进行供电,进一步提高了可靠性。并且为更换或维修故障电源模块等提供了充足的时间。
需要说明,图1、图2是以需求功率为9千瓦(kilowatt,KW)进行示例说明的,在该示例中,每个电源模块的功率为3KW,传统的供电方案采用3+3个电源模块进行供电,而本申请的方案可以采用3+1个电源模块进行供电。
在本申请其他可能的实现方式中,当需求功率以及电源模块的功率发生变化时,电源模块的数量也可以相应地发生变化,并不限于图1、图2中所示的4个。
由上可知,本申请实施例提供了一种电源模组,其通过为电源模块按照1:1比例配置双路STS,当双路市电输入中的任一路掉电时,通过双路STS可以自动切换至另一路,并且对电源模块进行少量冗余配置,无需备份配置即可实现个别电源模块或静态转换开关故障时,也能正常供电,具有较高可靠性,而且,该方案减少了备份所需的电源模块数量,降低了成本,为整机柜部署计算节点等提供了空间,提高了整机柜密度。
基于本申请实施例提供的上述电源模组,本申请实施例还提供了一种整机柜设备。下面结合附图对该整机柜设备进行详细说明。
参见图4所示的整机柜的结构示意图,整机柜40包括如上所述的电源模组41和负载42,其中,电源模组41和负载42设置于整机柜40的柜体43之中,在具体实现时,可以将电源模组41设置在柜体43的底部,将负载42设置于电源模组41之上,电源模组41基于双路市电输入为负载42供电。
在一个示例中,整机柜高度可以为2000毫米(millimeter,mm),即39OU,其中,OU是通用机柜高度单位,1OU约等于44mm,其中3OU空间可以用于放置电源框,该电源框可以参见图5,其可以由如图2所示的电源模组堆叠形成,该整机柜中剩余空间可以用于放置负载。
该方案通过将电源模组和负载集成在一个机柜中,可以实现根据用户需求灵活配置硬件平台,提高机柜空间利用率,降低成本。而且,整机柜将大部分组装工作转移到工厂预先完成,通过整机柜直接进行现场快速部署,大大提高了交付效率。
在图4所示实施例中,负载具体可以是服务器和交换机,例如可以放置32OU服务器以及4OU交换机,通过将电源、交换等非计算机体系结构模块与服务器这种计算机体系结构模块集成在一个机柜,实现集中供电和散热,可以提高电源效率,降低服务器能耗水平。
进一步地,在实际应用时,整机柜40中还可以包括电池,例如可以从32OU服务器中取出3OU用于放置电池,如此,在双路市电输入均掉电时,还可以通过电池为服务器、交换机等负载进行供电,提高供电可靠性。
考虑到维护需求,电源模组41和负载42可以通过各自对应的端子如电源端子、负载端子连接至整机柜40的柜体43,如此,可以方便拆卸,当个别电源模组41或负载42发生故障时方便维修或更换。
由上可知,本申请实施例提供了一种整机柜,其将电源模组、负载集成在一个机柜中,电源模组中的每个电源模块配置有对应的双路静态转换开关,该双路静态转换开关可以接收双路市电输入,并在双路市电输入中的任一路掉电时切换至另一路,避免掉电影响负载正常运行。此外,每个电源模块均接收双路市电输入,而不是通过两个电源模块分别连接双路市电输入中的一路,因此,无需将电源模块完全备份,只需在正常需求数量上额外配置少量电源模块,使得个别电源模块故障时,也能正常供电,提高可靠性,而且减少了需要配置的电源模块的数量,降低了成本,并为整机柜中配置计算节点等预留了空间,提高了供电密度。
另外需说明的是,以上所描述的实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。
但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,训练设备,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、训练设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、训练设备或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的训练设备、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、 硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。

Claims (10)

  1. 一种电源模组,其特征在于,包括:
    多个电源模块以及与所述电源模块一一对应的双路静态转换开关;
    所述双路静态转换开关,用于双路输入中的任一路掉电时,将输入自动切换为所述双路输入中的另一路;
    所述多个电源模块中的每个电源模块包括第一端和第二端,所述第一端用于连接对应的所述双路静态转换开关,所述第二端用于连接负载,以为所述负载供电。
  2. 根据权利要求1所述的系统,其特征在于,所述电源模块还连接有开关插槽;
    所述双路静态转换开关通过所述开关插槽插接于所述电源模块中。
  3. 根据权利要求1所述的系统,其特征在于,所述双路静态转换开关包括:
    集成于所述电源模块的双路静态转换开关。
  4. 根据权利要求1所述的系统,其特征在于,所述双路静态转换开关的切换时间小于所述电源模块支持的最长掉电时间。
  5. 根据权利要求1至4任一项所述的系统,其特征在于,所述双路输入包括:
    双路交流输入;或者,
    交流和高压直流的混合双路输入;
    或者,双路高压直流输入。
  6. 根据权利要求1至4任一项所述的系统,其特征在于,所述电源模块的数量至少比所述负载的需求功率与单个所述电源模块的功率的比值大1。
  7. 一种整机柜,其特征在于,包括:
    如权利要求1至6任一项所述的电源模组和负载;
    所述电源模组和所述负载设置于所述整机柜的柜体之中;
    所述电源模组用于基于双路输入为所述负载供电。
  8. 根据权利要求7所述的整机柜,其特征在于,所述负载包括服务器和交换机。
  9. 根据权利要求7所述的整机柜,其特征在于,所述整机柜还包括:
    电池,用于在双路输入掉电时,为所述负载供电。
  10. 根据权利要求7至9任一项所述的整机柜,其特征在于,所述电源模组和所述负载通过各自对应的端子连接至所述整机柜的柜体。
PCT/CN2020/120985 2019-11-01 2020-10-14 一种电源模组及整机柜 WO2021082927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911060571.3A CN110955317B (zh) 2019-11-01 2019-11-01 一种电源模组及整机柜
CN201911060571.3 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021082927A1 true WO2021082927A1 (zh) 2021-05-06

Family

ID=69975949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120985 WO2021082927A1 (zh) 2019-11-01 2020-10-14 一种电源模组及整机柜

Country Status (2)

Country Link
CN (1) CN110955317B (zh)
WO (1) WO2021082927A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955317B (zh) * 2019-11-01 2022-04-05 华为技术有限公司 一种电源模组及整机柜
CN113031705B (zh) * 2021-05-28 2021-08-17 云上(江西)大数据发展有限公司 开放式政务服务平台
CN115459239A (zh) * 2022-09-15 2022-12-09 超聚变数字技术有限公司 一种电源模组和供电方法
CN118567443A (zh) * 2024-07-30 2024-08-30 苏州元脑智能科技有限公司 服务器及服务器机柜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201197087Y (zh) * 2008-05-27 2009-02-18 山东山大华天科技股份有限公司 双路电源供电装置
US20120079321A1 (en) * 2010-09-29 2012-03-29 Xyratex Technology Limited Power supply system for a data storage system and a method of controlling a power supply
CN202210693U (zh) * 2011-09-08 2012-05-02 山东科汇电力自动化有限公司 一种智能充电电源
CN104199534A (zh) * 2014-09-16 2014-12-10 浪潮电子信息产业股份有限公司 一种基于双输入电源的高密度机柜节能供电装置
CN108539744A (zh) * 2018-06-20 2018-09-14 国家电网公司 一种调度自动化机房机柜电源输入设备
CN110955317A (zh) * 2019-11-01 2020-04-03 华为技术有限公司 一种电源模组及整机柜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182223B1 (en) * 1998-06-10 2001-01-30 International Business Machines Corporation Method and apparatus for preventing unauthorized access to computer-stored information
CN102025189A (zh) * 2010-12-07 2011-04-20 河北先控电源设备有限公司 双路供电切换方法和装置
CN201887534U (zh) * 2010-12-13 2011-06-29 厦门普罗太克科技有限公司 一种多路交流输入的不间断电源
CN104348370A (zh) * 2013-08-01 2015-02-11 华为技术有限公司 电源变换模块、供电装置和供电方法
CN206041628U (zh) * 2016-09-14 2017-03-22 常熟开关制造有限公司(原常熟开关厂) 一种双电源转换装置
CN107579594B (zh) * 2017-09-28 2020-09-15 北京泓慧国际能源技术发展有限公司 一种磁悬浮飞轮储能ups系统集成应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201197087Y (zh) * 2008-05-27 2009-02-18 山东山大华天科技股份有限公司 双路电源供电装置
US20120079321A1 (en) * 2010-09-29 2012-03-29 Xyratex Technology Limited Power supply system for a data storage system and a method of controlling a power supply
CN202210693U (zh) * 2011-09-08 2012-05-02 山东科汇电力自动化有限公司 一种智能充电电源
CN104199534A (zh) * 2014-09-16 2014-12-10 浪潮电子信息产业股份有限公司 一种基于双输入电源的高密度机柜节能供电装置
CN108539744A (zh) * 2018-06-20 2018-09-14 国家电网公司 一种调度自动化机房机柜电源输入设备
CN110955317A (zh) * 2019-11-01 2020-04-03 华为技术有限公司 一种电源模组及整机柜

Also Published As

Publication number Publication date
CN110955317B (zh) 2022-04-05
CN110955317A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021082927A1 (zh) 一种电源模组及整机柜
US10238000B2 (en) Power shelf for computer servers
US9300171B2 (en) Emergency power supply apparatus
US9148068B2 (en) Backup power system for rack-mounted equipment
CN106774771B (zh) 供电系统及其供电控制方法
US20130088084A1 (en) Networklized DC Power System
CN206077055U (zh) 数据中心的供电系统和机房
US11581588B2 (en) Energy storage system
TW201610658A (zh) 不斷電系統及其供應方法、具體非暫態的電腦可使用媒體
TW200945014A (en) Power management system capable of saving power and optimizing operating efficiency of power supplies for providing power with back-up or redundancy to plural loads
WO2021004284A1 (zh) 供电电路及不间断供电电源ups系统
CN105429280A (zh) 不断电系统及其供应方法
CN104953694A (zh) 电源分配系统
CN107479645A (zh) 一种双输入电源模块、服务器供电系统及供电方法
TWM450900U (zh) 熱插拔式不斷電模組
TW201407332A (zh) 不斷電系統及其操作方法
US9000609B2 (en) Extension cord with AC and DC outputs for coupling AC and DC sources
TW201324113A (zh) 熱插拔式不斷電模組
CN114256956B (zh) 直流供电系统
CN107219912A (zh) 一种新型机柜式服务器供电系统及供电模式控制方法
CN110544933A (zh) 一种分布式直流供电系统的控制方法及装置
CN105353860A (zh) 一种bbu互联管理的方法
CN202183077U (zh) 多电源电力系统
CN105388986A (zh) 服务器的供电系统
CN208971237U (zh) 一种整机柜供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881569

Country of ref document: EP

Kind code of ref document: A1