WO2020133787A1 - 一种色转换层及其制作方法、显示面板 - Google Patents

一种色转换层及其制作方法、显示面板 Download PDF

Info

Publication number
WO2020133787A1
WO2020133787A1 PCT/CN2019/081713 CN2019081713W WO2020133787A1 WO 2020133787 A1 WO2020133787 A1 WO 2020133787A1 CN 2019081713 W CN2019081713 W CN 2019081713W WO 2020133787 A1 WO2020133787 A1 WO 2020133787A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
quantum dot
color conversion
light source
conversion layer
Prior art date
Application number
PCT/CN2019/081713
Other languages
English (en)
French (fr)
Inventor
张桂洋
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/475,136 priority Critical patent/US11056661B2/en
Publication of WO2020133787A1 publication Critical patent/WO2020133787A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to the technical field of display panels, in particular to a color conversion layer, a manufacturing method thereof, and a display panel.
  • the current mainstream display technology is LCD and OLED display, but each has advantages and disadvantages.
  • the LCD display is a passive display. Although its price is low and the reliability is high, the utilization rate of light energy is too low, the contrast is low, and the frame is large. It has gradually been unable to meet the experience needs of some users.
  • OLED is an active light-emitting display, which has a high light energy utilization rate, a thin and thin body, a narrow frame, a high screen ratio, and the theoretical contrast ratio can reach infinity, but its shortcomings are also very obvious, such as short life, easy to be affected by water, oxygen, and temperature. And the brightness is low, and the visibility in the sun is poor.
  • LED has the advantages of small size, fast response, wide viewing angle, high light efficiency, easy adjustment of the light emitting band and high reliability. It has important applications in ultra-thin, full-screen, and special-shaped screen displays.
  • the LED includes a substrate 14 and a reflective layer 15, an LED 16, a flat layer 17, a color conversion layer 12, a diffusion film 18 and a brightness enhancement film 19 provided on the substrate 14 in sequence, and There is a difference in the refractive index between the film layers, which causes part of the outgoing light to be reflected back and forth inside the device. Since the reflectivity of the base reflective layer is less than 90%, multiple reflections of light on the base reflective layer will greatly reduce the light efficiency of the backlight, resulting in insufficient brightness of the display device or insufficient endurance.
  • Embodiments of the present invention provide a color conversion layer, a manufacturing method thereof, and a display panel, to solve the problem of loss of light efficiency caused by insufficient reflectivity of the underlying substrate in the existing direct-type surface light source panel.
  • An embodiment of the present invention provides a color conversion layer, which is applied to a display panel having a direct surface light source, and the color conversion layer includes a quantum dot film and a functional film;
  • the functional film is provided on the side of the quantum dot film facing the surface light source, so that light waves emitted by the surface light source pass through the functional film and enter the quantum dot film, and the quantum dot film is excited Light waves are reflected back to the quantum dot film through the functional film.
  • the color conversion layer further includes a microstructure layer
  • the microstructure layer is disposed on the side of the quantum dot film facing away from the surface light source.
  • the color conversion layer further includes a substrate
  • the substrate is disposed on a side of the functional film facing away from the quantum dot film.
  • the color conversion layer further includes a first barrier layer and a substrate
  • the first barrier layer is provided between the quantum dot film and the functional film, and the substrate is provided between the first barrier layer and the functional film.
  • the color conversion layer further includes a second barrier layer and a protective layer;
  • the second barrier layer is disposed on a side of the quantum dot film facing away from the surface light source, and the protective layer is disposed on a side of the second barrier layer facing away from the quantum dot film.
  • the functional film includes a plurality of film layers arranged in a stack
  • the refractive indices of the two adjacent layers are different.
  • the material of the functional film is an inorganic material or an organic material
  • the material of each film layer includes any one of TiO 2 , Al 2 O 3 , SiO 2 , ZnS, ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , and ITO ;
  • the material of each film layer includes any one of PC, PET, PMMA, and Resin.
  • an embodiment of the present invention provides a display panel including a direct-type surface light source and a color conversion layer provided on the surface light source;
  • the color conversion layer includes a quantum dot film and a functional film
  • the functional film is provided on the side of the quantum dot film facing the surface light source, so that light waves emitted by the surface light source pass through the functional film and enter the quantum dot film, and the quantum dot film is excited Light waves are reflected back to the quantum dot film through the functional film.
  • the color conversion layer further includes a microstructure layer
  • the microstructure layer is disposed on the side of the quantum dot film facing away from the surface light source.
  • the color conversion layer further includes a substrate
  • the substrate is disposed on a side of the functional film facing away from the quantum dot film.
  • the color conversion layer further includes a first barrier layer and a substrate
  • the first barrier layer is provided between the quantum dot film and the functional film, and the substrate is provided between the first barrier layer and the functional film.
  • the color conversion layer further includes a second barrier layer and a protective layer;
  • the second barrier layer is disposed on a side of the quantum dot film facing away from the surface light source, and the protective layer is disposed on a side of the second barrier layer facing away from the quantum dot film.
  • the functional film includes a plurality of film layers arranged in a stack
  • the refractive indices of the two adjacent layers are different.
  • an embodiment of the present invention provides a method for manufacturing a color conversion layer.
  • the color conversion layer is applied to a display panel having a direct surface light source.
  • the method includes:
  • the method further includes:
  • a microstructure layer is formed on the side of the quantum dot film facing away from the surface light source.
  • the method further includes:
  • a substrate is formed on the side of the functional film facing away from the quantum dot film.
  • the method further includes:
  • a substrate is formed between the first barrier layer and the functional film.
  • the method further includes:
  • a protective layer is formed on the side of the second barrier layer facing away from the quantum dot film.
  • the forming a functional film on the side of the quantum dot film facing the surface light source specifically includes:
  • a plurality of inorganic material film layers are laminated on the side of the quantum dot film facing the surface light source by using a magnetron sputtering process or a vacuum evaporation process to constitute the functional film.
  • the forming a functional film on the side of the quantum dot film facing the surface light source specifically includes:
  • a plurality of organic material film layers are laminated on the side of the quantum dot film facing the surface light source by hot pressing, stretching or roll-to-roll process to form the functional film.
  • the beneficial effects of the present invention are: in a display panel with a direct surface light source, by providing a functional film on the side of the quantum dot film facing the surface light source, light waves emitted by the surface light source pass through the functional film and enter the quantum dot film, and The light wave excited by the quantum dot film is reflected back to the quantum dot film through the functional film, so as to prevent the light wave excited by the quantum dot film from reaching the base reflective layer of the display panel, thereby reducing the absorption loss of the base reflective layer and improving the light efficiency of the direct surface light source.
  • FIG. 1 is a schematic structural diagram of a display panel in the prior art
  • FIG. 2 is a first schematic structural diagram of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a functional film in a color conversion layer provided by an embodiment of the present invention.
  • FIG. 4 is a second schematic structural diagram of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a third structure of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 6 is a fourth schematic structural diagram of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 7 is a fifth schematic structural diagram of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 8 is a sixth structural schematic diagram of a color conversion layer provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for manufacturing a color conversion layer provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a color conversion layer provided by an embodiment of the present invention.
  • the color conversion layer provided by the embodiment of the present invention is applied to a display panel having a direct surface light source.
  • the color conversion layer 2 includes a quantum dot film 23 and a functional film 3.
  • the quantum dot film 23 includes a light-emitting quantum dot and a light-scattering agent.
  • the light-scattering agent has two functions: increasing the propagation path of the excitation light and controlling the spacing between the light-emitting quantum dots.
  • the thickness of the quantum dot film is about 50-100 ⁇ m.
  • the functional film 3 includes a plurality of stacked film layers.
  • the refractive index of each film layer may be the same or different, and the thickness of each film layer may be the same or different, but the refractive indexes of two adjacent film layers are different.
  • the functional film 3 includes a film layer A, a film layer B, a film layer C, and a film layer D.
  • the refractive indexes of the film layers A and B are different, the refractive indexes of the film layers B and C are different, and the refractive indexes of the film layers C and D are different.
  • the material of the functional film may be an inorganic material or an organic material.
  • the material of each film layer includes but is not limited to TiO 2 (titanium dioxide), Al 2 O 3 (aluminum oxide), SiO 2 (silica), and ZnS (zinc sulfide) ), ZrO 2 (zirconia), Ta 2 O 5 (tantalum pentoxide), Nb 2 O 5 (niobium pentoxide), ITO (indium tin oxide);
  • each The material of a film layer includes but is not limited to PC (polycarbonate), PET (polyethylene terephthalate, ie polyester), PMMA (polymethyl methacrylate, ie organic glass), Resin (resin ).
  • the functional film 3 is provided on the side of the quantum dot film 23 facing the surface light source (not shown), that is, the functional film 3 is provided on the quantum dot film 23 and the surface Between the light sources, the light wave emitted by the surface light source enters the quantum dot film 23 through the functional film 3, and the light wave excited by the quantum dot film 23 is reflected back to the quantum dot film 23 through the functional film 3, thereby The light wave excited by the quantum dot film 23 can only exit along the upper surface of the color conversion layer, and cannot reach the base reflection layer of the display panel, thereby reducing the absorption loss of the base reflection layer and improving the light efficiency of the direct surface light source.
  • the color conversion layer 2 in this embodiment includes only the quantum dot thin film 23 and the functional film 3, so that the thickness of the color conversion layer 2 is thin and the stability is good.
  • the color conversion layer 2 further includes a microstructure layer 26, that is, the color conversion layer 2 in this embodiment includes a quantum dot film 23, a functional film 3, and a microstructure layer 26.
  • the microstructure layer 26 is disposed on the side of the quantum dot film 23 facing away from the surface light source.
  • a microstructure layer 26 is provided on the light-exiting side of the color conversion layer 2 to play the role of uniform light and eliminate Newton's rings.
  • the color conversion layer 2 further includes a substrate 21, that is, the color conversion layer in this embodiment includes a quantum dot film 23, a functional film 3 and a substrate 21,
  • the substrate 21 is provided on the side of the functional film 3 facing away from the quantum dot film 23.
  • the material of the substrate 21 is PET.
  • the functional film in this embodiment is provided between the quantum dot thin film and the substrate, and can play the dual roles of water-oxygen barrier and functional film.
  • a second barrier layer or protective layer may also be provided on the quantum dot film, or a second barrier layer and protective layer may be provided at the same time.
  • the color conversion layer may be provided with a second barrier layer or/and protective layer on the basis of the substrate.
  • the color conversion layer 2 includes a quantum dot thin film 23, a functional film 3, a substrate 21, a second barrier layer 25 and a protective layer 24.
  • the substrate 21 is provided on the side of the functional film 3 facing away from the quantum dot film 23
  • the second barrier layer 25 is provided on the side of the quantum dot film 23 facing away from the surface light source
  • the protective layer 24 is provided on the side of the second barrier layer 25 facing away from the quantum dot film 23.
  • the material of the protective layer 24 is PET, and the thickness of the second barrier layer is several tens of micrometers, which is used to isolate water and oxygen to prevent the water and oxygen from contacting the quantum dots and causing a decrease in luminous efficiency.
  • the first barrier layer or the substrate may be provided between the quantum dot thin film and the functional film, or the first barrier layer and the substrate may be provided at the same time.
  • the color conversion layer 2 includes a quantum dot thin film 23, a functional film 3, a first barrier layer 22 and a substrate 21.
  • the first barrier layer 22 is provided between the quantum dot film 23 and the functional film 3
  • the substrate 21 is provided between the first barrier layer 22 and the functional film 3.
  • the color conversion layer may further include a second barrier layer or a protective layer on the quantum dot film on the basis of the first barrier layer or/and the substrate, or both the second barrier layer and the The protective layer.
  • the color conversion layer 2 includes a quantum dot thin film 23, a functional film 3, a first barrier layer 22, a substrate 21, a second barrier layer 25 and a protective layer 24.
  • the first barrier layer 22 is provided between the quantum dot film 23 and the functional film 3
  • the substrate 21 is provided between the first barrier layer 22 and the functional film 3
  • the second barrier layer 25 is disposed on the side of the quantum dot film 23 facing away from the surface light source
  • the protective layer 24 is disposed on the side of the second barrier layer 25 facing away from the quantum dot film 23.
  • the color conversion layer provided by the embodiment of the present invention can be applied to different light-emitting film materials, for example, in a mini-LED backlight, the color conversion layer can be matched with different lamp boards, and is used in small, medium and Large size display device.
  • a functional film is provided on the side of the quantum dot film facing the surface light source, so that the light wave emitted by the surface light source enters through the functional film Quantum dot film, and the light wave excited by the quantum dot film is reflected back to the quantum dot film through the functional film, avoiding the light wave excited by the quantum dot film to reach the base reflective layer of the display panel, thereby reducing the absorption loss of the base reflective layer and improving the direct surface light source Light effect.
  • the embodiment of the invention also provides a display panel.
  • the display panel includes a direct-type surface light source and a color conversion layer provided on the surface light source.
  • the color conversion layer is the color conversion layer in the foregoing embodiment, which will not be described in detail here.
  • the surface light source is an LED chip
  • the display panel further includes a substrate, a reflective layer, a flat layer, a diffusion film, and a brightness enhancement film.
  • the display panel 1 includes a substrate 4, a reflective layer 5, an LED chip 6, a flat layer 7, a color conversion layer 2, a diffusion film 8 and a brightness enhancement film 9 in the above-mentioned embodiment in this order.
  • the light wave emitted by the surface light source passes through the functional film and enters the quantum dot film, and the light wave excited by the quantum dot film is reflected back to the quantum dot film through the functional film to prevent the light wave excited by the quantum dot film from reaching the base reflective layer of the display panel. Therefore, the absorption loss of the base reflective layer is reduced, and the light efficiency of the direct surface light source is improved.
  • the embodiments of the present invention also provide a method for manufacturing a color conversion layer, which is applied to a display panel having a direct surface light source.
  • the method may include the following steps:
  • the quantum dot film includes a light-emitting quantum dot and a light-scattering agent.
  • the light-scattering agent has two functions: increasing the propagation path of the excitation light and controlling the spacing between the light-emitting quantum dots.
  • the thickness of the quantum dot film is about 50-100 ⁇ m.
  • the quantum dot film is prepared by mixing the quantum dot material and the light diffuser uniformly, wrapping it with a high molecular polymer, and using extrusion technology to prepare quantum dots of a certain specification (eg, a certain thickness) film.
  • the quantum dot film produced by this preparation method has a thinner thickness and better stability.
  • the forming a functional film on the side of the quantum dot film facing the surface light source specifically includes:
  • the forming a functional film on the side of the quantum dot film facing the surface light source specifically includes:
  • a plurality of inorganic material film layers are laminated on the side of the quantum dot film facing the surface light source by using a magnetron sputtering process or a vacuum evaporation process to constitute the functional film.
  • the functional film includes a plurality of film layers, and each film layer can be prepared by plating a film of an inorganic material, that is, the material of the functional film is an inorganic material.
  • the refractive index of each film layer may be the same or different, and the thickness of each film layer may be the same or different, but the refractive indexes of two adjacent film layers are different.
  • each film layer includes but is not limited to TiO 2 (titanium dioxide), Al 2 O 3 (aluminum oxide), SiO 2 (silica), ZnS (zinc sulfide), ZrO 2 (zirconia), Ta 2 O 5 (tantalum pentoxide), Nb 2 O 5 (niobium pentoxide), ITO (indium tin oxide).
  • the forming a functional film on the side of the quantum dot film facing the surface light source specifically includes:
  • a plurality of organic material film layers are laminated on the side of the quantum dot film facing the surface light source by hot pressing, stretching or roll-to-roll process to form the functional film.
  • each film layer of the functional film can also be prepared by hot pressing of an organic material, that is, the material of the manufactured functional film is an organic material.
  • the material of each film layer includes but is not limited to PC (polycarbonate), PET (polyethylene terephthalate, that is, polyester), PMMA (polymethyl methacrylate, or organic glass), Resin ( Resin).
  • the functional film 3 is formed on the side of the quantum dot film 23 facing the surface light source (not shown), and the functional film 3 is formed between the quantum dot film 23 and the surface light source.
  • the emitted light wave enters the quantum dot film 23 through the functional film 3, and the light wave excited by the quantum dot film 23 is reflected back to the quantum dot film 23 through the functional film 3, so that the quantum dot film 23 is excited.
  • the light waves can only be emitted along the upper surface of the color conversion layer, and cannot reach the base reflective layer of the display panel, thereby reducing the absorption loss of the base reflective layer and improving the light efficiency of the direct surface light source.
  • the method further includes:
  • a microstructure layer is formed on the side of the quantum dot film facing away from the surface light source.
  • a microstructure layer 26 is formed on the side of the quantum dot film 23 facing away from the surface light source, so as to uniform the light and eliminate the Newton ring.
  • the method further includes:
  • a substrate is formed on the side of the functional film facing away from the quantum dot film.
  • the substrate 21 is formed on the side of the functional film 3 facing away from the quantum dot thin film 23.
  • the material of the substrate 21 is PET.
  • the functional film in this embodiment is provided between the quantum dot thin film and the substrate, and can play the dual roles of water-oxygen barrier and functional film.
  • the method further includes:
  • a substrate is formed between the first barrier layer and the functional film.
  • the first barrier layer 22 is formed between the quantum dot film 23 and the functional film 3, and the substrate 21 is formed between the first barrier layer 22 and the functional film 3 At this time, the color conversion layer 2 includes the quantum dot thin film 23, the functional film 3, the first barrier layer 22, and the substrate 21. In addition, only the first barrier layer or the substrate may be formed between the quantum dot thin film and the functional film.
  • the method further includes:
  • a protective layer is formed on the side of the second barrier layer facing away from the quantum dot film.
  • the side of the quantum dot film facing away from the surface light source may only form a second barrier layer or a protective layer.
  • a second barrier layer or/and protective layer may be formed on the side of the quantum dot film facing away from the surface light source.
  • the substrate 21 is formed on the side of the functional film 3 facing away from the quantum dot film 23
  • the second barrier layer 25 is formed on the side of the quantum dot film 23 facing away from the surface light source
  • the protective layer 24 is formed on the side of the second barrier layer 25 facing away from the quantum dot film 23, so that the color conversion layer 2 includes the quantum dot film 23, the functional film 3, the substrate 21, the second barrier layer 25 and the protection Layer 24.
  • the material of the protective layer 24 is PET
  • the thickness of the second barrier layer is several tens of micrometers, which is used to isolate water and oxygen to prevent the water and oxygen from contacting the quantum dots and causing a decrease in luminous efficiency.
  • the method for manufacturing the OLED display screen opens a hole in at least one sub-pixel area in the camera area of the OLED panel, reduces the pixel density of the camera area, and increases the light transmittance of the camera area, Furthermore, the camera assembly is arranged at a position corresponding to the bottom surface of the OLED panel and the hole, thereby reducing the occupation space of the camera assembly in the non-display area and increasing the proportion of the display screen.
  • a functional film is provided on the side of the quantum dot film facing the surface light source to transmit the light wave emitted by the surface light source
  • the functional film enters the quantum dot film, and the light wave excited by the quantum dot film is reflected back to the quantum dot film through the functional film, to prevent the light wave excited by the quantum dot film from reaching the base reflective layer of the display panel, thereby reducing the absorption loss of the base reflective layer and improving direct The light effect of the type surface light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种色转换层及其制作方法、显示面板,所述色转换层应用于具有直下式面光源的显示面板中,所述色转换层包括量子点薄膜和功能膜;所述功能膜设于所述量子点薄膜朝向所述面光源的一侧,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。

Description

一种色转换层及其制作方法、显示面板 技术领域
本发明涉及显示面板技术领域,尤其涉及一种色转换层及其制作方法、显示面板。
背景技术
随着科技的发展,人民的生活水平显著提高,新科技产品更新换代越来越快,仅从显示产品上分析,从最早的CRT(Cathode Ray Tube)到LCD (Liquid Crystal Display),目前发展到OLED (Organic Light Emitting Display)、 QLED (Quantum Dot Light Emitting Diodes)、mini-LED。未来的Micro-LED 显示技术也已经被提出来,且一些国内外大厂正在进行了这方面的布局。各种适应于AR/VR的头戴显示器也如雨后春笋般般不断出现。
目前的主流显示技术为LCD和OLED显示,但二者各有优缺点。LCD显示是被动显示,虽然其价格便宜、可靠性高,但是光能利用率太低、对比度较低、边框较大,已经渐渐不能满足一些用户的体验需求。OLED是主动发光显示,其光能利用率较高、体型轻薄、边框窄、屏占比高,对比度理论上可以达到无穷大,但其缺点也十分明显,如寿命短,易受水氧、温度的影响,且其亮度较低,在阳光下的可视性效果较差等。比较而言,LED具有体积小、响应快、视角广、光效高、发光波段易调节及可靠性高等优点,在超轻薄、全面屏、异型屏显示中有重要的应用。
为了达到窄边框、高亮度和可靠性的三重要求,基于直下式的LED显示被提出来,当然,基于QLED的直下式显示方案同样可行。以LED为例,如图1所示,LED包括基板14,以及依次设置在基板14上的反射层15、LED 16、平坦层17、色转换层12、扩散膜18和增亮膜19,而各膜层间的折射率存在差异,从而导致部分出射光会在器件内部来回反射。由于基底反射层的反射率小于90%,光在基底反射层发生的多次反射会极大降低了背光的光效,从而导致显示器件亮度不够或者续航能力不足等问题。
技术问题
本发明实施例提供一种色转换层及其制作方法、显示面板,以解决现有直下式面光源面板中,因底层基板反射率不足造成的光效损失的问题。
技术解决方案
本发明实施例提供了一种色转换层,应用于具有直下式面光源的显示面板中,所述色转换层包括量子点薄膜和功能膜;
所述功能膜设于所述量子点薄膜朝向所述面光源的一侧,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
进一步地,所述色转换层还包括微结构层;
所述微结构层设于所述量子点薄膜背离所述面光源的一侧。
进一步地,所述色转换层还包括基板;
所述基板设于所述功能膜背离所述量子点薄膜的一侧。
进一步地,所述色转换层还包括第一阻隔层和基板;
所述第一阻隔层设于所述量子点薄膜与所述功能膜之间,所述基板设于所述第一阻隔层与所述功能膜之间。
进一步地,所述色转换层还包括第二阻隔层和保护层;
所述第二阻隔层设于所述量子点薄膜背离所述面光源的一侧,所述保护层设于所述第二阻隔层背离所述量子点薄膜的一侧。
进一步地,所述功能膜包括层叠设置的多个膜层;
相邻两膜层的折射率不同。
进一步地,所述功能膜的材料为无机材料或有机材料;
所述功能膜的材料为无机材料时,每一膜层的材料包括TiO 2、Al 2O 3、SiO 2、  ZnS、ZrO 2、Ta 2O 5、Nb 2O 5、ITO中的任意一种;
所述功能膜的材料为有机材料时,每一膜层的材料包括PC、PET、PMMA、Resin中的任意一种。
相应地,本发明实施例提供了一种显示面板,包括直下式面光源以及设于所述面光源上的色转换层;
所述色转换层包括量子点薄膜和功能膜;
所述功能膜设于所述量子点薄膜朝向所述面光源的一侧,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
进一步地,所述色转换层还包括微结构层;
所述微结构层设于所述量子点薄膜背离所述面光源的一侧。
进一步地,所述色转换层还包括基板;
所述基板设于所述功能膜背离所述量子点薄膜的一侧。
进一步地,所述色转换层还包括第一阻隔层和基板;
所述第一阻隔层设于所述量子点薄膜与所述功能膜之间,所述基板设于所述第一阻隔层与所述功能膜之间。
进一步地,所述色转换层还包括第二阻隔层和保护层;
所述第二阻隔层设于所述量子点薄膜背离所述面光源的一侧,所述保护层设于所述第二阻隔层背离所述量子点薄膜的一侧。
进一步地,所述功能膜包括层叠设置的多个膜层;
相邻两膜层的折射率不同。
相应地,本发明实施例提供了一种色转换层的制作方法,所述色转换层应用于具有直下式面光源的显示面板中,所述方法包括:
提供量子点薄膜;
在所述量子点薄膜朝向所述面光源的一侧形成功能膜,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
进一步地,所述方法还包括:
在所述量子点薄膜背离所述面光源的一侧形成微结构层。
进一步地,所述方法还包括:
在所述功能膜背离所述量子点薄膜的一侧形成基板。
进一步地,所述方法还包括:
在所述量子点薄膜与所述功能膜之间形成第一阻隔层;
在所述第一阻隔层与所述功能膜之间形成基板。
进一步地,所述方法还包括:
在所述量子点薄膜背离所述面光源的一侧形成第二阻隔层;
在所述第二阻隔层背离所述量子点薄膜的一侧形成保护层。
进一步地,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
采用磁控溅射工艺或真空蒸镀工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个无机材料膜层,以构成所述功能膜。
进一步地,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
采用热压、拉伸或卷对卷工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个有机材料膜层,以构成所述功能膜。
有益效果
本发明的有益效果为:在具有直下式面光源的显示面板中,通过在量子点薄膜朝向面光源的一侧设置功能膜,使面光源发射的光波透过功能膜进入量子点薄膜,并使量子点薄膜激发的光波经功能膜反射回量子点薄膜,避免量子点薄膜激发的光波到达显示面板的基底反射层,从而降低基底反射层的吸收损耗,提高直下式面光源的光效。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的显示面板的结构示意图;
图2为本发明实施例提供的色转换层的第一结构示意图;
图3为本发明实施例提供的色转换层中功能膜的结构示意图;
图4为本发明实施例提供的色转换层的第二结构示意图;
图5为本发明实施例提供的色转换层的第三结构示意图;
图6为本发明实施例提供的色转换层的第四结构示意图;
图7为本发明实施例提供的色转换层的第五结构示意图;
图8为本发明实施例提供的色转换层的第六结构示意图;
图9为本发明实施例提供的显示面板的结构示意图;
图10为本发明实施例提供的色转换层的制作方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
如图2所示,图2是本发明实施例提供的色转换层的结构示意图。
本发明实施例提供的色转换层应用于具有直下式面光源的显示面板中。所述色转换层2包括量子点薄膜23和功能膜3。其中,量子点薄膜23包括发光量子点和散光剂,散光剂有两方面的作用:增大激发光的传播路径、控制发光量子点之间的间距。量子点薄膜的厚度约为50~100μm。
功能膜3包括层叠设置的多个膜层,每个膜层的折射率可以相同也可以不同,每个膜层的厚度可以相同也可以不同,但相邻两膜层的折射率不同。例如,如图3所示,功能膜3包括膜层A、膜层B、膜层C和膜层D。膜层A和B的折射率不同,膜层B和C的折射率不同,膜层C和D的折射率不同。
另外,功能膜的材料可以为无机材料也可以为有机材料。所述功能膜的材料为无机材料时,每一膜层的材料包括但不限于TiO 2(二氧化钛)、Al 2O 3(三氧化二铝)、SiO 2(二氧化硅)、    ZnS(硫化锌)、ZrO 2(氧化锆)、Ta 2O 5(五氧化二钽)、Nb 2O 5(五氧化二铌)、ITO(氧化铟锡);所述功能膜的材料为有机材料时,每一膜层的材料包括但不限于PC(聚碳酸酯)、PET(聚对苯二甲酸乙二醇脂,即聚酯)、PMMA(聚甲基丙烯酸甲酯,即有机玻璃)、Resin(树脂)。
进一步地,如图2所示,所述功能膜3设于所述量子点薄膜23朝向所述面光源(图中未示出)的一侧,即功能膜3设于量子点薄膜23与面光源之间,面光源发射的光波透过所述功能膜3进入所述量子点薄膜23,而所述量子点薄膜23激发的光波经所述功能膜3反射回所述量子点薄膜23,从而使量子点薄膜23激发的光波只能沿色转换层上表面出射,无法到达显示面板的基底反射层,进而降低基底反射层的吸收损耗,提高直下式面光源的光效。另外,本实施例中的色转换层2仅包括量子点薄膜23和功能膜3,使得色转换层2的厚度薄,稳定性好。
在一个具体的实施方式中,如图4所示,所述色转换层2还包括微结构层26,即本实施方式中的色转换层2包括量子点薄膜23、功能膜3和微结构层26,所述微结构层26设于所述量子点薄膜23背离所述面光源的一侧。本实施方式在色转换层2的出光侧设置微结构层26,以起到匀光和消除牛顿环的作用。
在另一个具体的实施方式中,如图5所示,所述色转换层2还包括基板21,即本实施方式中的色转换层包括量子点薄膜23、功能膜3和基板21,所述基板21设于所述功能膜3背离所述量子点薄膜23的一侧。其中,基板21的材料为PET。本实施方式中的功能膜设置在量子点薄膜和基板之间,可以起到水氧阻隔和功能膜的双重作用。
在又一个具体的实施方式中,量子点薄膜上还可设置第二阻隔层或保护层,或者同时设置第二阻隔层和保护层。另外,色转换层还可在设置基板的基础上,设置第二阻隔层或/和保护层。如图6所示,色转换层2包括量子点薄膜23、功能膜3、基板21、第二阻隔层25和保护层24。其中,基板21设于所述功能膜3背离所述量子点薄膜23的一侧,所述第二阻隔层25设于所述量子点薄膜23背离所述面光源的一侧,所述保护层24设于所述第二阻隔层25背离所述量子点薄膜23的一侧。其中,保护层24的材料为PET,第二阻隔层的厚度为几十微米,用于隔绝水氧,避免水氧接触量子点导致发光效率下降。
在又一个具体的实施方式中,量子点薄膜和功能膜之间还可设置第一阻隔层或基板,或者同时设置第一阻隔层和基板。如图7所示,色转换层2包括量子点薄膜23、功能膜3、第一阻隔层22和基板21。其中,所述第一阻隔层22设于所述量子点薄膜23与所述功能膜3之间,所述基板21设于所述第一阻隔层22与所述功能膜3之间。
在又一个具体的实施方式中,色转换层还可在设置第一阻隔层或/和基板的基础上,在量子点薄膜上设置第二阻隔层或保护层,或者同时设置第二阻隔层和保护层。如图8所示,色转换层2包括量子点薄膜23、功能膜3、第一阻隔层22、基板21、第二阻隔层25和保护层24。其中,所述第一阻隔层22设于所述量子点薄膜23与所述功能膜3之间,所述基板21设于所述第一阻隔层22与所述功能膜3之间,所述第二阻隔层25设于所述量子点薄膜23背离所述面光源的一侧,所述保护层24设于所述第二阻隔层25背离所述量子点薄膜23的一侧。
需要说明的是,本发明实施例提供的色转换层可以适用于不同的发光膜材上,例如mini-LED背光源中,所述色转换层能够搭配不同的灯板,应用在小、中和大尺寸显示设备中。
由上述可知,本实施例提供的色转换层,在具有直下式面光源的显示面板中,通过在量子点薄膜朝向面光源的一侧设置功能膜,使面光源发射的光波透过功能膜进入量子点薄膜,并使量子点薄膜激发的光波经功能膜反射回量子点薄膜,避免量子点薄膜激发的光波到达显示面板的基底反射层,从而降低基底反射层的吸收损耗,提高直下式面光源的光效。
相应地,本发明实施例还提供一种显示面板。所述显示面板包括直下式面光源以及设于所述面光源上的色转换层,所述色转换层为上述实施例中的色转换层,在此不再详细赘述。
在所述显示面板为LED面板时,所述面光源为LED芯片,所述显示面板还包括基板、反射层、平坦层、扩散膜和增亮膜。如图9所示,所述显示面板1包括依次设置的基板4、反射层5、LED芯片6、平坦层7、上述实施例中的色转换层2、扩散膜8和增亮膜9。
本实施例中面光源发射的光波透过功能膜进入量子点薄膜,并使量子点薄膜激发的光波经功能膜反射回量子点薄膜,避免量子点薄膜激发的光波到达显示面板的基底反射层,从而降低基底反射层的吸收损耗,提高直下式面光源的光效。
相应地,本发明实施例还提供一种色转换层的制作方法,所述色转换层应用于具有直下式面光源的显示面板中。如图10所示,所述方法可以包括如下步骤:
101、提供量子点薄膜。
本实施例中,量子点薄膜包括发光量子点和散光剂,散光剂有两方面的作用:增大激发光的传播路径、控制发光量子点之间的间距。量子点薄膜的厚度约为50~100μm。
在一个实施方式中,量子点薄膜的制备方式是将量子点材料和散光剂混合均匀后,利用高分子聚合物包裹起来,并通过挤压技术,制备出一定规格(例如一定厚度)的量子点薄膜。采用这种制备方式所制作的量子点薄膜厚度更薄,且稳定性更好。
102、在所述量子点薄膜朝向所述面光源的一侧形成功能膜,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
例如,在步骤102中,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
采用磁控溅射工艺或真空蒸镀工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个无机材料膜层,以构成所述功能膜。
需要说明的是,功能膜包括多个膜层,每个膜层可以通过无机材料镀膜的方式进行制备,即所制作的功能膜的材料为无机材料。每个膜层的折射率可以相同也可以不同,每个膜层的厚度可以相同也可以不同,但相邻两膜层的折射率不同。每一膜层的材料包括但不限于TiO 2(二氧化钛)、Al 2O 3(三氧化二铝)、SiO 2(二氧化硅)、  ZnS(硫化锌)、ZrO 2(氧化锆)、Ta 2O 5(五氧化二钽)、Nb 2O 5(五氧化二铌)、ITO(氧化铟锡)。
例如,在步骤102中,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
采用热压、拉伸或卷对卷工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个有机材料膜层,以构成所述功能膜。
需要说明的是,功能膜的每个膜层还可通过有机材料热压的方式制备,即所制作的功能膜的材料为有机材料。每一膜层的材料包括但不限于PC(聚碳酸酯)、PET(聚对苯二甲酸乙二醇脂,即聚酯)、PMMA(聚甲基丙烯酸甲酯,即有机玻璃)、Resin(树脂)。
如图2所示,功能膜3形成于所述量子点薄膜23朝向所述面光源(图中未示出)的一侧,功能膜3形成于量子点薄膜23与面光源之间,面光源发射的光波透过所述功能膜3进入所述量子点薄膜23,而所述量子点薄膜23激发的光波经所述功能膜3反射回所述量子点薄膜23,从而使量子点薄膜23激发的光波只能沿色转换层上表面出射,无法到达显示面板的基底反射层,进而降低基底反射层的吸收损耗,提高直下式面光源的光效。
在一个具体的实施方式中,所述方法还包括:
在所述量子点薄膜背离所述面光源的一侧形成微结构层。
如图4所示,在量子点薄膜23背离所述面光源的一侧形成微结构层26,以起到匀光和消除牛顿环的作用。
在另一个具体的实施方式中,所述方法还包括:
在所述功能膜背离所述量子点薄膜的一侧形成基板。
如图5所示,基板21形成于所述功能膜3背离所述量子点薄膜23的一侧。其中,基板21的材料为PET。本实施方式中的功能膜设置在量子点薄膜和基板之间,可以起到水氧阻隔和功能膜的双重作用。
在又一个具体的实施方式中,所述方法还包括:
在所述量子点薄膜与所述功能膜之间形成第一阻隔层;
在所述第一阻隔层与所述功能膜之间形成基板。
如图7所示,所述第一阻隔层22形成于所述量子点薄膜23与所述功能膜3之间,所述基板21形成于所述第一阻隔层22与所述功能膜3之间,使色转换层2包括量子点薄膜23、功能膜3、第一阻隔层22和基板21。另外,量子点薄膜与所述功能膜之间还可以只形成第一阻隔层或基板。
在又一个实施方式中,所述方法还包括:
在所述量子点薄膜背离所述面光源的一侧形成第二阻隔层;
在所述第二阻隔层背离所述量子点薄膜的一侧形成保护层。
需要说明的是,量子点薄膜背离所述面光源的一侧还可以只形成第二阻隔层或保护层。另外,还可在形成基板的基础上,在量子点薄膜背离所述面光源的一侧形成第二阻隔层或/和保护层。如图6所示,基板21形成于所述功能膜3背离所述量子点薄膜23的一侧,所述第二阻隔层25形成于所述量子点薄膜23背离所述面光源的一侧,所述保护层24形成于所述第二阻隔层25背离所述量子点薄膜23的一侧,使色转换层2包括量子点薄膜23、功能膜3、基板21、第二阻隔层25和保护层24。其中,保护层24的材料为PET,第二阻隔层的厚度为几十微米,用于隔绝水氧,避免水氧接触量子点导致发光效率下降。
由上述可知,本实施例提供的OLED显示屏的制作方法,在OLED面板的摄像头区域中的至少一个子像素区域处开孔,减小摄像头区域的像素密度,且提高摄像头区域的光透率,进而将摄像头组件设置在OLED面板的底面与孔对应的位置,减小摄像头组件在非显示区域的占用空间,增加显示屏占比。
由上述可知,本实施例提供的色转换层的制作方法,在具有直下式面光源的显示面板中,通过在量子点薄膜朝向面光源的一侧设置功能膜,使面光源发射的光波透过功能膜进入量子点薄膜,并使量子点薄膜激发的光波经功能膜反射回量子点薄膜,避免量子点薄膜激发的光波到达显示面板的基底反射层,从而降低基底反射层的吸收损耗,提高直下式面光源的光效。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种色转换层,应用于具有直下式面光源的显示面板中,其中,所述色转换层包括量子点薄膜和功能膜;
    所述功能膜设于所述量子点薄膜朝向所述面光源的一侧,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
  2. 根据权利要求1所述的色转换层,其中,所述色转换层还包括微结构层;
    所述微结构层设于所述量子点薄膜背离所述面光源的一侧。
  3. 根据权利要求1所述的色转换层,其中,所述色转换层还包括基板;
    所述基板设于所述功能膜背离所述量子点薄膜的一侧。
  4. 根据权利要求1所述的色转换层,其中,所述色转换层还包括第一阻隔层和基板;
    所述第一阻隔层设于所述量子点薄膜与所述功能膜之间,所述基板设于所述第一阻隔层与所述功能膜之间。
  5. 根据权利要求1所述的色转换层,其中,所述色转换层还包括第二阻隔层和保护层;
    所述第二阻隔层设于所述量子点薄膜背离所述面光源的一侧,所述保护层设于所述第二阻隔层背离所述量子点薄膜的一侧。
  6. 根据权利要求1所述的色转换层,其中,所述功能膜包括层叠设置的多个膜层;
    相邻两膜层的折射率不同。
  7. 根据权利要求6所述的色转换层,其中,所述功能膜的材料为无机材料或有机材料;
    所述功能膜的材料为无机材料时,每一膜层的材料包括TiO 2、Al 2O 3、SiO 2、 ZnS、ZrO 2、Ta 2O 5、Nb 2O 5、ITO中的任意一种;
    所述功能膜的材料为有机材料时,每一膜层的材料包括PC、PET、PMMA、Resin中的任意一种。
  8. 一种显示面板,其中,包括直下式面光源以及设于所述面光源上的色转换层;
    所述色转换层包括量子点薄膜和功能膜;
    所述功能膜设于所述量子点薄膜朝向所述面光源的一侧,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
  9. 根据权利要求8所述的显示面板,其中,所述色转换层还包括微结构层;
    所述微结构层设于所述量子点薄膜背离所述面光源的一侧。
  10. 根据权利要求8所述的显示面板,其中,所述色转换层还包括基板;
    所述基板设于所述功能膜背离所述量子点薄膜的一侧。
  11. 根据权利要求8所述的显示面板,其中,所述色转换层还包括第一阻隔层和基板;
    所述第一阻隔层设于所述量子点薄膜与所述功能膜之间,所述基板设于所述第一阻隔层与所述功能膜之间。
  12. 根据权利要求8所述的显示面板,其中,所述色转换层还包括第二阻隔层和保护层;
    所述第二阻隔层设于所述量子点薄膜背离所述面光源的一侧,所述保护层设于所述第二阻隔层背离所述量子点薄膜的一侧。
  13. 根据权利要求8所述的显示面板,其中,所述功能膜包括层叠设置的多个膜层;
    相邻两膜层的折射率不同。
  14. 一种色转换层的制作方法,所述色转换层应用于具有直下式面光源的显示面板中,其中,所述方法包括:
    提供量子点薄膜;
    在所述量子点薄膜朝向所述面光源的一侧形成功能膜,使所述面光源发射的光波透过所述功能膜进入所述量子点薄膜,并使所述量子点薄膜激发的光波经所述功能膜反射回所述量子点薄膜。
  15. 根据权利要求14所述的色转换层的制作方法,其中,所述方法还包括:
    在所述量子点薄膜背离所述面光源的一侧形成微结构层。
  16. 根据权利要求14所述的色转换层的制作方法,其中,所述方法还包括:
    在所述功能膜背离所述量子点薄膜的一侧形成基板。
  17. 根据权利要求14所述的色转换层的制作方法,其中,所述方法还包括:
    在所述量子点薄膜与所述功能膜之间形成第一阻隔层;
    在所述第一阻隔层与所述功能膜之间形成基板。
  18. 根据权利要求14所述的色转换层的制作方法,其中,所述方法还包括:
    在所述量子点薄膜背离所述面光源的一侧形成第二阻隔层;
    在所述第二阻隔层背离所述量子点薄膜的一侧形成保护层。
  19. 根据权利要求14所述的色转换层的制作方法,其中,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
    采用磁控溅射工艺或真空蒸镀工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个无机材料膜层,以构成所述功能膜。
  20. 根据权利要求14所述的色转换层的制作方法,其中,所述在所述量子点薄膜朝向所述面光源的一侧形成功能膜,具体包括:
    采用热压、拉伸或卷对卷工艺在所述量子点薄膜朝向所述面光源的一侧层叠多个有机材料膜层,以构成所述功能膜。
PCT/CN2019/081713 2018-12-29 2019-04-08 一种色转换层及其制作方法、显示面板 WO2020133787A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,136 US11056661B2 (en) 2018-12-29 2019-04-08 Color conversion layer, manufacturing method thereof, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811630819.0A CN109755268A (zh) 2018-12-29 2018-12-29 一种色转换层及其制作方法、显示面板
CN201811630819.0 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020133787A1 true WO2020133787A1 (zh) 2020-07-02

Family

ID=66403233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081713 WO2020133787A1 (zh) 2018-12-29 2019-04-08 一种色转换层及其制作方法、显示面板

Country Status (2)

Country Link
CN (1) CN109755268A (zh)
WO (1) WO2020133787A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002745A (zh) * 2020-08-25 2020-11-27 深圳扑浪创新科技有限公司 一种量子点色彩转换膜及其制备方法和显示面板
CN112305816A (zh) * 2020-11-06 2021-02-02 深圳Tcl新技术有限公司 一种复合膜片、背光模组以及显示装置
CN115036406A (zh) * 2022-06-24 2022-09-09 苏州华星光电技术有限公司 显示面板及其制作方法、移动终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218339A (ja) * 2015-05-25 2016-12-22 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及びバックライトユニット
CN107077028A (zh) * 2014-09-30 2017-08-18 康宁精密素材株式会社 用于颜色转换的基板、其制造方法以及包括其的显示装置
CN107544174A (zh) * 2016-06-29 2018-01-05 三星显示有限公司 颜色转换面板、制造该面板的方法及显示装置
CN108333826A (zh) * 2017-01-19 2018-07-27 三星显示有限公司 颜色转换面板和包括颜色转换面板的显示设备
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957860A (zh) * 2018-08-22 2018-12-07 京东方科技集团股份有限公司 显示装置及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077028A (zh) * 2014-09-30 2017-08-18 康宁精密素材株式会社 用于颜色转换的基板、其制造方法以及包括其的显示装置
JP2016218339A (ja) * 2015-05-25 2016-12-22 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及びバックライトユニット
CN107544174A (zh) * 2016-06-29 2018-01-05 三星显示有限公司 颜色转换面板、制造该面板的方法及显示装置
CN108333826A (zh) * 2017-01-19 2018-07-27 三星显示有限公司 颜色转换面板和包括颜色转换面板的显示设备
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置

Also Published As

Publication number Publication date
CN109755268A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US11056661B2 (en) Color conversion layer, manufacturing method thereof, and display panel
TW562974B (en) Liquid crystal display device
JP4604763B2 (ja) バックライト装置及び液晶表示装置
WO2022237256A1 (zh) 显示装置
WO2020133787A1 (zh) 一种色转换层及其制作方法、显示面板
CN108107623B (zh) 显示装置
US20210278727A1 (en) Dispay panel and display device
CN106405921A (zh) 一种显示装置
WO2018120850A1 (zh) 背光模块
WO2017092125A1 (zh) 反射式液晶显示器
JP2008039960A (ja) 積層フィルム
JP3933915B2 (ja) 反射層付き照明装置及び液晶表示装置
US8625056B2 (en) Liquid crystal display
US20210028405A1 (en) Display panel and display device
US7667799B2 (en) Liquid crystal display panel and liquid crystal display device using the same
CN114284454A (zh) 显示面板及显示装置
WO2021258849A1 (zh) 显示面板及显示装置
KR20120015136A (ko) 복합 도광판 및 그를 포함하는 백라이트 유닛
JP2000284276A (ja) 液晶表示装置
KR20150102249A (ko) 투명 표시 장치 및 이의 제조 방법
CN110634915B (zh) 一种oled面板及制作方法
WO2021203524A1 (zh) 透光基板及显示装置
KR20120035062A (ko) 백라이트 유닛
WO2020224094A1 (zh) 半透半反式液晶显示面板及半透半反式液晶显示装置
JP2005294084A (ja) 透明導電フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904496

Country of ref document: EP

Kind code of ref document: A1