WO2018205502A1 - 天线组件、具有此天线组件的无线通信电子设备及遥控器 - Google Patents

天线组件、具有此天线组件的无线通信电子设备及遥控器 Download PDF

Info

Publication number
WO2018205502A1
WO2018205502A1 PCT/CN2017/107379 CN2017107379W WO2018205502A1 WO 2018205502 A1 WO2018205502 A1 WO 2018205502A1 CN 2017107379 W CN2017107379 W CN 2017107379W WO 2018205502 A1 WO2018205502 A1 WO 2018205502A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
antenna assembly
electronic device
communication electronic
feed line
Prior art date
Application number
PCT/CN2017/107379
Other languages
English (en)
French (fr)
Inventor
向胜昭
孙忆业
成转鹏
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP17825095.7A priority Critical patent/EP3425731B1/en
Priority to US15/883,673 priority patent/US10468775B2/en
Publication of WO2018205502A1 publication Critical patent/WO2018205502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present application relates to the field of communications, and in particular, to an antenna assembly, a wireless communication electronic device having the antenna assembly, and a remote controller.
  • an antenna As an electronic device for transmitting or receiving radio waves, an antenna is an indispensable component of the communication industry. In order to meet the demand for miniaturization of wireless communication electronic devices, antennas are constantly moving toward miniaturization.
  • the microstrip antennas currently used in the market are widely used in the communication industry because of their advantages of miniaturization, ease of integration, and good directionality.
  • the microstrip antenna is usually disposed on a thin dielectric substrate with a thin metal layer as a grounding plate and a metal patch with a certain shape as a radiating element on the other side, and the microstrip or coaxial probe is used to feed the patch. Electricity, thus forming a complete microstrip antenna.
  • the microstrip antennas are installed as a complete component in the wireless communication electronic device, and a part thereof is disposed inside the wireless communication electronic device, and the other portion is exposed.
  • existing microstrip antenna manufacturers often use Rogers plates as dielectric plates for microstrip antennas, which are costly.
  • a microstrip antenna that includes two radiating elements and has an overall size of about 50 x 100 mm is typically priced at about fifty dollars, thereby increasing the overall cost of the wireless communication electronics.
  • the embodiments of the present application provide a miniaturized, low-cost built-in antenna assembly and a wireless communication electronic device having the same.
  • the embodiment of the present application provides the following technical solutions:
  • An antenna assembly disposed inside a wireless communication electronic device, the wireless communication electronic device Provided with a substrate, the antenna assembly comprising: a radiating element disposed on a first surface of the substrate; a feed line electrically connected to the radiating element; and a reference ground, the reference ground is disposed And a second surface of the substrate.
  • the antenna assembly further includes a coaxial line; the coaxial line includes an inner core and an outer core, the inner core is coupled to the feed line, and the outer core is coupled to the reference ground.
  • the antenna assembly further includes a metal connector, and the outer core of the coaxial wire is electrically connected to the reference ground through the metal connector.
  • the metal connector is a flexible circuit board in a bent shape, the flexible circuit board includes a first connection end and a second connection end; the first connection end is connected to the coaxial line The outer core, the first connecting end is disposed on the first surface; the second connecting end is connected to the reference ground, and the second connecting end is disposed on the second surface.
  • the radiating element and the feed line are both metal.
  • the number of radiating elements is at least two.
  • the feed line includes a microstrip feed line and at least two power split microstrip lines, and the number of the work split microstrip lines is equal to the number of the radiating elements, and each of the power points is micro One end of the strip line is connected to a corresponding one of the radiating elements, and the other end of each of the power dividing microstrip lines is connected to the microstrip feed line.
  • the input power obtained by each of the radiating elements from the feed line is equal.
  • the at least two power split microstrip lines are equal in length.
  • the substrate of the wireless communication electronic device is a plastic plate for securing a display device of the wireless communication electronic device.
  • the antenna assembly is a microstrip antenna.
  • the embodiment of the present application further provides the following technical solutions:
  • a wireless communication electronic device comprising: a substrate including a first surface and a second surface; a radiating element disposed on the first surface; a feed line electrically connected to the radiating element; and a reference ground It is disposed on the second surface.
  • the wireless communication electronic device includes a display device including a screen and a metal member; the metal member is disposed on the second surface, and the metal member is the reference ground.
  • the wireless communication electronic device further includes a coaxial line; the coaxial line includes an inner core and an outer core, the inner core is connected to the feed line, and the outer core is connected to the reference ground.
  • the wireless communication electronic device further includes a metal connector, the outer core of the coaxial wire being electrically connected to the reference ground through the metal connector.
  • the metal connector is a flexible circuit board in a bent shape, the flexible circuit board includes a first connection end and a second connection end; the first connection end is connected to the coaxial line The outer core, the first connecting end is disposed on the first surface; the second connecting end is connected to the reference ground, and the second connecting end is disposed on the second surface.
  • the radiating element and the feed line are both metal.
  • the number of radiating elements is at least two.
  • the feed line includes a microstrip feed line and at least two power split microstrip lines, and the number of the work split microstrip lines is equal to the number of the radiating elements, and each of the power points is micro One end of the strip line is connected to a corresponding one of the radiating elements, and the other end of each of the power dividing microstrip lines is connected to the microstrip feed line.
  • the input power obtained by each of the radiating elements from the feed line is equal.
  • the at least two power split microstrip lines are equal in length.
  • the substrate of the wireless communication electronic device is a plastic plate for securing a display device of the wireless communication electronic device.
  • the embodiment of the present application further provides the following technical solutions:
  • a wireless communication electronic device comprising an antenna assembly as described above.
  • the wireless communication electronic device includes a display device including a screen and the substrate; the reference is disposed on a back side of the screen, and the substrate is an insulating plate that fixes the screen .
  • the embodiment of the present application further provides the following technical solutions:
  • a remote control comprising:
  • the display comprises a screen, a substrate fixing the screen, and an antenna assembly mounted on the substrate;
  • the antenna component is an antenna component as described above.
  • the remote control is used to control a movable object.
  • the antenna assembly of the embodiment of the present application utilizes the substrate of the wireless communication electronic device as a medium-bearing radiating element instead of the plastic material used as the medium of the antenna assembly in the prior art (for example, Rogers introduced in the background art)
  • the plate reduces the space occupied by the antenna assembly and also saves the cost of the antenna assembly; the thicker the substrate also increases the bandwidth of the antenna assembly.
  • the metal component of the wireless communication electronic device is used as a reference ground for the antenna component, which greatly saves space of the antenna component, and because the reference ground of the antenna component is large, the performance of the antenna component is stable and the directivity is strong, and the antenna is realized.
  • the high gain of the component is used as a reference ground for the antenna component, which greatly saves space of the antenna component, and because the reference ground of the antenna component is large, the performance of the antenna component is stable and the directivity is strong, and the antenna is realized.
  • the high gain of the component is used as a reference ground for the antenna component.
  • the antenna component of the embodiment of the present application is completely built in the wireless communication electronic device, and can meet the miniaturization requirement of the wireless communication electronic device.
  • FIG. 1 is a schematic structural diagram of an antenna assembly according to an embodiment of the present disclosure, wherein an antenna assembly is mounted on a substrate of a wireless communication electronic device;
  • FIG. 2 is an exploded perspective view of the antenna assembly shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an antenna assembly according to another embodiment of the present disclosure, wherein an antenna assembly is mounted on a substrate of a wireless communication electronic device;
  • FIG. 4 is a top plan view of the antenna assembly shown in FIG. 3;
  • Figure 5 is a side elevational view of the antenna assembly shown in Figure 3;
  • FIG. 6 is an exploded perspective view of the antenna assembly shown in FIG. 3;
  • FIG. 7 is an S parameter diagram of the antenna assembly shown in Figures 3 to 6;
  • Figure 8 is an E-plane pattern of the radiation of the antenna assembly shown in Figures 3 to 6 at 2.45 GHz;
  • Figure 9 is a H-plane pattern of the radiation of the antenna assembly shown in Figures 3 to 6 at 2.45 GHz;
  • FIG. 10 is a schematic structural diagram of a wireless communication electronic device according to another embodiment of the present disclosure.
  • an antenna assembly 100 is installed inside a wireless communication electronic device.
  • the wireless communication electronic device includes a substrate 200 and a display device having a screen 300 on which a metal member 302 is disposed.
  • the metal piece 302 acts as a shield for shielding the screen 300 in the wireless communication electronic device to prevent the screen 300 of the display device from being disturbed by other electronic components in the wireless communication electronic device.
  • the wireless communication electronic device can be a cell phone, tablet or other wireless communication electronic device with a display device, such as a drone remote control with a display device.
  • the substrate 200 is an insulating medium and may be a plastic plate, such as a polycarbonate (PC) plate.
  • the thickness of the substrate 200 is 3.15 mm.
  • the substrate 200 described above includes a first surface 202, a second surface 204, and an end surface 206 (see FIG. 2).
  • the end surface 206 is connected between the first surface 202 and the second surface 204, and the first surface 202 and the second surface 204 are disposed on opposite sides of the substrate 200.
  • the substrate 200 is disposed inside the wireless communication electronic device for fixing or reinforcing the display device.
  • the rigidity is smaller, and the substrate 200 is usually required to be fixed to the display device. .
  • the substrate 200 may be any other insulating component inside the wireless communication electronic device, for example, may be used in the wireless communication electronic device.
  • the front case, the rear case, and the like of the screen 300 are accommodated.
  • the antenna assembly 100 described above is a microstrip antenna including a radiating element 20, a feed line 30, and a coaxial line 40.
  • Radiation element 20 acts as a radiating portion of the entire antenna assembly 100 for receiving and transmitting signals.
  • the feeder 30 is a feed microstrip line that is impedance matched with the coaxial line 40, and the feeder 30 functions as a matching circuit for impedance matching.
  • the radiating element 20 and the feed line 30 are disposed on the first surface 202 of the substrate 200.
  • feed line 30 is electrically connected to the radiating element 20, and the other end is connected to the coaxial line 40, thereby grounding the antenna assembly 100 through the coaxial line 40, and Feeder 30 is connected to the peripheral circuitry via coaxial line 40, as will be described below.
  • the metal member 302 is disposed on the second surface 204 of the substrate 200 as a reference ground for the antenna assembly 100 described above. Since the metal member 302 is a component used as a shielding plate originally disposed in the wireless communication electronic device, in the embodiment of the present application, the metal member 302 is used as a reference ground for the antenna assembly 100, so that it is not necessary to additionally Providing a separate reference ground for the antenna assembly 100 saves both cost and space.
  • the number of the radiating elements 20 is one, which is a rectangular metal piece, and can be formed on the first surface 202 of the substrate 200 by a photolithography etching method; or, after the radiating element 20 is first made into a metal piece, And fixed to the first surface 202 of the substrate 200 described above.
  • the size of the radiating element 20 determines the operating frequency of the antenna assembly 100. It will be appreciated that in some other embodiments, the radiating element 20 may vary in size depending on the requirements.
  • the shape of the radiating element 20 is not limited to being rectangular, and other shapes such as a circular shape, an elliptical shape, a circular shape, a hexagonal shape, and the like may be employed.
  • the feed line 30 is a rectangular metal piece, and the feed line 30 can be formed on the first surface 202 of the substrate 200 by a photolithography etching method; or, the radiation element 20 is first formed into a metal piece and then fixed on the above The first surface 202 of the substrate 200. It can be understood that, in some other embodiments, the feed line 30 is not limited to being a metal piece, nor is it limited to being disposed on the first surface 202, and may be correspondingly changed according to different feeding modes.
  • one end of the feed line 30 is connected to the coaxial line 40, thereby grounding the antenna assembly 100 through the coaxial line 40.
  • one end of the coaxial line 40 strips the transparent thin film insulating layer 406, the braid layer and the outer cover, and the bare inner core 402 and the exposed outer core 404 are obtained, and a transparent thin film insulating layer is disposed between the inner core 402 and the outer core 404. 406.
  • the bare inner core 402 is soldered to one end of the feed line 30 away from the radiating element 20 to be electrically connected to the radiating element 20 while achieving 50 ohm impedance matching with the feed line 30; the exposed outer core 404 is connected to the metal as a reference ground.
  • the antenna assembly 100 described above also A metal connector is included for electrically connecting the ground end of the coaxial line 40, ie, the exposed outer core 404 of the coaxial line 40, to a reference ground. Thereby, the feeding of the entire antenna assembly 100 is completed.
  • the metal connecting member is a flexible circuit board 50.
  • One end of the flexible circuit board 50 is connected to the ground end of the coaxial line 40, that is, the outer core 404, and the other end is connected to the metal member 302 as a reference ground, thereby connecting the ground end of the coaxial line 40 to the reference ground.
  • the inner core 402 of the coaxial line 40 is coupled to the radiating element 20 by a feed line 30, and the outer core 404 of the coaxial line 40 is soldered to the flexible circuit board 50 to connect the entire antenna assembly 100 to the reference ground through the flexible circuit board 50.
  • the feeder 30 is connected to the peripheral circuit through the inner core 402 of the coaxial line 40, and the exposed outer core 404 is soldered to the flexible circuit board 50.
  • the flexible circuit board 50 is connected to the peripheral circuit through the outer core 404 of the coaxial line 40.
  • the peripheral circuit is, for example, a radio frequency circuit on the PCB, which operates after being energized, and the RF circuit end transmits the signal through the coaxial line to the radiating element 20 of the antenna assembly 100, and the radiating element 20 radiates the signals into the air for emission.
  • the flexible circuit board 50 is bent and is adjacent to the end surface 206 of the substrate 200.
  • the bent flexible circuit board 50 is selected to connect the radiating element 20 disposed on the first surface 202 of the substrate 200 with the metal member 302 disposed on the second surface 204 of the substrate 200 by the flexible circuit board 50, that is, The flexible circuit board 50 is used to ground the antenna assembly 100.
  • the flexible circuit board 50 includes a first connection end 502 and a second connection end 504.
  • the first connecting end 502 is disposed on the first surface 202.
  • the first connecting end 502 is spaced apart from the feeding line 30 by a predetermined distance, and the exposed outer core 404 of the coaxial line 40 is soldered to the first connecting end 502.
  • the second connecting end 504 is disposed on the second surface 204 and electrically connected to the metal member 302.
  • the flexible circuit board 50 can be omitted and the entire antenna assembly 100 can be grounded by other metal connectors, such as metal wires.
  • the antenna assembly 100 may be grounded by other means of connection.
  • the antenna assembly 100 may be directly grounded by the coaxial line 40, or the ground end of the radiating element 20 of the antenna assembly 100 may be directly extended to be grounded.
  • the feeder 30 can be electrically connected to the peripheral circuit through other metal connectors, such as metal wires, or by other connection methods; likewise, the metal member 302 can also pass other metal connectors, such as metal wires, or other connections. The method is electrically connected to the peripheral circuit.
  • the metal member 302 disposed on the back surface of the screen 300 is a metal plate, and is a shielding plate for shielding the screen 300, in order to prevent the screen of the display device from being subjected to other electronic components in the wireless communication electronic device. Interference, usually set up such a shield for the screen The screen is shielded.
  • a shield plate originally provided on a display device of a wireless communication electronic device is used as a reference ground for the antenna assembly 100, thereby saving space of the antenna assembly 100.
  • the metal member 302 that does not function as a shield may be used as a reference ground for the antenna assembly 100, but any other metal material inside the wireless communication electronic device may be used as the device.
  • the outer frame of the display screen of the wireless communication electronic device is made of a metal material
  • the outer frame of the metal material can be used as a reference ground for the antenna assembly 100.
  • an antenna assembly 400 is provided in another embodiment of the present disclosure.
  • the antenna assembly 400 in this embodiment is substantially the same as the antenna assembly 100 provided in the foregoing embodiment.
  • the antenna assembly 400 includes two radiating elements 20 that are electrically coupled to the coaxial line 40 via a feed line 30a.
  • Each of the radiating elements 20 is a rectangular metal piece, and the two radiating elements 20 are spaced apart by a predetermined distance and symmetrically disposed on both sides of the axis of symmetry 10.
  • each radiating element 20 has a size of 48 mm x 43 mm, and in some other embodiments, the radiating elements 20 can have different sizes.
  • Each radiating element 20 includes two mutually parallel first side edges 22 and two mutually parallel second side edges 24, the first side edges 22 being perpendicular to the second side edges 24.
  • the first side 22 of each radiating element 20 is parallel to the first side 22 of the other radiating element 20, and similarly, the second side 24 of each radiating element 20 is parallel to the second side of the other radiating element twenty four.
  • the feed line 30a includes a microstrip feed line 32a and a power split microstrip line 34a.
  • the number of the above-mentioned power dividing microstrip lines 34a is two, and the input end of each of the power dividing microstrip lines 34a is connected to the microstrip feeding line 32a, and the output end of each of the power dividing microstrip lines 34a is respectively connected to one radiating element 20.
  • the two power split microstrip lines 34a are equal power split microstrip lines, that is, the two power split microstrip lines 34a have the same shape and the same size.
  • Each of the power split microstrip lines 34a has an "L" shape with one end connected to the middle of a second side edge 24 and the other end connected to one end of the microstrip feed line 32a.
  • the two equal-power microstrip lines 34a are symmetrically disposed on both sides of the symmetry axis 10. In the present embodiment, the two equal-power microstrip lines 34a equally divide the input power of the two radiating elements 20, and therefore, the input powers of the two radiating elements 20 are equal.
  • each of the power split microstrip lines 34a may be in a straight line, one end of which is connected to the middle of a second side 24, the other end of which is connected to one end of the microstrip feed line 32a, and two linear power split microstrips.
  • Lines 34a are symmetrically disposed on either side of the axis of symmetry 10. It should be understood that in some other embodiments, the two power split microstrip lines 34a The lengths may not be equal and/or the input power obtained by each of the radiating elements 20 from the feed line 30a may not be equal.
  • the microstrip feed line 32a is disposed along the axis of symmetry 10, and one end thereof is connected to the two power split microstrip lines 34a.
  • the power split microstrip line 34a and the microstrip feed line 32a are metal sheets, and are disposed on the first surface 202 of the substrate 200 together with the radiating element 20.
  • the radiating element 20, the power dividing microstrip line 34a and the microstrip feeding line 32a have a thickness of 0.035 mm, and may be formed on the first surface 202 of the substrate 200 by a photolithography etching method; or the radiating element 20 may firstly divide the work.
  • the strip line 34a and the microstrip feed line 32a are formed into a metal piece and then fixed to the first surface 202 of the substrate 200. It can be understood that, in some other embodiments, the feed line 30a is not limited to being a metal piece, nor is it limited to being disposed on the first surface 202, and may be correspondingly changed according to different feeding modes.
  • each radiating element 20 determines the operating frequency of the antenna assembly 400; the spacing of the two radiating elements 20 determines the gain of the antenna assembly 400; the dimensions of the power split microstrip line 34a and the microstrip feed line 32a substantially determine the antenna assembly. 400 impedance matching.
  • each radiating element 20 is rectangular and has a size of 48 mm x 43 mm.
  • the distance L1 of each radiating element 20 away from the first side 22 of the axis of symmetry 10 and the other side of the radiating element 20 away from the first side 22 of the axis of symmetry 10 is 100 mm, and each radiating element 20 is remote from the microstrip feed line 32a.
  • the distance L2 between the two side edges 24 and the end surface 206 of the substrate 200 is 80 mm.
  • the power split microstrip line 34a and the microstrip feed line 32a achieve 50 ohm impedance matching.
  • the antenna assembly 400 of the present embodiment can operate at 2.38 GHz to 2.51 GHz and has a bandwidth of 130 MHz, which satisfies the coverage of the commonly used 2.45 GHz band.
  • FIG. 8 is a plan view of the E-plane of the antenna assembly 400 of the present embodiment shown in FIG. 3 to FIG. 6 at 2.45 GHz
  • FIG. 9 is the view of FIG. The H-plane pattern of the antenna assembly 400 of the embodiment at 2.45 GHz.
  • the antenna assembly 400 of this embodiment is a directional antenna with a gain of up to 9 dBi.
  • an embodiment of the present application provides a remote controller 600 for controlling a movable object.
  • the remote controller 600 includes a remote control host 610 and a display 620, one end of which is pivotally coupled to the remote control host 610.
  • the display 620 is pivoted from a closed state to an open state.
  • the display 620 includes a screen, a substrate fixing the screen, and an antenna group mounted on the substrate Pieces.
  • the antenna assembly in the display 620 is the antenna assembly 100, 400 of the above embodiment.
  • the movable object is an Unmanned Aerial Vehicle (UAV).
  • UAV Unmanned Aerial Vehicle
  • the wireless communication electronic device of the embodiment of the present application is not limited to a remote controller, and may also be a mobile phone, a tablet, or other wireless communication electronic device with a display device.
  • the size, shape, number of the radiating elements 20, the spacing between the two radiating elements 20, and the like can be changed, and the power dividing microstrip line can also be changed.
  • the size and relative position of 34a and microstrip feed line 32a are not limited to being symmetrically disposed on both sides of the symmetry axis 10, and the microstrip feed line 32a is not limited to being disposed along the symmetry axis 10, the radiating element 20, the power dividing microstrip line 34a, and the microstrip feed line 32a
  • the relative positional relationship can be changed according to actual needs.
  • the radiating element 20 in this embodiment is rectangular, and in other embodiments, other shapes such as a square, a circle, an ellipse, a ring, a hexagon, etc. may be adopted; secondly, the number of the radiating elements 20 in this embodiment There are two, and in other embodiments, four radiating elements 20, six radiating elements 20, and the like can be used to form the antenna array.
  • the antenna assembly 100, 400 of the embodiment of the present application utilizes the substrate 200 of the wireless communication electronic device as the medium-bearing radiating element 20 instead of the plastic material used as the medium of the antenna assembly in the prior art (for example, the Rogers sheet introduced in the background art).
  • the space occupied by the antenna assemblies 100, 400 is reduced.
  • the Rogers plate is omitted, and the components for fixing or reinforcing the display device which are originally provided in the wireless communication electronic device are used as the medium of the antenna assembly 100, 400, so that the embodiment of the present application
  • the antenna assembly 100, 400 has only a very thin patch of radiating elements and feeders, which is priced at only $10, saving the cost of the antenna assembly 100,400.
  • the thicker substrate 200 also increases the bandwidth of the antenna assemblies 100,400.
  • the antenna assembly 100, 400 of the embodiment of the present application utilizes the back metal member 302 of the screen 300 of the display device as a reference ground for the antenna assembly 100, 400, saving space for the antenna assembly 100, 400, and due to the metal as a reference ground.
  • the member 302 is large, so that the performance of the antenna assembly 100, 400 is stable and the directivity is strong, achieving high gain of the antenna assembly 100, 400.
  • the antenna assembly 100, 400 of the present embodiment is completely built in the above wireless communication electronic device. Internally, such as applied to a remote controller, it can meet the miniaturization requirements of the wireless communication electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请实施例涉及通信领域,提供一种天线组件,设置于无线通信电子设备内部,所述无线通信电子设备设置有基板,所述天线组件包括:辐射元件,所述辐射元件设置于所述基板的第一表面;馈线,所述馈线与所述辐射元件电性连接;以及参考地,所述参考地设置于所述基板的第二表面。本申请实施例的天线组件利用无线通信电子设备的基板作为介质承载辐射元件,减小了天线组件的空间和成本;由于基板较厚,也使得天线组件的带宽增大。本申请实施例还提供具有此天线组件的无线通信电子设备。

Description

天线组件、具有此天线组件的无线通信电子设备及遥控器
本申请要求于2017年5月12日提交中国专利局、申请号为201710335550.2、申请名称为“天线组件及具有此天线组件的无线通信电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及通信领域,特别涉及一种天线组件、具有此天线组件的无线通信电子设备及遥控器。
【背景技术】
天线作为发射或接收无线电波的电子器件,是通信行业不可或缺的一种元件,为了适应无线通信电子设备小型化的需求,天线不断向着小型化方向发展。目前市面上使用的微带天线,具有小型化、易集成、方向性好等优点,因而被广泛应用于通信行业。
微带天线通常设置在一个薄介质基片上,一面附上金属薄层作为接地板,另一面帖上一定形状的金属贴片作为辐射元件,同时利用微带线或同轴探针对贴片馈电,从而构成一个完整的微带天线。目前,微带天线都是作为一个完整的元件安装于无线通信电子设备,其一部分设置于无线通信电子设备内部,另一部分外露。然而,这样的结构并不能完全满足无线通信电子设备小型化的需求。另外,现有的微带天线生产商多选用罗杰斯(Rogers)板材作为微带天线的介质板材,成本较高。例如,包括两个辐射元件、整体尺寸在50×100mm左右的微带天线的售价通常在五十元上下,因而增加了无线通信电子设备的总成本。
【发明内容】
为了解决上述技术问题,本申请实施例提供一种小型化、低成本的内置天线组件及具有此天线组件的无线通信电子设备。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种天线组件,设置于无线通信电子设备内部,所述无线通信电子设备 设置有基板,所述天线组件包括:辐射元件,所述辐射元件设置于所述基板的第一表面;馈线,所述馈线与所述辐射元件电性连接;以及参考地,所述参考地设置于所述基板的第二表面。
在一些实施例中,所述天线组件还包括同轴线;所述同轴线包括内芯和外芯,所述内芯连接所述馈线,所述外芯连接所述参考地。
在一些实施例中,所述天线组件还包括金属连接件,所述同轴线的所述外芯与所述参考地通过所述金属连接件电性连接。
在一些实施例中,所述金属连接件为呈弯折状的柔性电路板,所述柔性电路板包括第一连接端和第二连接端;所述第一连接端连接所述同轴线的所述外芯,所述第一连接端设置于所述第一表面;所述第二连接端连接所述参考地,所述第二连接端设置于所述第二表面。
在一些实施例中,所述辐射元件和所述馈线皆为金属。
在一些实施例中,所述辐射元件的数量为至少两个。
在一些实施例中,所述馈线包括一条微带馈线和至少两条功分微带线,并且所述功分微带线的数量与所述辐射元件的数量相等,每条所述功分微带线的一端连接一个对应的所述辐射元件,每条所述功分微带线的另一端连接所述微带馈线。
在一些实施例中,每个所述辐射元件从所述馈线获得的输入功率相等。
在一些实施例中,所述至少两条功分微带线的长度相等。
在一些实施例中,所述无线通信电子设备的基板为用于固定所述无线通信电子设备的显示装置的塑料板。
在一些实施例中,所述天线组件为微带天线。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种无线通信电子设备,包括:基板,其包括第一表面和第二表面;辐射元件,其设置于所述第一表面;馈线,所述馈线与所述辐射元件电性连接;以及参考地,其设置于所述第二表面。
在一些实施例中,所述无线通信电子设备包括显示装置,所述显示装置包括屏幕和金属件;所述金属件设置于所述第二表面,所述金属件为所述参考地。
在一些实施例中,所述无线通信电子设备还包括同轴线;所述同轴线包括内芯和外芯,所述内芯连接所述馈线,所述外芯连接所述参考地。
在一些实施例中,所述无线通信电子设备还包括金属连接件,所述同轴线的所述外芯与所述参考地通过所述金属连接件电性连接。
在一些实施例中,所述金属连接件为呈弯折状的柔性电路板,所述柔性电路板包括第一连接端和第二连接端;所述第一连接端连接所述同轴线的所述外芯,所述第一连接端设置于所述第一表面;所述第二连接端连接所述参考地,所述第二连接端设置于所述第二表面。
在一些实施例中,所述辐射元件和所述馈线皆为金属。
在一些实施例中,所述辐射元件的数量为至少两个。
在一些实施例中,所述馈线包括一条微带馈线和至少两条功分微带线,并且所述功分微带线的数量与所述辐射元件的数量相等,每条所述功分微带线的一端连接一个对应的所述辐射元件,每条所述功分微带线的另一端连接所述微带馈线。
在一些实施例中,每个所述辐射元件从所述馈线获得的输入功率相等。
在一些实施例中,所述至少两条功分微带线的长度相等。
在一些实施例中,所述无线通信电子设备的基板为用于固定所述无线通信电子设备的显示装置的塑料板。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种无线通信电子设备,所述无线通信电子设备包括如上所述的天线组件。
在一些实施例中,所述无线通信电子设备包括显示装置,所述显示装置包括屏幕和所述基板;所述参考地设置于所述屏幕的背面,所述基板为固定所述屏幕的绝缘板。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种遥控器,包括:
遥控主机,以及
显示器,所述显示器连接至所述遥控主机;
其中,所述显示器包括屏幕、固定所述屏幕的基板和安装于所述基板的天线组件;
其中,所述天线组件为如上所述的天线组件。
在一些实施例中,所述遥控器用来控制可移动物体。
与现有技术相比较,本申请实施例的天线组件利用无线通信电子设备的基板作为介质承载辐射元件,取代了现有技术中用作天线组件的介质的塑料材质(例如背景技术中介绍的罗杰斯板材),使得天线组件所占用的空间减小,也节省了天线组件的成本;由于基板较厚,也使得天线组件的带宽增大。
另外,利用无线通信电子设备的金属件作为天线组件的参考地,大大节省了天线组件的空间,且由于天线组件的参考地很大,使得天线组件的性能稳定,方向性较强,实现了天线组件的高增益。
另外,本申请实施例的天线组件完全内置于无线通信电子设备内部,可满足无线通信电子设备的小型化需求。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的天线组件的结构示意图,其中天线组件安装于无线通信电子设备的基板;
图2为图1所示的天线组件的分解示意图;
图3为本申请另一实施例提供的天线组件的结构示意图,其中天线组件安装于无线通信电子设备的基板;
图4为图3所示的天线组件的俯视示意图;
图5为图3所示的天线组件的侧视示意图;
图6为图3所示的天线组件的分解示意图;
图7为图3至图6所示的天线组件的S参数图;
图8为图3至图6所示的天线组件在2.45GHz的辐射的E平面方向图;
图9为图3至图6所示的天线组件在2.45GHz的辐射的H平面方向图;
图10为本申请又一实施例提供的无线通信电子设备的结构示意图。
【具体实施方式】
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1和图2,为本申请其中一实施例提供的一种天线组件100,其安装于无线通信电子设备内部。该无线通信电子设备包括基板200和具有屏幕300的显示装置,上述屏幕300背面设置有金属件302。该金属件302在该无线通信电子设备用作对屏幕300进行屏蔽的屏蔽板,以防止显示装置的屏幕300受到无线通信电子设备中的其他电子元器件的干扰。该无线通信电子设备可为手机,平板或其他带有显示装置的无线通信电子设备,例如带有显示装置的无人机遥控器。
上述基板200为绝缘介质,可为塑料板,如聚碳酸酯(Polycarbonate,PC)板,基板200的厚度为3.15mm。上述基板200包括第一表面202,第二表面204和端面206(见图2)。端面206连接于第一表面202和第二表面204之间,第一表面202和第二表面204设置于基板200的相对两侧。在本实施例中,上述基板200设置于上述无线通信电子设备内部,用于固定或加固上述显示装置,特别是当屏幕300越大时,刚度越小,通常需要设置基板200对显示装置进行固定。
可以理解的是,在一些其他实施例中,上述基板200可以是无线通信电子设备内部的其他任何绝缘性部件,例如,可以为该无线通信电子设备中用 于容纳屏幕300的前壳、后壳等。
上述天线组件100为微带天线,包括辐射元件20,馈线30,同轴线40。辐射元件20作为整个天线组件100的辐射部分,用于接收和发射信号。在本申请实施例中,馈线30为和同轴线40阻抗匹配的馈电微带线,馈线30起到了用于阻抗匹配的匹配电路的作用。辐射元件20和馈线30设置于基板200的第一表面202,馈线30的一端与辐射元件20电性连接,另一端与同轴线40连接,从而通过同轴线40使天线组件100接地,并且馈线30通过同轴线40连接外围电路,具体将在下文进行说明。
金属件302设置于基板200的第二表面204,作为上述天线组件100的参考地。由于该金属件302是原本就设置在该无线通信电子设备中的用作屏蔽板的部件,在本申请实施例中,又利用该金属件302来作为天线组件100的参考地,因而不必再另外为天线组件100设置单独的参考地,既节约了成本,又节省了空间。
在本实施例中,上述辐射元件20的数量为一个,为矩形金属片,可通过光刻腐蚀方法形成于上述基板200的第一表面202;或者,先将上述辐射元件20制成金属片后,再固定于上述基板200的第一表面202。辐射元件20的尺寸决定了天线组件100的工作频率,可以理解的是,在一些其他实施例中,辐射元件20可根据不同的需求,相应变化尺寸。同样地,辐射元件20的形状不限于为矩形,也可采用其他的形状,如圆形,椭圆形、环形、六边形等。
在本实施例中,上述馈线30为矩形金属片,馈线30可通过光刻腐蚀方法形成于上述基板200的第一表面202;或者,先将上述辐射元件20制成金属片后再固定于上述基板200的第一表面202。可以理解的是,在一些其他实施例中,上述馈线30不限于为金属片,也不限于设置于第一表面202,可根据不同的馈电方式而相应变化。
如上所述,馈线30的一端与同轴线40连接,从而通过同轴线40使天线组件100接地。具体地,同轴线40的一端剥去透明薄膜绝缘层406、编织层和外被,获得裸露的内芯402和裸露的外芯404,内芯402和外芯404之间设置透明薄膜绝缘层406。上述裸露的内芯402焊接于馈线30远离辐射元件20的一端,从而与辐射元件20电性连接,同时可与馈线30实现50欧姆的阻抗匹配;裸露的外芯404连接于作为参考地的金属件302。上述天线组件100还 包括金属连接件,该金属连接件用于将同轴线40的接地端,即,同轴线40的裸露的外芯404与参考地电性连接。从而,完成了对整个天线组件100的馈电。
在本实施例中,上述金属连接件为柔性电路板50。柔性电路板50的一端与同轴线40的接地端即外芯404连接,另一端连接作为参考地的金属件302,从而将同轴线40的接地端与参考地相连。同轴线40的内芯402通过馈线30连接于辐射元件20,同轴线40的外芯404焊接于柔性电路板50,从而通过柔性电路板50将整个天线组件100连接至参考地。另外,馈线30通过同轴线40的内芯402连接外围电路,裸露的外芯404焊接于柔性电路板50。而柔性电路板50通过同轴线40的外芯404连接外围电路。外围电路例如为PCB板上的射频电路,在通电之后工作,射频电路端把信号通过同轴线发送到天线组件100的辐射元件20上,辐射元件20再把这些信号辐射到空气中发射出去。
上述柔性电路板50呈弯折状,靠近基板200的端面206。选择弯折状的柔性电路板50,是为了用该柔性电路板50将设置于基板200的第一表面202的辐射元件20与设置于基板200的第二表面204的金属件302相连接,即,用该柔性电路板50来将天线组件100接地。具体地,柔性电路板50包括第一连接端502和第二连接端504。第一连接端502设置于第一表面202,第一连接端502与上述馈线30相隔预设的距离,上述同轴线40的裸露的外芯404焊接于第一连接端502。第二连接端504设置于第二表面204,并与上述金属件302电性连接。在其他一些实施例中,柔性电路板50可省略,而通过其他金属连接件,例如金属导线将整个天线组件100接地。或者,可采用其他的连接方式使天线组件100接地,例如,可以用同轴线40直接将天线组件100接地,或者直接把天线组件100的辐射元件20的接地端延长,贴合接地。另外,馈线30可通过其他金属连接件,例如金属导线,或者采用其他的连接方式电性连接外围电路;同样地,金属件302也可通过其他金属连接件,例如金属导线,或者采用其他的连接方式电性连接外围电路。
在本申请实施例中,设置于上述屏幕300背面的金属件302为金属板,为用于对屏幕300进行屏蔽的屏蔽板,为防止显示装置的屏幕受到无线通信电子设备中的其他电子元器件的干扰,通常都会设置这样的屏蔽板用于对屏 幕进行屏蔽保护。在本实施例中,是利用了无线通信电子设备的显示装置上本来就具有的屏蔽板作为上述天线组件100的参考地,从而节省了天线组件100的空间。可以理解的是,在本申请的其他一些实施例中,可以不用起到屏蔽作用的该金属件302作为天线组件100的参考地,而是采用无线通信电子设备内部的任何其他金属材质的器件作为上述天线组件100的参考地。例如,若该无线通信电子设备的显示屏的外框架为金属材质,可以利用该金属材质的外框作为上述天线组件100的参考地。
请参阅图3至图6,为本申请另一实施例提供的天线组件400,该实施例中的天线组件400与上述实施例提供的天线组件100基本相同,区别点在于:本实施例提供的天线组件400包括两个辐射元件20,两个辐射元件20通过馈线30a与同轴线40电性连接。
每个辐射元件20为矩形的金属片,两个辐射元件20相隔预设的距离,并对称地设置于对称轴10的两侧。在本实施例中,每个辐射元件20的尺寸为48mm×43mm,在一些其他实施例中,辐射元件20可以具有不同的尺寸。每个辐射元件20包括两个相互平行的第一侧边22和两个相互平行的第二侧边24,第一侧边22垂直于第二侧边24。每个辐射元件20的第一侧边22平行于另一辐射元件20的第一侧边22,类似地,每个辐射元件20的第二侧边24平行于另一辐射元件的第二侧边24。
上述馈线30a包括微带馈线32a和功分微带线34a。上述功分微带线34a的数量为两个,每个功分微带线34a的输入端连接微带馈线32a,每个功分微带线34a的输出端分别连接一个辐射元件20。在本实施例中,上述两个功分微带线34a为等功分微带线,也即两个功分微带线34a的形状相同,尺寸相等。每个功分微带线34a为“L”形,其一端连接一个第二侧边24的中部,另一端连接微带馈线32a的一端。上述两个等功分微带线34a对称地设置于对称轴10的两侧。在本实施例中,两个等功分微带线34a对两个辐射元件20的输入功率进行等分,因此,两个辐射元件20的输入功率相等。在其他一些实施例中,每个功分微带线34a可呈直线,其一端连接一个第二侧边24的中部,另一端连接微带馈线32a的一端,两个呈直线的功分微带线34a对称地设置于对称轴10的两侧。应理解的是,在一些其他实施例中,所述两个功分微带线34a 的长度可以不相等,并且/或者每个所述辐射元件20从所述馈线30a获得的输入功率可以不相等。
上述微带馈线32a沿对称轴10设置,并且其一端连接上述两个功分微带线34a。上述功分微带线34a和微带馈线32a为金属片,与上述辐射元件20一起设置于上述基板200的第一表面202。上述辐射元件20,功分微带线34a以及微带馈线32a的厚度为0.035mm,可通过光刻腐蚀方法形成于上述基板200的第一表面202;或者上述辐射元件20,先将功分微带线34a以及微带馈线32a制成金属片后,再固定于上述基板200的第一表面202。可以理解的是,在一些其他实施例中,上述馈线30a不限于为金属片,也不限于设置于第一表面202,可根据不同的馈电方式而相应变化。
每个辐射元件20的尺寸决定了天线组件400的工作频率;两个辐射元件20的间距决定了天线组件400的增益;功分微带线34a和微带馈线32a的尺寸基本上决定了天线组件400的阻抗匹配。在本实施例中,每个辐射元件20为矩形,尺寸为48mm×43mm。每个辐射元件20远离对称轴10的第一侧边22与另一辐射元件20远离对称轴10的第一侧边22的距离L1为100mm,而每个辐射元件20远离微带馈线32a的第二侧边24与基板200的端面206的距离L2为80mm。功分微带线34a和微带馈线32a实现50欧姆的阻抗匹配。
请参阅图7,本实施例的天线组件400可工作在2.38GHz~2.51GHz,带宽为130MHz,满足常用的2.45GHz频段的覆盖。
请参阅图8和图9,其中图8为图3至图6所示的本实施例的天线组件400在2.45GHz的辐射的E平面方向图,图9为图3至图6所示的本实施例的天线组件400在2.45GHz的辐射的H平面方向图。本实施例的天线组件400为方向性天线,增益可达9dBi。
以下以遥控器为例,对本申请实施例的无线通信电子设备的技术特征进行说明。
请参阅图10,本申请实施例提供一种遥控器600,其用来控制可移动物体。该遥控器600包括遥控主机610和显示器620,所述显示器620的一端可枢转地连接所述遥控主机610。所述遥控器600在使用时,所述显示器620由闭合状态枢转至打开状态。
所述显示器620包括屏幕、固定该屏幕的基板和安装于该基板的天线组 件。
优选地,该显示器620中的天线组件为上述实施例中的天线组件100,400。
优选地,上述的可移动物体为无人飞行器(Unmanned Aerial Vehicle,UAV)。
应理解的是,本申请实施例的无线通信电子设备不限于为遥控器,还可以为手机、平板或其他带有显示装置的无线通信电子设备。
本领域所属技术人员应明白,为了获得不同性能、用途的天线组件400,可以改变辐射元件20的尺寸、形状、数量以及两个辐射元件20之间的间距等,还可以改变功分微带线34a和微带馈线32a的尺寸及相对位置。辐射元件20和功分微带线34a不限于对称地设置于对称轴10的两侧,微带馈线32a不限于沿对称轴10设置,辐射元件20,功分微带线34a和微带馈线32a可根据实际需求改变相对位置关系。
例如,本实施例中的辐射元件20为矩形,在其他一些实施例中可以采取正方形,圆形,椭圆形,环形、六边形等其他形状;其次,本实施例中的辐射元件20的数量为2个,而在其他实施例中可以采用4个辐射元件20,6个辐射元件20等多个辐射元件来形成天线阵。
本申请实施例的天线组件100,400利用无线通信电子设备的基板200作为介质承载辐射元件20,取代了现有技术中用作天线组件的介质的塑料材质(例如背景技术中介绍的罗杰斯板材),使得天线组件100,400所占用的空间减小。与现有技术中同样尺寸的天线组件相比较,省略罗杰斯板材,利用无线通信电子设备中本来就具有的用于固定或加固显示装置的部件作为天线组件100,400的介质,使得本申请实施例中的天线组件100,400仅剩下辐射元件和馈线的一张很薄的贴片,售价仅在十元出头,节省了天线组件100,400的成本。基板200较厚,也使得天线组件100,400的带宽增大。
而且,本申请实施例的天线组件100,400利用显示装置的屏幕300的背面金属件302作为天线组件100,400的参考地,节省了天线组件100,400的空间,且由于作为参考地的金属件302较大,使得天线组件100,400的性能稳定,方向性较强,实现了天线组件100,400的高增益。
另外,本实施例的天线组件100,400完全内置于上述无线通信电子设备 内部,如应用于遥控器,可满足该无线通信电子设备的小型化需求。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (27)

  1. 一种天线组件(100,400),设置于无线通信电子设备内部,所述无线通信电子设备设置有基板(200),其特征在于,所述天线组件(100,400)包括:
    辐射元件(20),所述辐射元件(20)设置于所述基板(200)的第一表面(202);
    馈线(30,30a),所述馈线(30,30a)与所述辐射元件(20)电性连接;以及
    参考地(302),所述参考地(302)设置于所述基板(200)的第二表面(204)。
  2. 根据权利要求1所述的天线组件(100,400),其特征在于,所述天线组件(100,400)还包括同轴线(40);所述同轴线(40)包括内芯(402)和外芯(404),所述内芯(402)连接所述馈线(30,30a),所述外芯(404)连接所述参考地(302)。
  3. 根据权利要求2所述的天线组件(100,400),其特征在于,所述天线组件(100,400)还包括金属连接件,所述同轴线(40)的所述外芯(404)与所述参考地(302)通过所述金属连接件电性连接。
  4. 根据权利要求3所述的天线组件(100,400),其特征在于,所述金属连接件为呈弯折状的柔性电路板(50),所述柔性电路板(50)包括第一连接端(502)和第二连接端(504);所述第一连接端(502)连接所述同轴线(40)的所述外芯(404),所述第一连接端(502)设置于所述第一表面(202);所述第二连接端(504)连接所述参考地(302),所述第二连接端(504)设置于所述第二表面(204)。
  5. 根据权利要求1至4任一项所述的天线组件(100,400),其特征在于,所述辐射元件(20)和所述馈线(30,30a)皆为金属。
  6. 根据权利要求1至5中任一项所述的天线组件(100,400),其特征在于,所述辐射元件(20)的数量为至少两个。
  7. 根据权利要求6所述的天线组件(100,400),其特征在于,所述馈线(30a)包括一条微带馈线(32a)和至少两条功分微带线(34a),并且所述功分微带线(34a)的数量与所述辐射元件(20)的数量相等,每条所述功分微带线(34a)的一端连接一个对应的所述辐射元件(20),每条所述功分微带线(34a)的另一端连接所述微带馈线(32a)。
  8. 根据权利要求7所述的天线组件(100,400),其特征在于,每个所述辐射元件(20)从所述馈线(30a)获得的输入功率相等。
  9. 根据权利要求7所述的天线组件(100,400),其特征在于,所述至少两条功分微带线(34a)的长度相等。
  10. 根据权利要求1-9中任一项所述的天线组件(100,400),其特征在于,所述无线通信电子设备的基板(200)为用于固定所述无线通信电子设备的显示装置的塑料板。
  11. 根据权利要求1-10中任一项所述的天线组件(100,400),其特征在于,所述天线组件(100,400)为微带天线。
  12. 一种无线通信电子设备,其特征在于,包括:
    基板(200),其包括第一表面(202)和第二表面(204);
    辐射元件(20),其设置于所述第一表面(202);
    馈线(30,30a),所述馈线(30,30a)与所述辐射元件(20)电性连接;以及
    参考地(302),其设置于所述第二表面(204)。
  13. 根据权利要求12所述的无线通信电子设备,其特征在于,包括显示 装置,所述显示装置包括屏幕(300)和金属件(302);所述金属件(302)设置于所述第二表面(204),所述金属件(302)为所述参考地(302)。
  14. 根据权利要求12或13所述的无线通信电子设备,其特征在于,所述无线通信电子设备还包括同轴线(40);所述同轴线(40)包括内芯(402)和外芯(404),所述内芯(402)连接所述馈线(30,30a),所述外芯(404)连接所述参考地(302)。
  15. 根据权利要求14所述的无线通信电子设备,其特征在于,所述无线通信电子设备还包括金属连接件,所述同轴线(40)的所述外芯(400)与所述参考地(302)通过所述金属连接件电性连接。
  16. 根据权利要求15所述的无线通信电子设备,其特征在于,所述金属连接件为呈弯折状的柔性电路板(50),所述柔性电路板(50)包括第一连接端(502)和第二连接端(504);所述第一连接端(502)连接所述同轴线(40)的所述外芯(404),所述第一连接端(502)设置于所述第一表面(202);所述第二连接端(504)连接所述参考地(302),所述第二连接端(504)设置于所述第二表面(204)。
  17. 根据权利要求12至16任一项所述的无线通信电子设备,其特征在于,所述辐射元件(20)和所述馈线(30,30a)皆为金属。
  18. 根据权利要求12至17任一项所述的无线通信电子设备,其特征在于,所述辐射元件(20)的数量为至少两个。
  19. 根据权利要求18所述的无线通信电子设备,其特征在于,所述馈线(30a)包括一条微带馈线(32a)和至少两条功分微带线(34a),并且所述功分微带线(34a)的数量与所述辐射元件(20)的数量相等,每条所述功分微带线(34a)的一端连接一个对应的所述辐射元件(20),每条所述功分微带线(34a)的另一端连接所述微带馈线(32a)。
  20. 根据权利要求19所述的无线通信电子设备,其特征在于,每个所述辐射元件(20)从所述馈线(30a)获得的输入功率相等。
  21. 根据权利要求19所述的无线通信电子设备,其特征在于,所述至少两条功分微带线(34a)的长度相等。
  22. 根据权利要求12至19中任一项所述的无线通信电子设备,其特征在于,所述无线通信电子设备的基板(200)为用于固定所述无线通信电子设备的显示装置的塑料板。
  23. 一种无线通信电子设备,其特征在于,所述无线通信电子设备包括权利要求1-11中任一项所述的天线组件(100,400)。
  24. 根据权利要求21所述的无线通信电子设备,其特征在于,所述无线通信电子设备包括显示装置,所述显示装置包括屏幕(300)和所述基板(200);所述参考地(302)设置于所述屏幕(300)的背面,所述基板(200)为固定所述屏幕(300)的绝缘板。
  25. 一种遥控器(600),其特征在于,包括:
    遥控主机(610),以及
    显示器(620),所述显示器(620)连接至所述遥控主机(610);
    其中,所述显示器(620)包括屏幕、固定所述屏幕的基板和安装于所述基板的天线组件;
    其中,所述天线组件为权利要求1至11任一项所述的天线组件(100,400)。
  26. 根据权利要求23所述的遥控器(600),其特征在于,所述遥控器(600)用来控制可移动物体。
  27. 根据权利要求24所述的遥控器(600),其特征在于,所述可移动物 体为无人飞行器(Unmanned Aerial Vehicle,UAV)。
PCT/CN2017/107379 2017-05-12 2017-10-23 天线组件、具有此天线组件的无线通信电子设备及遥控器 WO2018205502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17825095.7A EP3425731B1 (en) 2017-05-12 2017-10-23 Antenna assembly and remote control having same
US15/883,673 US10468775B2 (en) 2017-05-12 2018-01-30 Antenna assembly, wireless communications electronic device and remote control having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710335550.2A CN108879084A (zh) 2017-05-12 2017-05-12 天线组件及具有此天线组件的无线通信电子设备
CN201710335550.2 2017-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,673 Continuation US10468775B2 (en) 2017-05-12 2018-01-30 Antenna assembly, wireless communications electronic device and remote control having the same

Publications (1)

Publication Number Publication Date
WO2018205502A1 true WO2018205502A1 (zh) 2018-11-15

Family

ID=64105204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107379 WO2018205502A1 (zh) 2017-05-12 2017-10-23 天线组件、具有此天线组件的无线通信电子设备及遥控器

Country Status (3)

Country Link
EP (1) EP3425731B1 (zh)
CN (1) CN108879084A (zh)
WO (1) WO2018205502A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213133A (zh) * 2019-06-11 2019-09-06 立讯精密工业股份有限公司 链路环回装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178562A1 (zh) * 2022-03-23 2023-09-28 深圳市大疆创新科技有限公司 无人机的遥控器和无人机系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159351A (zh) * 2007-11-12 2008-04-09 华东师范大学 一种pzt/pvdf复合材料柔性介质微带天线
CN201298596Y (zh) * 2008-08-26 2009-08-26 深圳市远望谷信息技术股份有限公司 叉车天线
CN102800957A (zh) * 2012-08-23 2012-11-28 电子科技大学 双频段可穿戴式微带天线及其实现方法
CN204333248U (zh) * 2015-01-28 2015-05-13 重庆大学 基于变容二极管的陷波可调的超宽带天线
CN205692364U (zh) * 2016-06-06 2016-11-16 天津中翔腾航科技股份有限公司 一种无人机遥控器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464663A (en) * 1981-11-19 1984-08-07 Ball Corporation Dual polarized, high efficiency microstrip antenna
US5598168A (en) * 1994-12-08 1997-01-28 Lucent Technologies Inc. High efficiency microstrip antennas
FR2772518B1 (fr) * 1997-12-11 2000-01-07 Alsthom Cge Alcatel Antenne a court-circuit realisee selon la technique des microrubans et dispositif incluant cette antenne
AU2001244976A1 (en) * 2000-03-30 2001-10-15 Avantego Ab Antenna arrangement
JP3869354B2 (ja) * 2002-11-20 2007-01-17 日本電業工作株式会社 アンテナ
US20050083233A1 (en) * 2003-10-15 2005-04-21 Ziming He Patch antenna
CN100459454C (zh) * 2004-07-26 2009-02-04 电子科技大学 一种无线通信终端分集天线装置
US7612725B2 (en) * 2007-06-21 2009-11-03 Apple Inc. Antennas for handheld electronic devices with conductive bezels
CN101471486A (zh) * 2007-12-24 2009-07-01 联想(上海)有限公司 一种天线
US8674878B2 (en) * 2010-09-15 2014-03-18 Ralink Technology Corp. Smart antenna system
CN104425874B (zh) * 2013-09-10 2017-05-17 启碁科技股份有限公司 天线及电子装置
US10141626B2 (en) * 2014-07-23 2018-11-27 Apple Inc. Electronic device printed circuit board patch antenna
JP6305353B2 (ja) * 2015-01-27 2018-04-04 三菱電機株式会社 マイクロストリップデバイス、リフレクトアレー、マイクロストリップアンテナ及びマイクロストリップアレーアンテナ
FR3033712B1 (fr) * 2015-03-16 2017-03-03 Parrot Procede d'optimisation de l'orientation d'un appareil de telecommande par rapport a un drone volant ou roulant
CN105024145B (zh) * 2015-08-12 2018-12-28 四川省韬光通信有限公司 一种小型高增益微带天线
CN207009650U (zh) * 2017-05-12 2018-02-13 深圳市道通智能航空技术有限公司 天线组件及具有此天线组件的无线通信电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159351A (zh) * 2007-11-12 2008-04-09 华东师范大学 一种pzt/pvdf复合材料柔性介质微带天线
CN201298596Y (zh) * 2008-08-26 2009-08-26 深圳市远望谷信息技术股份有限公司 叉车天线
CN102800957A (zh) * 2012-08-23 2012-11-28 电子科技大学 双频段可穿戴式微带天线及其实现方法
CN204333248U (zh) * 2015-01-28 2015-05-13 重庆大学 基于变容二极管的陷波可调的超宽带天线
CN205692364U (zh) * 2016-06-06 2016-11-16 天津中翔腾航科技股份有限公司 一种无人机遥控器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213133A (zh) * 2019-06-11 2019-09-06 立讯精密工业股份有限公司 链路环回装置

Also Published As

Publication number Publication date
CN108879084A (zh) 2018-11-23
EP3425731B1 (en) 2023-10-18
EP3425731A1 (en) 2019-01-09
EP3425731A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
TWI533505B (zh) 行動裝置及其製造方法
TWI514666B (zh) 行動裝置
US10468775B2 (en) Antenna assembly, wireless communications electronic device and remote control having the same
JPS61284102A (ja) 携帯形無線機のアンテナ
WO2021104191A1 (zh) 天线单元及电子设备
WO2020216187A1 (zh) 高度集成天线设计的无线终端设备
WO2021238347A1 (zh) 天线和电子设备
EP3852195B1 (en) Terminal device antenna
WO2022083276A1 (zh) 天线阵列组件及电子设备
TW201616726A (zh) 開槽天線及具有該開槽天線的無線通訊裝置
TWI659629B (zh) 通訊裝置
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
TWI648906B (zh) 行動裝置和天線結構
WO2020135171A1 (zh) 天线结构及终端
JP2023500104A (ja) アンテナ装置及び電子デバイス
JPH0522018A (ja) 逆fアンテナ
WO2018205502A1 (zh) 天线组件、具有此天线组件的无线通信电子设备及遥控器
WO2019029189A1 (zh) 天线组件及具有此天线组件的无线通信电子设备、遥控器
EP3979417A1 (en) Housing assembly, antenna apparatus, and electronic device
WO2021212277A1 (zh) 双频双极化天线
CN111463549A (zh) 一种电子设备
WO2023016184A1 (zh) 天线装置、壳体及电子设备
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
US20210104816A1 (en) Combination driven and parasitic element circularly polarized antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17825095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE