WO2020134084A1 - 一种天线及无人飞行器 - Google Patents

一种天线及无人飞行器 Download PDF

Info

Publication number
WO2020134084A1
WO2020134084A1 PCT/CN2019/098816 CN2019098816W WO2020134084A1 WO 2020134084 A1 WO2020134084 A1 WO 2020134084A1 CN 2019098816 W CN2019098816 W CN 2019098816W WO 2020134084 A1 WO2020134084 A1 WO 2020134084A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
antenna
radiating unit
main
radiation unit
Prior art date
Application number
PCT/CN2019/098816
Other languages
English (en)
French (fr)
Inventor
谭杰洪
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020134084A1 publication Critical patent/WO2020134084A1/zh
Priority to US17/362,931 priority Critical patent/US11955703B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • H01Q1/287Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft integrated in a wing or a stabiliser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/60UAVs characterised by the material
    • B64U20/65Composite materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the embodiments of the present invention relate to the technical field of antennas, and in particular, to an antenna and an unmanned aerial vehicle.
  • the antenna is a communication element used to transmit or receive electromagnetic waves, and is widely used in wireless communication electronic equipment.
  • antennas continue to develop in the direction of miniaturization.
  • unmanned aerial vehicles not only the space limitation has a requirement on the size of the antenna, but also hope that the radiation of the antenna can be uniformly covered in all directions.
  • the existing UAV antennas are generally 2.4GHz and/or 5.8GHz microstrip antennas. Similar to 900M antennas, low-frequency antennas are gradually being applied to UAVs because of their better receiving gain and anti-interference ability. However, this type of antenna has a large size and can only be placed outside the drone, which has affected its use.
  • the technical problem mainly solved by the embodiment of the present invention is how to reduce the size of the antenna.
  • a technical solution adopted by the present invention is to provide an antenna, which is provided inside an unmanned aerial vehicle, and the antenna includes a first antenna unit;
  • a second antenna unit, the first antenna unit and the second antenna unit are disposed on the same surface of the substrate (200);
  • the first antenna unit includes a first main radiating unit and a first sub-radiating unit
  • the second antenna unit includes a second main radiating unit and a second sub-radiating unit, the first main radiating unit and the There is a gap between the second main radiation unit;
  • the first sub-radiating unit is connected to a side end of the first main radiating unit away from the second main radiating unit, and the second sub-radiating unit is connected to the second main radiating unit away from the first At one end of the main radiation unit, the first sub-radiation unit and the second sub-radiation unit are located on the same side of the substrate.
  • the first primary radiation unit and the second primary radiation unit are arranged along the first direction of the substrate, and the first secondary radiation unit and the second secondary radiation unit are located along the first The two directions are set, and the first direction is not parallel to the second direction.
  • the first direction is a vertical direction of the substrate
  • the second direction is a horizontal direction of the substrate
  • the distance between the first sub-radiation unit and the second sub-radiation unit gradually decreases along the horizontal direction of the substrate.
  • the first main radiation unit and the second main radiation unit are arranged symmetrically along the vertical direction of the substrate.
  • the first main radiating unit has an inverted trapezoidal structure
  • the second main radiating unit has a trapezoidal structure
  • the first auxiliary radiating unit extends horizontally from one of the top corners of the inverted trapezoidal structure.
  • the second secondary radiating unit extends diagonally upward from one of the bottom corners of the trapezoidal structure.
  • the first main radiation unit or the second main radiation unit is provided with a slot, and the opening of the slot is away from the other main radiation unit.
  • the antenna further includes a feeder, and the feeder is located in the slot.
  • the feeder includes an outer conductor and an inner conductor
  • the slot is provided in the first main radiation unit, the inner conductor is connected to an end of the second main radiation unit near the first main radiation unit, and the outer conductor is connected to the first main radiation The unit is close to one end of the second main radiating unit.
  • both the first antenna unit and the second antenna unit are metal sheets.
  • An embodiment of the present invention further provides an unmanned aerial vehicle, where a substrate is provided inside, and the antenna as described above is provided on the substrate.
  • the UAV is a vertical take-off and landing fixed-wing UAV
  • the base plate and the antenna are provided on the tail of the UAV.
  • the antenna of the embodiment of the present invention includes a first antenna unit and a second antenna unit disposed on the same surface of the substrate, wherein the first antenna unit includes the first The main radiating unit and the first sub-radiating unit, the second antenna unit includes a second main radiating unit and a second sub-radiating unit, a gap is provided between the first main radiating unit and the second main radiating unit; the first sub-radiating unit is connected At the end of the side of the first main radiation unit far away from the second main radiation unit, the second sub-radiation unit is connected to the end of the side of the second main radiation unit far away from the first main radiation unit, the first sub-radiation unit and the second sub-radiation The unit is located on the same side of the substrate, and the first sub-radiating unit and the second sub-radiating unit are respectively provided at the ends of the side where the first main radiating unit and the second main radiating unit are away from each other, so that the flow through the first
  • FIG. 1 is a schematic diagram of an antenna provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a first antenna unit and a second antenna unit provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another antenna provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the connection between the feeder provided by the embodiment of the invention and the first antenna unit and the second antenna unit;
  • FIG. 5 is a schematic diagram of an antenna provided in an embodiment of the present invention installed inside an unmanned aerial vehicle;
  • FIG. 6 is a schematic diagram of a scattering parameter of an antenna provided by an embodiment of the present invention.
  • FIG. 7 is a 900 MHz directional diagram of an antenna provided by an embodiment of the present invention.
  • an embodiment of the present invention provides an antenna 100.
  • the antenna 100 is optionally an omnidirectional antenna.
  • the antenna 100 is installed inside the UAV.
  • the antenna 100 includes a substrate 200 and a first antenna unit 10 and a second antenna unit 20 disposed on the same surface of the substrate 200.
  • the substrate 200 is an insulating medium, and may be a plastic plate, such as a polycarbonate (Polycarbonate, PC) plate, or a substrate made of FR4 grade material.
  • FR4 is a code name for a flammable material grade, which means a material specification that the resin material must be able to extinguish itself after being burned. It is not a material name, but a material grade.
  • FR4 grade materials for example, composite materials made with so-called four-function (Tera-Function) epoxy resin plus filler and glass fiber.
  • the above-mentioned substrate 200 is disposed inside a movable object, for example, it may be disposed inside an unmanned aerial vehicle, a ground-based unmanned vehicle, a robot, an underwater robot, or a ship. It can be understood that, in some embodiments, the above-mentioned substrate 200 may be any insulating component inside a movable object (such as an unmanned aerial vehicle). For example, the substrate 200 may be an unmanned aerial vehicle arm, tail, or the like.
  • Both the first antenna unit 10 and the second antenna unit 20 are metal sheets.
  • the two antenna elements can be formed on the surface of the substrate 200 by a photolithography etching method.
  • the metal unit may be made into the antenna unit and then fixed to the surface of the substrate 200.
  • the sizes of the first antenna unit 10 and the second antenna unit 200 determine the operating frequency band of the antenna 100.
  • the first antenna unit 10 includes a first main radiation unit 11 and a first sub-radiation unit 12, and the second antenna unit 20 includes a second main radiation unit 21 and a second sub-radiation unit 22.
  • a gap is provided between the first main radiation unit 11 and the second main radiation unit 21, and a preset distance is provided between the two.
  • the first auxiliary radiating unit 12 is connected to the end of the side of the first main radiating unit 11 away from the second main radiating unit 21, and the second auxiliary radiating unit 22 is connected to the side of the second main radiating unit 21 away from the first main radiating unit 11 End.
  • the first sub-radiation unit 12 and the second sub-radiation unit 22 are located on the same side of the substrate 200.
  • the first secondary radiation unit 12 and the second secondary radiation unit 22 may be located on both sides of the substrate 200 respectively.
  • first sub-radiating unit 12 and the second sub-radiating unit 22 By arranging the first sub-radiating unit 12 and the second sub-radiating unit 22 at the ends of the side where the first main radiating unit 11 and the second main radiating unit 21 are away from each other, so that the flow through the first antenna unit 10 and the second antenna unit
  • the effective path of the current of 20 is extended, thereby reducing the size of the antenna, reducing the height and/or width of the antenna, miniaturizing the antenna, and enabling it to be installed inside a movable object such as an unmanned aerial vehicle.
  • the first primary radiation unit 11 and the second primary radiation unit 21 are arranged along the first direction of the substrate 200, and the first secondary radiation unit 12 and the second secondary radiation unit 22 are arranged along the second direction of the substrate 200, the first direction is not parallel to Second direction.
  • the first direction and the second direction are perpendicular to each other.
  • the first direction is the vertical direction (Y direction shown in FIG. 1)
  • the second direction is the horizontal direction (X direction shown in FIG. 1).
  • the distance between the first sub-radiation unit 12 and the second sub-radiation unit 22 gradually decreases in the horizontal direction (X direction) of the substrate 200.
  • the first sub-radiation unit 12 is arranged in the horizontal direction (X direction), and the second sub-radiation unit 22 is inclined toward the side close to the first sub-radiation unit 12.
  • the first main radiating unit 11 and the second main radiating unit 21 can change their shapes according to different requirements, such as trapezoid, rectangle, ellipse, cone, hexagon, etc.
  • the first main radiating unit 11 and the second main radiating unit The shape of the radiation unit 21 may be the same or different.
  • the first main radiation unit 11 is rectangular, and the second main radiation unit 21 is elliptical.
  • the first main radiation unit 11 and the second main radiation unit 21 are arranged symmetrically along the vertical direction (Y direction) of the substrate 200 , To better achieve the omnidirectional and uniform radiation effect.
  • the first main radiating unit 11 has an inverted trapezoidal structure
  • the second main radiating unit 21 has a trapezoidal structure
  • the first auxiliary radiating unit 12 extends horizontally from one of the top corners of the inverted trapezoidal structure
  • the second auxiliary radiating unit 22 It is formed to extend diagonally upward from one of the bottom corners of the trapezoidal structure, so that the distance between the first sub-radiation unit 12 and the second sub-radiation unit 22 gradually decreases in the horizontal direction (X direction) of the substrate 200.
  • the first main radiating unit 11 includes a first upper base 111 and a first lower base 112 parallel to each other, and two first connecting the first upper base 111 and the first lower base 112
  • the length of the first upper base 111 is greater than the length of the first lower base 112
  • the first sub-radiating unit 12 is formed by the first upper base 111 and one of the first sides 113 extending horizontally.
  • the upper edge of the first secondary radiation unit 12 and the upper edge of the first upper base 111 coincide.
  • the second main radiation unit 21 includes a second upper bottom 121 and a second lower bottom 122 parallel to each other, and two second sides 123 connecting the second upper bottom 121 and the second lower bottom 122, and the second upper bottom 121 and A preset distance is set between the first upper base 111.
  • the length of the second upper base 121 is smaller than the length of the second lower base 122, and the second sub-radiating unit 22 is formed by one of the second sides 123 of the second lower base 122 extending diagonally upward.
  • first sub-radiating unit 12 and the second sub-radiating unit 22 may also adopt other shapes, such as trapezoid, ellipse, cone, etc.; the first sub-radiating unit 12 and The shape of the second sub-radiating unit 22 may be the same or different.
  • first sub-radiating unit 12 is rectangular, and the second sub-radiating unit 22 is elliptical.
  • the sides of the first sub-radiating unit 12 and/or the second sub-radiating unit 22 may also adopt a zigzag shape, a wave shape, or other irregular shapes.
  • the first main radiation unit 11 or the second main radiation unit 21 is provided with a slot 114. As shown in FIG. 2, the opening of the slot 114 is away from the other main radiation unit.
  • the slot 114 is provided in the first main radiation unit 11, and the slot 114 is opened from the side of the first main radiation unit 11 away from the second main radiation unit 21 toward the second main radiation unit 21.
  • the opening of the slot 114 is located at the first upper bottom 111, the bottom edge of the slot 114 is parallel to the first lower bottom 112 and a certain distance away from the first lower bottom 112, the width of the slot 114 follows the depth of the slot 114 It gradually decreases, that is, the shape of the slot 114 is an inverted trapezoid.
  • the shape of the slot 114 may be a rectangle, a moon, an ellipse, a trapezoid, or an inverted trapezoid.
  • the width and depth of the slot 114 are not limited in this embodiment, and can be determined by design optimization.
  • the antenna 100 further includes a feeder 30.
  • the feeder 30 is located in the slot 114.
  • the substrate 200 is provided with a bayonet 210 in an area corresponding to the slot 114.
  • the bayonet 210 is used to fix the feeder 30 in the slot 114.
  • the outer conductor and the braided layer are stripped off at one end of the feeder 30 to obtain the outer conductor 31, and the transparent film insulation layer 32 is further stripped off to obtain the inner conductor 33.
  • the inner conductor 33 is connected to the end of the second main radiation unit 21 close to the first main radiation unit 11, and the outer conductor 31 is connected to the end of the first main radiation unit 11 close to the second main radiation unit 21.
  • the outer conductor 31 is connected to the end of the second main radiation unit 21 close to the first main radiation unit 11, and the inner conductor 33 is connected to the first main radiation The unit 11 is close to one end of the second main radiation unit 21.
  • the antenna 100 can be directly disposed inside the movable object using the internal space of the movable object.
  • the antenna 100 may be built into the tail of the UAV 300 to achieve conformal conformity of the internal structure of the antenna 100 and the UAV 300.
  • the antenna 100 provided in this embodiment can work from 860 MHz to 960 MHz, and the bandwidth is 100 MHz, which can meet the coverage of the commonly used 900 MHz frequency band.
  • the maximum radiation direction of the antenna 100 provided by this embodiment at 900 MHz is a horizontal direction area, which can basically achieve omnidirectional coverage, and its height is 70 mm, which is significantly lower than the height of a conventional 900 MHz antenna (which is a conventional 900 MHz antenna) 42% of the height), the thickness is only 0.7mm.
  • the operating frequency band of the antenna 100 is 900 MHz. In other embodiments, the antenna 100 can also be used in other wireless communication frequency bands.
  • This embodiment also provides an unmanned aerial vehicle, in which the antenna 100 can be built in the unmanned aerial vehicle.
  • the substrate 200 of the antenna 100 may be any insulating component inside the UAV.
  • the UAV is a vertical take-off and landing fixed-wing UAV, and the antenna 100 is disposed on the tail of the UAV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种天线及无人飞行器,天线设置于无人飞行器内部,天线包括第一天线单元和第二天线单元,第一天线单元和第二天线单元设置于基板的同一表面上;其中,第一天线单元包括第一主辐射单元和第一副辐射单元,第二天线单元包括第二主辐射单元和第二副辐射单元,第一主辐射单元和第二主辐射单元之间设有间隙;第一副辐射单元连接于第一主辐射单元远离第二主辐射单元的一侧末端,第二副辐射单元连接于第二主辐射单元远离第一主辐射单元的一侧末端,第一副辐射单元和第二副辐射单元位于基板的同一侧。通过上述方式,本发明实施例缩小了天线的尺寸,能够安装于无人飞行器内部。

Description

一种天线及无人飞行器
相关申请交叉引用
本申请要求于2018年12月29日申请的、申请号为201811639159.2、申请名称为“一种天线及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及天线技术领域,特别是涉及一种天线及无人飞行器。
背景技术
天线是用来发射或接收电磁波的通信元件,被广泛应用在无线通信电子设备中。随着机器人、无人飞行器的兴起以及对于小型化的需求,天线不断向着小型化方向发展。对于无人飞行器而言,不仅空间的局限对天线的尺寸有所要求,还希望天线的辐射能够全向均匀覆盖。
现有的无人机天线,一般为2.4GHz和/或5.8GHz微带天线,类似于900M天线的低频天线由于其具有较好的接收增益和抗干扰能力,也逐渐被应用于无人机上,但该类型的天线尺寸较大,只能放置于无人机外部,使其使用受到了一定影响。
发明内容
本发明实施例主要解决的技术问题如何缩小天线的尺寸。
本发明采用的一个技术方案是:提供一种天线,设置于无人飞行器内部,所述天线包括第一天线单元;以及
第二天线单元,所述第一天线单元和所述第二天线单元设置于基板(200)的同一表面上;
其中,所述第一天线单元包括第一主辐射单元和第一副辐射单元,所述第二天线单元包括第二主辐射单元和第二副辐射单元,所述第一主辐射单元和所述第二主辐射单元之间设有间隙;
所述第一副辐射单元连接于所述第一主辐射单元远离所述第二主辐射单元的一侧末端,所述第二副辐射单元连接于所述第二主辐射单元远离所述第一主辐射单元的一侧末端,所述第一副辐射单元和所述第二副辐射单元位于所述基板的同一侧。
可选地,所述第一主辐射单元和所述第二主辐射单元沿所述基板的第一方向设置,所述第一副辐射单元和所述第二副辐射单元沿所述基板的第二方向设置,所述第一方向不平行于所述第二方向。
在一实施例中,所述第一方向为所述基板的垂直方向,所述第二方向为所述基板的水平方向。
在一实施例中,所述第一副辐射单元和所述第二副辐射单元之间的距离沿所述基板的水平方向逐渐减小。
在一实施例中,所述第一主辐射单元和所述第二主辐射单元沿所述基板的垂直方向对称设置。
可选地,所述第一主辐射单元呈倒梯形结构,所述第二主辐射单元呈梯形结构,所述第一副辐射单元自所述倒梯形结构的其中一个顶角水平延伸形成,所述第二副辐射单元自所述梯形结构的其中一个底角斜向上延伸形成。
在一些实施例中,所述第一主辐射单元上或所述第二主辐射单元上设置有开槽,所述开槽的开口远离所述另一主辐射单元。
可选地,所述天线还包括馈电线,所述馈电线位于所述开槽内。
在一实施例中,所述馈电线包括外导体和内导体;
所述开槽设置于所述第一主辐射单元,所述内导体连接于所述第二主辐射单元靠近所述第一主辐射单元的一端,所述外导体连接于所述第一主辐射单元靠近所述第二主辐射单元的一端。
在一实施例中,所述第一天线单元和所述第二天线单元均为金属片。
本发明实施例还提供一种无人飞行器,所述无人飞行器内部设置有基板,在所述基板上设置有如上所述的天线。
可选地,所述无人飞行器为垂直起降型固定翼无人飞行器;
其中,所述基板和所述天线设置于所述无人飞行器的尾翼。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例的天线包括设置于基板同一表面上的第一天线单元和第二天线单元,其中,第一天线单元包括第一主辐射单元和第一副辐射单元,第二天线单元包括第二主辐射单元和第二副辐射单元,第一主辐射单元和第二主辐射单元之间设有间隙;第一副辐射单元连接于第一主辐射单元远离第二主辐射单元的一侧末端,第二副辐射单元连接于第二主辐射单元远离第一主辐射单元的一侧末端,第一副辐射单元和第二副辐射单元位于基板的同一侧,通过在第一主辐射单元和第二主辐射单元相互远离的一侧末端分别设置第一副辐射单元和第二副辐射单元,使得流经第一天线单元和第二天线单元的电流的有效路径延长,从而缩小了天线的尺寸,降低了天线的高度和/或宽度,实现了天线的小型化,使其能够安装于无人飞行器内部。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的天线的示意图;
图2是本发明实施例提供的第一天线单元和第二天线单元的示意图;
图3是本发明实施例提供的另一天线的示意图;
图4是发明实施例提供的馈电线与第一天线单元和第二天线单元连接的示意图;
图5是本发明实施例提供的天线安装于无人飞行器内部的示意图;
图6是本发明实施例提供的天线的散射参数示意图;
图7是本发明实施例提供的天线在900MHz的方向图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1-4所示,本发明实施例提供一种天线100。天线100可选地为全向天线。天线100安装于无人飞行器内部。该天线100包括基板200和设置于基板200同一表面上的第一天线单元10、第二天线单元20。
上述基板200为绝缘介质,可为塑料板,如聚碳酸酯(Polycarbonate,PC)板或者为由FR4等级的材质制成的基板。具体的,FR4是一种耐燃材料等级的代号,所代表的意思是树脂材料经过燃烧状态必须能够自行熄灭的一种材料规格,它不是一种材料名称,而是一种材料等级,目前所用的FR4等级材料有非常多的种类,例如,以所谓的四功能(Tera-Function)的环氧树脂加上填充剂(Filler)以及玻璃纤维所做出的复合材料。
在本实施例中,上述基板200设置于可移动物体内部,例如可以设置于无人飞行器、地面无人车、机器人、水下机器人、或者船的内部。可以理解的是,在一些实施方式中,上述基板200可以是可移动物体(例如无人飞行器)内部的任何绝缘性部件,例如,基板200可以是无人飞 行器的机臂、尾翼等。
第一天线单元10和第二天线单元20均为金属片。这两个天线单元可通过光刻腐蚀方法形成于基板200的表面。在其他实施方式中,也可以将金属片制成上述天线单元后再固定于上述基板200的表面。第一天线单元10和第二天线单元200的尺寸决定了天线100的工作频段。
其中,第一天线单元10包括第一主辐射单元11和第一副辐射单元12,第二天线单元20包括第二主辐射单元21和第二副辐射单元22。第一主辐射单元11和第二主辐射单元21之间设有间隙,两者之间设置有预设距离。第一副辐射单元12连接于第一主辐射单元11远离第二主辐射单元21的一侧末端,第二副辐射单元22连接于第二主辐射单元21远离第一主辐射单元11的一侧末端。优选地,第一副辐射单元12和第二副辐射单元22位于基板200的同一侧。在其他实施方式中,第一副辐射单元12和第二副辐射单元22可以分别位于基板200的两侧。
通过在第一主辐射单元11和第二主辐射单元21相互远离的一侧末端分别设置第一副辐射单元12和第二副辐射单元22,使得流经第一天线单元10和第二天线单元20的电流的有效路径延长,从而缩小了天线的尺寸,降低了天线的高度和/或宽度,实现了天线的小型化,使其能够安装于无人飞行器等可移动物体的内部。
第一主辐射单元11和第二主辐射单元21沿基板200的第一方向设置,第一副辐射单元12和第二副辐射单元22沿基板200的第二方向设置,第一方向不平行于第二方向。在一种实施方式中,第一方向与第二方向相互垂直。例如,第一方向为垂直方向(图1所示的Y方向),第二方向为水平方向(图1所示的X方向)。
为了进一步降低天线100的空间尺寸,第一副辐射单元12和第二副辐射单元22之间的距离沿基板200的水平方向(X方向)逐渐减小。例如,如图1所示,第一副辐射单元12沿水平方向(X方向)设置,第二副辐射单元22往靠近第一副辐射单元12的一侧倾斜。
第一主辐射单元11和第二主辐射单元21可根据不同的需求,相应变化形状,如采用梯形、矩形、椭圆形、锥形、六边形等,第一主辐射 单元11和第二主辐射单元21的形状可以一样,也可以不一样,例如,第一主辐射单元11采用矩形,第二主辐射单元21采用椭圆形。
在一些实施方式中,在第一主辐射单元11和第二主辐射单元21的形状一样时,第一主辐射单元11和第二主辐射单元21沿基板200的垂直方向(Y方向)对称设置,以更好地达到全向均匀的辐射效果。
示例性地,第一主辐射单元11呈倒梯形结构,第二主辐射单元21呈梯形结构,第一副辐射单元12自倒梯形结构的其中一个顶角水平延伸形成,第二副辐射单元22自梯形结构的其中一个底角斜向上延伸形成,使得第一副辐射单元12和第二副辐射单元22之间的距离沿基板200的水平方向(X方向)逐渐减小。
具体地,如图2中所示,第一主辐射单元11包括相互平行的第一上底111和第一下底112,以及连接第一上底111和第一下底112的两条第一侧边113,第一上底111的长度大于第一下底112的长度,第一副辐射单元12由第一上底111和其中一条第一侧边113水平延伸形成。在一些实施方式中,第一副辐射单元12的上边缘和第一上底111的上边缘重合。
第二主辐射单元21包括相互平行的第二上底121和第二下底122,以及连接第二上底121和第二下底122的两条第二侧边123,第二上底121和第一上底111之间设置有预设距离。第二上底121的长度小于第二下底122的长度,第二副辐射单元22由第二下底122的其中一条第二侧边123斜向上延伸形成。
需要说明的是,除图中示出的矩形外,第一副辐射单元12和第二副辐射单元22也可以采用其他形状,如梯形、椭圆形、锥形等;第一副辐射单元12和第二副辐射单元22的形状可以一样,也可以不一样,例如,第一副辐射单元12采用矩形,第二副辐射单元22采用椭圆形。
在一些实施方式中,第一副辐射单元12和/或第二副辐射单元22的侧边还可以采用锯齿形、波浪形或其他不规则形状。
为了调节天线100的阻抗,使得天线100的性能更加稳定,第一主辐射单元11上或第二主辐射单元21上设置有开槽114。如图2所示, 开槽114的开口远离另一主辐射单元。
在一实施方式中,开槽114设置于第一主辐射单元11,开槽114自第一主辐射单元11远离第二主辐射单元21的一侧向靠近第二主辐射单元21的方向开设。
具体地,开槽114的开口位于第一上底111,开槽114的底边与第一下底112平行并距离第一下底112一定距离,开槽114的宽度随着开槽114的深度逐渐减小,亦即,开槽114的形状为倒梯形。在其他实施例中,开槽114的形状可以为矩形、月形、椭圆形、梯形或倒梯形等,开槽114的宽度和深度本实施例对此不作限定,可以由设计优化确定。
如图3-4所示,该天线100还包括馈电线30。馈电线30位于开槽114内。可选地,基板200在与开槽114对应的区域内设置有卡口210,卡口210用于将馈电线30固定于开槽114中。
馈电线30的一端剥去外被、编织层,可获得外导体31,继续剥去透明薄膜绝缘层32,可获得内导体33。内导体33连接于第二主辐射单元21靠近第一主辐射单元11的一端,外导体31连接于第一主辐射单元11靠近第二主辐射单元21的一端。
可以理解的是,在开槽114设置于第二主辐射单元21上时,外导体31连接于第二主辐射单元21靠近第一主辐射单元11的一端,内导体33连接于第一主辐射单元11靠近第二主辐射单元21的一端。
当第二副辐射单元22自梯形结构的其中一个底角斜向上延伸形成时,可直接利用可移动物体的内部空间将天线100设置于该可移动物体内部。例如,如图5所示,可以将天线100内置于无人飞行器300的尾翼,实现天线100与无人飞行器300的内部结构共形。
请参阅图6,本实施例提供的天线100可工作在860MHz-960MHz,带宽为100MHz,可满足常用的900MHz频段的覆盖。
请参阅图7,本实施例提供的天线100在900MHz的最大辐射方向为水平方向区域,基本上可实现全方向覆盖,且其高度为70mm,显著低于常规900MHz天线的高度(为常规900MHz天线高度的42%),厚度仅为0.7mm。
在一些实施方式中,天线100的工作频段为900MHz,在另一些实施方式中,天线100其亦可用于其他无线通信的频段。
本实施例还提供一种无人飞行器,可以将天线100内置于所述无人飞行器内。天线100的基板200可以是无人飞行器内部的任何绝缘性部件。在一些实施方式中,该无人飞行器为垂直起降型固定翼无人飞行器,该天线100设置于该无人飞行器的尾翼。
需要说明的是,本发明的说明书及其附图中给出了本发明的较佳的实施例,但是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本发明内容的额外限制,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种天线(100),设置于无人飞行器内部,其特征在于,所述天线(100)包括:
    第一天线单元(10);以及
    第二天线单元(20),所述第一天线单元(10)和所述第二天线单元(20)设置于基板(200)的同一表面上;
    其中,所述第一天线单元(10)包括第一主辐射单元(11)和第一副辐射单元(12),所述第二天线单元(20)包括第二主辐射单元(21)和第二副辐射单元(22),所述第一主辐射单元(11)和所述第二主辐射单元(21)之间设有间隙;
    所述第一副辐射单元(12)连接于所述第一主辐射单元(11)远离所述第二主辐射单元(21)的一侧末端,所述第二副辐射单元(22)连接于所述第二主辐射单元(21)远离所述第一主辐射单元(11)的一侧末端,所述第一副辐射单元(12)和所述第二副辐射单元(22)位于所述基板(200)的同一侧。
  2. 根据权利要求1所述的天线(100),其特征在于,
    所述第一主辐射单元(11)和所述第二主辐射单元(21)沿所述基板(200)的第一方向设置,所述第一副辐射单元(12)和所述第二副辐射单元(22)沿所述基板(200)的第二方向设置,所述第一方向不平行于所述第二方向。
  3. 根据权利要求2所述的天线(100),其特征在于,
    所述第一方向为所述基板(200)的垂直方向,所述第二方向为所述基板(200)的水平方向。
  4. 根据权利要求3所述的天线(100),其特征在于,
    所述第一副辐射单元(12)和所述第二副辐射单元(22)之间的距离沿所述基板(200)的水平方向逐渐减小。
  5. 根据权利要求3或4所述的天线(100),其特征在于,
    所述第一主辐射单元(11)和所述第二主辐射单元(21)沿所述基 板(200)的垂直方向对称设置。
  6. 根据权利要求1所述的天线(100),其特征在于,
    所述第一主辐射单元(11)呈倒梯形结构,所述第二主辐射单元(21)呈梯形结构,所述第一副辐射单元(12)自所述倒梯形结构的其中一个顶角水平延伸形成,所述第二副辐射单元(22)自所述梯形结构的其中一个底角斜向上延伸形成。
  7. 根据权利要求1所述的天线(100),其特征在于,
    所述第一主辐射单元(11)上或所述第二主辐射单元(21)上设置有开槽(114),所述开槽(114)的开口远离所述另一主辐射单元。
  8. 根据权利要求7所述的天线(100),其特征在于,
    所述天线(100)还包括馈电线(30),所述馈电线(30)位于所述开槽(114)内。
  9. 根据权利要求8所述的天线(100),其特征在于,
    所述馈电线(30)包括外导体(31)和内导体(33);
    所述开槽(114)设置于所述第一主辐射单元(11),所述内导体(33)连接于所述第二主辐射单元(21)靠近所述第一主辐射单元(11)的一端,所述外导体(31)连接于所述第一主辐射单元(11)靠近所述第二主辐射单元(21)的一端。
  10. 根据权利要求1所述的天线(100),其特征在于,
    所述第一天线单元(10)和所述第二天线单元(20)均为金属片。
  11. 一种无人飞行器,所述无人飞行器内部设置有基板(200),其特征在于,在所述基板(200)上设置有如权利要求1-10中任一项所述的天线(100)。
  12. 根据如权利要求11所述的无人飞行器,其特征在于,所述无人飞行器为垂直起降型固定翼无人飞行器;
    其中,所述基板(200)和所述天线(100)设置于所述无人飞行器的尾翼。
PCT/CN2019/098816 2018-12-29 2019-08-01 一种天线及无人飞行器 WO2020134084A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/362,931 US11955703B2 (en) 2018-12-29 2021-06-29 Antenna and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639159.2 2018-12-29
CN201811639159.2A CN109494451B (zh) 2018-12-29 2018-12-29 一种天线及无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/362,931 Continuation US11955703B2 (en) 2018-12-29 2021-06-29 Antenna and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020134084A1 true WO2020134084A1 (zh) 2020-07-02

Family

ID=65713446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098816 WO2020134084A1 (zh) 2018-12-29 2019-08-01 一种天线及无人飞行器

Country Status (3)

Country Link
US (1) US11955703B2 (zh)
CN (1) CN109494451B (zh)
WO (1) WO2020134084A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494451B (zh) * 2018-12-29 2024-05-17 深圳市道通智能航空技术股份有限公司 一种天线及无人飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770116Y (zh) * 2005-01-06 2006-04-05 鸿富锦精密工业(深圳)有限公司 印刷式天线
US20170301978A1 (en) * 2016-04-15 2017-10-19 Pegatron Corporation Antenna unit and antenna system
CN107278341A (zh) * 2016-04-01 2017-10-20 深圳市大疆创新科技有限公司 天线、通信组件及无人飞行器
CN109494451A (zh) * 2018-12-29 2019-03-19 深圳市道通智能航空技术有限公司 一种天线及无人飞行器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569492B (en) * 2002-10-16 2004-01-01 Ain Comm Technology Company Lt Multi-band antenna
JP4281023B1 (ja) * 2008-02-18 2009-06-17 日本電気株式会社 ワイドバンドアンテナおよびそれを用いたウエア、持ち物
CN204614953U (zh) * 2015-05-29 2015-09-02 深圳光启智能光子技术有限公司 天线装置
CN205335411U (zh) * 2015-12-30 2016-06-22 深圳市大疆创新科技有限公司 天线发射装置
CN105680169A (zh) * 2016-01-29 2016-06-15 深圳市共进电子股份有限公司 双频偶极子天线
CN108767435B (zh) * 2018-08-20 2024-02-27 深圳市道通智能航空技术股份有限公司 天线及无人飞行器
US10659146B2 (en) * 2018-09-28 2020-05-19 Sunlight Aerospace Inc. Methods and apparatus for airborne synthetic antennas
CN209357912U (zh) * 2018-12-29 2019-09-06 深圳市道通智能航空技术有限公司 一种天线及无人飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770116Y (zh) * 2005-01-06 2006-04-05 鸿富锦精密工业(深圳)有限公司 印刷式天线
CN107278341A (zh) * 2016-04-01 2017-10-20 深圳市大疆创新科技有限公司 天线、通信组件及无人飞行器
US20170301978A1 (en) * 2016-04-15 2017-10-19 Pegatron Corporation Antenna unit and antenna system
CN109494451A (zh) * 2018-12-29 2019-03-19 深圳市道通智能航空技术有限公司 一种天线及无人飞行器

Also Published As

Publication number Publication date
US11955703B2 (en) 2024-04-09
CN109494451B (zh) 2024-05-17
CN109494451A (zh) 2019-03-19
US20210328331A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020233476A1 (zh) 天线单元及终端设备
CN103700932B (zh) 一种小型化甚高频单极子类型天线
WO2021078260A1 (zh) 双频天线和飞行器
WO2021104191A1 (zh) 天线单元及电子设备
WO2018028162A1 (zh) 一种去耦组件、多天线系统及终端
WO2021022941A1 (zh) 天线阵列及终端
CN107706528A (zh) 天线系统
WO2017054127A1 (zh) 一种通信设备
WO2022206286A1 (zh) 一种无人机外置双频天线及无人机
US11201394B2 (en) Antenna device and electronic device
WO2020038288A1 (zh) 天线及无人飞行器
WO2016127893A1 (zh) 辐射单元及双极化天线
WO2020038287A1 (zh) 天线及无人飞行器
CN209357912U (zh) 一种天线及无人飞行器
WO2020134084A1 (zh) 一种天线及无人飞行器
WO2020134029A1 (zh) 一种天线及无人飞行器
CN107134636A (zh) 基于基片集成波导馈电的高增益低剖面环形天线
CN105552536B (zh) 一种单极子双频带WLAN/WiMAX天线
US9780444B2 (en) Antenna having a cable grounding area
CN105119057B (zh) 一种多频段微带天线
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
US10680340B2 (en) Cone-based multi-layer wide band antenna
CN108808264A (zh) 一种介质谐振器天线及基站
WO2023016184A1 (zh) 天线装置、壳体及电子设备
WO2018205502A1 (zh) 天线组件、具有此天线组件的无线通信电子设备及遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903596

Country of ref document: EP

Kind code of ref document: A1