WO2023178562A1 - 无人机的遥控器和无人机系统 - Google Patents

无人机的遥控器和无人机系统 Download PDF

Info

Publication number
WO2023178562A1
WO2023178562A1 PCT/CN2022/082573 CN2022082573W WO2023178562A1 WO 2023178562 A1 WO2023178562 A1 WO 2023178562A1 CN 2022082573 W CN2022082573 W CN 2022082573W WO 2023178562 A1 WO2023178562 A1 WO 2023178562A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
remote control
group
antenna units
antenna unit
Prior art date
Application number
PCT/CN2022/082573
Other languages
English (en)
French (fr)
Inventor
秦一峰
陈柏霖
马超
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/082573 priority Critical patent/WO2023178562A1/zh
Publication of WO2023178562A1 publication Critical patent/WO2023178562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a remote controller for an unmanned aerial vehicle and an unmanned aerial vehicle system.
  • the antenna used in the remote controller to communicate with the drone is usually a dipole antenna.
  • This antenna has a wider beam, but has poor directivity and limited gain.
  • this antenna form has been unable to meet higher requirements.
  • Embodiments of the present application provide a drone remote controller and a drone system.
  • a display device is rotatably connected to the body.
  • the display device includes a display screen.
  • An array antenna is provided on the back side of the display screen. The array antenna is used to transmit data between the remote controller and the drone. communication signal.
  • a drone is communicatively connected to the remote controller.
  • the display device is rotatably connected to the main body, and an array antenna is provided on the back side of the display screen. Since the size of the array antenna is usually large, setting it on the back side of the remote control display screen makes full use of the space on the back side of the display screen, making the design of the array antenna more flexible. On the other hand, the array antenna It has good directivity and higher gain, which is helpful to improve the communication performance of the remote control.
  • Figure 1 is a schematic structural diagram of an unmanned aerial vehicle system according to an embodiment of the present application.
  • Figure 2 is another structural schematic diagram of the unmanned aerial vehicle system according to the embodiment of the present application.
  • Figure 3 is an exploded schematic diagram of the remote control according to the embodiment of the present application.
  • Figure 4 is a schematic front view of an array antenna according to an embodiment of the present application.
  • Figure 5 is a schematic view of the back of the array antenna according to the embodiment of the present application.
  • Figure 6 is a schematic side view of an array antenna according to an embodiment of the present application.
  • Figure 7 is a schematic front view of the antenna unit according to the embodiment of the present application.
  • Figure 8 is a schematic view of the back of the antenna unit according to the embodiment of the present application.
  • FIG. 9 is an exploded schematic diagram of the antenna unit according to the embodiment of the present application.
  • Figure 10 is a schematic side view of the antenna unit according to the embodiment of the present application.
  • Figure 11 is an S11 curve of the antenna unit according to the embodiment of the present application.
  • Figures 12-13 are schematic diagrams of the arrangement of antenna units according to the embodiment of the present application.
  • Figure 14 is a schematic diagram of mutual coupling of the antenna unit according to the embodiment of the present application.
  • Figure 15 is a schematic diagram of the circuit connection of the array antenna according to the embodiment of the present application.
  • Figure 16 is a schematic diagram of the circuit connection of the control circuit according to the embodiment of the present application.
  • Figures 17-21 are schematic diagrams of circuit connections of the array antenna according to the embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • the connection can be mechanical or electrical. It can be a direct connection or an indirect connection through an intermediary. It can be an internal connection between two elements or an interaction between two elements.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a remote control 100 for a drone 200 includes a body 12 and a display device 14 .
  • the display device 14 is rotatably connected to the body 12.
  • the display device 14 includes a display screen 16.
  • An array antenna 18 is provided on the back side of the display screen 16. The array antenna 18 is used to transmit communication signals between the remote controller 100 and the drone 200.
  • the display device 14 is rotatably connected to the main body 12 , and an array antenna 18 is provided on the back side of the display screen 16 . Since the size of the array antenna 18 is usually large, it is arranged on the back side of the display screen 16 of the remote control 100. On the one hand, the space on the back side of the display screen 16 is fully utilized, which can make the design of the array antenna 18 more flexible. On the other hand, the array antenna 18 can be designed more flexibly. On the other hand, the array antenna 18 has good directivity and higher gain, which is beneficial to improving the communication performance of the remote control 100 .
  • the above-mentioned array antenna may be used as a whole as a transmitting antenna of the remote control, or as a whole as a receiving antenna of the remote control, or part of it may be used as a transmitting antenna and part of it may be used as a receiving antenna.
  • the body 12 may be a part held by the user, and the body 12 may be provided with input components such as buttons, rockers, and scroll keys.
  • the buttons and rockers can be arranged on the front 20 of the body 12 (when the remote control 100 is in normal use, the side of the body 12 facing the user is the front 20).
  • the scroll key may be provided on the top surface 22 of the body 12 .
  • the main body includes the core circuit board of the remote control.
  • the array antenna and the core circuit board can be separated as much as possible, thereby reducing the impact of the core circuit board on the array antenna.
  • the top surface 22 of the body 12 is provided with a connecting portion 24.
  • One end of the connecting portion 24 is connected to the top surface 22, and the other end is connected to the display device 14 in a rotational manner.
  • the rotation angle range of the display device 14 can be set according to actual conditions. In one embodiment, the rotation angle of the display device 14 relative to the body 12 may range from 0 degrees to 270 degrees.
  • the remote control 100 When the remote control 100 is not in use, it may be in a folded state, that is, the display screen 16 of the display device 14 may cover part of the front surface 20 of the body 12 toward the front surface 20 of the body 12 , as shown in FIG. 1 . At this time, the angle of the display device 14 can be defined as 0 degrees, and the entire remote control 100 occupies a smaller space, which is convenient for storage and transportation of the remote control 100 .
  • the display device 14 When the remote control 100 is in use, the display device 14 can be unfolded. For example, the display device 14 can be at an angle of approximately 90 degrees or greater than 90 degrees relative to the front 20 of the body 12. At this time, the display screen 16 can be viewed by the user. 16 can display the picture taken by the drone 200 and the information of the drone 200 (including but not limited to the attitude of the drone 200, position information, battery information, temperature information, etc.). Further, the display screen 16 may be a touch display screen 16, and the touch display screen 16 further displays virtual buttons. The user can control the drone 200, or set parameters, etc. by touching the display screen 16. When the display device 14 is unfolded, it can be at an angle of approximately 270 degrees relative to the front surface 20 of the body 12, as shown in FIG. 2. In this way, the display screen 16 can be viewed in different directions.
  • the array antenna 18 is provided on the back side of the display screen 16, by rotating the display device 14, it can also adapt to the signal reception and transmission of the UAV 200 in different directions, thereby improving the communication performance.
  • the display device 14 also includes a back plate 26 , which is located on the back side of the display screen 16 .
  • a plurality of mounting portions 28 are provided on the inner side of the back plate 26 .
  • the array antenna 18 includes a plurality of antenna units 30 .
  • the mounting part 28 mounts the corresponding one antenna unit 30 . In this way, the installation of the antenna unit 30 can be facilitated.
  • each mounting part 28 may include two mounting parts 32 disposed in a diagonal direction of the antenna unit 30.
  • One mounting part 32 limits one corner of the antenna unit 30, and the other mounting part 32 is mounted on the antenna unit 30.
  • the component 32 limits the position of the other corner of the antenna unit 30, and the installation effect is good.
  • array antenna 18 is a microstrip array antenna 18 .
  • the array antenna can also be jointly designed with filters to form a microstrip filter antenna.
  • the microstrip array antenna 18 includes a dielectric substrate 34 , a patch antenna 36 and a microstrip structure 38 .
  • the patch antenna 36 and the microstrip structure 38 are respectively disposed on two opposite surfaces of the dielectric substrate 34 .
  • the substrate 34 is provided with a through hole 40 penetrating both surfaces, and the patch antenna 36 and the microstrip structure 38 are connected through the conductive member 42 in the through hole 40 .
  • patch antenna 36 may operate at 5.8 GHz.
  • the microstrip structure 38 can be tightly attached to the surface of the dielectric substrate 34 .
  • the microstrip structure 38 is connected to the patch antenna 36 through the conductive member 42 in the through hole 40 of the dielectric substrate 34, which reduces the loss of the dielectric board compared to other coupling feeding methods.
  • the microstrip structure 38 is in a "mountain” shape.
  • the "mountain” designed microstrip structure 38 can broaden the bandwidth, and the standing wave ratio (Voltage Standing Wave Ratio, VSWR) in the working frequency band of the microstrip array antenna is less than 1.5.
  • VSWR Voltage Standing Wave Ratio
  • the S11 parameter of the antenna unit at 5.67GHz-6.13GHz is below -13.87, and the bandwidth reaches 0.46GHz.
  • the "mountain"-shaped microstrip structure 38 combines with the antenna to form a third-order resonator, which makes the sideband roll-off steeper, thereby improving sideband suppression and spuriousness. Since the UAV 200 communicates using unlicensed bands, the high roll-off antenna can not only effectively suppress the impact of the noise emitted by the remote control 100 on other devices, but also effectively suppress the impact of surrounding out-of-band noise on the drone. The impact of machine 200 communication.
  • the antenna unit 30 may also include a slot antenna.
  • the array antenna 18 includes a plurality of first antenna units 44 and a plurality of second antenna units 46 , and the polarization direction of the first antenna unit 44 is consistent with that of the second antenna unit 46 .
  • the polarization directions are different. In this way, the dual-polarized array antenna 18 can be realized.
  • the dual-polarized array antenna 18 has two different polarization directions: the polarization direction of the first antenna unit 44 (hereinafter referred to as the first polarization direction) and the polarization direction of the second antenna unit 46 (hereinafter referred to as the first polarization direction). second polarization direction).
  • the first polarization direction is suitable for electromagnetic waves propagating in the first polarization direction, so that the array antenna 18 can receive electromagnetic wave signals (wireless signals) propagating in the first polarization direction or transmit electromagnetic wave signals in the first polarization direction.
  • the drone 200 communicates with the remote controller 100 in the first polarization direction.
  • the second polarization direction is suitable for electromagnetic waves propagating in the second polarization direction, so that the array antenna 18 can receive electromagnetic wave signals (wireless signals) propagating in the second polarization direction or transmit electromagnetic wave signals in the second polarization direction. , so that the drone 200 communicates with the remote controller 100 in the second polarization direction.
  • the array antenna 18 can achieve a dual polarization effect and prevent polarization mismatch.
  • the two polarization directions can also communicate with different UAVs 200 that match the two polarization directions, so that a single remote controller 100 can control multiple UAVs 200 .
  • the polarization direction of the first antenna element 44 is a +45 degree polarization direction
  • the polarization direction of the second antenna element 46 is a -45 degree polarization direction. In this way, the stability of communication can be ensured.
  • the array antenna 18 includes 4*4 antenna units 30 .
  • the 4*4 antenna units 30 form an array of antenna units 30 with 4 rows and 4 columns.
  • the antenna units 30 in the first row and the third row are the first antenna units 44, and their polarization directions are +45 degrees.
  • the antenna units 30 in the second and fourth rows are second antenna units 46, and their polarization directions are -45 degrees.
  • the array antenna 18 with two polarization directions of ⁇ 45 degrees can ensure communication (including receiving or launch) stability. It can be understood that in other embodiments, the arrangement of the antenna units 30 is not limited to 4*4, and can also be arranged in other ways, which is not specifically limited here.
  • the polarization direction is also not limited to ⁇ 45 degrees.
  • the first antenna unit 44 constitutes the first antenna unit row 48
  • the plurality of second antenna units 46 constitutes the second antenna unit row 50
  • the first antenna unit row 48 and The second rows 50 of antenna elements are generally parallel. In this way, the space occupied by the array antenna 18 can be reduced.
  • the first antenna unit row 48 and the second antenna unit row 50 are arranged approximately parallel, and the array antenna 18 is relatively regular as a whole, which can reduce the space occupied by the array antenna 18 and improve the space utilization of the remote control 100 .
  • the number of the first antenna element rows 48 is two, and the number of the second antenna element rows 50 is two. It can be understood that in other implementations, the number of first antenna unit rows 48 is not limited to two, and may also be one, or more than two.
  • the number of the second antenna unit rows 50 is not limited to two, and may also be one, or more than two.
  • the number of the first antenna element rows 48 may be the same as the number of the second antenna element rows 50 , or may be different.
  • the number of first antenna units 44 included in a first antenna unit row 48 is the same as the number of second antenna units 46 included in a second antenna unit row 50 .
  • the first antenna element rows 48 and the second antenna element rows 50 are alternately arranged into multiple rows. In this way, the communication performance of the array antenna 18 can be improved.
  • the first antenna unit rows 48 and the second antenna unit rows 50 are alternately arranged into multiple rows, so that in terms of spatial distribution, the first antenna unit 44 and the second antenna unit 46 can be dispersed evenly on the back side of the display screen 16 as much as possible.
  • the reception or transmission of electromagnetic waves in the first polarization direction and the second polarization direction is enhanced, thereby improving the communication (including reception or transmission) performance of the array antenna 18 .
  • first antenna element rows 48 and two second antenna element rows 50 there are two first antenna element rows 48 and two second antenna element rows 50 , the two first antenna element rows 48 alternating with the two second antenna element rows 50 Set up into 30 rows of four antenna elements.
  • the number of first antenna unit rows 48 is not limited to two, and may also be more than two.
  • the number of the second antenna element rows 50 is not limited to two, and may also be more than two.
  • the number of the first antenna element rows 48 may be the same as the number of the second antenna element rows 50 , or may be different.
  • a plurality of first antenna units 44 in the first antenna unit row 48 are arranged alternately, and a plurality of second antenna units 46 in the second antenna unit row 50 are arranged alternately. In this way, the occupied area of the array antenna 18 can be further reduced without sacrificing mutual coupling.
  • first antenna unit row 48 a plurality of first antenna units 44 are arranged alternately, which can reduce the occupied area of the first antenna unit row 48 .
  • second antenna unit row 50 multiple second antenna units 46 are arranged alternately, which can reduce the occupied area of the second antenna unit row 50 .
  • the occupied area of the array antenna 18 can be reduced.
  • the structural centers of the three antenna units 30 are not on the same straight line, or in other words, the same antenna unit
  • the line connecting the structural centers of two adjacent antenna units 30 in the 30th row has an included angle greater than zero with the horizontal plane.
  • the antenna unit 30 is rectangular, and the structural center of the antenna unit 30 is at the intersection of the diagonals of the rectangle.
  • the structural centers of the three antenna units 30 are distributed in a triangular shape. In two adjacent antenna units 30 in the same row of antenna units 30, the angle between the line connecting the structural centers of the two antenna units 30 and the horizontal plane is greater than zero.
  • the antenna unit 30 includes a patch antenna 36.
  • the patch antenna 36 mainly radiates from two sides, so in principle, the mutual coupling strength is basically determined by the distance between the radiating sides. Please refer to Figure 14. In the lateral direction, the distance between the two radiating edges is reduced compared to the neat arrangement in Figure 12. However, because the two edges are not aligned, it means that the maximum current is not aligned, so the mutual coupling is enhanced. Very weak, without sacrificing mutual coupling.
  • adjacent first antenna element rows 48 and second antenna element rows 50 are arranged alternately. In this way, the occupied area of the array antenna 18 can be further reduced without sacrificing mutual coupling.
  • the adjacent first antenna unit rows 48 and the second antenna unit rows 50 are arranged alternately, so that the occupied area of the two adjacent first antenna unit rows 48 and the second antenna unit row 50 is reduced, thereby reducing the array size.
  • the antenna unit 30 includes a patch antenna 36.
  • the patch antenna 36 mainly radiates from two sides, so in principle, the mutual coupling strength is basically determined by the distance between the radiating sides. Please refer to Figure 14. In the longitudinal direction, the radiation edges of the patch antenna 36 are perpendicular to each other and basically do not affect each other. Actual simulation results show that the mutual coupling coefficient is below -20dB in the entire frequency band.
  • the array antenna 18 includes a first group of antenna units and a second group of antenna units.
  • the first group of antenna units is used to transmit communication signals between the remote controller 100 and the first drone.
  • the second group of antenna units The unit is used to transmit communication signals between the remote controller 100 and the second drone. In this way, communication connection between one remote control 100 and multiple drones 200 can be achieved.
  • a group of antenna units may include one or several antenna units 30.
  • the antenna units 30 included in the group of antenna units may be the antenna units 30 of the first antenna unit row 48 in the above embodiment, or may be the second antenna unit 30.
  • the antenna units 30 of the antenna unit row 50 may also be the antenna units 30 of the first antenna unit row 48 and the antenna units 30 of the second antenna unit row 50 . This depends on how the group of antenna elements is fed. By adjusting the feed phase and feed amplitude of the antenna units 30 in the same group of antenna units, the beam can be scanned in one or more directions.
  • each antenna unit 30 is connected to an interface, and the interfaces of all antenna units 30 can be connected to the control circuit 52 , and the control circuit 52 controls the feed of each antenna unit 30 Methods, including controlling the feed phase and feed amplitude, etc.
  • the array antenna 18 includes 16 antenna units 30 , which can form a 16-channel array antenna 18 . In specific use, the array antenna 18 can support pattern scanning in multiple directions, and support dual-polarization transmission and reception.
  • the array antenna 18 can be divided into 2 small areas and 4 small areas, respectively synthesizing different patterns and pointing in different directions, thereby realizing the multi-UAV 200 multi-beam function.
  • Ports 1, 3, 9, 11; Ports 5, 7, 13, 15; Ports 2, 4, 10, 12; Ports 6, 8, 14, and 16 can each form a set of antenna units, pointing respectively. different direction.
  • antenna units 30 separated by one row are connected to the same interface. These interfaces can be connected to the control circuit 52.
  • the control circuit 52 controls the feed of the antenna units 30 connected to the same interface. Electrical method, including controlling the feed phase and feed amplitude, etc.
  • the array antenna 18 includes 16 antenna units 30, which can form an 8-channel array antenna 18 channel.
  • the antenna units 30 in one row apart and the two adjacent antenna units 30 in the same row are connected to the same interface. These interfaces can be connected to the control circuit 52 , as shown in FIG.
  • the control circuit 52 controls the feeding mode of the antenna unit 30 connected to the same interface, including controlling the feeding phase and feeding amplitude.
  • the array antenna 18 includes 16 antenna units 30, which can form a 4-way array antenna 18 channel.
  • antenna units 30 separated by one row are connected to the same interface.
  • the remote control 100 also includes a switching element 53 , and the switching element 53 can be connected to the control circuit 52 through the interface. Two or more interfaces may correspond to one switching element 53.
  • the switching element 53 controls which interface is connected to the control circuit 52.
  • the control circuit 52 controls the feeding mode of the antenna unit 30 connected to the interface, including controlling the feeding phase and Feed amplitude, etc.
  • the array antenna 18 includes 16 antenna units 30, which can form an 8-channel array antenna 18, and utilizes 4 switching elements 53 to achieve 4-interface switchability.
  • the array antenna 18 includes antenna units 30 with orthogonal polarization directions, there are often scenarios where one polarization is significantly better than another polarization. By introducing a switching mechanism, energy can be saved more effectively for communication. .
  • the remote control 100 also includes a switching element 53, which can be connected to the control circuit 52 through an interface. Two or more interfaces may correspond to one switching element 53.
  • the switching element 53 controls which interface is connected to the control circuit 52.
  • the control circuit 52 controls the feeding mode of the antenna unit 30 connected to the interface, including controlling the feeding phase and Feed amplitude, etc.
  • the array antenna 18 includes 16 antenna units 30, which can form a 4-way array antenna 18 channel, and uses 2 switching elements 53 to achieve 2-interface switchability.
  • the remote control 100 can be designed according to different usage scenarios and different chip processing capabilities.
  • the channels of the array antenna 18 can be designed as 16 channels, 8 channels, 4 channels, 4 channels switchable, 2 channels switchable, etc. wait.
  • the number of channels of the array antenna 18 can also be other numbers, which are not specifically limited here.
  • the first set of antenna elements may include first antenna element 44 .
  • the feeding mode of the first group of antenna units matches the communication of the first UAV, so that the first group of antenna units transmit communication signals between the remote controller 100 and the first UAV to realize control of the first UAV.
  • the second set of antenna elements may include a second antenna element 46 .
  • the feeding mode of the second group of antenna units matches the communication of the second UAV, so that the second group of antenna units transmits communication signals between the remote controller 100 and the second UAV to control the second UAV.
  • the first set of antenna elements may include one or more first antenna elements 44, and one or more second antenna elements 46.
  • the feeding mode of the first group of antenna units matches the communication of the first UAV, so that the first group of antenna units transmit communication signals between the remote controller 100 and the first UAV to realize control of the first UAV.
  • the second set of antenna elements may include one or more first antenna elements 44, and one or more second antenna elements 46.
  • the feeding mode of the second group of antenna units matches the communication of the second UAV, so that the second group of antenna units transmits communication signals between the remote controller 100 and the second UAV to control the second UAV.
  • the remote controller 100 further includes a control circuit 52 for controlling the beam direction of the first group of antenna units so that the beam direction of the first group of antenna units is generally directed toward the first UAV, and controlling The beam direction of the second group of antenna units is such that the beam direction of the second group of antenna units is generally directed toward the second UAV.
  • the communication connection between one remote controller 100 and multiple drones 200 can be realized through the control circuit 52 .
  • the remote controller 100 and the drone 200 communicate through direct connection.
  • the beam direction can be adjusted through the feed method, which includes but is not limited to feed phase, feed amplitude, etc.
  • the control circuit 52 can control the feeding mode and thereby control the beam direction of a group of antenna units.
  • the first group of antenna units includes the first antenna unit 44 connecting interfaces 1, 3, 5, 7, 9, 11, 13, 15, and the second group of antenna units includes the connecting interface 2 , 4, 6, 8, 10, 12, 14, and 16 second antenna units 46.
  • the control circuit 52 controls the feeding mode of the first antenna unit 44 of the connection interfaces 1, 3, 5, 7, 9, 11, 13, 15, and controls the connection interfaces 2, 4, 6, 8, 10, 12, 14, 16
  • the feeding mode of the second antenna unit 46, the feeding mode of the first antenna unit 44 is different from the feeding mode of the second antenna unit 46, so that the beam direction of the first group of antenna units is the same as the beam direction of the second group of antenna units. different, and then communicate with different drones 200.
  • the remote controller 100 further includes a control circuit 52, which is used to control the beam direction of the first group of antenna units so that the beam direction of the first group of antenna units generally points to the communication corresponding to the first UAV. base station, and controls the beam direction of the second group of antenna units so that the beam direction of the second group of antenna units generally points toward the communication base station corresponding to the second UAV.
  • a control circuit 52 which is used to control the beam direction of the first group of antenna units so that the beam direction of the first group of antenna units generally points to the communication corresponding to the first UAV. base station, and controls the beam direction of the second group of antenna units so that the beam direction of the second group of antenna units generally points toward the communication base station corresponding to the second UAV.
  • the remote controller 100 and the drone 200 are communicated and connected through a communication base station.
  • the beam direction can be adjusted through the feed method, which includes but is not limited to feed phase, feed amplitude, etc.
  • the control circuit 52 can control the feeding mode and thereby control the beam direction of a group of antenna units.
  • the first group of antenna units includes the first antenna unit 44 connecting interfaces 1, 3, 5, 7, 9, 11, 13, 15, and the second group of antenna units includes the connecting interface 2 , 4, 6, 8, 10, 12, 14, and 16 second antenna units 46.
  • the control circuit 52 controls the feeding mode of the first antenna unit 44 of the connection interfaces 1, 3, 5, 7, 9, 11, 13, 15, and controls the connection interfaces 2, 4, 6, 8, 10, 12, 14, 16
  • the feeding mode of the second antenna unit 46, the feeding mode of the first antenna unit 44 is different from the feeding mode of the second antenna unit 46, so that the beam direction of the first group of antenna units is the same as the beam direction of the second group of antenna units. different, and then communicate with different communication base stations to achieve communication connections with different UAVs 200 .
  • the communication base station can be installed on the ground, and can be wirelessly connected to the remote controller 100.
  • the communication base station can be wirelessly connected to the drone 200, so that the remote controller 100 can communicate with the drone 200 through the communication base station.
  • the remote control 100 also includes a phase shifter 54.
  • the phase shifter 54 is connected between the control circuit 52 and the array antenna 18.
  • the control circuit 52 controls the phase shifter. 54 to control the beam direction of the first group of antenna units and the beam direction of the second group of antenna units. In this way, the control circuit 52 can adjust the beam direction through the phase shifter 54 .
  • phase shifter 54 may be a digital phase shifter 54.
  • the number of digital ports is often limited to a maximum of 4.
  • the performance and flexibility of the array antenna 18 are limited by the number of channels.
  • the control circuit 52 can include a digital computing chip and be controlled by the digital computing chip.
  • the controllability of the entire array antenna 18 is greatly improved at the cost of adding one port, and it can be achieved Digital-analog hybrid expansion plan.
  • each antenna unit 30 is connected to a phase shifter 54, and the digital computing chip can individually control the feeding mode of the antenna unit 30 connected to the phase shifter 54 to achieve more precise operation.
  • a combination of multiple antenna units 30 can be a phase shifter 54.
  • two or more antenna units 30 may be connected to a phase shifter 54 , or a certain antenna unit 30 may be connected to a phase shifter 54 , and a certain two or more antenna units 30 may be connected to a phase shifter 54 .
  • Connect a phase shifter 54 There is no specific limitation here.
  • the remote control 100 can achieve at least the following technical effects:
  • the joint design of broadband filtering for narrowband patch antenna 36 can suppress spurs, increase bandwidth, and improve mutual coupling
  • Multi-port digital shaping can effectively improve the ability of the remote control 100 to control multiple devices and make better use of space resources
  • a remote controller 100 for a UAV 200 includes an array antenna 18.
  • the array antenna 18 is used to transmit communication signals between the remote controller 100 and the UAV 200.
  • the array antenna 18 includes a plurality of first antennas. unit 44 and a plurality of second antenna units 46, the plurality of first antenna units 44 constitute a first antenna unit row 48, the plurality of second antenna units 46 constitute a second antenna unit row 50, the first antenna unit row 48 and the second
  • the antenna unit rows 50 are generally parallel and alternately arranged in multiple rows, and the polarization direction of the first antenna unit 44 is different from the polarization direction of the second antenna unit 46 .
  • the remote control 100 in the above embodiment can reduce the space occupied by the array antenna 18, improve the communication performance of the array antenna 18, and prevent polarization mismatch.
  • the above explanation of the implementation and beneficial effects of the remote control 100 is also applicable to the remote control 100 of this embodiment. To avoid redundancy, it will not be elaborated here.
  • the array antenna 18 of this embodiment can be disposed on the back side of the display screen 16 , or can be disposed at other locations on the remote control 100 .
  • the polarization direction of the first antenna element 44 is a +45 degree polarization direction
  • the polarization direction of the second antenna element 46 is a -45 degree polarization direction. In this way, the stability of communication can be ensured.
  • the plurality of first antenna units 44 in the first antenna unit row 48 are arranged in an alternate manner, and the plurality of second antenna units 46 in the second antenna unit row 50 are arranged in an alternate manner. In this way, the occupied area of the array antenna 18 can be further reduced without sacrificing mutual coupling.
  • adjacent first antenna element rows 48 and second antenna element rows 50 are arranged alternately. In this way, the occupied area of the array antenna 18 can be further reduced without sacrificing mutual coupling.
  • a remote control 100 of a UAV 200 includes an array antenna 18.
  • the array antenna 18 includes a first group of antenna units and a second group of antenna units.
  • the first group of antenna units is used to transmit the remote control 100 and the second group of antenna units.
  • the second set of antenna units is used to transmit communication signals between the remote controller 100 and the second drone.
  • the remote control 100 of the above embodiment can realize one-to-many remote control.
  • the above explanation of the implementation and beneficial effects of the remote control 100 is also applicable to the remote control 100 of this embodiment. To avoid redundancy, it will not be elaborated here.
  • the array antenna 18 of this embodiment can be disposed on the back side of the display screen 16 , or can be disposed at other locations on the remote control 100 .
  • the remote control 100 further includes a control circuit 52 for controlling the beam direction of the first group of antenna units to generally point toward the first UAV, and controlling the beam of the second group of antenna units. Orient so that it points roughly towards the second drone. In this way, the communication connection between one remote controller 100 and multiple drones 200 can be realized through the control circuit 52 .
  • the remote control 100 also includes a control circuit 52, which is used to control the beam direction of the first group of antenna units so that they are generally pointed at the communication base station corresponding to the first UAV, and to control the second group of antenna units.
  • the beam of the antenna unit is oriented so that it is generally pointed at the communication base station corresponding to the second UAV. In this way, the communication connection between one remote controller 100 and multiple drones 200 can be realized through the control circuit 52 .
  • the remote control 100 further includes a phase shifter 54.
  • the phase shifter 54 is connected between the control circuit 52 and the array antenna 18.
  • the control circuit 52 controls the first group of antenna units by controlling the phase shifter 54. Beam heading and the beam heading of the second set of antenna elements. In this way, the control circuit 52 can adjust the beam direction through the phase shifter 54 .
  • An unmanned aerial vehicle system 300 includes:
  • the drone 200 communicates with the remote controller 100 .
  • the display device 14 is rotatably connected to the body 12, and an array antenna 18 is provided on the back side of the display screen 16. Since the size of the array antenna 18 is usually large, it is arranged on the back side of the display screen 16 of the remote control 100. On the one hand, the space on the back side of the display screen 16 is fully utilized, which can make the design of the array antenna 18 more flexible. On the other hand, the array antenna 18 can be designed more flexibly. On the other hand, the array antenna 18 has good directivity and higher gain, which is beneficial to improving the communication performance of the remote control 100 .
  • the remote controller 100 can communicate with the drone 200 through direct connection, or can communicate with the drone 200 through a communication base station.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种无人机(200)的遥控器(100)和无人机系统(300)。无人机(200)的遥控器(100),包括:本体(12);显示装置(14),可转动地连接本体(12),显示装置(14)包括显示屏(16),显示屏(16)的背侧设有阵列天线(18),阵列天线(18)用于传输遥控器(100)和无人机(200)之间的通信信号。

Description

无人机的遥控器和无人机系统 技术领域
本申请涉及无线通信技术领域,特别涉及一种无人机的遥控器和无人机系统。
背景技术
在相关技术中,遥控器中用于和无人机通信的天线通常是偶极子天线,这种天线的波束较宽,但是方向性较差,并且增益有限,随着无人机通信技术的更新迭代,这种天线形式已经难以满足更高的要求。
发明内容
本申请的实施方式提供一种无人机的遥控器和无人机系统。
本申请实施方式的一种无人机的遥控器,包括:
本体;
显示装置,可转动地连接所述本体,所述显示装置包括显示屏,所述显示屏的背侧设有阵列天线,所述阵列天线用于传输所述遥控器和所述无人机之间的通信信号。
本申请实施方式的一种无人机系统,包括:
上述实施方式的遥控器;和
无人机,所述无人机与所述遥控器通信连接。
上述遥控器和无人机系统中,显示装置可转动地连接本体,显示屏的背侧设有阵列天线。由于阵列天线的尺寸通常较大,将其设置在遥控器显示屏的背侧,一方面,充分利用了显示屏背侧的空间,可以使得阵列天线的设计更灵活,另一方面,阵列天线的方向性好,增益更高,有利于提升遥控器的通信性能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的无人机系统的结构示意图;
图2是本申请实施方式的无人机系统的另一结构示意图;
图3是本申请实施方式的遥控器的分解示意图;
图4是本申请实施方式的阵列天线的正面示意图;
图5是本申请实施方式的阵列天线的背面示意图;
图6是本申请实施方式的阵列天线的侧面示意图;
图7是本申请实施方式的天线单元的正面示意图;
图8是本申请实施方式的天线单元的背面示意图;
图9是本申请实施方式的天线单元的分解示意图;
图10是本申请实施方式的天线单元的侧面示意图;
图11是本申请实施方式的天线单元的S11曲线图;
图12-13是本申请实施方式的天线单元的排布示意图;
图14是本申请实施方式的天线单元的互耦示意图;
图15是本申请实施方式的阵列天线的线路连接示意图;
图16是本申请实施方式的控制电路的线路连接示意图;
图17-21是本申请实施方式的阵列天线的线路连接示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的 标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1至图3,本申请实施方式的一种无人机200的遥控器100,包括本体12和显示装置14。显示装置14可转动地连接本体12,显示装置14包括显示屏16,显示屏16的背侧设有阵列天线18,阵列天线18用于传输遥控器100和无人机200之间的通信信号。
上述实施方式的遥控器100中,显示装置14可转动地连接本体12,显示屏16的背侧设有阵列天线18。由于阵列天线18的尺寸通常较大,将其设置在遥控器100显示屏16的背侧,一方面,充分利用了显示屏16背侧的空间,可以使得阵列天线18的设计更灵活,另一方面,阵列天线18的方向性好,增益更高,有利于提升遥控器100的通信性能。
需要说明的是,上述阵列天线可以整体上作为遥控器的发射天线,也可以整体上作为遥控器的接收天线,或者一部分作为发射天线、一部分作为接收天线。
具体地,本体12可以是用户握持的部位,本体12上可以设有按键、摇杆、滚动键等输入件。按键和摇杆可以设置在本体12的正面20(遥控器100正常使用时,本体12朝向用户的面为正面20)。滚动键可以设置在本体12的顶面22。
在某些实施方式中,本体包括遥控器的核心电路板,通过将阵列天线设置于显示屏的背侧可以使得阵列天线与核心电路板尽量隔开,减小核心电路板对阵列天线的影响。
在图示的实施方式中,本体12的顶面22设有连接部24,连接部24的一端连接顶面22,另一端转动连接显示装置14。显示装置14的转动角度范围可以根据实际设置。在一个实施方式中,显示装置14相对于本体12的转动角度范围可以是0度至270度。
遥控器100在未使用时,可以处于折叠状态,即显示装置14的显示屏16可以朝向本体12的正面20覆盖部分本体12的正面20,如图1所示。此时,显示装置14的角度可定义为0度,整个遥控器100所占的空间较小,有利于遥控器100的收纳及运输。
遥控器100在使用时,可以将显示装置14展开,例如,显示装置14可相对于本体12正面20成大致90度或大于90度的角度,此时,显示屏16可以供用户观看,显示屏16可以显示无人机200所拍摄的画面,无人机200的信息(包括但不限于无人机200姿态、位置信息、电池信息、温度信息等等)。进一步地,显示屏16可以是触摸显示屏16,触摸显示屏16进一步显示有虚拟按键,用户可以通过触摸显示屏16,对无人机200进行控制,或参数设置等等。显示装置14展开时,可以处于相对于本体12正面20成大致270度的角度,如图2所示,如此,可以方便不同方向观看显示屏16。
同时,由于显示屏16的背侧设有阵列天线18,通过转动显示装置14,也能够适应处于不同方向的无人机200的信号接收及发送,提升了通信性能。
请参图3,显示装置14还包括背板26,背板26位于显示屏16的背侧,背板26内侧面设有多个安装部28,阵列天线18包括多个天线单元30,每个安装部28安装对应的一个天线单元30。如此,可以方便天线单元30的安装。
具体地,天线单元30呈长方形,每个安装部28可包括沿天线单元30对角方向设置的两个安装件32,一个安装件32对天线单元30的其中一个角落进行限位,另一个安装件32对天线单元30的另一个角落进行限位,安装效果好。
在某些实施方式中,阵列天线18为微带阵列天线18。
在某些实施方式中,还可以对阵列天线进行滤波联合设计形成微带滤波天线。
请参图4至图10,微带阵列天线18包括介质基板34、贴片天线36和微带结构38,贴片天线36与微带结构38分别设置在介质基板34相背的两表面,介质基板34设有贯穿两表面的通孔40,贴片天线36与微带结构38通过通孔40内的导电件42连接。在一个实施方式中,贴片天线36可以工作在5.8GHz。
为了尽可能减少体积的增加,微带结构38可以紧帖在介质基板34表面。微带结构38通过介质基板34通孔40内导电件42与贴片天线36连接,相较于其它的耦合馈电方式,减少了介质板的损耗。
在图示的实施方式中,微带结构38呈“山”型。请结合图5,“山”型设计的微带结构38可使得带宽变宽,在微带阵列天线的工作频段内驻波比(Voltage Standing Wave Ratio,VSWR)小于1.5。示例的,请参考图11,天线单元在5.67GHz-6.13GHz的S11参数在-13.87以下,带宽达到0.46GHz。
此外,“山”型的微带结构38结合天线形成了3阶谐振器,使得边带滚降陡峭,进而提高了边带抑制和杂散。由于无人机200通信使用的是免照频段(unlicensed bands),高滚降天线既可有效抑制遥控器100发射产生的噪音对其它装置的影响,同时也可有效抑制周围带外噪音对无人机200通信的影响。
可以理解,在其它实施方式中,天线单元30也可以包括缝隙天线。
在某些实施方式中,请参图12和图13,阵列天线18包括多个第一天线单元44和多个第二天线单元46,第一天线单元44的极化方向与第二天线单元46的极化方向不同。如此,可以实现双极化的阵列天线18。
具体地,双极化的阵列天线18具有不同的两个极化方向:第一天线单元44的极化方向(下称第一极化方向)和第二天线单元46的极化方向(下称第二极化方向)。第一极化方向适用于在第一极化方向上传播的电磁波,使得阵列天线18能够接收到第一极化方向上传播的电磁波信号(无线信号)或发射第一极化方向上的电磁波信号,使得无人机200在第一极化方向上与遥控器100进行通信连接。
第二极化方向适用于在第二极化方向上传播的电磁波,使得阵列天线18能够接收到第二极化方向上传播的电磁波信号(无线信号)或发射第二极化方向上的电磁波信号,使得无人机200在第二极化方向上与遥控器100进行通信连接。
综上,阵列天线18可以实现双极化效果,防止极化失配。
另外,两个极化方向还可以对匹配这两个极化方向的不同无人机200进行通信连接,实现单一遥控器100对多无人机200的遥控。
在某些实施方式中,第一天线单元44的极化方向为+45度极化方向,第二天线单元46的极化方向为-45度极化方向。如此,可以保证通信的稳定性。
具体地,在图示的实施方式中,阵列天线18包括4*4个天线单元30组成。4*4天线单元30形成4行,4列的天线单元30阵列,其中,第一行及第三行的天线单元30为第一天线单元44,其极化方向为 +45度。第二行及第四行的天线单元30为第二天线单元46,其极化方向为-45度。
由于无人机200在飞行时会有姿态角变化,同时无人机200天线本身可能有一定夹角,±45度两个极化方向的阵列天线18可以在一定程度上保证通信(包括接收或发射)的稳定性。可以理解,在其它实施方式中,天线单元30的排列不限于4*4,还可以是其它方式的排列方式,在此不作具体限定。极化方向也不限于±45度。
在某些实施方式中,请参图12和图13,第一天线单元44构成第一天线单元行48,多个第二天线单元46构成第二天线单元行50,第一天线单元行48与第二天线单元行50大致平行。如此,可以减少阵列天线18的占用空间。
具体地,第一天线单元行48与第二天线单元行50大致平行设置,阵列天线18整体较为规整,可以减少阵列天线18的占用空间,提升遥控器100的空间利用率。
在图示的实施方式中,第一天线单元行48的数量为两个,第二天线单元行50的数量为两个。可以理解,在其它实施方式中,第一天线单元行48的数量不限于两个,还可以是一个,或多于两个。第二天线单元行50的数量不限于两个,还可以是一个,或多于两个。第一天线单元行48的数量可以与第二天线单元行50的数量相同,也可以不相同。较佳地,一个第一天线单元行48所包含的第一天线单元44的数量与一个第二天线单元行50所包括的第二天线单元46的数量相同。
在某些实施方式中,请参图12和图13,第一天线单元行48与第二天线单元行50交替设置成多行。如此,可以提升阵列天线18的通信性能。
具体地,第一天线单元行48与第二天线单元行50交替设置成多行,使得在空间分布上,第一天线单元44和第二天线单元46可以尽量在显示屏16背侧分散均匀,增强对第一极化方向和第二极化方向电磁波的接收或发射,进而可提升阵列天线18的通信(包括接收或发射)性能。
在图示的实施方式中,第一天线单元行48的数量为两个,第二天线单元行50的数量为两个,两个第一天线单元行48与两个第二天线单元行50交替设置成四个天线单元30行。可以理解,在其它实施方式中,第一天线单元行48的数量不限于两个,还可以是多于两个。第二天线单元行50的数量不限于两个,还可以是多于两个。第一天线单元行48的数量可以与第二天线单元行50的数量相同,也可以不相同。
在某些实施方式中,请参图13,第一天线单元行48中的多个第一天线单元44错落相间设置,第二天线单元行50中的多个第二天线单元46错落相间设置。如此,可以进一步减少阵列天线18的占用面积,也不牺牲互耦。
具体地,对于第一天线单元行48来说,多个第一天线单元44错落相间设置,可以减少第一天线单元行48的占用面积。对于第二天线单元行50来说,多个第二天线单元46错落相间设置,可以减少第二天线单元行50的占用面积。综上可以减少阵列天线18的占用面积。
请结合图13,错落间隔设置,可以理解为,在同一个天线单元30行的相邻三个天线单元30中,三个天线单元30的结构中心不在同一直线上,或者说,同一个天线单元30行的相邻两个天线单元30的结构中心的连线与水平面具有大于零的夹角。例如,在图示的实施方式中,天线单元30呈长方形,天线单元30的结构中心在长方形的对角线交点处。在同一个天线单元30行的相邻三个天线单元30中,三个天线单元30的结构中心呈三角形分布。在同一个天线单元30行的相邻两个天线单元30中,两个天线单元30的结构中心的连线与水平面具有大于零的夹角。
在本实施方式中,天线单元30包括贴片天线36,贴片天线36主要是两个边辐射,所以从原理上看,互耦强弱基本由辐射边的距离决定。请结合图14,在横向上,两个辐射边的距离相较于图12的整齐摆放有所减少,但由于两个边并没有对齐,意味着电流最大处没有对齐,所以互耦的增强很微弱,并没有牺牲互耦。
在某些实施方式中,请参图13,相邻的第一天线单元行48和第二天线单元行50错落相间设置。如此,可以进一步减少阵列天线18的占用面积,也不牺牲互耦。
具体地,相邻的第一天线单元行48和第二天线单元行50错落相间设置,使得相邻两个第一天线单元行48和第二天线单元行50的占用面积减少,进而可减少阵列天线18的占用面积。
在本实施方式中,天线单元30包括贴片天线36,贴片天线36主要是两个边辐射,所以从原理上看,互耦强弱基本由辐射边的距离决定。请结合图14,在纵向上,贴片天线36的辐射边相互垂直,基本不互相影响。经过实际仿真结果表明,互耦系数全频带内在-20dB以下。
在某些实施方式中,阵列天线18包括第一组天线单元和第二组天线单元,第一组天线单元用于传输遥控器100和第一无人机之间的通信信号,第二组天线单元用于传输遥控器100和第二无人机之间的通信信号。如此,可以实现一个遥控器100与多无人机200的通信连接。
具体地,一组天线单元可以包括一个或若干个天线单元30,一组天线单元所包括的天线单元30可以是上述实施方式中,第一天线单元行48的天线单元30,也可以是第二天线单元行50的天线单元30,还可以是第一天线单元行48的天线单元30和第二天线单元行50的天线单元30。这取决于该组天线单元的馈电方式。通过调整同组天线单元中天线单元30的馈电相位和馈电幅度,可以实现波束在一个或多个方向上的扫描。
在一个实施方式中,请结合图15和图16,每个天线单元30均连接有一个接口,所有天线单元30的接口可以连接到控制电路52,由控制电路52控制各个天线单元30的馈电方式,包括控制馈电相位及馈电幅度等。在图15所示的实施方式中,阵列天线18包括16个天线单元30,可以形成16路的阵列天线18通道。在具体使用时,阵列天线18可以实现支持方向图在多个方向上的扫描,且支持双极化发射、接收。
同时,由于良好的隔离,阵列天线18可分为2个小区域、4个小区域,分别合成不同的方向图指向不同方向,从而实现多无人机200多波束功能。例如:接口(port)1、3、9、11;接口5、7、13、15;接口2、4、10、12;接口6、8、14、16可各组成一组天线单元,分别指向不同方向。也可以接口1、2、3、4、9、10、11、12组成一组天线单元;接口5、6、7、8、13、14、15、16组成另一个组天线单元,分别指向不同方向。多波束和波束赋型的引入使得在无人机200应用中单个遥控器100对多个无人机200的控制能力增强,对于行业应用无人机以及农业植保无人机多无人机作业的应用场景,空间资源得到了更好的利用。
在一个实施方式中,请结合图17,在纵向上,相隔一行的天线单元30连接同一个接口,这些接口可以连接到控制电路52,由控制电路52控制连接同一个接口的天线单元30的馈电方式,包括控制馈电相位及馈电幅度等。在图示的实施方式中,阵列天线18包括16个天线单元30,可以形成8路的阵列天线18通道。
在一个实施方式中,请结合图18,在纵向和横向上,相隔一行的天线单元30和同一行中相邻的两个天线单元30连接同一个接口,这些接口可以连接到控制电路52,由控制电路52控制连接同一个接口的天线单元30的馈电方式,包括控制馈电相位及馈电幅度等。在图示的实施方式中,阵列天线18包括16个天线单元30,可以形成4路的阵列天线18通道。
在一个实施方式中,请结合图19,在纵向上,相隔一行的天线单元30连接同一个接口,遥控器100还包括切换元件53,切换元件53可以通过接口连接控制电路52。两个或以上的接口可以对应一个切换元件53,由切换元件53控制哪个接口与控制电路52接通,由控制电路52控制接通接口的天线单元30的馈电方式,包括控制馈电相位及馈电幅度等。在图示的实施方式中,阵列天线18包括16个天线单元30,可以形成8路的阵列天线18通道,利用4个切换元件53,实现4接口可切换。在一个实施方式中,因为阵列天线18包括极化方向正交的天线单元30,往往有些场景会是一个极化明显优于另一个极化,通过引入切换机制,从而更有效地节约能量进行通信。
在一个实施方式中,请结合图20,在纵向和横向上,相隔一行的天线单元30和同一行中相邻的两个天线单元30连接同一个接口。遥控器100还包括切换元件53,切换元件53可以通过接口连接控制电路52。两个或以上的接口可以对应一个切换元件53,由切换元件53控制哪个接口与控制电路52接通,由控制电路52控制接通接口的天线单元30的馈电方式,包括控制馈电相位及馈电幅度等。在图示的实施方式中,阵列天线18包括16个天线单元30,可以形成4路的阵列天线18通道,利用2个切换元件53,实现2接口可切换。
综上,本申请实施方式的遥控器100,可以根据使用场景不同,芯片处理能力不同,阵列天线18的 通道可设计为16路、8路、4路、4路可切换、2路可切换等等。然而,在其它实施方式中,阵列天线18的通道路数还可以其它数量,在此不作具体限定。
在一个实施方式中,第一组天线单元可包括第一天线单元44。第一组天线单元的馈电方式与第一无人机的通信相匹配,使得第一组天线单元传输遥控器100和第一无人机的通信信号,实现对第一无人机的控制。第二组天线单元可包括第二天线单元46。第二组天线单元的馈电方式与第二无人机的通信相匹配,使得第二组天线单元传输遥控器100和第二无人机的通信信号,实现对第二无人机的控制。
在一个实施方式中,第一组天线单元可包括一个或多个第一天线单元44,和一个或多个第二天线单元46。第一组天线单元的馈电方式与第一无人机的通信相匹配,使得第一组天线单元传输遥控器100和第一无人机的通信信号,实现对第一无人机的控制。第二组天线单元可包括一个或多个第一天线单元44,和一个或多个第二天线单元46。第二组天线单元的馈电方式与第二无人机的通信相匹配,使得第二组天线单元传输遥控器100和第二无人机的通信信号,实现对第二无人机的控制。
在某些实施方式中,遥控器100还包括控制电路52,控制电路52用于控制第一组天线单元的波束朝向以使第一组天线单元的波束朝向大致指向第一无人机,并控制第二组天线单元的波束朝向以使第二组天线单元的波束朝向大致指向第二无人机。如此,可以通过控制电路52实现一个遥控器100与多无人机200的通信连接。
具体地,本实施方式中,遥控器100与无人机200通过直连的方式进行通信连接。
波束朝向可以通过馈电方式进行调整,馈电方式包括但不限于馈电相位、馈电幅度等。控制电路52可以控制馈电方式,进而控制一组天线单元的波束朝向。
在一个实施方式中,请结合图15,第一组天线单元包括连接接口1、3、5、7、9、11、13、15的第一天线单元44,第二组天线单元包括连接接口2、4、6、8、10、12、14、16的第二天线单元46。控制电路52控制连接接口1、3、5、7、9、11、13、15的第一天线单元44的馈电方式,控制连接接口2、4、6、8、10、12、14、16的第二天线单元46的馈电方式,第一天线单元44的馈电方式不同于第二天线单元46的馈电方式,实现第一组天线单元的波束朝向与第二组天线单元的波束朝向不同,进而与不同的无人机200进行通信连接。
在某些实施方式中,遥控器100还包括控制电路52,控制电路52用于控制第一组天线单元的波束朝向以使第一组天线单元的波束朝向大致指向第一无人机对应的通信基站,并控制第二组天线单元的波束朝向以使第二组天线单元的波束朝向大致指向第二无人机对应的通信基站。如此,可以通过控制电路52实现一个遥控器100与多无人机200的通信连接。
具体地,本实施方式中,遥控器100与无人机200通过通信基站进行通信连接。
波束朝向可以通过馈电方式进行调整,馈电方式包括但不限于馈电相位、馈电幅度等。控制电路52可以控制馈电方式,进而控制一组天线单元的波束朝向。
在一个实施方式中,请结合图15,第一组天线单元包括连接接口1、3、5、7、9、11、13、15的第一天线单元44,第二组天线单元包括连接接口2、4、6、8、10、12、14、16的第二天线单元46。控制电路52控制连接接口1、3、5、7、9、11、13、15的第一天线单元44的馈电方式,控制连接接口2、4、6、8、10、12、14、16的第二天线单元46的馈电方式,第一天线单元44的馈电方式不同于第二天线单元46的馈电方式,实现第一组天线单元的波束朝向与第二组天线单元的波束朝向不同,进而与不同的通信基站进行通信连接,实现与不同的无人机200进行通信连接。
通信基站可以设置在地面,通信基站可以与遥控器100进行无线连接,通信基站可以与无人机200进行无线连接,实现遥控器100通过通信基站与无人机200进行通信连接。
在某些实施方式中,请参图21,遥控器100还包括移相器54(Phase Shifter),移相器54连接于控制电路52和阵列天线18之间,控制电路52通过控制移相器54来控制第一组天线单元的波束朝向以及第二组天线单元的波束朝向。如此,控制电路52通过移相器54,可以实现波束朝向的调整。
具体地,在一个实施方式中,移相器54可以是数字移相器54。在无人机200通信中,数字端口数往往被限制在最多4个,这时阵列天线18的性能和灵活性被通道数限制。在本实施方式中,通过引入移相器54,控制电路52可包括数字计算芯片,由数字计算芯片控制,这时,以增加一个端口的代价大幅提升 了整个阵列天线18可控性,可以实现数模混合拓展方案。在图21,以4端口方案为例,每个天线单元30均连接有一个移相器54,数字计算芯片可以对连接该移相器54的天线单元30的馈电方式进行单独控制,实现更多的天线单元30的组合。
可以理解,在其它实施方式中,可以是两个或以上的天线单元30连接一个移相器54,也可以是某个天线单元30连接一个移相器54,某两个或以上的天线单元30连接一个移相器54。在此不作具体限定。
综上,本申请实施方式的遥控器100,可以实现至少以下技术效果:
1.针对窄带贴片天线36的宽带滤波联合设计可抑制杂散、增大带宽、改进互耦;
2.45°错落相间设置可有效缩小阵面面积,并且避免极化失配;
3.多端口数字赋型可以有效地提升遥控器100一控多的能力,更好地利用空间资源;
4.数模混合,提升了整个阵列天线18可控性。
本申请实施方式的一种无人机200的遥控器100,包括阵列天线18,阵列天线18用于传输遥控器100和无人机200之间的通信信号,阵列天线18包括多个第一天线单元44和多个第二天线单元46,多个第一天线单元44构成第一天线单元行48,多个第二天线单元46构成第二天线单元行50,第一天线单元行48与第二天线单元行50大致平行并且交替设置成多行,第一天线单元44的极化方向与第二天线单元46的极化方向不同。
上述实施方式的遥控器100,可以减少阵列天线18的占用空间、提升阵列天线18的通信性能及防止极化失配。
需要说明的是,上述对遥控器100的实施方式和有益效果的解释说明,也适用于本实施方式的遥控器100,为避免冗余,在此不作详细展开。进一步地,本实施方式的阵列天线18可以设置在显示屏16的背侧,也可以设置在遥控器100的其它位置。
在某些实施方式中,第一天线单元44的极化方向为+45度极化方向,第二天线单元46的极化方向为-45度极化方向。如此,可以保证通信的稳定性。
在某些实施方式中,第一天线单元行48中的多个第一天线单元44错落相间设置,第二天线单元行50中的多个第二天线单元46错落相间设置。如此,可以进一步减少阵列天线18的占用面积,也不牺牲互耦。
在某些实施方式中,相邻的第一天线单元行48和第二天线单元行50错落相间设置。如此,可以进一步减少阵列天线18的占用面积,也不牺牲互耦。
本申请实施方式的一种无人机200的遥控器100,包括阵列天线18,阵列天线18包括第一组天线单元和第二组天线单元,第一组天线单元用于传输遥控器100和第一无人机之间的通信信号,第二组天线单元用于传输遥控器100和第二无人机之间的通信信号。
上述实施方式的遥控器100,可以实现一对多机的遥控。
需要说明的是,上述对遥控器100的实施方式和有益效果的解释说明,也适用于本实施方式的遥控器100,为避免冗余,在此不作详细展开。进一步地,本实施方式的阵列天线18可以设置在显示屏16的背侧,也可以设置在遥控器100的其它位置。
在某些实施方式中,遥控器100还包括控制电路52,控制电路52用于控制第一组天线单元的波束朝向以使其大致指向第一无人机,并控制第二组天线单元的波束朝向以使其大致指向第二无人机。如此,可以通过控制电路52实现一个遥控器100与多无人机200的通信连接。
在某些实施方式中,遥控器100还包括控制电路52,控制电路52用于控制第一组天线单元的波束朝向以使其大致指向第一无人机对应的通信基站,并控制第二组天线单元的波束朝向以使其大致指向第二无人机对应的通信基站。如此,可以通过控制电路52实现一个遥控器100与多无人机200的通信连接。
在某些实施方式中,遥控器100还包括移相器54,移相器54连接于控制电路52和阵列天线18之间,控制电路52通过控制移相器54来控制第一组天线单元的波束朝向以及第二组天线单元的波束朝向。如此,控制电路52通过移相器54,可以实现波束朝向的调整。
本申请实施方式的一种无人机系统300,包括:
上述任一实施方式的遥控器100;和
无人机200,无人机200与遥控器100通信连接。
上述无人机系统300中,显示装置14可转动地连接本体12,显示屏16的背侧设有阵列天线18。由于阵列天线18的尺寸通常较大,将其设置在遥控器100显示屏16的背侧,一方面,充分利用了显示屏16背侧的空间,可以使得阵列天线18的设计更灵活,另一方面,阵列天线18的方向性好,增益更高,有利于提升遥控器100的通信性能。
具体地,遥控器100可以通过直连的方式与无人机200通信连接,也可以通过通信基站与无人机200通信连接。
需要说明的是,上述对遥控器100的实施方式和有益效果的解释说明,也适用于本实施方式的无人机系统300,为避免冗余,在此不作详细展开。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (21)

  1. 一种无人机的遥控器,其特征在于,包括:
    本体;
    显示装置,可转动地连接所述本体,所述显示装置包括显示屏,所述显示屏的背侧设有阵列天线,所述阵列天线用于传输所述遥控器和所述无人机之间的通信信号。
  2. 根据权利要求1所述的遥控器,其特征在于,所述阵列天线包括多个第一天线单元和多个第二天线单元,所述第一天线单元的极化方向与所述第二天线单元的极化方向不同。
  3. 根据权利要求2所述的遥控器,其特征在于,所述第一天线单元的极化方向为+45度极化方向,所述第二天线单元的极化方向为-45度极化方向。
  4. 根据权利要求2所述的遥控器,其特征在于,所述多个第一天线单元构成第一天线单元行,所述多个第二天线单元构成第二天线单元行,所述第一天线单元行与所述第二天线单元行大致平行。
  5. 根据权利要求4所述的遥控器,其特征在于,所述第一天线单元行与所述第二天线单元行交替设置成多行。
  6. 根据权利要求4所述的遥控器,其特征在于,所述第一天线单元行中的多个第一天线单元错落相间设置,所述第二天线单元行中的多个第二天线单元错落相间设置。
  7. 根据权利要求4所述的遥控器,其特征在于,相邻的第一天线单元行和第二天线单元行错落相间设置。
  8. 根据权利要求1所述的遥控器,其特征在于,所述阵列天线包括第一组天线单元和第二组天线单元,所述第一组天线单元用于传输所述遥控器和第一无人机之间的通信信号,所述第二组天线单元用于传输所述遥控器和第二无人机之间的通信信号。
  9. 根据权利要求8所述的遥控器,其特征在于,所述遥控器还包括控制电路,所述控制电路用于控制所述第一组天线单元的波束朝向以使所述第一组天线单元的波束朝向大致指向所述第一无人机,并控制所述第二组天线单元的波束朝向以使所述第二组天线单元的波束朝向大致指向所述第二无人机。
  10. 根据权利要求8所述的遥控器,其特征在于,所述遥控器还包括控制电路,所述控制电路用于控制所述第一组天线单元的波束朝向以使所述第一组天线单元的波束朝向大致指向所述第一无人机对应的通信基站,并控制所述第二组天线单元的波束朝向以使所述第二组天线单元的波束朝向大致指向所述第二无人机对应的通信基站。
  11. 根据权利要求8或9所述的遥控器,其特征在于,所述遥控器还包括移相器,所述移相器连接于所述控制电路和所述阵列天线之间,所述控制电路通过控制所述移相器来控制所述第一组天线单元的波束朝向以及所述第二组天线单元的波束朝向。
  12. 一种无人机的遥控器,其特征在于,所述遥控器包括阵列天线,所述阵列天线用于传输所述遥控器和所述无人机之间的通信信号,所述阵列天线包括多个第一天线单元和多个第二天线单元,所述多个第一天线单元构成第一天线单元行,所述多个第二天线单元构成第二天线单元行,所述第一天线单元行与所述第二天线单元行大致平行并且交替设置成多行,所述第一天线单元的极化方向与所述第二天线单元的极化方向不同。
  13. 根据权利要求12所述的遥控器,其特征在于,所述第一天线单元的极化方向为+45度极化方向,所述第二天线单元的极化方向为-45度极化方向。
  14. 根据权利要求12所述的遥控器,其特征在于,所述第一天线单元行中的多个第一天线单元错落相间设置,所述第二天线单元行中的多个第二天线单元错落相间设置。
  15. 根据权利要求12所述的遥控器,其特征在于,相邻的第一天线单元行和第二天线单元行错落相间设置。
  16. 一种无人机的遥控器,其特征在于,所述遥控器包括阵列天线,所述阵列天线包括第一组天线单元和第二组天线单元,所述第一组天线单元用于传输所述遥控器和第一无人机之间的通信信号,所述第二组天线单元用于传输所述遥控器和第二无人机之间的通信信号。
  17. 根据权利要求16所述的遥控器,其特征在于,所述遥控器还包括控制电路,所述控制电路用于控制所述第一组天线单元的波束朝向以使其大致指向所述第一无人机,并控制所述第二组天线单元的波 束朝向以使其大致指向所述第二无人机。
  18. 根据权利要求16所述的遥控器,其特征在于,所述遥控器还包括控制电路,所述控制电路用于控制所述第一组天线单元的波束朝向以使其大致指向所述第一无人机对应的通信基站,并控制所述第二组天线单元的波束朝向以使其大致指向所述第二无人机对应的通信基站。
  19. 根据权利要求17或18所述的遥控器,其特征在于,所述遥控器还包括移相器,所述移相器连接于所述控制电路和所述阵列天线之间,所述控制电路通过控制所述移相器来控制所述第一组天线单元的波束朝向以及所述第二组天线单元的波束朝向。
  20. 根据权利要求1-19任一项所述的遥控器,其特征在于,所述阵列天线为微带阵列天线。
  21. 一种无人机系统,其特征在于,包括:
    权利要求1-20任一项所述的遥控器;和
    无人机,所述无人机与所述遥控器通信连接。
PCT/CN2022/082573 2022-03-23 2022-03-23 无人机的遥控器和无人机系统 WO2023178562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082573 WO2023178562A1 (zh) 2022-03-23 2022-03-23 无人机的遥控器和无人机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082573 WO2023178562A1 (zh) 2022-03-23 2022-03-23 无人机的遥控器和无人机系统

Publications (1)

Publication Number Publication Date
WO2023178562A1 true WO2023178562A1 (zh) 2023-09-28

Family

ID=88099391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082573 WO2023178562A1 (zh) 2022-03-23 2022-03-23 无人机的遥控器和无人机系统

Country Status (1)

Country Link
WO (1) WO2023178562A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203910969U (zh) * 2014-06-19 2014-10-29 西安展翼航空科技有限公司 一种同时多波束相控阵天线
CN107094062A (zh) * 2017-05-04 2017-08-25 长沙傲英创视信息科技有限公司 一种天线阵装置及全空域无人机定向干扰系统
CN206595405U (zh) * 2017-03-13 2017-10-27 苏州优函信息科技有限公司 自动扫描无人机定向遥控装置
US20170373382A1 (en) * 2016-06-23 2017-12-28 Parrot Drones Wifi antenna of the clover-leaf or skew-planar wheel type for a drone
CN108139474A (zh) * 2015-07-29 2018-06-08 高通股份有限公司 使用天线阵列的角速度感测
CN108879084A (zh) * 2017-05-12 2018-11-23 深圳市道通智能航空技术有限公司 天线组件及具有此天线组件的无线通信电子设备
CN109390677A (zh) * 2017-08-08 2019-02-26 深圳市道通智能航空技术有限公司 天线组件及具有此天线组件的无线通信电子设备、遥控器
CN214477892U (zh) * 2020-12-31 2021-10-22 深圳市大疆创新科技有限公司 天线组件和遥控器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203910969U (zh) * 2014-06-19 2014-10-29 西安展翼航空科技有限公司 一种同时多波束相控阵天线
CN108139474A (zh) * 2015-07-29 2018-06-08 高通股份有限公司 使用天线阵列的角速度感测
CN108139473A (zh) * 2015-07-29 2018-06-08 高通股份有限公司 使用天线阵列的角度和位置感测
US20170373382A1 (en) * 2016-06-23 2017-12-28 Parrot Drones Wifi antenna of the clover-leaf or skew-planar wheel type for a drone
CN206595405U (zh) * 2017-03-13 2017-10-27 苏州优函信息科技有限公司 自动扫描无人机定向遥控装置
CN107094062A (zh) * 2017-05-04 2017-08-25 长沙傲英创视信息科技有限公司 一种天线阵装置及全空域无人机定向干扰系统
CN108879084A (zh) * 2017-05-12 2018-11-23 深圳市道通智能航空技术有限公司 天线组件及具有此天线组件的无线通信电子设备
CN109390677A (zh) * 2017-08-08 2019-02-26 深圳市道通智能航空技术有限公司 天线组件及具有此天线组件的无线通信电子设备、遥控器
CN214477892U (zh) * 2020-12-31 2021-10-22 深圳市大疆创新科技有限公司 天线组件和遥控器

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
JP7239743B2 (ja) アンテナユニット及び端末機器
US20210249789A1 (en) Dual-polarized antenna, antenna array, and communications device
WO2021104191A1 (zh) 天线单元及电子设备
EP3686991B1 (en) Compact omnidirectional antennas having stacked reflector structures
TWI622228B (zh) 波束選擇天線系統
WO2021083214A1 (zh) 天线单元及电子设备
CN106654511A (zh) 一种小型化收发共用宽波束覆盖天线
WO2020119228A1 (zh) 天线系统及通讯终端
WO2021083223A1 (zh) 天线单元及电子设备
US20230011271A1 (en) Antenna module and electronic device
US11515993B1 (en) Antenna lattice for single-panel full-duplex satellite user terminals
US11528076B1 (en) Communication terminal
CN110518340B (zh) 一种天线单元及终端设备
WO2023178562A1 (zh) 无人机的遥控器和无人机系统
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
CN215418613U (zh) 一种电视机及天线模组
CN110828988B (zh) 一种天线单元及电子设备
CN115882223A (zh) 双频双圆极化天线和天线系统
CN110600858A (zh) 一种天线单元及终端设备
CN210692769U (zh) 贴片天线、天线阵列及电子设备
CN118431753B (zh) 双频段宽带双圆极化的天线结构单元及其阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932629

Country of ref document: EP

Kind code of ref document: A1