WO2020134140A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2020134140A1
WO2020134140A1 PCT/CN2019/103193 CN2019103193W WO2020134140A1 WO 2020134140 A1 WO2020134140 A1 WO 2020134140A1 CN 2019103193 W CN2019103193 W CN 2019103193W WO 2020134140 A1 WO2020134140 A1 WO 2020134140A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
focal length
object side
Prior art date
Application number
PCT/CN2019/103193
Other languages
English (en)
French (fr)
Inventor
黄林
张战飞
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020134140A1 publication Critical patent/WO2020134140A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optics, in particular, to an ultra-thin, long focal length seven-piece optical imaging system.
  • the telephoto camera module can clearly capture distant scenes, produce a sense of space compression, and can highlight the subject information and blur the background Therefore, it is more and more popular among people and has a place in the optical imaging system market.
  • the aspheric surface can significantly improve the image quality, reduce aberrations, and reduce the number of lenses, which is conducive to miniaturization of the optical imaging system; therefore, the use of the aspheric surface is to alleviate the contradiction between the telephoto lens and the total length of the optical lens module is too large Important means.
  • the main purpose of the present invention is to provide an optical imaging system to solve the problem that the imaging quality and the miniaturized design of the optical imaging system in the prior art cannot be combined.
  • an optical imaging system including a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in order from the object side to the image side along the optical axis , A sixth lens and a seventh lens, the first lens has positive power; the second lens has negative power; the object side of the sixth lens is concave; the seventh lens has negative power; where f is the The effective focal length of the optical imaging system, the effective focal length of the fourth lens is f4, the effective focal length of the fifth lens is f5,
  • the diameter of the entrance pupil of the optical imaging system is EPD, f/EPD ⁇ 2.2.
  • the effective focal length of the first lens is f1
  • the effective focal length of the third lens is f3
  • the effective focal length of the sixth lens is f6, f1/
  • the effective focal length of the second lens is f2
  • the effective focal length of the seventh lens is f7, 1.4 ⁇ f2/f7 ⁇ 2.0.
  • the radius of curvature of the image side of the second lens is R4
  • the radius of curvature of the object side of the third lens is R5, 1.0 ⁇ f/
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10, 0.8 ⁇ R9/R10 ⁇ 1.5.
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12, -4.0 ⁇ f/R11+f/R12 ⁇ -2.0.
  • the radius of curvature of the object side surface of the sixth lens is R11
  • the radius of curvature of the image side surface of the sixth lens is R12, 0.8 ⁇ R11/R12 ⁇ 2.0.
  • the center thickness of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, 5 ⁇ f/(CT4+CT5+CT6) ⁇ 7.
  • the distance between the fourth lens and the fifth lens on the optical axis is T45
  • the distance between the fifth lens and the sixth lens on the optical axis is T56, 0.6 ⁇ T45/T56 ⁇ 1.0.
  • the distance between the sixth lens and the seventh lens on the optical axis is T67
  • the center thickness of the seventh lens on the optical axis is CT7, 0.9 ⁇ T67/CT7 ⁇ 1.6.
  • an optical imaging system including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens and an The seventh lens, the first lens has positive power; the second lens has negative power; the object side of the sixth lens is concave; the seventh lens has negative power; wherein, 3.5mm ⁇ f ⁇ (ImgH/TTL ) ⁇ 4.5mm, f is the effective focal length of the optical imaging system, ImgH is the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system, TTL is the distance from the object side of the first lens to the imaging surface on the optical axis .
  • Control f ⁇ (ImgH/TTL) greater than 3.5 and less than 4.5, can reasonably control the total length and image height of the optical imaging system, to avoid the image height is too small, is conducive to the miniaturization of the optical imaging system.
  • FIG. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application
  • 2A to 2D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 1;
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • 4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 2;
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • 6A to 6D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 3;
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
  • 8A to 8D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 4;
  • FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • 10A to 10D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 5;
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • 12A to 12D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 6;
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
  • 14A to 14D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 7;
  • FIG. 15 shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application.
  • 16A to 16D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 8;
  • FIG. 17 shows a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application.
  • 18A to 18D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 9;
  • FIG. 19 shows a schematic structural diagram of an optical imaging system according to Embodiment 10 of the present application.
  • 20A to 20D show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging system of Example 10, respectively.
  • the optical imaging system needs to have both imaging quality and excellent imaging quality.
  • the small size of the structure satisfies the requirements for the miniaturized design of electronic products equipped with optical imaging systems, and enhances the market competitiveness of electronic products.
  • the present application proposes an optical imaging system that has both high imaging quality and small structural size, which is beneficial to miniaturization design.
  • an optical imaging system is provided, as shown in FIG. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG. 13, FIG. 15, FIG. 17, and FIG.
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 And seventh lens E7.
  • the first lens has positive power; the second lens has negative power; the object side of the sixth lens is concave; the seventh lens has negative power; the conditions of the optical imaging system
  • the formula f ⁇ (ImgH/TTL) meets the condition: 3.5mm ⁇ f ⁇ (ImgH/TTL) ⁇ 4.5mm, f is the effective focal length of the optical imaging system, and ImgH is the diagonal length of the effective pixel area on the imaging surface of the optical imaging system In half, TTL is the distance from the object side of the first lens to the imaging plane on the optical axis.
  • the optical imaging system is effectively balanced by reasonably controlling the positive and negative power distribution of the first lens, the second lens, and the seventh lens in the system, and the shape of the object side of the sixth lens
  • the low-order aberration makes the imaging quality of the optical imaging system higher.
  • to be less than or equal to 0.3, the deflection of the light passing through the optical imaging system can be avoided to be too large, which is also conducive to Correct the field curvature of the optical imaging system.
  • Control f ⁇ (ImgH/TTL) greater than 3.5 and less than 4.5, can reasonably control the total length and image height of the optical imaging system, to avoid the image height is too small, is conducive to the miniaturization of the optical imaging system.
  • the entrance pupil diameter of the optical imaging system is EPD, and f/EPD ⁇ 2.2. In this way, while ensuring the light flux of the optical imaging system, the imaging effect of the optical imaging system in a dark environment is enhanced, and at the same time, the aberration of the edge field of view of the optical imaging system is reduced.
  • the effective focal length of the first lens is f1
  • the effective focal length of the third lens is f3
  • the effective focal length of the sixth lens is f6, f1/
  • the effective focal length of the second lens is f2
  • the effective focal length of the seventh lens is f7, 1.4 ⁇ f2/f7 ⁇ 2.0.
  • the curvature of the image side of the second lens described above The radius is R4, and the radius of curvature of the object side of the third lens is R5, and 1.0 ⁇ f/
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10, 0.8 ⁇ R9/R10 ⁇ 1.5.
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12, -4.0 ⁇ f/R11+f/R12 ⁇ -2.0.
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12, 0.8 ⁇ R11/R12 ⁇ 2.0.
  • the center thickness of the fourth lens, the fifth lens, and the sixth lens on the optical axis are CT4, CT5, and CT6, respectively, 5 ⁇ f/(CT4+CT5+CT6) ⁇ 7.
  • the distance between the fourth lens and the fifth lens on the optical axis is T45
  • the distance between the fifth lens and the sixth lens on the optical axis is T56, 0.6 ⁇ T45/T56 ⁇ 1.0.
  • the distance between the sixth lens and the seventh lens on the optical axis is T67
  • the center thickness of the seventh lens on the optical axis is CT7, 0.9 ⁇ T67/CT7 ⁇ 1.6.
  • the filter E8 is located on the side of the seventh lens E7 facing away from the sixth lens E6.
  • the filter E8 can filter out stray light, and further improve the imaging quality of the optical imaging system.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave surface. The surface closest to the object in each lens is called the object side, and the surface closest to the imaging surface in each lens is called the image side.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a The five lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspheric, the image side is concave and aspheric;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspheric, the image side is concave and aspheric;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has negative power and the object side of the fifth lens is
  • the concave surface is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seventh lens has negative refractive power
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 1, wherein the units of radius of curvature and thickness are both mm.
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspheric mirror surfaces S1-S14 in Example 1.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.17; f/
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging system of Example 1, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 2B shows the astigmatism curve of the optical imaging system of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 2C shows the distortion curve of the optical imaging system of Example 1, which represents the distortion magnitude value under different viewing angles.
  • 2D shows the magnification chromatic aberration curve of the optical imaging system of Example 1, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 2A to 2D that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is concave , And is aspheric, the image side is convex and aspheric;
  • the sixth lens has negative refractive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seventh lens has negative refr
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 3 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 2, wherein the units of radius of curvature and thickness are both mm.
  • Table 4 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspheric mirror surfaces S1-S14 in Example 2.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.27; f/
  • FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging system of Example 2, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 4B shows the astigmatism curve of the optical imaging system of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the distortion curve of the optical imaging system of Example 2, which represents the distortion magnitude value under different viewing angles.
  • 4D shows the magnification chromatic aberration curve of the optical imaging system of Example 2, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 4A to 4D that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, an aperture STO, a third lens E3, a fourth lens E4, and a The five lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is concave , And is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive refractive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seven lens has negative refr
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 3, in which the units of radius of curvature and thickness are both mm.
  • Table 6 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspheric mirror surfaces S1-S14 in Example 3.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.08; f/
  • FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging system of Example 3, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 6B shows the astigmatism curve of the optical imaging system of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 6C shows the distortion curve of the optical imaging system of Example 3, which represents the distortion magnitude value under different viewing angles.
  • 6D shows the magnification chromatic aberration curve of the optical imaging system of Example 3, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 6A to 6D that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, an aperture STO, a fourth lens E4, and a The five lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is convex and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has negative refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is
  • the concave surface is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seventh lens has negative refractive power,
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 4, wherein the units of radius of curvature and thickness are both mm.
  • Table 8 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 used for the aspheric mirror surfaces S1-S14 in Example 4.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.19; f/
  • FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging system of Example 4, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 8B shows the astigmatism curve of the optical imaging system of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 8C shows the distortion curve of the optical imaging system of Example 4, which represents the distortion magnitude value under different viewing angles.
  • 8D shows the magnification chromatic aberration curve of the optical imaging system of Example 4, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 8A to 8D that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, an aperture STO, a fourth lens E4, and a The five lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric; the second lens has negative power and the object side of the second lens is The concave surface is aspheric, the image side is concave and aspheric; the third lens has positive power, and the object side of the third lens is convex and aspheric, and the image side is concave and aspheric;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric; the fifth lens has positive power and the object side of the fifth lens is concave , And is aspheric, the image side is convex and aspheric; the sixth lens has positive refractive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seven lens has negative refractive power, and the object side surface
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 9 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 5, wherein the units of radius of curvature and thickness are both mm.
  • Table 10 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 used for the aspheric mirror surfaces S1-S14 in Example 5.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.15; f/
  • FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging system of Example 5, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 10B shows the astigmatism curve of the optical imaging system of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 10C shows the distortion curve of the optical imaging system of Example 5, which represents the distortion magnitude value under different viewing angles.
  • 10D shows the magnification chromatic aberration curve of the optical imaging system of Example 5, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 10A to 10D that the optical imaging system provided in Embodiment 5 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, an aperture STO, a fourth lens E4, and a The five lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has negative refractive power, and the object side of the third lens is concave and aspherical, the image side is concave and aspherical
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has negative power and the object side of the fifth lens Is concave and aspheric, the image side is convex and aspheric;
  • the sixth lens has positive refractive power, and the sixth lens has an object side that is concave and aspheric, the image side is convex and aspheric
  • the seventh lens has negative power, and the object
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 6, wherein the units of radius of curvature and thickness are both mm.
  • Table 12 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 used for the aspheric mirror surfaces S1-S14 in Example 6.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.05; f/
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging system of Example 6, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 12B shows the astigmatism curve of the optical imaging system of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 12C shows the distortion curve of the optical imaging system of Example 6, which represents the distortion magnitude value under different viewing angles.
  • 12D shows the magnification chromatic aberration curve of the optical imaging system of Example 6, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 12A to 12D that the optical imaging system provided in Embodiment 6 can achieve good imaging quality.
  • the optical imaging system includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive power, and the object side of the third lens is convex and aspherical, the image side is convex and aspherical;
  • the fourth lens has negative power, and the object side of the fourth lens is concave and aspheric, the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is
  • the concave surface is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seventh lens has negative refractive power, and the
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 7, wherein the units of radius of curvature and thickness are both mm.
  • Table 14 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspherical mirror surfaces S1-S14 in Example 7.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.20; f/
  • FIG. 14A shows the on-axis chromatic aberration curve of the optical imaging system of Example 7, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 14B shows the astigmatism curve of the optical imaging system of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • 14C shows the distortion curve of the optical imaging system of Example 7, which represents the distortion magnitude value under different viewing angles.
  • 14D shows the magnification chromatic aberration curve of the optical imaging system of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 14A to 14D that the optical imaging system provided in Example 7 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical;
  • the fourth lens has positive power, and the object side of the fourth lens is concave and aspheric, the image side is convex and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is concave , And is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive refractive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seven lens has negative refr
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 15 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 8, wherein the units of radius of curvature and thickness are both mm.
  • Table 16 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspheric mirror surfaces S1-S14 in Example 8.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.103;
  • 2.55;
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging system of Example 8, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 16B shows the astigmatism curve of the optical imaging system of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • 16C shows the distortion curve of the optical imaging system of Example 8, which represents the distortion magnitude value under different viewing angles.
  • 16D shows the magnification chromatic aberration curve of the optical imaging system of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 16A to 16D that the optical imaging system provided in Embodiment 8 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is convex and aspheric;
  • the fifth lens has negative power and the object side of the fifth lens is
  • the concave surface is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seventh lens has negative refractive power
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 17 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 9, wherein the units of radius of curvature and thickness are both mm.
  • Table 18 gives the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 for the aspheric mirror surfaces S1-S14 in Example 9.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.18; f/
  • FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging system of Example 9, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 18B shows the astigmatism curve of the optical imaging system of Example 9, which represents meridional image plane curvature and sagittal image plane curvature.
  • 18C shows the distortion curve of the optical imaging system of Example 9, which represents the distortion magnitude value under different viewing angles.
  • 18D shows the magnification chromatic aberration curve of the optical imaging system of Example 9, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 18A to 18D that the optical imaging system provided in Embodiment 9 can achieve good imaging quality.
  • the optical imaging system in the direction from the object side to the image side along the optical axis, includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, The sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens has positive power, and the object side of the first lens is convex and aspheric, the image side is concave and aspheric;
  • the second lens has negative power and the object side of the second lens is Convex and aspherical, the image side is concave and aspherical;
  • the third lens has positive refractive power, and the object side of the third lens is convex and aspherical, the image side is concave and aspherical;
  • the fourth lens has positive power, and the object side of the fourth lens is convex and aspheric, the image side is concave and aspheric;
  • the fifth lens has positive power and the object side of the fifth lens is concave , And is aspheric, the image side is convex and aspheric;
  • the sixth lens has positive refractive power, and the object side of the sixth lens is concave and aspheric, the image side is convex and aspheric;
  • the seven lens has negative power,
  • the optical imaging system further includes a filter having an object side S15 and an image side S16.
  • the light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 10, in which the units of radius of curvature and thickness are both mm.
  • Table 20 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16, and A 20 used for each aspherical mirror surface S1-S14 in Example 10.
  • TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S17 on the optical axis
  • ImgH is the imaging
  • the diagonal of the effective pixel area on the surface S17 is half the length. See Table 21 for details.
  • optical imaging system satisfies:
  • 0.21; f/
  • FIG. 20A shows the on-axis chromatic aberration curve of the optical imaging system of Example 10, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 20B shows the astigmatism curve of the optical imaging system of Example 10, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 20C shows the distortion curve of the optical imaging system of Example 10, which represents the distortion magnitude value under different viewing angles.
  • FIG. 20D shows the magnification chromatic aberration curve of the optical imaging system of Example 10, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 20A to 20D that the optical imaging system provided in Example 10 can achieve good imaging quality.
  • R5, R9/R10, f/R11+f/R12, R11/R12, f/(CT4+CT5+CT6), T45/T56 and T67/CT7 are shown in the table twenty two.
  • the optical imaging system of the present application by reasonably controlling the positive and negative distribution of the power of each lens in the system, the low-order aberration of the optical imaging system is effectively balanced, so that the imaging system of the optical imaging system High imaging quality; meanwhile, by optimizing the effective focal length of the optical imaging system, the value of half the diagonal length of the effective pixel area on the imaging surface of the optical imaging system, and the distance from the object side of the first lens to the imaging surface on the optical axis
  • the relationship between the control f ⁇ (ImgH/TTL) is greater than 3.5 and less than 4.5, which can reasonably control the total length and image height of the optical imaging system to avoid the image height being too small, which is conducive to the miniaturization of the optical imaging system.
  • the low-order aberrations of the optical imaging system are effectively balanced by reasonably controlling the positive and negative distribution of the power of each lens in the system and the amount of incoming light, so that the optical imaging system’s
  • the imaging quality of the imaging system is high.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure The spatial relationship between a device or feature shown and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figures. For example, if the device in the drawings is turned upside down, a device described as “above another device or configuration” or “above another device or configuration” will then be positioned as “below other device or configuration” or “in Under other devices or structures”. Thus, the exemplary term “above” may include both “above” and “below” orientations. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of the space used here is explained accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,沿光轴从物侧至像侧依次包括第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7),第一透镜(E1)具有正光焦度,第二透镜(E2)具有负光焦度,第六透镜(E6)的物侧面为凹面,第七透镜(E7)具有负光焦度; |f/f4|+|f/f5|≤0.3,3.5mm<f×(ImgH/TTL)<4.5mm,其中,f为光学成像系统的有效焦距,第四透镜(E4)的有效焦距为f4,第五透镜(E5)的有效焦距为f5,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半,TTL为第一透镜(E1)的物侧面至成像面在光轴上的距离。本光学成像系统解决了现有技术中的光学成像系统的成像质量及小型化设计无法兼具的问题。

Description

光学成像系统 技术领域
本申请涉及光学领域,具体而言,涉及一种超薄,长焦距的七片式光学成像系统。
背景技术
随着科学技术的不断发展,人们对于光学成像系统的要求也越来越高。
具体而言,为了满足人们的使用需求,光学成像系统的成像质量需要进一步提升,长焦摄像模组对远处的景物可进行清晰拍摄,产生空间压缩感,并可突出主体信息,虚化背景,因而越来越受到人们的青睐,在光学成像系统市场上占有一席之地。
不仅如此,随着智能手机等便携式电子产品的发展,市场对光学成像系统的小型化、轻量化也提出了更高的要求。为了满足光学成像系统小型化的设计要求,就需要控制光学镜片模组的总长。非球面可以显著改善像质,减小像差,减少镜片数量,有利于实现光学成像系统的小型化;因此,非球面的使用是缓解长焦与光学镜片模组的总长过大这一矛盾点的重要手段。
综上,如何设计制造一种兼具小型化以及高成像质量的光学成像系统便成了光学领域亟待解决的问题。
发明内容
本发明的主要目的在于提供一种光学成像系统,以解决现有技术中的光学成像系统的成像质量及小型化设计无法兼具的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光学成像系统,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,第一透镜具有正光焦度;第二透镜具有负光焦度;第六透镜的物侧面为凹面;第七透镜具有负光焦度;其中,f为所述光学成像系统的有效焦距,第四透镜的有效焦距为f4,第五透镜的有效焦距为f5,|f/f4|+|f/f5|≤0.3。
进一步地,光学成像系统的入瞳直径为EPD,f/EPD<2.2。
进一步地,第一透镜的有效焦距为f1,第三透镜的有效焦距为f3,第六透镜的有效焦距为f6,f1/|f3|+f1/|f6|<0.5。
进一步地,第二透镜的有效焦距为f2,第七透镜的有效焦距为f7,1.4≤f2/f7≤2.0。
进一步地,第二透镜的像侧面的曲率半径为R4,第三透镜的物侧面的曲率半径为R5,1.0<f/|R4|+f/|R5|<3.0。
进一步地,第五透镜的物侧面的曲率半径为R9,第五透镜的像侧面的曲率半径为R10,0.8<R9/R10<1.5。
进一步地,第六透镜的物侧面的曲率半径为R11,第六透镜的像侧面的曲率半径为R12,-4.0<f/R11+f/R12<-2.0。
进一步地,第六透镜的物侧面的曲率半径为R11,第六透镜的像侧面的曲率半径为R12,0.8<R11/R12<2.0。
进一步地,第四透镜、第五透镜以及第六透镜在光轴上的中心厚度分别为CT4、CT5和CT6,5<f/(CT4+CT5+CT6)<7。
进一步地,第四透镜和第五透镜在光轴上的间距为T45,第五透镜和第六透镜在光轴上的间距为T56,0.6<T45/T56<1.0。
进一步地,第六透镜和第七透镜在光轴上的间距为T67,第七透镜在光轴上的中心厚度为CT7,0.9≤T67/CT7≤1.6。
根据本发明的一个方面,提供了一种光学成像系统,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,第一透镜具有正光焦度;第二透镜具有负光焦度;第六透镜的物侧面为凹面;第七透镜具有负光焦度;其中,3.5mm<f×(ImgH/TTL)<4.5mm,f为光学成像系统的有效焦距,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半,TTL为第一透镜的物侧面至成像面在光轴上的距离。
应用本发明的技术方案,上述的光学成像系统中,通过合理的控制系统中的第一透镜、第二透镜和第七透镜的光焦度的正负分配,以及第六透镜的物侧面形状,来有效地平衡光学成像系统的低阶像差,使得光学成像系统的成像系统的成像质量较高。此外,通过合理控制第四透镜和第五透镜的光焦度,控制|f/f4|+|f/f5|小于或等于0.3,能够避免光线通过光学成像系统时的偏折过大,同时利于矫正光学成像系统的场曲。不仅如此,通过优化光学成像系统的有效焦距、光学成像系统的成像面上有效像素区域对角线长的一半的数值以及第一透镜的物侧面至成像面在光轴上的距离之间的关系,控制f×(ImgH/TTL)大于3.5且小于4.5,能够合理地控制光学成像系统的总长和像高,避免像高过小,有利于光学成像系统的小型化。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;
图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;
图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;
图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;
图8A至图8D分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;
图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;
图12A至图12D分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;
图14A至图14D分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;
图16A至图16D分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像系统的结构示意图;
图18A至图18D分别示出了实施例9的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像系统的结构示意图;
图20A至图20D分别示出了实施例10的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。以下对至少一 个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
正如背景技术所介绍的,现有技术中,对光学成像系统的成像质量及小型化提出了更高的要求,也就是说,需要光学成像系统在具有优良成像质量的前提下,还要兼具结构尺寸小的特点,从而满足于设置有光学成像系统的电子产品的小型化设计需求,提升电子产品的市场竞争力。本申请提出了一种光学成像系统,既具有较高的成像质量,又具有较小的结构尺寸,有利于小型化设计。
本申请的一种典型的实施方式中,提供了一种光学成像系统,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7。
其中,上述的第一透镜具有正光焦度;上述的第二透镜具有负光焦度;上述的第六透镜的物侧面为凹面;上述的第七透镜具有负光焦度;光学成像系统的条件式f×(ImgH/TTL)满足条件:3.5mm<f×(ImgH/TTL)<4.5mm,f为光学成像系统的有效焦距,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半,TTL为第一透镜的物侧面至成像面在光轴上的距离。
上述的光学成像系统中,通过合理的控制系统中的第一透镜、第二透镜和第七透镜的光焦度的正负分配,以及第六透镜的物侧面形状,来有效地平衡光学成像系统的低阶像差,使得光学成像系统的成像系统的成像质量较高。此外,通过合理控制第四透镜和第五透镜的光焦度,控制|f/f4|+|f/f5|小于或等于0.3,能够避免光线通过光学成像系统时的偏折过大,同时利于矫正光学成像系统的场曲。不仅如此,通过优化光学成像系统的有效焦距、光学成像系统的成像面上有效像素区域对角线长的一半的数值以及第一透镜的物侧面至成像面在光轴上的距离之间的关系,控制f×(ImgH/TTL)大于3.5且小于4.5,能够合理地控制光学成像系统的总长和像高,避免像高过小,有利于光学成像系统的小型化。
本申请的一种实施例中,光学成像系统的入瞳直径为EPD,f/EPD<2.2。这样,在保证了光学成像系统的通光量的同时,增强了光学成像系统在暗环境下的成像效果,同时还减小了光学成像系统的边缘视场的像差。
本申请的另一种实施例中,第一透镜的有效焦距为f1,第三透镜的有效焦距为f3,第六透镜的有效焦距为f6,f1/|f3|+f1/|f6|<0.5。这样,通过合理分配第一透镜、第三透镜和第六透镜的有效焦距,有助于光光学成像系统实现长焦的特性。并且使得光学成像系统具备提升对光线的汇聚的能力,调整光线聚焦位置,控制光学成像系统的总长。
本申请的另一种实施例中,第二透镜的有效焦距为f2,第七透镜的有效焦距为f7,1.4≤f2/f7≤2.0。这样,通过合理分配第二透镜和第七透镜的有效焦距,同样地,有助于光学成像 系统实现长焦的特性;并且使得光学成像系统能具备提升对光线的汇聚能力,调整光线聚焦位置。
本申请的另一种实施例中,为了通过合理设置第二透镜和第三透镜的曲率半径,使得光学成像系统能较容易的匹配常用芯片,具有而言上述的第二透镜的像侧面的曲率半径为R4,上述的第三透镜的物侧面的曲率半径为R5,1.0<f/|R4|+f/|R5|<3.0。
本申请的另一种实施例中,第五透镜的物侧面的曲率半径为R9,第五透镜的像侧面的曲率半径为R10,0.8<R9/R10<1.5。这样,通过合理地控制第五透镜的曲率半径,避免第五透镜过于弯曲,减少加工难度,同时有利于控制光学成像系统的场曲。
本申请的另一种实施例中,第六透镜的物侧面的曲率半径为R11,第六透镜的像侧面的曲率半径为R12,-4.0<f/R11+f/R12<-2.0。确保光学成像系统的有效焦距f与第六透镜物侧面的曲率半径R11和第六透镜像侧面的曲率半径R12的比值之和在这一范围内,有利于控制主光线角度,匹配芯片的CRA。
本申请的另一种实施例中,第六透镜的物侧面的曲率半径为R11,第六透镜的像侧面的曲率半径为R12,0.8<R11/R12<2.0。这样,通过合理地控制第六透镜物侧面的曲率半径R11和第六透镜像侧面的曲率半径R12,使光学成像系统具备较强的平衡像散的能力,同时使光学成像系统具备较好的平衡色差和畸变的能力。
本申请的另一种实施例中,第四透镜、第五透镜以及第六透镜在光轴上的中心厚度分别为CT4、CT5和CT6,5<f/(CT4+CT5+CT6)<7。这样,通过合理控制第四透镜、第五透镜和第六透镜的中心厚度,从而使透镜的表面变化自由度更高,进而有利于提升光学成像系统校正像散和场曲的能力。
为了可靠地降低光学成像系统的组装难度,提升光学成像系统的装配便捷性和使用稳定性,本申请的另一种实施例中,第四透镜和第五透镜在光轴上的间距为T45,第五透镜和第六透镜在光轴上的间距为T56,0.6<T45/T56<1.0。这样,通过合理控制第四透镜和第五透镜的间隔,以及第五透镜和第六透镜的间隔,从而避免透镜之间间隔过小,有利于降低光学成像系统的组装难度。
本申请的另一种实施例中,第六透镜和第七透镜在光轴上的间距为T67,第七透镜在光轴上的中心厚度为CT7,0.9≤T67/CT7≤1.6。这样,通过合理地分配第六透镜和第七透镜之间的空气间隔,有效地压缩了光学成像系统的尺寸,保证设置有本申请的光学成像系统的电子产品镜头的超薄特性。
本申请的图示实施例中,如图1、图3、图5、图7、图9、图11、图13、图15、图17以及图19所示,上述光学成像系统还包括滤光片E8,该滤光片E8位于上述第七透镜E7的背离第六透镜E6的一侧,该滤光片E8可以滤除杂散光,进一步提升该光学成像系统的成像质量。
需要说明的是,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案以及技术效果,以下将结合具体的实施例来详细说明。
实施例1
如图1所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有负光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表1
Figure PCTCN2019103193-appb-000001
在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019103193-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。
下表2给出了用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表2
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0175E-02 -1.3266E-02 6.7940E-02 -1.7251E-01 2.6832E-01 -2.5914E-01 1.4990E-01 -4.7547E-02 6.3108E-03
S2 -3.5775E-02 1.8975E-01 -4.1496E-01 6.2707E-01 -7.2523E-01 6.2420E-01 -3.5684E-01 1.1555E-01 -1.5746E-02
S3 -5.5614E-02 2.7905E-01 -6.1452E-01 9.3669E-01 -1.0616E+00 9.0369E-01 -5.2647E-01 1.7872E-01 -2.5959E-02
S4 -4.9931E-02 2.1114E-01 -4.7587E-01 9.9841E-01 -1.7242E+00 2.2798E+00 -1.9469E+00 9.0442E-01 -1.7137E-01
S5 -2.6175E-02 1.7702E-01 -3.8154E-01 9.0696E-01 -1.4400E+00 1.6051E+00 -1.1493E+00 4.5034E-01 -6.9717E-02
S6 -2.6562E-02 7.2670E-02 1.2216E-03 -2.9019E-01 1.3728E+00 -2.9825E+00 3.5716E+00 -2.2339E+00 5.7572E-01
S7 -1.1830E-01 7.2809E-02 -3.6789E-01 1.3416E+00 -3.2224E+00 4.9296E+00 -4.5909E+00 2.3757E+00 -5.2340E-01
S8 -1.0114E-01 5.2517E-02 -3.4586E-01 1.1059E+00 -2.2267E+00 2.7698E+00 -2.0657E+00 8.4766E-01 -1.4675E-01
S9 -8.2288E-02 -2.1313E-01 8.2372E-01 -2.3560E+00 4.2507E+00 -4.8836E+00 3.3867E+00 -1.2889E+00 2.0772E-01
S10 -6.5843E-02 -1.1434E-01 2.7522E-01 -4.6540E-01 5.4583E-01 -4.3437E-01 2.1317E-01 -5.5811E-02 5.8657E-03
S11 -9.0590E-02 -8.2109E-02 2.3034E-02 9.3316E-02 -1.8851E-01 1.9263E-01 -1.1123E-01 3.3351E-02 -3.9745E-03
S12 1.2715E-02 -1.2230E-01 1.4148E-01 -1.2122E-01 7.7337E-02 -3.1723E-02 7.7248E-03 -1.0156E-03 5.5401E-05
S13 -7.7119E-02 2.5760E-02 -3.2528E-03 3.6347E-04 -1.1748E-04 2.4016E-05 -2.1780E-06 7.3402E-08 7.2448E-12
S14 -5.4256E-02 1.7198E-02 -4.0570E-03 7.4371E-04 -1.4423E-04 2.6003E-05 -3.0802E-06 1.9399E-07 -4.8826E-09
实施例1中,第一透镜的有效焦距f1=3.53mm,第二透镜的有效焦距f2=-7.30mm,第三透镜的有效焦距f3=29.91mm,第四透镜的有效焦距f4=37.74mm,第五透镜的有效焦距f5=-185.16mm,第六透镜的有效焦距f6=26.05mm,第七透镜的有效焦距f7=-4.34mm。该光学成像系统的有效焦距f=5.31mm,TTL=5.45mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.90;f/EPD=2.09;f1/|f3|+f1/|f6|=0.25;f2/f7=1.68;|f/f4|+|f/f5|=0.17;f/|R4|+f/|R5|=2.59;R9/R10=0.93;f/R11+f/R12=-2.36;R11/R12=1.33;f/(CT4+CT5+CT6)=5.52;T45/T56=0.82;T67/CT7=1.35;具体可以参见表22。
另外,图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
如图3所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有负光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表3示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表3
Figure PCTCN2019103193-appb-000003
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表4给出了用于实施例2中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9981E-02 -1.3049E-02 6.4247E-02 -1.5748E-01 2.3501E-01 -2.1705E-01 1.2008E-01 -3.6519E-02 4.6596E-03
S2 -2.9461E-02 1.4228E-01 -2.7068E-01 3.5977E-01 -3.8123E-01 3.1856E-01 -1.8489E-01 6.1984E-02 -8.7877E-03
S3 -4.9260E-02 2.1637E-01 -4.0965E-01 5.5276E-01 -5.5842E-01 4.3458E-01 -2.4170E-01 8.0757E-02 -1.1643E-02
S4 -4.3274E-02 1.5040E-01 -2.6522E-01 5.5414E-01 -9.9015E-01 1.3562E+00 -1.1846E+00 5.5418E-01 -1.0449E-01
S5 -1.6951E-02 9.9301E-02 -8.7505E-02 2.2233E-01 -3.6984E-01 4.8093E-01 -4.0545E-01 1.7787E-01 -2.8949E-02
S6 -1.9895E-02 1.7270E-02 3.1139E-01 -1.3909E+00 3.8660E+00 -6.5184E+00 6.5780E+00 -3.6309E+00 8.4710E-01
S7 -1.1424E-01 -3.6018E-03 8.0152E-02 -2.4922E-01 4.6736E-01 -5.6730E-01 4.5909E-01 -2.2859E-01 5.2945E-02
S8 -9.7608E-02 -2.5186E-03 -9.3522E-02 3.5023E-01 -7.4980E-01 9.3474E-01 -6.6651E-01 2.4852E-01 -3.6410E-02
S9 -7.4936E-02 -2.4770E-01 1.0808E+00 -3.2266E+00 5.8865E+00 -6.7553E+00 4.7039E+00 -1.8115E+00 2.9622E-01
S10 -8.5988E-02 -3.8878E-02 1.6135E-01 -3.4941E-01 4.3340E-01 -3.3496E-01 1.5627E-01 -3.8969E-02 3.9195E-03
S11 -6.8509E-02 -1.5564E-01 2.0050E-01 -1.1528E-01 -5.8955E-02 1.4805E-01 -1.0220E-01 3.1909E-02 -3.7916E-03
S12 2.0941E-02 -1.7321E-01 2.3856E-01 -2.1897E-01 1.3696E-01 -5.4778E-02 1.3278E-02 -1.7768E-03 1.0073E-04
S13 -7.2339E-02 1.5572E-02 5.6500E-03 -3.3500E-03 7.4781E-04 -9.3174E-05 6.7548E-06 -2.6305E-07 4.1664E-09
S14 -6.5782E-02 2.6850E-02 -8.8525E-03 2.2294E-03 -4.1599E-04 5.3713E-05 -4.3917E-06 1.9999E-07 -3.7909E-09
实施例2中,第一透镜的有效焦距f1=3.46mm,第二透镜的有效焦距f2=-7.01mm,第三透镜的有效焦距f3=33.78mm,第四透镜的有效焦距f4=56.21mm,第五透镜的有效焦距f5=29.91mm,第六透镜的有效焦距f6=-352.67mm,第七透镜的有效焦距f7=-4.73mm。该光学成像系统的有效焦距f=5.36mm,TTL=5.50mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.90;f/EPD=2.06;f1/|f3|+f1/|f6|=0.11;f2/f7=1.48;|f/f4|+|f/f5|=0.27;f/|R4|+f/|R5|=2.60;R9/R10=1.25;f/R11+f/R12=-2.43;R11/R12=0.95;f/(CT4+CT5+CT6)=5.98;T45/T56=0.83;T67/CT7=1.05;具体可以参见表22。
另外,图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
如图5所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表5示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表5
Figure PCTCN2019103193-appb-000004
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表6给出了用于实施例3中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表6
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8778E-02 -5.5037E-03 2.7754E-02 -5.9895E-02 8.1014E-02 -7.0129E-02 3.7010E-02 -1.0904E-02 1.3480E-03
S2 -3.2467E-02 1.7411E-01 -3.5103E-01 4.4393E-01 -3.8276E-01 2.3024E-01 -9.5256E-02 2.4293E-02 -2.8173E-03
S3 -5.8120E-02 2.5820E-01 -4.9570E-01 6.2976E-01 -5.4068E-01 3.2464E-01 -1.3669E-01 3.6768E-02 -4.6135E-03
S4 -5.4273E-02 1.9469E-01 -3.2787E-01 5.3754E-01 -7.3222E-01 8.2159E-01 -6.3824E-01 2.7560E-01 -4.8564E-02
S5 -1.8951E-02 1.1131E-01 -5.5199E-02 2.5272E-02 4.7523E-02 -5.1003E-02 1.4246E-02 -4.1678E-03 3.5374E-03
S6 -2.2837E-02 6.5853E-02 7.7095E-02 -6.1064E-01 2.0731E+00 -3.8657E+00 4.1788E+00 -2.4272E+00 5.9293E-01
S7 -1.1899E-01 2.9885E-02 -1.3101E-01 6.2194E-01 -1.6457E+00 2.4767E+00 -2.1368E+00 9.8695E-01 -1.8799E-01
S8 -1.0476E-01 1.8537E-02 -1.2648E-01 4.4033E-01 -9.1286E-01 1.1001E+00 -7.6909E-01 2.8931E-01 -4.4747E-02
S9 -7.9571E-02 -2.0410E-01 6.4106E-01 -1.5040E+00 2.2155E+00 -2.0725E+00 1.1393E+00 -3.2790E-01 3.8233E-02
S10 -5.2974E-02 -2.1262E-01 6.0334E-01 -1.1455E+00 1.4153E+00 -1.1159E+00 5.2956E-01 -1.3491E-01 1.4016E-02
S11 -6.6247E-02 -1.3242E-01 5.1264E-02 1.0394E-01 -2.2885E-01 2.3480E-01 -1.3451E-01 4.0089E-02 -4.7687E-03
S12 3.5009E-02 -1.5146E-01 1.3598E-01 -8.7817E-02 4.9090E-02 -1.9657E-02 4.8125E-03 -6.3828E-04 3.5115E-05
S13 -7.5170E-02 2.0791E-02 2.2150E-03 -2.0579E-03 4.4730E-04 -4.9641E-05 2.9924E-06 -8.8776E-08 8.9371E-10
S14 -3.8012E-02 -5.9487E-03 1.0580E-02 -4.5387E-03 1.0417E-03 -1.4316E-04 1.1858E-05 -5.4792E-07 1.0862E-08
实施例3中,第一透镜的有效焦距f1=3.50mm,第二透镜的有效焦距f2=-7.44mm,第三透镜的有效焦距f3=32.75mm,第四透镜的有效焦距f4=117.73mm,第五透镜的有效焦距f5=159.83mm,第六透镜的有效焦距f6=104.71mm,第七透镜的有效焦距f7=-4.77mm。该光学成像系统的有效焦距f=5.72mm,TTL=5.60mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.88;f/EPD=2.08;f1/|f3|+f1/|f6|=0.14;f2/f7=1.56;|f/f4|+|f/f5|=0.08;f/|R4|+f/|R5|=2.81;R9/R10=1.06;f/R11+f/R12=-2.33;R11/R12=1.06;f/(CT4+CT5+CT6)=6.58;T45/T56=0.91;T67/CT7=0.98;具体可以参见表22。
另外,图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
如图7所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有负光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表7
Figure PCTCN2019103193-appb-000005
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表8给出了用于实施例4中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表8
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.6151E-02 1.5675E-02 -4.9775E-02 8.6849E-02 -8.3571E-02 3.7900E-02 -1.5636E-03 -4.9282E-03 1.2472E-03
S2 -2.5364E-02 4.5978E-02 1.0375E-01 -3.6262E-01 4.6288E-01 -2.8087E-01 5.6452E-02 1.4863E-02 -5.9717E-03
S3 -3.0572E-02 4.9474E-02 2.1076E-01 -6.9183E-01 9.7862E-01 -7.4658E-01 3.0093E-01 -5.5634E-02 3.0280E-03
S4 -3.4953E-02 8.7644E-02 -2.6764E-01 1.2658E+00 -3.3682E+00 5.1631E+00 -4.4814E+00 2.0328E+00 -3.7374E-01
S5 -1.3736E-02 8.8419E-02 -2.6092E-01 1.2588E+00 -3.1461E+00 4.6626E+00 -3.9859E+00 1.8019E+00 -3.3236E-01
S6 -8.2739E-03 -6.9813E-02 7.4842E-01 -2.8135E+00 6.8812E+00 -1.0679E+01 1.0134E+01 -5.3151E+00 1.1818E+00
S7 -1.1132E-01 2.0848E-02 -3.1487E-01 1.7930E+00 -5.2310E+00 8.9196E+00 -8.9788E+00 4.9497E+00 -1.1502E+00
S8 -1.0637E-01 8.5860E-02 -6.1511E-01 2.0375E+00 -4.0471E+00 4.9834E+00 -3.7396E+00 1.5688E+00 -2.8126E-01
S9 -9.2799E-02 -3.1792E-02 2.9057E-02 -5.9083E-01 1.6827E+00 -2.2667E+00 1.6036E+00 -5.8145E-01 8.7315E-02
S10 -7.3979E-02 1.8137E-02 -8.4326E-02 -4.1651E-02 3.3882E-01 -4.5076E-01 2.7462E-01 -8.0245E-02 9.0932E-03
S11 -1.1436E-01 -3.2578E-02 2.2035E-01 -5.8669E-01 6.8991E-01 -4.1263E-01 1.2337E-01 -1.4874E-02 1.1868E-04
S12 -4.1280E-02 2.3065E-02 -1.8941E-02 -3.8819E-02 6.3544E-02 -3.7107E-02 1.0907E-02 -1.6292E-03 9.8574E-05
S13 -7.5697E-02 2.6079E-02 -5.5623E-03 2.4925E-03 -9.6675E-04 2.0516E-04 -2.3863E-05 1.4550E-06 -3.6613E-08
S14 -2.4146E-02 -1.9564E-02 1.7814E-02 -6.8808E-03 1.5077E-03 -1.9839E-04 1.5480E-05 -6.5893E-07 1.1774E-08
实施例4中,第一透镜的有效焦距f1=3.16mm,第二透镜的有效焦距f2=-7.08mm,第三透镜的有效焦距f3=-83.93mm,第四透镜的有效焦距f4=31.49mm,第五透镜的有效焦距f5=200.42mm,第六透镜的有效焦距f6=27.19mm,第七透镜的有效焦距f7=-4.69mm。该光学成像系统的有效焦距f=5.28mm,TTL=5.49mm,ImgH=4.00mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.85;f/EPD=2.13;f1/|f3|+f1/|f6|=0.15;f2/f7=1.51;|f/f4|+|f/f5|=0.19;f/|R4|+f/|R5|=1.72;R9/R10=1.03;f/R11+f/R12=-2.50;R11/R12=1.28;f/(CT4+CT5+CT6)=5.43;T45/T56=0.81;T67/CT7=1.13;具体可以参见表22。
另外,图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
如图9所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凹面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表9示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表9
Figure PCTCN2019103193-appb-000006
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表10给出了用于实施例5中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8655E-02 -6.6450E-03 3.2420E-02 -7.5356E-02 1.0382E-01 -8.9582E-02 4.6758E-02 -1.3640E-02 1.6942E-03
S2 -1.4879E-02 7.0963E-02 -1.0147E-01 5.6826E-02 5.0876E-02 -1.1724E-01 8.8060E-02 -3.0754E-02 4.1546E-03
S3 -2.2893E-02 1.3695E-01 -2.5780E-01 3.1362E-01 -2.1314E-01 4.9346E-02 2.7842E-02 -2.0136E-02 3.6689E-03
S4 -3.3100E-02 1.1017E-01 -2.3719E-01 5.5169E-01 -9.7182E-01 1.3240E+00 -1.1720E+00 5.5588E-01 -1.0559E-01
S5 -1.8154E-02 1.0771E-01 -2.4146E-01 7.8321E-01 -1.4975E+00 1.9752E+00 -1.6457E+00 7.4720E-01 -1.3858E-01
S6 -1.8096E-02 5.8865E-02 -5.0018E-02 9.8054E-02 1.1255E-01 -5.5194E-01 8.0059E-01 -5.2923E-01 1.4052E-01
S7 -1.1413E-01 2.3996E-02 -1.8080E-01 7.2660E-01 -1.7307E+00 2.5515E+00 -2.2412E+00 1.0743E+00 -2.1421E-01
S8 -9.3513E-02 -3.9424E-02 5.1971E-02 -5.7062E-02 -3.6598E-02 1.8054E-01 -2.0019E-01 9.8330E-02 -1.8246E-02
S9 -9.9395E-02 -7.5509E-02 2.4647E-01 -7.4935E-01 1.3890E+00 -1.7038E+00 1.2942E+00 -5.4849E-01 9.9150E-02
S10 -9.3961E-02 2.8748E-02 -9.6774E-02 2.5705E-01 -4.1354E-01 3.8945E-01 -2.1545E-01 6.5210E-02 -8.2562E-03
S11 -1.2201E-01 1.3854E-02 -1.0986E-01 2.5231E-01 -3.1273E-01 2.4114E-01 -1.1328E-01 2.9027E-02 -3.0579E-03
S12 -8.4655E-03 -8.5086E-02 1.1029E-01 -9.7284E-02 6.2081E-02 -2.5421E-02 6.1917E-03 -8.1468E-04 4.4377E-05
S13 -7.2519E-02 1.8401E-02 2.4322E-03 -2.1522E-03 5.3109E-04 -7.4582E-05 6.4580E-06 -3.2241E-07 7.1072E-09
S14 -5.3788E-02 1.9760E-02 -5.6469E-03 1.2262E-03 -2.0674E-04 2.5647E-05 -2.1172E-06 1.0059E-07 -2.0356E-09
实施例5中,第一透镜的有效焦距f1=3.31mm,第二透镜的有效焦距f2=-6.78mm,第三透镜的有效焦距f3=56.98mm,第四透镜的有效焦距f4=35.97mm,第五透镜的有效焦距f5=2847.10mm,第六透镜的有效焦距f6=26.22mm,第七透镜的有效焦距f7=-4.51mm。该光学成像系统的有效焦距f=5.32mm,TTL=5.63mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.59;f/EPD=2.15;f1/|f3|+f1/|f6|=0.18;f2/f7=1.50;|f/f4|+|f/f5|=0.15;f/|R4|+f/|R5|=1.77;R9/R10=0.99;f/R11+f/R12=-2.43;R11/R12=1.31;f/(CT4+CT5+CT6)=5.20;T45/T56=0.77;T67/CT7=1.14;具体可以参见表22。
另外,图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
如图11所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有负光焦度,且第三透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有负光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表11示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表11
Figure PCTCN2019103193-appb-000007
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表12给出了用于实施例6中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表12
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8463E-02 6.9082E-04 1.5268E-02 -5.6094E-02 1.0949E-01 -1.2521E-01 8.2701E-02 -2.9348E-02 4.2787E-03
S2 -3.0563E-02 1.0881E-01 -1.7602E-01 2.6609E-01 -3.8896E-01 4.2595E-01 -2.9221E-01 1.0895E-01 -1.6700E-02
S3 -4.0763E-02 1.6333E-01 -2.5825E-01 3.5799E-01 -4.8634E-01 5.4701E-01 -4.0422E-01 1.6395E-01 -2.7190E-02
S4 -2.3950E-02 1.0218E-01 -2.4473E-01 7.1977E-01 -1.5861E+00 2.2670E+00 -1.8828E+00 8.1567E-01 -1.4218E-01
S5 6.9184E-03 1.1610E-01 -4.9925E-01 1.8155E+00 -3.8962E+00 5.2599E+00 -4.2523E+00 1.8716E+00 -3.4553E-01
S6 -8.1350E-03 6.0984E-02 -2.1186E-01 8.0151E-01 -1.7831E+00 2.6105E+00 -2.3550E+00 1.1963E+00 -2.5663E-01
S7 -1.1613E-01 -6.0700E-03 -1.7833E-02 3.7757E-02 2.7808E-02 -2.1480E-01 3.9294E-01 -3.1777E-01 9.9628E-02
S8 -9.1469E-02 -6.7036E-02 2.1082E-01 -5.6912E-01 1.0002E+00 -1.1181E+00 7.7532E-01 -3.0475E-01 5.1895E-02
S9 -1.1225E-01 -1.0508E-02 -8.2671E-02 2.8695E-01 -5.5794E-01 5.6718E-01 -3.0094E-01 6.3988E-02 6.5515E-04
S10 -1.0934E-01 6.8001E-02 -2.1144E-01 4.9545E-01 -7.2324E-01 6.4940E-01 -3.5215E-01 1.0544E-01 -1.3230E-02
S11 -1.0312E-01 4.1465E-03 -9.7567E-02 2.2819E-01 -2.8314E-01 2.1355E-01 -9.6203E-02 2.3460E-02 -2.3517E-03
S12 -1.2701E-02 -5.9420E-02 7.0822E-02 -6.1600E-02 3.8638E-02 -1.5236E-02 3.6004E-03 -4.7312E-04 2.6736E-05
S13 -8.5748E-02 4.7475E-02 -1.7880E-02 5.3289E-03 -1.1271E-03 1.5632E-04 -1.3444E-05 6.5236E-07 -1.3707E-08
S14 -5.1957E-02 2.2901E-02 -7.8896E-03 1.9519E-03 -3.4615E-04 4.2098E-05 -3.2743E-06 1.4505E-07 -2.7586E-09
实施例6中,第一透镜的有效焦距f1=3.26mm,第二透镜的有效焦距f2=-8.01mm,第三透镜的有效焦距f3=-462.35mm,第四透镜的有效焦距f4=120.74mm,第五透镜的有效焦距f5=-2609.2mm,第六透镜的有效焦距f6=16.05mm,第七透镜的有效焦距f7=-4.09mm。该光学成像系统的有效焦距f=5.39mm,TTL=5.67mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.80;f/EPD=2.10;f1/|f3|+f1/|f6|=0.21;f2/f7=1.96;|f/f4|+|f/f5|=0.05;f/|R4|+f/|R5|=1.11;R9/R10=0.98;f/R11+f/R12=-2.36;R11/R12=1.65;f/(CT4+CT5+CT6)=5.33;T45/T56=0.75;T67/CT7=1.17;具体可以参见表22。
另外,图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
如图13所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第四透镜具有负光焦度,且第四透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表13
Figure PCTCN2019103193-appb-000008
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表14给出了用于实施例7中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表14
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8835E-02 -6.7617E-03 4.1328E-02 -1.1066E-01 1.7959E-01 -1.7967E-01 1.0719E-01 -3.4964E-02 4.7430E-03
S2 -1.8584E-02 7.5922E-02 -1.2052E-01 1.9402E-01 -3.0806E-01 3.6702E-01 -2.7206E-01 1.0776E-01 -1.7272E-02
S3 -3.2669E-02 1.1867E-01 -1.4474E-01 1.1632E-01 -8.9686E-02 1.2734E-01 -1.4310E-01 7.6914E-02 -1.5153E-02
S4 -3.0886E-02 1.1365E-01 -2.8070E-01 8.7269E-01 -2.0019E+00 3.0540E+00 -2.7666E+00 1.3189E+00 -2.5367E-01
S5 -4.9099E-03 9.6632E-02 -3.1254E-01 1.2123E+00 -2.7438E+00 3.9843E+00 -3.4607E+00 1.6113E+00 -3.0785E-01
S6 -8.5866E-03 -6.2319E-03 2.0396E-01 -6.2898E-01 1.3790E+00 -1.9020E+00 1.6612E+00 -8.3140E-01 1.8530E-01
S7 -1.1112E-01 -8.7982E-03 -3.1786E-03 1.3490E-01 -4.0397E-01 5.5412E-01 -3.3997E-01 4.6097E-02 2.4862E-02
S8 -9.0678E-02 -9.3694E-02 3.7555E-01 -1.1205E+00 2.1453E+00 -2.6293E+00 1.9935E+00 -8.5083E-01 1.5650E-01
S9 -8.5062E-02 -1.4915E-01 5.0469E-01 -1.2998E+00 2.1157E+00 -2.2676E+00 1.5197E+00 -5.7730E-01 9.5399E-02
S10 -8.8232E-02 -1.8564E-02 3.9334E-02 -7.9994E-03 -8.1871E-02 1.2907E-01 -9.3440E-02 3.4516E-02 -5.1021E-03
S11 -8.9608E-02 -5.6749E-02 -2.5995E-02 1.8732E-01 -2.9151E-01 2.4834E-01 -1.2262E-01 3.2279E-02 -3.4547E-03
S12 5.8891E-03 -1.0585E-01 1.2123E-01 -9.6358E-02 5.7342E-02 -2.2556E-02 5.3626E-03 -6.9584E-04 3.7787E-05
S13 -7.1730E-02 2.3332E-02 -2.6061E-03 2.1195E-04 -9.1134E-05 2.3442E-05 -2.7785E-06 1.5982E-07 -3.6607E-09
S14 -5.5129E-02 2.2645E-02 -7.5932E-03 1.9155E-03 -3.5703E-04 4.6379E-05 -3.8555E-06 1.8058E-07 -3.5745E-09
实施例7中,第一透镜的有效焦距f1=3.62mm,第二透镜的有效焦距f2=-7.97mm,第三透镜的有效焦距f3=16.93mm,第四透镜的有效焦距f4=-77.29mm,第五透镜的有效焦距f5=42.10mm,第六透镜的有效焦距f6=43.06mm,第七透镜的有效焦距f7=-4.30mm。该光学成像系统的有效焦距f=5.35mm,TTL=5.58mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.98;f/EPD=2.06;f1/|f3|+f1/|f6|=0.30;f2/f7=1.85;|f/f4|+|f/f5|=0.20;f/|R4|+f/|R5|=1.95;R9/R10=1.19;f/R11+f/R12=-2.43;R11/R12=1.17;f/(CT4+CT5+CT6)=5.50;T45/T56=0.72;T67/CT7=1.18;具体可以参见表22。
另外,图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
如图15所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表15示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表15
Figure PCTCN2019103193-appb-000009
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表16给出了用于实施例8中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8869E-02 -3.1379E-03 4.5685E-02 -1.5786E-01 2.9471E-01 -3.1988E-01 2.0012E-01 -6.6982E-02 9.2292E-03
S2 -4.6314E-02 2.5994E-01 -7.0561E-01 1.3969E+00 -1.9939E+00 1.9020E+00 -1.1129E+00 3.5523E-01 -4.7035E-02
S3 -5.6917E-02 2.9214E-01 -7.0069E-01 1.2416E+00 -1.6706E+00 1.5983E+00 -9.6869E-01 3.2375E-01 -4.4886E-02
S4 -4.4586E-02 2.1174E-01 -5.9354E-01 1.5125E+00 -2.8936E+00 3.8219E+00 -3.1016E+00 1.3562E+00 -2.4274E-01
S5 -2.4836E-02 1.7572E-01 -5.3748E-01 1.7808E+00 -3.8292E+00 5.3206E+00 -4.4540E+00 2.0196E+00 -3.7915E-01
S6 -1.3124E-02 -2.6043E-02 4.6846E-01 -1.7585E+00 4.2742E+00 -6.5202E+00 6.1367E+00 -3.2375E+00 7.3786E-01
S7 -1.1269E-01 5.1747E-02 -2.9189E-01 1.1382E+00 -2.7388E+00 4.0175E+00 -3.4652E+00 1.6008E+00 -3.0160E-01
S8 -1.0396E-01 -2.0984E-02 1.5699E-01 -6.7539E-01 1.5526E+00 -2.1469E+00 1.7808E+00 -8.1617E-01 1.5891E-01
S9 -6.6384E-02 -3.3166E-01 1.3587E+00 -3.8377E+00 6.7036E+00 -7.3652E+00 4.9086E+00 -1.8111E+00 2.8466E-01
S10 -6.0282E-02 -1.3445E-01 3.8963E-01 -7.6593E-01 9.5266E-01 -7.4506E-01 3.4830E-01 -8.6993E-02 8.8239E-03
S11 -9.3076E-02 -4.0807E-02 -9.8316E-02 2.9418E-01 -4.0076E-01 3.3453E-01 -1.6951E-01 4.6842E-02 -5.3242E-03
S12 2.6201E-02 -1.3260E-01 1.2754E-01 -9.6843E-02 6.2621E-02 -2.7441E-02 7.2169E-03 -1.0306E-03 6.1579E-05
S13 -6.8813E-02 1.1862E-02 8.0183E-03 -4.4015E-03 1.0536E-03 -1.5081E-04 1.3587E-05 -7.2367E-07 1.7525E-08
S14 -4.8631E-02 8.4969E-03 1.7151E-03 -1.5069E-03 4.1274E-04 -6.1412E-05 5.2674E-06 -2.4420E-07 4.7399E-09
实施例8中,第一透镜的有效焦距f1=3.54mm,第二透镜的有效焦距f2=-7.47mm,第三透镜的有效焦距f3=20.75mm,第四透镜的有效焦距f4=127.08mm,第五透镜的有效焦距f5=84.45mm,第六透镜的有效焦距f6=22.05mm,第七透镜的有效焦距f7=-3.75mm。该光学成像系统的有效焦距f=5.23mm,TTL=5.35mm,ImgH=4.00mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.72;f/EPD=2.05;f1/|f3|+f1/|f6|=0.33;f2/f7=1.99;|f/f4|+|f/f5|=0.103;f/|R4|+f/|R5|=2.55;R9/R10=1.14;f/R11+f/R12=-2.51;R11/R12=1.38;f/(CT4+CT5+CT6)=5.79;T45/T56=0.78;T67/CT7=1.54;具体可以参见表22。
另外,图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
实施例9
如图17所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凸面,且为非球面;第五透镜具有负光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凹面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表17示出了实施例9的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表17
Figure PCTCN2019103193-appb-000010
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表18给出了用于实施例9中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表18
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.1073E-02 5.1190E-03 -7.1910E-03 1.8367E-03 2.1632E-02 -4.9886E-02 4.8119E-02 -2.2324E-02 3.9792E-03
S2 -7.1886E-03 6.2535E-02 -2.4593E-01 6.3309E-01 -9.9057E-01 9.9029E-01 -6.1073E-01 2.0681E-01 -2.9050E-02
S3 -1.1073E-02 6.0805E-02 -1.8655E-01 4.7008E-01 -7.2064E-01 7.3224E-01 -4.8093E-01 1.7892E-01 -2.7921E-02
S4 -1.7457E-02 6.3497E-02 -2.8087E-01 1.1480E+00 -2.8075E+00 4.4671E+00 -4.2454E+00 2.1252E+00 -4.2790E-01
S5 -1.0874E-02 8.3675E-02 -3.4136E-01 1.4649E+00 -3.5381E+00 5.5417E+00 -5.1866E+00 2.5809E+00 -5.2238E-01
S6 -1.9956E-02 3.3918E-02 1.4129E-02 -6.3683E-02 3.8037E-01 -7.7345E-01 8.7897E-01 -5.1461E-01 1.2781E-01
S7 -1.0631E-01 6.9856E-02 -5.5841E-01 2.3557E+00 -6.1105E+00 9.8407E+00 -9.5300E+00 5.0830E+00 -1.1448E+00
S8 -9.5116E-02 -2.4048E-02 4.5066E-03 5.1721E-02 -2.2712E-01 3.8319E-01 -3.1877E-01 1.2804E-01 -1.8384E-02
S9 -8.3613E-02 -2.0991E-01 7.0447E-01 -1.7969E+00 3.0531E+00 -3.4660E+00 2.4652E+00 -9.9018E-01 1.7137E-01
S10 -6.4665E-02 -1.0662E-01 2.3116E-01 -2.8746E-01 2.2470E-01 -1.0987E-01 2.8660E-02 -1.7944E-03 -4.2485E-04
S11 -8.5932E-02 -1.5290E-02 -1.9669E-01 4.7591E-01 -5.8341E-01 4.4006E-01 -2.0196E-01 5.0868E-02 -5.3181E-03
S12 3.1150E-02 -1.0632E-01 7.6552E-02 -4.1098E-02 2.3360E-02 -1.0166E-02 2.6678E-03 -3.7386E-04 2.1546E-05
S13 -1.0673E-01 7.2827E-02 -3.8401E-02 1.5473E-02 -4.1483E-03 7.0766E-04 -7.4147E-05 4.3715E-06 -1.1149E-07
S14 -5.8743E-02 2.4138E-02 -7.3408E-03 1.4367E-03 -1.8627E-04 1.6568E-05 -1.0313E-06 4.2583E-08 -8.6619E-10
实施例9中,第一透镜的有效焦距f1=3.56mm,第二透镜的有效焦距f2=-6.63mm,第三透镜的有效焦距f3=19.25mm,第四透镜的有效焦距f4=30.87mm,第五透镜的有效焦距f5=-342.82mm,第六透镜的有效焦距f6=13.98mm,第七透镜的有效焦距f7=-3.65mm。该光学成像系统的有效焦距f=5.02mm,TTL=5.25mm,ImgH=4.00mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.82;f/EPD=2.11;f1/|f3|+f1/|f6|=0.44;f2/f7=1.82;|f/f4|+|f/f5|=0.18;f/|R4|+f/|R5|=2.79;R9/R10=0.92;f/R11+f/R12=-2.25;R11/R12=1.78;f/(CT4+CT5+CT6)=5.48;T45/T56=0.74;T67/CT7=1.44;具体可以参见表22。
另外,图18A示出了实施例9的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图18B示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像系统能够实现良好的成像品质。
实施例10
如图19所示,沿光轴从物侧至像侧的方向上,该光学成像系统依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜具有正光焦度,且第一透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第二透镜具有负光焦度,且第二透镜的物侧面为凸面,且为非球面,像侧面为凹面, 且为非球面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第四透镜具有正光焦度,且第四透镜的物侧面为凸面,且为非球面,像侧面为凹面,且为非球面;第五透镜具有正光焦度,且第五透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第六透镜具有正光焦度,且第六透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面;第七透镜具有负光焦度,且第七透镜的物侧面为凹面,且为非球面,像侧面为凸面,且为非球面。
该光学成像系统中还包括具有物侧面S15和像侧面S16的滤光片。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例10的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为mm。
表19
Figure PCTCN2019103193-appb-000011
在本实施例中,各非球面透镜的面型x的计算公式与实施例1的相同。
下表20给出了用于实施例10中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16和A 20
表20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3052E-02 -3.2315E-02 1.3194E-01 -2.9941E-01 4.1762E-01 -3.6192E-01 1.8901E-01 -5.4513E-02 6.6362E-03
S2 -2.3678E-02 9.7976E-02 -1.6334E-01 2.2668E-01 -2.8045E-01 2.6083E-01 -1.5473E-01 5.0425E-02 -6.8120E-03
S3 -3.7236E-02 1.4091E-01 -1.9723E-01 2.0747E-01 -1.9742E-01 1.7351E-01 -1.0866E-01 3.7584E-02 -5.1544E-03
S4 -3.7742E-02 1.4786E-01 -3.7170E-01 1.0733E+00 -2.1985E+00 2.9210E+00 -2.3281E+00 9.9436E-01 -1.7383E-01
S5 -6.4375E-03 2.6242E-03 3.3226E-01 -8.7183E-01 1.3602E+00 -1.1864E+00 5.4635E-01 -1.1236E-01 5.9239E-03
S6 -3.0674E-02 1.3815E-01 -4.2923E-01 1.2270E+00 -1.8881E+00 1.4473E+00 -1.8633E-01 -4.0628E-01 1.8539E-01
S7 -1.0276E-01 -8.2910E-02 4.8759E-01 -1.4917E+00 2.6761E+00 -2.8386E+00 1.6971E+00 -4.8858E-01 4.0553E-02
S8 -1.0223E-01 5.5014E-02 -3.3736E-01 9.8259E-01 -1.8122E+00 2.0842E+00 -1.4417E+00 5.4628E-01 -8.6172E-02
S9 -9.4255E-02 -2.1107E-01 1.0523E+00 -3.1207E+00 5.4877E+00 -6.0323E+00 4.0436E+00 -1.5140E+00 2.4321E-01
S10 -1.0509E-01 2.2563E-02 2.2213E-02 -9.8322E-02 1.2676E-01 -8.5162E-02 2.9352E-02 -3.6840E-03 -1.2175E-04
S11 -6.9778E-02 -1.9795E-01 4.2600E-01 -5.3237E-01 3.6284E-01 -1.0859E-01 -7.3157E-03 1.1991E-02 -1.9600E-03
S12 -2.2261E-03 -1.2552E-01 2.0396E-01 -2.1110E-01 1.4016E-01 -5.7534E-02 1.4110E-02 -1.8980E-03 1.0778E-04
S13 -6.4986E-02 8.4802E-03 9.0001E-03 -4.1905E-03 8.6312E-04 -1.0115E-04 6.9432E-06 -2.5901E-07 4.0231E-09
S14 3.4969E-04 -2.3409E-02 1.4150E-02 -4.5591E-03 8.8626E-04 -1.0654E-04 7.7304E-06 -3.0926E-07 5.2233E-09
实施例10中,第一透镜的有效焦距f1=3.47mm,第二透镜的有效焦距f2=-7.14mm,第三透镜的有效焦距f3=40.11mm,第四透镜的有效焦距f4=50.48mm,第五透镜的有效焦距f5=52.17mm,第六透镜的有效焦距f6=21.09mm,第七透镜的有效焦距f7=-4.45mm。该光学成像系统的有效焦距f=5.29mm,TTL=5.41mm,ImgH=4.15mm,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域的对角线长的一半。具体可以参见表21。
且该光学成像系统满足:
f×(ImgH/TTL)=3.71;f/EPD=2.07;f1/|f3|+f1/|f6|=0.25;f2/f7=1.61;|f/f4|+|f/f5|=0.21;f/|R4|+f/|R5|=2.59;R9/R10=1.15;f/R11+f/R12=-2.18;R11/R12=1.49;f/(CT4+CT5+CT6)=5.48;T45/T56=0.76;T67/CT7=1.36;具体可以参见表22。
另外,图20A示出了实施例10的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图20B示出了实施例10的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像系统能够实现良好的成像品质。
实施例1-10的光学成像系统中,各个透镜的有效焦距、系统的有效焦距、TTL、HFOV以及ImgH的具体数值见表21所示。
表21
Figure PCTCN2019103193-appb-000012
实施例1-10中的光学成像系统中,f×(ImgH/TTL)、f/EPD、f1/|f3|+f1/|f6|、f2/f7、|f/f4|+|f/f5、f/|R4|+f/|R5、R9/R10、f/R11+f/R12、R11/R12、f/(CT4+CT5+CT6)、T45/T56以及T67/CT7的具体数值见表22。
表22
Figure PCTCN2019103193-appb-000013
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的光学成像系统中,通过合理的控制系统中的各个透镜的光焦度的正负分配,来有效地平衡光学成像系统的低阶像差,使得光学成像系统的成像系统的成像质量较高;同时,通过优化光学成像系统的有效焦距、光学成像系统的成像面上有效像素区域对角线长的一半的数值以及第一透镜的物侧面至成像面在光轴上的距离之间的关系,控制f×(ImgH/TTL)大于3.5且小于4.5,能够合理地控制光学成像系统的总长和像高,避免像高过小,有利于光学成像系统的小型化。
2)、本申请的光学成像系统中,通过合理的控制系统中的各个透镜的光焦度的正负分配和进光量,来有效地平衡光学成像系统的低阶像差,使得光学成像系统的成像系统的成像质量较高。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种光学成像系统,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第六透镜的物侧面为凹面;
    所述第七透镜具有负光焦度;
    其中,f为所述光学成像系统的有效焦距,所述第四透镜的有效焦距为f4,所述第五透镜的有效焦距为f5,|f/f4|+|f/f5|≤0.3。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的入瞳直径为EPD,f/EPD<2.2。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距为f1,所述第三透镜的有效焦距为f3,所述第六透镜的有效焦距为f6,f1/|f3|+f1/|f6|<0.5。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的有效焦距为f2,所述第七透镜的有效焦距为f7,1.4≤f2/f7≤2.0。
  5. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第二透镜的像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,1.0<f/|R4|+f/|R5|<3.0。
  6. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,0.8<R9/R10<1.5。
  7. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,-4.0<f/R11+f/R12<-2.0。
  8. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,0.8<R11/R12<2.0。
  9. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第四透镜、所述第五透镜以及所述第六透镜在所述光轴上的中心厚度分别为CT4、CT5和CT6,5<f/(CT4+CT5+CT6)<7。
  10. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间距为T45,所述第五透镜和所述第六透镜在所述光轴上的间距为T56,0.6<T45/T56<1.0。
  11. 根据权利要求1至4中任一项所述的光学成像系统,其特征在于,所述第六透镜和所述第七透镜在所述光轴上的间距为T67,所述第七透镜在所述光轴上的中心厚度为CT7,0.9≤T67/CT7≤1.6。
  12. 一种光学成像系统,沿光轴从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第六透镜的物侧面为凹面;
    所述第七透镜具有负光焦度;
    其中,3.5mm<f×(ImgH/TTL)<4.5mm,f为所述光学成像系统的有效焦距,ImgH为所述光学成像系统的成像面上有效像素区域对角线长的一半,TTL为所述第一透镜的物侧面至所述成像面在所述光轴上的距离。
PCT/CN2019/103193 2018-12-26 2019-08-29 光学成像系统 WO2020134140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811604289.2A CN109445073A (zh) 2018-12-26 2018-12-26 光学成像系统
CN201811604289.2 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020134140A1 true WO2020134140A1 (zh) 2020-07-02

Family

ID=65535873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103193 WO2020134140A1 (zh) 2018-12-26 2019-08-29 光学成像系统

Country Status (2)

Country Link
CN (1) CN109445073A (zh)
WO (1) WO2020134140A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143845B2 (en) 2019-03-20 2021-10-12 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像系统
CN109975956B (zh) 2019-05-08 2024-04-02 浙江舜宇光学有限公司 光学成像透镜组
CN112154363B (zh) * 2019-07-10 2022-03-18 深圳市大疆创新科技有限公司 一种光学成像系统及电子装置
JP7002508B2 (ja) 2019-08-19 2022-01-20 東京晨美光学電子株式会社 撮像レンズ
WO2021217663A1 (zh) * 2020-04-30 2021-11-04 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN117148549B (zh) * 2023-10-27 2024-02-20 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072402A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN106908932A (zh) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 光学成像镜头
CN107678132A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108051902A (zh) * 2017-11-18 2018-05-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109254385A (zh) * 2018-10-30 2019-01-22 浙江舜宇光学有限公司 光学成像镜头
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570467B (zh) * 2012-07-06 2017-02-11 大立光電股份有限公司 光學影像拾取系統組
US10185127B2 (en) * 2016-09-12 2019-01-22 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
TWI622829B (zh) * 2017-07-19 2018-05-01 大立光電股份有限公司 光學影像擷取鏡頭、取像裝置及電子裝置
CN107894655B (zh) * 2017-11-07 2023-07-14 东莞市美光达光学科技有限公司 一种采用环形孔径衍射光学的手机镜头模组
KR101837371B1 (ko) * 2017-11-20 2018-03-12 (주)디오스텍 고화소용 밝은 소형 광학계
CN107957619B (zh) * 2018-01-05 2023-04-28 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072402A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN106908932A (zh) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 光学成像镜头
CN107678132A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108051902A (zh) * 2017-11-18 2018-05-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109254385A (zh) * 2018-10-30 2019-01-22 浙江舜宇光学有限公司 光学成像镜头
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143845B2 (en) 2019-03-20 2021-10-12 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
CN109445073A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020134140A1 (zh) 光学成像系统
WO2021073275A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020001066A1 (zh) 摄像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2019101052A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019114366A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像系统
WO2019210739A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020010879A1 (zh) 光学成像系统
WO2020119171A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020024631A1 (zh) 光学成像系统
WO2020164236A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2021042992A1 (zh) 光学成像系统
WO2019056758A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2020164247A1 (zh) 光学成像系统
WO2019237776A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904432

Country of ref document: EP

Kind code of ref document: A1