WO2020133454A1 - 信息处理方法和装置 - Google Patents

信息处理方法和装置 Download PDF

Info

Publication number
WO2020133454A1
WO2020133454A1 PCT/CN2018/125728 CN2018125728W WO2020133454A1 WO 2020133454 A1 WO2020133454 A1 WO 2020133454A1 CN 2018125728 W CN2018125728 W CN 2018125728W WO 2020133454 A1 WO2020133454 A1 WO 2020133454A1
Authority
WO
WIPO (PCT)
Prior art keywords
target detection
detection object
data
sensor
current state
Prior art date
Application number
PCT/CN2018/125728
Other languages
English (en)
French (fr)
Inventor
彭梦龙
张树臣
唐上昌
黄彦鑫
李建宇
张磊杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880042401.XA priority Critical patent/CN110809537A/zh
Priority to PCT/CN2018/125728 priority patent/WO2020133454A1/zh
Publication of WO2020133454A1 publication Critical patent/WO2020133454A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems

Definitions

  • the embodiments of the present invention relate to the technical field of vehicles, and in particular, to an information processing method and device.
  • the lane departure warning system is a system that assists the driver to correct the unconscious lane departure through the warning and reminder to avoid traffic accidents. It belongs to one of the important functions of the Advanced Drive Assistance Systems (ADAS) system.
  • ADAS Advanced Drive Assistance Systems
  • the lane departure warning system determines that the driver deviated from the original lane without turning on the turn signal, it can immediately issue an alarm when deviating from the lane, or vibrate the steering wheel to remind the driver of the current vehicle departure status and provide the driver with early reaction time, greatly Reduce collision accidents caused by accidental departure from the lane due to fatigue driving.
  • the system can also assist the driver in cultivating the habit of turning on the turn signal when turning/changing lanes by means of voice reminders.
  • one way to determine that the driver has not turned on the turn signal in the prior art is to install a monitoring device on the vehicle's on-board diagnostic (OBD) interface, and control the vehicle's controller area network (Controller Area) , CAN) The data on the bus is captured and analyzed to determine whether the driver has turned on the turn signal.
  • OBD on-board diagnostic
  • Controller Area Controller Area
  • Embodiments of the present invention provide an information processing method and device, so as to obtain the current state of the target detection object in time.
  • an embodiment of the present invention provides an information processing method, which is applied to a vehicle and includes:
  • the sensor device is located within a preset distance range of a target detection object in the vehicle and the sensor device is at least partially away from the target detection object, the sensor device is used For detecting the state of the target test object;
  • the current state of the target detection object is determined.
  • an embodiment of the present invention provides an information processing device, which is applied to a vehicle and includes: a processor and a sensing device;
  • the sensing device is used to detect the state of the target object to output sensor data; the sensor device is located within a preset distance range of the target object in the vehicle and the sensor device is at least partially away from the sensor Describe the target test object;
  • the processor is configured to acquire sensor data output by the sensor device, and determine the current state of the target detection object according to the sensor data.
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program, where the computer program includes at least one piece of code that can be executed by a computer to control The computer executes the information processing method described in the first aspect of the present invention.
  • an embodiment of the present invention provides a computer program.
  • the computer program When the computer program is executed by a computer, the computer program is used to implement the information processing method according to the first aspect of the present invention.
  • the information processing method and device provided by the embodiments of the present invention obtain the sensor data output by the sensor device, wherein the sensor device is located within a preset distance range of the target test object in the vehicle and the sensor device is at least partially away from the target test object
  • the sensor device is used to detect the state of the target test object, and determine the current state of the target test object based on the sensor data.
  • due to the small size of the sensing device it is easy to install, and it does not need to connect the sensing device to the OBD interface of the vehicle to read the data on the CAN bus, which will not affect the normal driving of the vehicle.
  • FIG. 1 is a flowchart of an information processing method provided by an embodiment of the present invention.
  • FIG. 2 is a front view of an installation diagram of a sensing device provided by an embodiment of the present invention.
  • FIG. 3 is a side view of an installation diagram of a sensing device provided by an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a Hall sensor device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the installation of a proximity/near distance sensor provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of installation of a TOF sensor provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • FIG. 10 is a front view of an installation diagram of a rocker sensor and a connecting rod provided by an embodiment of the present invention
  • FIG. 11 is a side view of an installation diagram of a rocker sensor and a connecting rod provided by an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of an information processing device according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of an information processing method according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • the sensor device is located within a preset distance range of the target detection object in the vehicle and the sensor device is at least partially away from the target detection object.
  • the sensor device is used to detect the state of the target detection object in the vehicle.
  • the sensor data output by the sensor device is related to the state of the target detection object in the vehicle, so the sensor device outputs sensor data corresponding to the state of the target detection object in the vehicle.
  • the sensing device outputs sensor data corresponding to the state of the wiper.
  • the sensing device outputs sensory data corresponding to the state of the handbrake.
  • the sensing device acquires the toggle-type light switch Or the sensor data corresponding to the rotary light switch status.
  • the rotary light switch is the steering wheel of the vehicle.
  • the correspondence between the state of the target detection object and the sensor data output by the sensor device can be established in advance, that is, the sensor data output by the sensor device corresponds to the state of the target detection object, so that the output Sensor data and the corresponding relationship between the state of the target test object and the sensor data to determine the current state of the target test object.
  • the current state is the state corresponding to the sensor data currently output by the sensor device.
  • the state when the wiper is not working corresponds to the first sensor data output by the sensor device used to detect the wiper state
  • the manual operation state of the wiper corresponds to the second sensor data it outputs
  • the sensor data currently detected by the sensor device that detects the wiper state is the third sensor data
  • the state when the handbrake is pulled corresponds to the first sensor data output by the sensor device that detects the state of the handbrake
  • the state when the handbrake is released corresponds to the second sensor data that it outputs. Therefore, when the sensing data currently output by the sensing device that detects the state of the handbrake is the first sensing data, it can be determined that the current state of the handbrake is pulled.
  • the target detection object when the target detection object is a toggle-type light switch or a rotary-type light switch, the target detection object is toggled or rotated in the first direction to indicate that the left turn-on lamp of the vehicle is turned on, which is used to detect the toggle-type light
  • the sensor data output by the sensor device of the switch or rotary light switch status is the first sensor data; the target detection object is toggled or rotated in the second direction to indicate that the vehicle's right turn signal is turned on.
  • the sensor data is the second sensor data; the target detection object is toggled or rotated in the third direction to instruct the vehicle to switch to the high beam, the sensor data output by the sensor device is the third sensor data; target detection When the object is toggled or rotated in the fourth direction to instruct the vehicle to switch to low beam, the sensor data output by the sensor device is the fourth sensor data. Therefore, when the sensor data output by the sensor device is the third sensor data, it can be determined that the current state of the toggle light switch or rotary light switch is toggle or rotation in the third direction, instructing the vehicle to switch to Turn on the high beam light.
  • the information processing method provided in this embodiment obtains the sensing data output by the sensing device, where the sensing device is located within a preset distance range of the target detection object in the vehicle and the sensing device is at least partially away from the target detection object.
  • the device is used to detect the state of the target detection object, and determine the current state of the target detection object based on the sensing data.
  • due to the small size of the sensor device it is easy to install, and it does not need to connect the sensor device to the OBD interface of the vehicle to read the data on the CAN bus, which will not affect the normal driving of the vehicle.
  • the sensor device does not need to be connected to the vehicle's OBD interface, and will not cause interference to the vehicle's electronic system.
  • the above S102 is performed.
  • the preset range may be, for example, a range for measuring the change amount of the sensor data currently output by the sensor device compared to the sensor data output last time.
  • the change of the sensor data does not necessarily mean that the state of the target detection object has changed, it may also be the change of the sensor data caused by other reasons. For example, because the vehicle has vibration during driving, and the sensing device is installed on the vehicle, therefore, when the vehicle is driving, even if the state of the target detection object does not change, due to the vibration of the vehicle, the sensing device The output transmission data will also change, resulting in an erroneous judgment of the current state of the target test object.
  • the sensor data it can be determined whether the sensor data is within the preset range.
  • the sensor data is outside the preset range, it means that the change in the sensor data is detected by the target Caused by the change in the state of the object, at this time, based on the sensing data, the current state of the target detection object is determined.
  • the sensor data is within the preset range, it means that the change of the sensor data is caused by the vibration of the vehicle, but in fact the state of the target detection object does not change.
  • the preset range may also be, for example, the minimum value of the corresponding sensing data when determining each state of the target detection object.
  • the preset range Before determining the current state of the target detection object based on the sensor data, it is necessary to determine whether the sensor data currently output by the sensor device exceeds the minimum value of the corresponding sensor data when each state of the target detection object can be determined.
  • the sensor data currently output by the sensor device exceeds the preset range, it means that the current state of the target detection object changes at this time, according to the sensor data currently output by the sensor device and the sensor data corresponding to each state of the target detection object
  • the minimum value can determine the current state of the target detection object.
  • the preset range corresponds to each state of the target detection object, that is, each state of the target detection object corresponds to a preset range. It should be noted that the preset range is set during initialization. The initialization can be initialized once each time the vehicle is started, or it can be initialized only when the vehicle is first started. Among them, the preset range set after initialization can be write it down. In addition, during initialization, it is necessary to determine the preset range corresponding to each state of the target detection object according to the value corresponding to the reference state of the target detection object, where the reference state of the target detection object is different, and it is determined that each state of the target detection object corresponds to The preset range is also different.
  • the reference state of the target detection object may be, for example, the initial state where the target detection object is in the initial position, or may be any one of the states of the target detection object.
  • the reference state of the target detection object may be that the toggle type light switch is in the initial state, and the initial state is the corresponding state when the toggle type light switch is in the middle position, It may be a state corresponding to when the toggle-type light switch is located in any one of the first direction, the second direction, the third direction, and the fourth direction.
  • setting the sensing device at least partially away from the target detection object as the sensing device is at least partially located on the target detection object;
  • the target detection object can move relative to the object to be detected.
  • the current state of the target detection object is reflected by the relative positional relationship between the sensing device and the object to be detected.
  • the current state of the target detection object is determined according to the relative position relationship, and the sensing device is at least partially disposed on the target detection object, including:
  • the sensing device and the object to be detected determine the relative positional relationship between the target object and the object to be detected; according to the target object and the object to be detected The relative position relationship between them determines the current state of the target detection object.
  • the object to be detected is a vehicle roof or a vehicle dashboard.
  • the target detection object can move relative to the detection object, and the detection object can be used as a reference for whether the target detection object moves.
  • the target detection object is a toggle type light switch as an example for description.
  • the vehicle roof or the dashboard of the vehicle does not change with the change of the state of the toggle light switch. Therefore, when the sensor device is installed on the toggle-type light switch, the vehicle roof or the vehicle instrument panel can be selected as the object to be detected.
  • the sensing device is a Hall sensor device and a magnet
  • the Hall sensor device is fixedly installed on the toggle light switch
  • the magnet is fixed to the vehicle dashboard
  • the magnet is fixed to the toggle light switch
  • the Hall sensor device is fixedly installed on the dashboard of the vehicle.
  • the sensor data output by the sensor device will change due to the change in the magnetic field of the Hall sensor device .
  • the relative positional relationship between the sensor device (ie, the Hall sensor device and the magnet) and the vehicle roof or the vehicle dashboard can be determined. Since the vehicle roof or the vehicle dashboard is fixedly mounted on the vehicle relative to the toggle light switch, it can be determined that the change in the sensor data is caused by the change of the toggle light switch.
  • the current state of the toggle-type light switch can be determined according to the relative positional relationship between the toggle-type light switch and the vehicle ceiling or vehicle dashboard.
  • the distance sensor when the sensing device is a distance sensor, the distance sensor is mounted on a toggle-type light switch, and the distance sensor detects the distance between the distance sensor and the vehicle roof or the vehicle dashboard.
  • the state of the toggle light switch changes, the sensor data output by the distance sensor will change.
  • the relative positional relationship between the distance sensor and the vehicle roof or the vehicle dashboard can be determined. Since the vehicle roof or the vehicle dashboard is fixedly mounted on the vehicle relative to the toggle light switch, it can be determined that the change in the sensor data is caused by the change of the toggle light switch.
  • the current state of the toggle-type light switch can be determined according to the relative positional relationship between the toggle-type light switch and the vehicle ceiling or vehicle dashboard.
  • the current state of the target detection object is determined according to the relative position relationship between the sensing device and the object to be detected, and the relative position can more clearly indicate the position relationship between the sensing device and the target detection object. Therefore, according to The relative position relationship can more accurately determine the current state of the target detection object.
  • the relative change trend of the size of the sensing data is used to determine the sensing device and the object to be detected
  • the change of the relative position relationship between objects is determined by using the data encoding format of the sensing data, which will not be repeated here.
  • a possible implementation manner of S102 is: determining a relative change trend of the size of the sensor data; according to the relative change The trend determines the direction of rotation or rotation of the target object.
  • the sensor device when the toggle light switch is toggled or the rotary light switch is rotated, as the toggle light switch is toggled or the rotary light switch is rotated, the sensor device outputs Sensing data changes gradually.
  • the direction in which the toggle-type light switch is toggled or the rotary-type light switch is toggled is rotated in different directions, and the trend of the gradual change in the size of the sensor data output by the sensor device is different. Therefore, according to the gradual change trend of the sensing data output by the sensing device, the toggle direction of the toggle-type light switch or the rotating direction of the rotary-type light switch is determined.
  • an initialization process may be performed to obtain a reference reference for the relative change trend of the size of the sensor data.
  • the position of the toggle-type light switch when initializing, respectively record the sensor output from the sensor device when the toggle-type light switch is moved from the initial state to the first direction
  • the size of the data gradually changes, and the trend of the size of the sensor data gradually changes to correspond to the first direction
  • record the size of the sensor data output by the sensor device when the toggle-type light switch is turned from the initial state to the second direction Gradually changing, the trend of the size of the sensor data gradually changing corresponds to the second direction
  • the toggle-type light switch is turned from the initial state to the third direction
  • the size of the sensor data output by the sensor device gradually changes, The trend of the size of the sensor data gradually changing corresponds to the third direction
  • the toggle-type light switch is turned from the initial state to the initial state
  • the gradual change trend of the size of the sensor data output by the sensor device is compared with the gradual change trend of the size of the sensor data corresponding to the above four directions, so as to The trend of the gradual change of the size of the data determines the current state of the toggle light switch.
  • the direction change trend of the sensor data can also be considered when initializing or applying the change trend theory of the sensor data, that is, the sensor data is processed as vector data.
  • another possible implementation of S102 is: according to the data encoding format of the sensor data, and a preset The correspondence between the data code and the state of the target test object determines the current state of the target test object.
  • the sensor device is used to obtain a toggle-type light switch toggle in the first direction or a rotary-type light switch to rotate in the first direction, and a toggle-type light switch toggle in the second direction or a rotary-type light switch Rotate in the second direction, turn the toggle light switch in the third direction, or turn the turn light switch in the third direction, turn the turn light switch in the fourth direction, or turn the turn light switch in the third direction Sensor data when rotating in four directions.
  • the data encoding format of the sensor data is related to the toggle direction of the toggle light switch or the rotating direction of the rotary light switch, so that for the toggle direction of each toggle light switch or rotary light
  • the rotation direction of the switch determines the corresponding data encoding format.
  • the data encoding format of the sensor data output by the sensor device is related to the changed state of the toggle light switch or rotary light switch. Then, according to the data encoding format of the sensing data output by the sensing device and the corresponding relationship between the determined data encoding and the state of the toggle light switch or rotary light switch, the toggle light switch or rotary type is determined The current state of the light switch.
  • the data encoding format of the sensor data is determined according to the dichotomy and/or binary method.
  • the current state of the target test object is determined according to the data encoding format of the sensor data and the correspondence between the preset data encoding format and the state of the target test object ,include:
  • the current state of the target test object is determined according to the preset number in the binary data, the binary feature bit at the preset value position, and the correspondence between the preset binary data and the state of the target test object.
  • the sensor device outputs the toggle-type light switch toggle in the first direction or the rotary-type light switch to rotate in the first direction, and the toggle-type light switch toggle in the second direction or the rotary-type light
  • the switch rotates in the second direction, the toggle light switch toggles in the third direction, or the rotary light switch toggle in the third direction, the toggle light switch toggle in the fourth direction, or the rotary light switch to Sensing data when rotating in the fourth direction, and according to the direction of the toggle light switch or the rotating direction of the rotary light switch, determine the corresponding sensor data in binary representation.
  • the preset number in the binary data representing the sensor data and the binary feature position of the preset value position are related to the current state of the toggle-type light switch or the rotary-type light switch.
  • the binary data corresponding to the sensor data in the determined state of the toggle type light switch or the rotary type light switch in different states is recorded as the preset binary data.
  • the sensing device When the state of the toggle light switch or rotary light switch changes, the sensing device outputs the sensor data corresponding to the changed state of the toggle light switch or rotary light switch, and obtains the transmission Binary data of sensory data, according to the preset number in the binary data, the binary feature bit of the preset value position, and the correspondence between the preset binary data and the state of the toggle light switch or rotary light switch To determine the current state of the toggle light switch or rotary light switch.
  • the binary data is determined by weighting and/or reordering binary feature bits in the binary data.
  • the binary data corresponding to the current state of the toggle light switch or rotary light switch with the binary data determined to correspond to the state of the toggle light switch or rotary light switch, if some important If the binary bits do not match, it can be terminated early, which improves the matching efficiency.
  • the target detection object is a toggle-type light switch as an example to describe in detail the method and process of using the sensing device to detect the vehicle light operation state.
  • FIG. 2 is a front view of a sensor device installation diagram provided by an embodiment of the invention
  • FIG. 3 is a side view of a sensor device installation diagram provided by an embodiment of the invention.
  • the sensing device includes: a Hall sensor device 10 and a magnet 20.
  • the Hall sensor device 10 is far away from the toggle-type light switch 30, and the magnet 20 is mounted on the toggle-type light switch 30; or, the Hall sensor device 10 is installed On the toggle light switch 30, the magnet 20 is away from the toggle light switch 30.
  • the installation method shown in FIGS. 2 and 3 is that the Hall sensor device 10 is away from the toggle-type light switch 30, and the magnet 20 is installed on the toggle-type light switch 30.
  • the magnet 20 is fixedly mounted on the toggle-type light switch 30, and the hall sensor device 10 is fixedly mounted on the steering wheel support base 40 to avoid errors caused by changes in the state of the hall sensor device 10 and the magnet 20 itself.
  • the embodiments of the present invention do not limit the way of fixed installation.
  • the sensing data is three-axis magnetic induction data
  • a possible implementation manner of determining the current state of the target detection object based on the sensing data is:
  • the three-axis magnetic induction data determine the direction characteristic data and intensity characteristic data of the Hall sensor device 10;
  • the current state of the target detection object is determined.
  • the three-axis magnetic induction data is the magnetic induction intensity in the X-Y-Z direction.
  • the Hall sensor device 10 may include a Hall sensor 11, a control unit 12, a data transmission unit 13, and a power supply unit 14.
  • the Hall sensor device 10 is located in the magnetic field generated by the magnet 20, and the Hall sensor 11 can measure three-axis magnetic induction data in the magnetic field where the Hall sensor device 10 is located, for example, the magnetic induction intensity in the X-Y-Z axis direction.
  • the three-axis magnetic induction data is taken as an example of the magnetic induction intensity in the X-Y-Z axis direction.
  • the magnetic induction intensity may include the direction of the magnetic induction intensity and the magnitude of the magnetic induction intensity corresponding to each direction.
  • the control unit 12 can read the magnetic induction intensity in the X-Y-Z axis direction from the Hall sensor 11, and then the magnetic transmission intensity in the X-Y-Z axis direction is output by the data transmission unit 13.
  • the control unit 12 may be, for example, a low-power microcontroller (Microcontroller Unit, MCU), which may be a general-purpose MCU or a BLE MCU/Zigbee controller including a wireless module; the data sending unit 13 may send data wirelessly, or Data can be sent by wire.
  • MCU microcontroller Unit
  • the power supply unit 14 supplies power to the Hall sensor 11, the control unit 12, and the data transmission unit 13. Wherein, the power supply unit 14 is powered by the system power supply, and the system power supply may be a rechargeable lithium battery or a button battery.
  • toggle-type light switch 30 when the toggle-type light switch 30 is turned in the first direction, it means turning on the left turn signal; when the toggle-type light switch 30 is turned in the second direction, it means turning on the right turn signal; When the toggle light switch 30 is toggled in the third direction, the vehicle light is switched to low beam; when the toggle-type light switch 30 is toggled to the fourth direction, the vehicle light is switched to high beam.
  • lever type light switch 30 when the lever type light switch 30 is turned in the first direction, it means turning on the left turn signal; when the lever type light switch 30 is turned in the second direction, it means turning on the right turn signal; the lever type light switch When turning 30 in the third direction and in the fourth direction, it means that the vehicle light is switched to the high beam, or it can be understood that when the lever-type light switch 30 is far from the middle position, the default is to turn in the third direction When the toggle light switch 30 returns to the intermediate position from the third direction or the fourth direction, it means that the vehicle light is switched to the low beam light, or it can be understood that when the toggle light switch 30 is near the intermediate position , The default is to dial in the fourth direction.
  • the relationship between the toggle direction of the toggle light switch shown in FIG. 3 and the vehicle light is described as an example.
  • the state of the toggle-type light switch 30 changes, the position of the magnet 20 installed on the toggle-type light switch 30 changes, and the distribution of the magnetic field generated by the magnet 20 in the space changes, resulting in the Hall sensor 11 Measurements show that the magnetic induction on the XYZ axis changes respectively.
  • the state of the toggle type light switch 30 can be obtained by analyzing the measured magnetic induction intensity data .
  • the sensor device when the sensor device is used/turned on, if it is recognized that it is the first time to turn on, a corresponding relationship between the toggle-type light switch 30 and the sensor data output by the hall sensor device 10 is established. That is, the sensor data in each state of the toggle light switch 30 is measured, and the direction data and size data in the sensor data are acquired. Then, the direction data and the size data in the sensor data are characterized to obtain the direction characteristic data and the intensity characteristic data, and the direction characteristic data and the intensity characteristic data can be binarized to obtain the binarized direction characteristic Data, intensity characteristic data.
  • the sensor data of the toggle light switch 30 in each state is losslessly compressed and stored, so that when the current state of the toggle light switch 30 is determined based on the sensor data output by the sensor device, it can still be
  • the sensor data output from the sensor data is compared with the sensor data stored in the state of the toggle light switch 30 in each state during initialization to determine the current state of the toggle light switch 30 without having to turn on each time Time is initialized, saving time.
  • the sensor data output from the Hall sensor device 10 is characterized and binarized as described above.
  • the directional characteristics When the data and the intensity characteristic data do not match before and after, it indicates that the state of the toggle light switch 30 has changed. Then, the characteristic and binarized direction characteristic data and intensity characteristic data are matched with the stored characteristic and binarized direction characteristic data and intensity characteristic data of the toggle light switch 30 in different states. Thus, the current state of the toggle light switch 30 is obtained.
  • the magnetic induction intensity of the XYZ axis is ⁇ x , ⁇ y , ⁇ z
  • the directional feature data first obtains three angles, namely ⁇ x , ⁇ y >, ⁇ y , ⁇ z >, ⁇ x , ⁇ z>, and then encode the angle with a preset encoding method.
  • This preset coding method can use the dichotomy to effectively retain the original angle information.
  • the direction feature data of the binary representation of ⁇ is obtained, for example: 0110100110...
  • the code table and the corresponding angle or cosine value are calculated in advance and stored in the value database, which is directly indexed when actually used.
  • the intensity characteristic data can be divided into absolute intensity characteristic data and relative intensity characteristic data. The only difference between these two features is the reference maximum intensity value.
  • the magnetic induction intensity of XYZ axis ⁇ x , ⁇ y , ⁇ z ⁇ x , ⁇ y , ⁇ z > ⁇ 0.1 ⁇ z ,0.5 ⁇ z , ⁇ z >, then the magnetic induction intensity of XYZ axis ⁇ x , ⁇
  • the results of y and ⁇ z are: 1000000000, 1111100000, 1111111111.
  • the absolute intensity feature data selects the largest intensity value in the database and performs the same calculation.
  • the final intensity feature is 6M binary values, where M is the quantized amount of intensity.
  • the magnetic induction intensity of the X-Y-Z axis obtained by the Hall sensor device 10 is finally encoded as 3N+6M binary features.
  • the above-mentioned encoding method is used to encode the direction characteristic data and the intensity characteristic data characterized by the magnetic induction intensity measured by the Hall sensor device 10 on the X-Y-Z axis to obtain the direction characteristic data and the intensity characteristic data in binary representation.
  • the directional characteristic data and the intensity characteristic data before and after and matching the directional characteristic data and the intensity characteristic data corresponding to the current state of the toggle light switch 30 with the directional characteristic data and the intensity characteristic in the database
  • the binary The features are weighted or sorted, so that when the sensor data output by the binary representation obtained by the above encoding method is subsequently matched with the stored directional feature data and intensity feature data, once some important features are If there is no match, the match can be terminated in advance, thereby improving the matching efficiency.
  • the database can use KD-tree storage, which can greatly speed up the matching algorithm when matching direction feature data and intensity feature data.
  • one of the Hall sensor device and the magnet is installed away from the toggle-type light switch, and the other is installed on the toggle-type light switch, and the magnetic induction intensity in the XYZ axis direction is measured by the Hall sensor device
  • the magnetic induction intensity in the XYZ axis direction is mainly determined by the position and angle of the magnet relative to the Hall sensor device.
  • the position and angle of the magnet relative to the Hall sensor device also change, causing the XYZ axis measured by the Hall sensor device
  • the direction of the magnetic induction intensity changes, so as to achieve the purpose of determining the current state of the toggle light switch according to the changed magnetic induction intensity in the XYZ axis direction.
  • the Hall sensor device directly measures the magnetic induction intensity in the XYZ axis direction. In the use environment, because the distribution of magnetic induction intensity is only related to the characteristics and position of the magnet, the magnetic induction intensity in the environment is much smaller than the magnetic induction intensity generated by the magnet. Therefore, the sensor device is less disturbed by the environment, so that the current state of the toggle light switch can be determined more accurately.
  • the sensing device includes: a distance sensor;
  • the distance sensor is installed at a position facing the target detection object at a preset distance from the target detection object, and the sensing data includes the distance between the distance sensor and the target detection object.
  • the distance sensor includes at least one of a proximity/near distance sensor, a time of flight (TOF) sensor, or an infrared (Infrared Radiation, IR) sensor.
  • FIG. 5 is a schematic diagram of installation of a proximity/near distance sensor provided by an embodiment of the present invention. As shown in FIG. 5, the proximity/proximity sensor 50 is installed directly opposite the lever type light switch 30. The proximity/proximity sensor 50 measures the distance between the lever type light switch 30 and the proximity/proximity sensor 50. By analyzing the measured distances of the toggle light switch 30 in different states, the current state of the toggle light switch 30 is determined.
  • FIG. 6 is a schematic diagram of installation of a TOF sensor provided by an embodiment of the present invention. As shown in FIG. 6, the installation method of the TOF sensor 60 is the same as the installation method of the proximity/near distance sensor 50 shown in FIG. 5, and only the proximity/near distance sensor 50 needs to be changed to the TOF sensor 60.
  • FIG. 7 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • the TOF sensor 60 is installed on the steering wheel support of the vehicle.
  • the sensor data output by the TOF sensor 60 will not occur due to the change in the position of the TOF sensor 60 Variety. Therefore, it can be determined that the change in the distance detected by the TOF sensor 60 is caused by the change in the state of the toggle light switch 30.
  • the TOF sensor 60 is mounted on the steering wheel support of the vehicle, and when the state of the toggle light switch 30 changes, the TOF sensor 60 detects the distance between the distance sensor and the toggle light switch 30 after the state change According to the change of the distance, the current state of the toggle light switch 30 is determined.
  • the TOF sensor 60 measures that the distance between the toggle light switch 30 and the TOF sensor 60 increases gradually; when the toggle light switch 30 moves upward, the TOF sensor 60 It is measured that the distance between the toggle light switch 30 and the TOF sensor 60 gradually decreases, thereby determining the current state of the toggle light switch 30.
  • FIG. 8 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • the object to be detected is the roof of the vehicle
  • the TOF sensor 60 is fixedly installed on the toggle light switch 30. Measure the distance between the TOF sensor 60 and the vehicle roof. Since the vehicle roof is fixedly mounted on the vehicle relative to the toggle light switch 30, when the distance between the TOF sensor 60 and the vehicle roof changes, It can be determined that the change in the distance between the TOF sensor 60 and the roof of the vehicle is caused by the change in the state of the toggle light switch 30. Therefore, the current state of the toggle-type light switch 30 can be determined by measuring the change in the distance between the TOF sensor 60 and the vehicle ceiling. Among them, it is possible to record the measured value measured by the TOF sensor 60 in different states of the toggle light switch 30 as a reference, and determine the toggle light switch by comparing the measured value currently measured by the TOF sensor 60 with the reference value The current state of 30.
  • FIG. 9 is a schematic diagram of installation of a TOF sensor provided by another embodiment of the present invention.
  • the object to be detected is the vehicle dashboard
  • the TOF sensor 60 is fixedly installed on the toggle-type light switch 30 to measure the distance between the TOF sensor 60 and the vehicle dashboard.
  • the vehicle dashboard is fixedly mounted on the vehicle relative to the toggle light switch 30, when the distance between the TOF sensor 60 and the vehicle dashboard changes, it can be determined that the TOF sensor 60 and the vehicle dashboard The change in the distance between them is caused by the change in the state of the toggle light switch 30. Therefore, the current state of the toggle light switch 30 can be determined by measuring the change in the distance between the TOF sensor 60 and the vehicle dashboard.
  • the sensing device includes: a rocker sensor 70 and a connecting rod 80.
  • One end of the connecting rod 80 is connected to the target detection object, and the other end of the connecting rod 80 is connected to the rocker sensor 70, and the rocker sensor 70 is away from the target detection object.
  • the sensing data is the rotation angle of the target detection object.
  • FIG. 10 is a front view of an installation diagram of a rocker sensor and a connecting rod provided by an embodiment of the present invention
  • FIG. 11 is a side view of an installation diagram of a rocker sensor and a connecting rod provided by an embodiment of the present invention.
  • one end of the connecting rod 80 is fixedly mounted on the toggle light switch 30.
  • the toggle light switch 30 is connected to the rocker sensor 70 through the other end of the connecting rod 80, and the rocker The sensor 70 is not in contact with the toggle light switch 30.
  • the state of the toggle light switch 30 changes, the position of the rocker sensor 70 changed by the connecting rod 80 changes, and the rocker sensor 70 can measure and output the rotation angles of the toggle light switch 30 in two different directions.
  • the toggle light switch 30 is switched to various states, the rotation angle measured by the rocker sensor 70 is used as a reference value, and the measured value measured by the rocker sensor 70 is compared with the reference value to determine the toggle type The current state of the light switch 30.
  • the current state of the target detection object may be presented to the driver of the vehicle, so that the driver may pay attention to the driving status of the vehicle at this time. For example, whether the current actual driving state of the vehicle matches the current driving state of the vehicle indicated by the current state of the proposed target detection object. If they are inconsistent, the driver is reminded of the current state of the target detection object and the driver's attention is drawn. Among them, the driver can be prompted by means such as voice to achieve safe driving.
  • the embodiments of the present invention may have the following effects:
  • the operating state of the vehicle is obtained by measuring the state of the target detection object using a sensing device, so there is no need to read the data of the vehicle communication bus, and thus there is no need to analyze and crack the vehicle protocol.
  • the toggle-type light switch as an example, since the possibility of changing the way the vehicle lights are operated is low, there is no need to update or upgrade the detection method;
  • the sensing device used for detection in the embodiment of the present invention is small in size, has low installation requirements, and is easy to install. Users can install or disassemble themselves without disturbing normal driving, and the installation location is concealed.
  • the Hall sensor device and the magnet as an example, due to the small size and light weight of the Hall sensor device and the magnet, and the strict relative positional relationship between the magnet and the Hall sensor device is not required, and can be achieved in various ways (including Pasting, binding, etc.) for installation and fixing, without disassembling the vehicle parts, so the installation requirements are low; and because the installation position of the Hall sensor device or the magnet can be located on the directional support of the vehicle, the installation position is relatively concealed; at the same time Because the magnet and the Hall sensor device are not mechanically connected to the equipment that the driver needs to operate, they will not interfere with normal driving.
  • the embodiment of the present invention does not require the sensor device to be installed on the vehicle's CAN bus, and also does not require the vehicle's power supply for power supply. It is physically isolated from the vehicle's system and operates independently of the vehicle's electronic system, so it may cause interference Low sex
  • the embodiment of the present invention uses the sensing device to directly measure the state of the lever, the interference caused by the environment is small, and the detection error rate is low.
  • the Hall sensor device can directly measure the magnetic induction intensity.
  • the distribution of the magnetic induction intensity is only related to the characteristics and position of the magnet.
  • the magnetic induction intensity in the environment is much smaller than the magnetic induction intensity generated by the magnet, and does not need to be considered
  • the vehicle itself moves, so it is less disturbed by the environment.
  • the method of using acceleration and angular velocity sensors because the vehicle itself is also moving, will bring changes in acceleration and angular velocity, which is easy to cause false detection.
  • the sensing device described above in the embodiment of the present invention may not require continuous detection, has low system requirements, and is easy to do with low power consumption.
  • FIG. 12 is a schematic structural diagram of an information processing device according to Embodiment 1 of the present invention.
  • the information processing device 110 of this embodiment may include: a processor 111 and a sensing device 112. among them,
  • a sensing device 112 is used to detect the state of the target detection object to output sensory data; the sensor device is located within a preset distance range of the target detection object in the vehicle and the sensor device is at least partially away from the Target detection object.
  • the processor 111 is configured to acquire the sensing data output by the sensing device, and determine the current state of the target detection object according to the sensing data.
  • the target detection object is a toggle light switch or a rotary light switch.
  • the rotary car light switch is the steering wheel of the vehicle.
  • the current state of the target detection object is toggle or rotate in the first direction, indicating that the left turn signal of the vehicle is turned on; or,
  • the current state of the target detection object is toggle or rotate in the second direction, indicating that the vehicle's right turn signal is on.
  • the current state of the target detection object is toggle or rotate in the third direction, instructing the vehicle to switch to turning on the high beam; or,
  • the current state of the target detection object is toggling or rotating in the fourth direction, instructing the vehicle to switch to turning on the low beam light.
  • the processor 111 is specifically used for:
  • the direction of turning or rotating the target object is determined according to the relative change trend.
  • the processor 111 is specifically used for:
  • the current state of the target detection object is determined according to the data encoding format of the sensor data and the correspondence between the preset data encoding format and the state of the target detection object.
  • the data encoding format of the sensor data is determined according to the dichotomy and/or binary method.
  • the processor 111 is specifically used to:
  • the current state of the target detection object is determined according to a preset number in the binary data, a binary feature bit at a preset value position, and a correspondence between the preset binary data and the state of the target detection object.
  • the binary data is determined by weighting and/or reordering binary feature bits in the binary data.
  • the sensing device 112 includes a Hall sensor device and a magnet.
  • the Hall sensor device is away from the target detection object, and the magnet is mounted on the target detection object; or, the Hall sensor device is installed on the target detection object, and the magnet is away from the target detection object.
  • the sensing data is three-axis magnetic induction data.
  • the processor 111 is specifically used for:
  • the directional characteristic data and the intensity characteristic data of the Hall sensor device are determined.
  • the current state of the target detection object is determined.
  • the sensing device 112 includes a distance sensor.
  • the distance sensor is installed at a position facing the target detection object at a preset distance from the target detection object, and the sensing data includes a distance between the distance sensor and the target detection object.
  • the distance sensor includes at least one of a proximity/near distance sensor, a time-of-flight TOF sensor, or an infrared IR sensor.
  • the distance sensor is installed on the steering wheel support seat of the vehicle or on the roof of the vehicle or on the instrument panel of the vehicle.
  • the sensing device 112 includes a rocker sensor and a connecting rod.
  • One end of the connecting rod is connected to the target detection object, the other end of the connecting rod is connected to the rocker sensor, and the rocker sensor is away from the target detection object.
  • the sensing data is a rotation angle of the target detection object.
  • the sensing device 112 is disposed at least partially away from the target detection object so that the sensing device 112 is at least partially disposed on the target detection object;
  • the processor 111 is specifically used for:
  • the relative positional relationship between the sensing device 112 and the object to be detected is determined.
  • the current state of the target test object is determined according to the relative positional relationship between the sensing device 112 and the test object, and the target test object can move relative to the test object.
  • the processor 111 determines the current state of the target detection object according to the relative position relationship between the sensing device 112 and the object to be detected, it is specifically used to:
  • the relative positional relationship between the sensing device 112 and the object to be detected is determined.
  • the current state of the target detection object is determined according to the relative positional relationship between the target detection object and the object to be detected.
  • the processor 111 is specifically used for:
  • the current state of the target detection object is determined according to the sensing data.
  • the apparatus of this embodiment may be used to execute the technical solution of the information processing method in each of the above method embodiments of the present invention, and its implementation principles and technical effects are similar, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种信息处理方法和装置,该方法包括:获取传感装置输出的传感数据,所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物,所述传感装置用于检测所述目标检测物的状态;根据所述传感数据,确定所述目标检测物的当前状态。实现通过传感装置来获取目标检测物的当前状态的目的,不需要将传感装置接入车辆的OBD接口上来读取CAN总线上的数据,也就不会影响车辆的正常驾驶。更不需要根据车辆的型号对CAN总线上的数据进行解析,简化了获取目标检测物的当前状态的过程。

Description

信息处理方法和装置 技术领域
本发明实施例涉及车辆技术领域,尤其涉及一种信息处理方法和装置。
背景技术
车道偏离预警系统是一种通过报警提醒的方式辅助驾驶员纠正无意识的车道偏离,避免因此导致交通事故的系统,属于高级驾驶辅助系统(Advanced Drive Assistance Systems,ADAS)系统的重要功能之一。车道偏离预警系统在确定驾驶员未打转向灯就偏离原车道时,能在偏离车道时立即发出警报,或震动方向盘以提醒驾驶员目前车辆偏离的状况,为驾驶员提供提前反应的时间,大大减少因疲劳驾驶等情况下车道发生意外偏离引发的碰撞事故。该系统也可通过语音提醒的方式,辅助驾驶员培养转向/变道时打转向灯的习惯。
其中,现有技术中确定驾驶员未打转向灯的一种方式为:在车辆的车载诊断系统(On-Board Diagnostic,OBD)接口上安装监听装置,对车辆的控制器局域网络(Controller Area Network,CAN)总线上的数据进行抓取及解析,从而确定驾驶员是否已打转向灯。
但是不同的车辆其内部的CAN协议不同,而且车辆厂商为了安全考虑对CAN总线上的数据进行了加密,因此,获取通过CAN总线获取数据的难度大且工作量大,效率低下。
发明内容
本发明实施例提供一种信息处理方法和装置,以便于及时获取目标检测物的当前状态。
第一方面,本发明实施例提供一种信息处理方法,应用于车辆中,包括:
获取传感装置输出的传感数据,所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物,所述传感装置用于检测所述目标检测物的状态;
根据所述传感数据,确定所述目标检测物的当前状态。
第二方面,本发明实施例提供一种信息处理装置,应用于车辆中,包括:处理器和传感装置;
所述传感装置,用于检测目标检测物的状态,以输出传感数据;所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物;
所述处理器,用于获取所述传感装置输出的传感数据,根据所述传感数据,确定所述目标检测物的当前状态。
第三方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行第一方面本发明实施例所述的信息处理方法。
第四方面,本发明实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现第一方面本发明实施例所述的信息处理方法。
本发明实施例提供的信息处理方法和装置,通过获取传感装置输出的传感数据,其中,传感装置位于车辆中目标检测物的预设距离范围内且传感装置至少部分远离目标检测物,传感装置用于检测目标检测物的状态,根据所述传感数据,确定所述目标检测物的当前状态。其中,由于传感装置体积小,便于安装,同时也不需要将传感装置接入车辆的OBD接口上来读取CAN总线上的数据,也就不会影响车辆的正常驾驶。更不需要根据车辆的型号对CAN总线上的数据进行解析,也就无需考虑不同车辆的CAN协议的不同导致的CAN上的数据的获取难度,简化了获取目标检测物的当前状态的过程,适用性更广。并且,由于传感装置的特性,使得可以及时获取目标检测物的当前状态,从而使驾驶员及时掌握车辆的状态,提高了车辆安全系数。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的信息处理方法的流程图;
图2为本发明一实施例提供的传感装置安装图的正视图;
图3为本发明一实施例提供的传感装置安装图的侧视图;
图4为本发明一实施例提供的霍尔传感器装置的结构框图;
图5为本发明一实施例提供的接近/近距离传感器的安装示意图;
图6为本发明一实施例提供的TOF传感器的安装示意图;
图7为本发明另一实施例提供的TOF传感器的安装示意图;
图8为本发明另一实施例提供的TOF传感器的安装示意图;
图9为本发明另一实施例提供的TOF传感器的安装示意图;
图10为本发明一实施例提供的摇杆传感器和连杆安装图的正视图;
图11为本发明一实施例提供的摇杆传感器和连杆安装图的侧视图;
图12为本发明一实施例提供的信息处理装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一实施例提供的信息处理方法的流程图,如图1所示,本实施例的方法可以包括:
S101、获取传感装置输出的传感数据。
本实施例中,传感装置位于车辆中目标检测物的预设距离范围内且传感装置至少部分远离目标检测物,传感装置用于检测车辆中目标检测物的状态。其中,传感装置输出的传感数据与车辆中目标检测物的状态有关,因此传感装置会输出与车辆中目标检测物的状态对应的传感数据。以目标检测物为雨刷为例,雨刷的状态发生变化时,传感装置会输出与雨刷的状态相应的传感数据。又以目标检测物为手刹为例,手刹的状态发生变化时,传感装置会输出与手刹的状态相应的传感数据。再以目标检测物为拨杆式车灯开关或旋转式车灯开关为例,当拨杆式车灯开关或旋转式车灯开关的状态改变时,传感 装置获取与拨杆式车灯开关或旋转式车灯开关状态对应的传感数据。其中,可选的,旋转式车灯开关为车辆的方向盘。
S102、根据所述传感数据,确定所述目标检测物的当前状态。
本实施例中,例如可预先建立目标检测物的状态与传感装置输出的传感数据的对应关系,即传感装置输出的传感数据与目标检测物的状态对应,从而根据传感装置输出的传感数据以及目标检测物的状态与传感数据的对应关系,确定目标检测物的当前状态。其中,当前状态为传感装置当前输出的传感数据对应的状态。例如,雨刷没有工作时的状态与用来检测雨刷状态的传感装置输出的第一传感数据对应,雨刷的手动动作状态与其输出的第二传感数据对应,雨刷的自动间歇工作状态与其输出的第三传感数据对应。因此,当检测雨刷状态的传感装置当前输出的传感数据为第三传感数据时,则说明雨刷当前的状态为自动间歇工作状态。又例如,手刹被拉起时的状态与检测手刹状态的传感装置输出的第一传感数据对应,手刹被松开时的状态与其输出的第二传感数据对应。因此,当检测手刹状态的传感装置当前输出的传感数据为第一传感数据时,可确定手刹当前的状态为被拉起。再例如,当目标检测物为拨杆式车灯开关或旋转式车灯开关时,目标检测物向第一方向拨动或旋转,指示车辆左转向灯开启时,用于检测拨杆式车灯开关或旋转式车灯开关状态的传感装置输出的传感数据为第一传感数据;目标检测物向第二方向拨动或旋转,指示车辆右转向灯开启时,该传感装置输出的传感数据为第二传感数据;目标检测物向第三方向拨动或旋转,指示车辆切换至开启远光灯时,该传感装置输出的传感数据为第三传感数据;目标检测物向第四方向拨动或旋转,指示车辆切换至开启近光灯时,该传感装置输出的传感数据为第四传感数据。因此,当传感装置输出的传感数据为第三传感数据时,可以确定拨杆式车灯开关或旋转式车灯开关的当前状态为向第三方向拨动或旋转,指示车辆切换至开启远光灯。
本实施例提供的信息处理方法,通过获取传感装置输出的传感数据,其中,传感装置位于车辆中目标检测物的预设距离范围内且传感装置至少部分远离目标检测物,传感装置用于检测目标检测物的状态,根据所述传感数据,确定所述目标检测物的当前状态。其中,由于传感装置体积小,便于安装,同时也不需要将传感装置接入车辆的OBD接口上来读取CAN总线上的数 据,也就不会影响车辆的正常驾驶。并且,传感装置不用接入到车辆的OBD接口上,不会对车辆的电子系统造成干扰。更不需要根据车辆的型号对CAN总线上的数据进行解析,也就无需考虑不同车辆的CAN协议的不同导致的CAN上的数据的获取难度,简化了获取目标检测物的当前状态的过程,适用性更广。并且,由于传感装置的特性,不仅使得可以及时获取目标检测物的当前状态,从而使驾驶员及时掌握车辆的状态,提高了车辆安全系数,而且,传感装置输出的传感数据可直接表示目标检测物的当前状态,传感装置无需连续工作,功耗较低,增加了传感装置的续航能力。
在一些实施例中,在传感数据超出预设范围时,执行上述S102。
本实施例中,预设范围例如可以是用于对传感装置当前输出的传感数据相比上一次输出的传感数据的变化量进行衡量的范围。这是因为传感数据发生改变并不一定就说明目标检测物的状态发生改变,也可能是由其他原因引起的传感数据的改变。例如,由于车辆在行驶过程中存在震动的现象,而传感装置安装在车辆上,因此,车辆在行驶过程中时,即使目标检测物的状态没有发生改变,但是由于车辆的震动,传感装置输出的传输数据也会发生变化,从而导致错误的判断目标检测物的当前状态。因此,在根据传感数据,确定目标检测物的当前状态前,可以判断传感数据是否处于预设范围内,当传感数据处于预设范围外时,说明传感数据发生变化是由目标检测物状态的变化引起的,此时,根据传感数据,确定目标检测物的当前状态。当传感数据处于预设范围内时,说明传感数据发生变化是由车辆的震动引起的,而实际上目标检测物的状态没有发生变化,此时,不必根据传感数据,确定目标检测物的当前状态。从而不仅可以避免判断目标检测物的当前状态时出现的误差,也可以避免频繁的占用车辆上的处理资源。
另外,预设范围例如还可以是确定目标检测物的各状态时对应的传感数据的最小值。在根据传感数据,确定目标检测物的当前状态前,需要判断传感装置当前输出的传感数据是否超过可以确定目标检测物的各状态时对应的传感数据的最小值。当传感装置当前输出的传感数据超过预设范围时,说明此时目标检测物的当前状态发生变化,根据传感装置当前输出的传感数据以及目标检测物的各状态对应的传感数据的最小值,可以确定目标检测物的当前状态。
其中,预设范围与目标检测物的各状态对应,即目标检测物的每个状态对应一个预设范围。需要说明的是,预设范围在初始化时进行设定,初始化可以在每次车辆启动时初始化一次,也可以只在车辆第一次启动时初始化,其中,初始化后设定的预设范围可以被记录下来。另外,在初始化时,需要根据目标检测物的参考状态对应的数值确定目标检测物的每个状态对应的预设范围,其中,目标检测物的参考状态不同,确定目标检测物的每个状态对应的预设范围也不同。其中,目标检测物的参考状态例如可以是目标检测物处于初始位置的初始状态,还可以是目标检测物各状态中的其中任一状态。例如,当目标检测物为拨杆式车灯开关时,目标检测物的参考状态可以是拨杆式车灯开关位于初始状态,初始状态为拨杆式车灯开关位于中间位置时对应的状态,也可以是拨杆式车灯开关位于第一方向、第二方向、第三方向以及第四方向中任意一个方向时对应的状态。
在一些实施例中,将传感装置至少部分远离目标检测物设置为传感装置至少部分设于目标检测物上;S102的一种可能的实现方式为:
根据所述传感数据,确定所述传感装置与待检测物之间的相对位置关系;根据所述传感装置与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态,所述目标检测物能够相对于所述待检测物相对运动。
本实施例中,通过传感装置与待检测物之间的相对位置关系反映目标检测物的当前状态。
在一些实施例中,根据所述相对位置关系确定所述目标检测物的当前状态,所述传感装置至少部分设于所述目标检测物上,包括:
根据所述传感装置与所述待检测物之间的相对位置关系,确定所述目标检测物与所述待检测物之间的相对位置关系;根据所述目标检测物与所述待检测物之间的相对位置关系,确定所述目标检测物的当前状态。
在一些实施例中,所述待检测物为车辆顶棚或者车辆仪表盘。
本实施例中,目标检测物相对待检测物是能够运动的,待检测物可以作为目标检测物是否发生运动的参考物。本实施例以目标检测物为拨杆式车灯开关为例进行说明。
由于车辆顶棚或者车辆仪表盘的位置不会随着拨杆式车灯开关的状态改变而改变。因此,将传感装置安装于拨杆式车灯开关上时,可以选择车辆顶 棚或者车辆仪表盘为待检测物。
例如,当传感装置为霍尔传感器装置和磁铁时,霍尔传感器装置固定安装在拨杆式车灯开关上,磁铁固定安装在车辆仪表盘上,或者磁铁固定安装在拨杆式车灯开关上,霍尔传感器装置固定安装在车辆仪表盘上,当拨杆式车灯开关的状态发生变化时,由于霍尔传感器装置所处的磁场发生变化,传感装置输出的传感数据会发生变化。此时,能够确定传感装置(即霍尔传感器装置和磁铁)与车辆顶棚或者车辆仪表盘之间的相对位置关系。由于车辆顶棚或者车辆仪表盘相对于拨杆式车灯开关来说,是固定安装在车辆上的,因此,可以确定传感数据发生变化是由拨杆式车灯开关状态发生变化引起的,从而根据拨杆式车灯开关与车辆顶棚或者车辆仪表盘之间的相对位置关系,可以确定拨杆式车灯开关的当前状态。
例如,当传感装置为距离传感器时,将距离传感器安装在拨杆式车灯开关上,通过距离传感器检测距离传感器与车辆顶棚或者车辆仪表盘之间的距离。当拨杆式车灯开关的状态发生变化时,距离传感器输出的传感数据会发生变化。此时,可以确定距离传感器与车辆顶棚或者车辆仪表盘之间的相对位置关系。由于车辆顶棚或者车辆仪表盘相对于拨杆式车灯开关来说,是固定安装在车辆上的,因此,可以确定传感数据发生变化是由拨杆式车灯开关状态发生变化引起的,从而根据拨杆式车灯开关与车辆顶棚或者车辆仪表盘之间的相对位置关系,可以确定拨杆式车灯开关的当前状态。
本实施例,根据传感装置与待检测物之间的相对位置关系,确定目标检测物的当前状态,而相对位置可以更清楚的表明传感装置与目标检测物之间位置关系,因此,根据相对位置关系可以更准确地确定目标检测物的当前状态。
其中,传感装置与待检测物之间的相对位置关系的变化的确定方式,可以参考下述实施例的相应内容,例如,利用传感数据的大小的相对变化趋势确定传感装置与待检测物之间的相对位置关系的变化,又例如,利用传感数据的数据编码格式确定传感装置与待检测物之间的相对位置关系的变化,此处不再赘述。
在一些实施例中,以目标检测物为拨杆式车灯开关或旋转式车灯开关为例,S102的一种可能的实现方式为:确定传感数据的大小的相对变化趋势; 根据相对变化趋势确定目标检测物的拨动方向或旋转方向。
本实施例中,当拨杆式车灯开关被拨动或旋转式车灯开关被旋转时,随着拨杆式车灯开关被拨动或旋转式车灯开关被旋转,传感装置输出的传感数据逐渐变化。其中,拨杆式车灯开关被拨动或旋转式车灯开关被拨动被旋转的方向不同,传感装置输出的传感数据的大小的逐渐变化的趋势不同。从而根据传感装置输出的传感数据的逐渐变化的趋势,确定拨杆式车灯开关的拨动方向或旋转式车灯开关的旋转方向。
具体的,在根据传感数据的大小的相对变化趋势确定目标检测物的拨动方向或旋转方向之前,可以进行初始化处理,以获得传感数据的大小的相对变化趋势的参考基准。例如,以拨杆式车灯开关的位置处于中间位置时为初始状态,在进行初始化时,分别记录拨杆式车灯开关从初始状态向第一方向拨动时,传感装置输出的传感数据的大小逐渐变化,该传感数据的大小逐渐变化的趋势与第一方向对应;记录拨杆式车灯开关从初始状态向第二方向拨动时,传感装置输出的传感数据的大小逐渐变化,该传感数据的大小逐渐变化的趋势与第二方向对应;记录拨杆式车灯开关从初始状态向第三方向拨动时,传感装置输出的传感数据的大小逐渐变化,该传感数据的大小逐渐变化的趋势与第三方向对应;记录拨杆式车灯开关从初始状态向第四方向拨动时,传感装置输出的传感数据的大小逐渐变化,该传感数据的大小逐渐变化的趋势与第四方向对应。在传感装置输出传感数据后,将传感装置输出的传感数据的大小的逐渐变化的趋势与上述四个方向对应的传感数据的大小的逐渐变化的趋势进行比较,从而根据传感数据的大小的逐渐变化的趋势确定拨杆式车灯开关的当前状态。当然,可以理解,在进行初始化处或应用传感数据的变化趋势理时,也可以考虑传感数据的方向变化趋势,即传感数据作为矢量数据进行处理。
在一些实施例中,以目标检测物为拨杆式车灯开关或旋转式车灯开关为例,S102的另一种可能的实现方式为:根据传感数据的数据编码格式,以及预设的数据编码与目标检测物的状态之间的对应关系,确定目标检测物的当前状态。
具体的,通过传感装置获得拨杆式车灯开关向第一方向拨动或旋转式车灯开关向第一方向旋转、拨杆式车灯开关向第二方向拨动或旋转式车灯开关 向第二方向旋转、拨杆式车灯开关向第三方向拨动或旋转式车灯开关向第三方向旋转、拨杆式车灯开关向第四方向拨动或旋转式车灯开关向第四方向旋转时的传感数据。其中,传感数据的数据编码格式与拨杆式车灯开关的拨动方向或旋转式车灯开关的旋转方向有关,从而针对每个拨杆式车灯开关的拨动方向或旋转式车灯开关的旋转方向,确定与之相应的数据编码格式。
当拨杆式车灯开关或旋转式车灯开关的状态改变后,由于传感装置输出的传感数据的数据编码格式与拨杆式车灯开关或旋转式车灯开关改变后的状态有关,则根据传感装置输出的传感数据的数据编码格式以及确定的数据编码与拨杆式车灯开关或旋转式车灯开关的状态之间的对应关系,确定拨杆式车灯开关或旋转式车灯开关的当前状态。
可选的,传感数据的数据编码格式为根据二分法和/或二进制法确定。
在一些实施例中,当传感数据为二进制数据时,根据传感数据的数据编码格式,以及预设的数据编码格式与目标检测物的状态之间的对应关系,确定目标检测物的当前状态,包括:
根据二进制数据中预设数量、预设数值位置的二进制特征位,以及预设的二进制数据与目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
本实施例中,传感装置输出拨杆式车灯开关向第一方向拨动或旋转式车灯开关向第一方向旋转、拨杆式车灯开关向第二方向拨动或旋转式车灯开关向第二方向旋转、拨杆式车灯开关向第三方向拨动或旋转式车灯开关向第三方向旋转、拨杆式车灯开关向第四方向拨动或旋转式车灯开关向第四方向旋转时的传感数据,并根据拨杆式车灯开关拨动方向或旋转式车灯开关旋转方向,确定与之相应的使用二进制表示的传感数据。其中,表示传感数据的二进制数据中的预设数量、预设数值位置的二进制特征位与拨杆式车灯开关或旋转式车灯开关的当前状态有关。将确定的拨杆式车灯开关或旋转式车灯开关处于不同状态下的与传感数据对应的二进制数据,记为预设的二进制数据。
当拨杆式车灯开关或旋转式车灯开关的状态发生变化时,传感装置输出与拨杆式车灯开关或旋转式车灯开关变化后的状态对应的传感数据,并获得该传感数据的二进制数据,根据该二进制数据中的预设数量、预设数值位置的二进制特征位以及预设的二进制数据与拨杆式车灯开关或旋转式车灯开关 的状态之间的对应关系,确定拨杆式车灯开关或旋转式车灯开关的当前状态。
可选的,二进制数据为对二进制数据中的二进制特征位进行权重化和/或重排序确定。从而使得在将拨杆式车灯开关或旋转式车灯开关的当前状态对应的二进制数据与确定与拨杆式车灯开关或旋转式车灯开关的状态对应的二进制数据匹配时,如果一些重要二进制位不匹配,则可提前终止,提高了匹配效率。
下面,以目标检测物为拨杆式车灯开关为例,详细描述利用传感装置实现车辆灯光操作状态检测的方法和过程。
在一些实施例中,图2为本发明一实施例提供的传感装置安装图的正视图,图3为本发明一实施例提供的传感装置安装图的侧视图。如图2和图3所示,传感装置包括:霍尔传感器装置10和磁铁20。
以目标检测物为拨杆式车灯开关30为例,霍尔传感器装置10远离拨杆式车灯开关30,磁铁20安装于拨杆式车灯开关30上;或者,霍尔传感器装置10安装于拨杆式车灯开关30上,磁铁20远离拨杆式车灯开关30。其中,图2和图3示出的安装方式为霍尔传感器装置10远离拨杆式车灯开关30,磁铁20安装于拨杆式车灯开关30上。
例如,磁铁20固定安装在拨杆式车灯开关30上,霍尔传感器装置10固定安装在方向盘支撑座40上,以避免霍尔传感器装置10和磁铁20本身的状态改变而带来的误差。其中,本发明实施例不限制固定安装的方式。
可选的,传感数据为三轴磁感应数据;
其中,根据传感数据,确定目标检测物的当前状态的一种可能的实现方式为:
根据三轴磁感应数据,确定霍尔传感器装置10的方向特征数据和强度特征数据;
根据方向特征数据和强度特征数据,确定目标检测物的当前状态。
例如,三轴磁感应数据为X-Y-Z轴方向的磁感应强度。
图4为本发明一实施例提供的霍尔传感器装置的结构框图。如图4所示,例如霍尔传感器装置10可以包括霍尔传感器11、控制单元12、数据发送单元13以及电源单元14。
本实施例中,霍尔传感器装置10位于磁铁20产生的磁场中,霍尔传感 器11能够测量霍尔传感器装置10所处的磁场中的三轴磁感应数据,例如X-Y-Z轴方向的磁感应强度。其中,本实施例以三轴磁感应数据为X-Y-Z轴方向的磁感应强度为例进行说明,磁感应强度可以包括磁感应强度的方向和对应每个方向的磁感应强度的大小。控制单元12能够从霍尔传感器11读出X-Y-Z轴方向的磁感应强度,再由数据发送单元13输出X-Y-Z轴方向的磁感应强度。其中,控制单元12例如可以为低功耗微控制单元(Microcontroller Unit,MCU),其可为通用MCU或包含无线模块的BLE MCU/Zigbee控制器;数据发送单元13可以通过无线方式发送数据,也可以通过有线方式发送数据。电源单元14为霍尔传感器11、控制单元12、数据发送单元13提供电源。其中,电源单元14由系统电源提供电能,系统电源可以是可充电锂电池或纽扣电池。
如图3所示,拨杆式车灯开关30向第一方向拨动时,代表开启左转向灯;拨杆式车灯开关30向第二方向拨动时,代表开启右转向灯;拨杆式车灯开关30向第三方向拨动时,代表车辆灯光切换到近光灯;拨杆式车灯开关30向第四方向拨动时,代表车辆灯光切换到远光灯。又例如,杆式车灯开关30向第一方向拨动时,代表开启左转向灯;拨杆式车灯开关30向第二方向拨动时,代表开启右转向灯;拨杆式车灯开关30向第三方向拨动以及第四方向拨动时,都代表车辆灯光切换到远光灯,或者,可以理解为,拨杆式车灯开关30远离中间位置时,默认是向第三方向拨动;当拨杆式车灯开关30从第三方向或第四方向回到中间位置时,表示车辆灯光切换到近光灯,或者,可以理解为,拨杆式车灯开关30靠近中间位置时,默认是向第四方向拨动。其中,本发明以图3所示的拨杆式车灯开关拨动方向与车辆灯光的关系为例进行描述。
当拨杆式车灯开关30的状态变化时,会导致安装在拨杆式车灯开关30上的磁铁20的位置变化,磁铁20产生的磁场在空间中的分布发生变化,从而导致霍尔传感器11测量得到X-Y-Z轴上的磁感应强度分别发生变化。通过对拨杆式车灯开关30切换到各个状态时霍尔传感器11测量得到的X-Y-Z轴的磁感应强度进行记录和分析,能够通过测量到的磁感应强度数据分析得到拨杆式车灯开关30的状态。
其中,在传感装置使用/开机时,若识别到是第一次开机,则建立拨杆式 车灯开关30与霍尔传感器装置10输出的传感数据之间的对应关系。即测量拨杆式车灯开关30处于每个状态下的传感数据,获取传感数据的中的方向数据和大小数据。然后,对传感数据的中的方向数据和大小数据特征化,获得方向特征数据、强度特征数据,并且,可以对方向特征数据、强度特征数据进行二值化,获得二值化后的方向特征数据、强度特征数据。最后将拨杆式车灯开关30处于每个状态下的传感数据进行无损压缩存储,从而在以后根据传感装置输出的传感数据确定拨杆式车灯开关30的当前状态时,仍然可以将传感数据输出的传感数据与初始化时存储的拨杆式车灯开关30在每个状态下的传感数据进行比较,确定拨杆式车灯开关30的当前状态,而不必每次开机时都进行初始化,从而节省了时间。
在车辆行驶过程中,按照上述方式对霍尔传感器装置10输出的传感数据进行特征化和二值化,当霍尔传感器装置10输出的传感数据进行特征化和二值化后的方向特征数据、强度特征数据前后时刻不匹配时,说明拨杆式车灯开关30状态有变化。然后将特征化和二值化后的方向特征数据、强度特征数据与存储的拨杆式车灯开关30处于不同状态下的特征化和二值化后的方向特征数据、强度特征数据进行匹配,从而获得拨杆式车灯开关30的当前状态。
其中,当三轴磁感应数据为X-Y-Z轴的磁感应强度时,X-Y-Z轴的磁感应强度为τ xyz,其中,方向特征数据首先获取三个角度,即<τ xy>、<τ yz>、<τ x,τz>,然后将角度用预设编码方式进行编码。这种预设编码方式可以利用二分法,以有效保留角度的原始信息。例如,α为23°,那么首先它属于[0°,180°],则前两位二进制是01,接着二分后它属于[-90°,0°],那么接下来的二进制是10,以此类推获得α的二进制表示的方向特征数据,例如为:0110100110…。考虑到计算的实时性,这里将编码表与对应的角度或是余弦值提前计算并存储值数据库,实际使用时直接索引。这样获得的方向特征数据的数目为3×18=54,其中编码方式可以重点选择后面的细分位来压缩数目,角度特征为3N个二进制值,其中N为角度编码量。
而考虑到强度需要归一化处理,可以将强度特征数据分为绝对强度特征数据及相对强度特征数据。这两种特征唯一的不同点是参考的最大强度值不同。相对强度特征数据选取X-Y-Z轴的磁感应强度τ xyz中最大的强度值,即max(τ xyz),并将最大的强度值归一化为10个二进制位,其它分量以此 为参考,从而获得3×10=30个二进制特征值。例如:X-Y-Z轴的磁感应强度τ xyz中<τ xyz>=<0.1τ z,0.5τ zz>,则X-Y-Z轴的磁感应强度τ xyz的结果分别为:1000000000、1111100000、1111111111。绝对强度特征数据则选取数据库中最大的强度值,并进行相同的计算。最后强度特征为6M个二进制值,其中M为强度的量化量。
综上,霍尔传感器装置10获得的X-Y-Z轴的磁感应强度最终被编码为3N+6M个二进制特征。
利用上述编码方法对霍尔传感器装置10测量X-Y-Z轴的磁感应强度进行特征化后的方向特征数据和强度特征数据进行编码,获得二进制表示的方向特征数据和强度特征数据。示例性的,对前后时刻的方向特征数据和强度特征数据进行匹配时,以及将拨杆式车灯开关30的当前状态对应的方向特征数据和强度特征数据与数据库中的方向特征数据和强度特征数据匹配时,可以使用诸如欧氏距离或汉明距离进行匹配。其中,在利用上述编码方法对霍尔传感器装置10测量X-Y-Z轴的磁感应强度进行特征化后的方向特征数据和强度特征数据进行编码,获得二进制表示的方向特征数据和强度特征数据后,可以对二进制特征为进行权重化或排序,从而可以使得在后续将利用上述编码方法获得的二进制表示的传感装置输出的传感数据与存储的方向特征数据和强度特征数据匹配时,一旦一些重要的特征为不匹配,可以提前终止匹配,从而提高了匹配效率。
可选的,数据库可采用KD-tree存储方式,在匹配方向特征数据和强度特征数据时,可极大加速匹配算法的速度。
本实施例,通过将霍尔传感器装置和磁铁中的其中之一远离拨杆式车灯开关安装,另一个安装于拨杆式车灯开关上,通过霍尔传感器装置测量X-Y-Z轴方向的磁感应强度,而X-Y-Z轴方向的磁感应强度主要由磁铁相对于霍尔传感器装置的位置及角度决定。当拨杆式车灯开关的状态发生变化时,即霍尔传感器装置或磁铁的位置发生变化时,磁铁相对于霍尔传感器装置的位置及角度也变化,引起霍尔传感器装置测量到的X-Y-Z轴方向的磁感应强度发生变化,从而实现根据变化后的X-Y-Z轴方向的磁感应强度,确定拨杆式车灯开关的当前状态的目的。并且,霍尔传感器装置直接测量X-Y-Z轴方向的磁感应强度,在使用环境下,由于磁感应强度的分布只与磁铁的特性及位置 有关系而环境中的磁感应强度相比于磁铁产生的磁感应强度小很多,因此本传感装置受环境带来的干扰小,从而可以更准确地确定拨杆式车灯开关的当前状态。
在一些实施例中,以目标检测物为拨杆式车灯开关为例,传感装置包括:距离传感器;
距离传感器安装于正对目标检测物且距离目标检测物预设距离的位置,传感数据包括距离传感器与目标检测物之间的距离。
可选的,距离传感器包括:接近/近距离传感器、飞行时间(Time of flight,TOF)传感器或者红外线(Infrared Radiation,IR)传感器中的至少一种。
图5为本发明一实施例提供的接近/近距离传感器的安装示意图。如图5所示,接近/近距离传感器50正对拨杆式车灯开关30安装,接近/近距离传感器50测量拨杆式车灯开关30到接近/近距离传感器50之间的距离。通过分析拨杆式车灯开关30在不同状态下的测量的距离,确定拨杆式车灯开关30的当前状态。
图6为本发明一实施例提供的TOF传感器的安装示意图。如图6所示,TOF传感器60的安装方式与图5所示的接近/近距离传感器50的安装方式相同,只需要将接近/近距离传感器50改为TOF传感器60。
图7为本发明另一实施例提供的TOF传感器的安装示意图。如图7所示,TOF传感器60安装于车辆的方向盘支撑座上。该安装方式下,由于车辆的方向盘支撑座的位置固定,TOF传感器60安装在车辆的方向盘支撑座上时,不会出现由于TOF传感器60的位置发生变化而使TOF传感器60输出的传感数据发生变化。因此,可以确定TOF传感器60检测到的距离发生变化的情况是由拨杆式车灯开关30的状态发生变化引起的。因此,将TOF传感器60安装于车辆的方向盘支撑座上,当拨杆式车灯开关30状态变化时,TOF传感器60检测到距离传感器与状态变化后的拨杆式车灯开关30之间的距离,根据距离的变化确定拨杆式车灯开关30的当前状态。当拨杆式车灯开关30向下移时,TOF传感器60测量到拨杆式车灯开关30与TOF传感器60逐渐的距离增大;当拨杆式车灯开关30向上移时,TOF传感器60测量到拨杆式车灯开关30与TOF传感器60逐渐的距离减小,从而确定拨杆式车灯开关30的当前状态。
图8为本发明另一实施例提供的TOF传感器的安装示意图。如图8所示,本实施例中,待检测物为车辆顶棚,TOF传感器60固定安装在拨杆式车灯开关30上。测量TOF传感器60与车辆顶棚之间的距离,由于车辆顶棚相对于拨杆式车灯开关30来说,是固定安装在车辆上的,当TOF传感器60与车辆顶棚之间的距离发生变化时,可以确定TOF传感器60与车辆顶棚之间的距离发生变化是由拨杆式车灯开关30的状态发生变化引起的。因此,可以通过测量TOF传感器60与车辆顶棚之间的距离的变化确定拨杆式车灯开关30的当前状态。其中,可以记录拨杆式车灯开关30在不同状态下,TOF传感器60测量得到的测量值作为参考,通过将TOF传感器60当前测量得到的测量值与参考值比较,确定拨杆式车灯开关30的当前状态。
图9为本发明另一实施例提供的TOF传感器的安装示意图。如图9所示,本实施例中,待检测物为车辆仪表盘,TOF传感器60固定安装在拨杆式车灯开关30上,测量TOF传感器60与车辆仪表盘之间的距离,同样的,由于车辆仪表盘相对于拨杆式车灯开关30来说,是固定安装在车辆上的,当TOF传感器60与车辆仪表盘之间的距离发生变化时,可以确定TOF传感器60与车辆仪表盘之间的距离发生变化是由拨杆式车灯开关30的状态发生变化引起的。因此,可以通过测量TOF传感器60与车辆仪表盘之间的距离的变化确定拨杆式车灯开关30的当前状态。其中,可以记录拨杆式车灯开关30在不同状态下,TOF传感器60测量的得到测量值,并将其作为参考值,通过将TOF传感器60当前测量得到的测量值与参考值比较,确定拨杆式车灯开关30的当前状态。
在一些实施例中,传感装置包括:摇杆传感器70和连杆80。
连杆80的一端与目标检测物连接,连杆80的另一端与摇杆传感器70连接,且摇杆传感器70远离目标检测物。
可选的,传感数据为目标检测物的转动角度。
图10为本发明一实施例提供的摇杆传感器和连杆安装图的正视图,图11为本发明一实施例提供的摇杆传感器和连杆安装图的侧视图。如图10和图11所示,连杆80的一端固定安装在拨杆式车灯开关30上,拨杆式车灯开关30通过连杆80的另一端与摇杆传感器70连接,且摇杆传感器70与拨杆式车灯开关30不接触。当拨杆式车灯开关30的状态改变时,连杆80带动摇 杆传感器70的位置发生变化,摇杆传感器70能够测量并输出拨杆式车灯开关30两个不同方向的转动角度。记录拨杆式车灯开关30切换到各状态时,摇杆传感器70测量的得到转动角度,将其作为参考值,通过摇杆传感器70当前测量得到的测量值与参考值比较,确定拨杆式车灯开关30的当前状态。
进一步的,在根据本发明上述各实施例提供的方法确定目标检测物的当前状态后,可以向车辆驾驶人员提示目标检测物的当前状态,从而使驾驶人员注意此时车辆的行驶状况。例如,车辆当前的实际行驶状况是否与提示的目标检测物的当前状态指示的车辆当前的行驶状况一致。如果不一致,则向驾驶人员提示目标检测物的当前状态,引起驾驶人员的注意。其中,可以通过诸如语音的方式向驾驶人员提示,以实现安全驾驶。
综上,本发明实施例可以具有以下效果:
1、本发明实施例是通过使用传感装置对目标检测物的状态进行测量来获取车辆的操作状态,因此无需读取车辆通信总线数据,从而不需对车辆协议进行分析破解。同时,以拨杆式车灯开关为例,由于车辆灯光操作的方式进行改变的可能性低,因此不需要对检测方式进行更新升级;
2、本发明实施例中用于检测的传感装置体积小,对安装要求低,安装简便,用户可自行安装或拆装,不干扰正常驾驶,安装位置隐蔽。以霍尔传感器装置和磁体为例,由于霍尔传感装置及磁铁由于体积小质量轻,且磁铁和霍尔传感装置之间不要求严格的相对位置关系,且可以通过多种方式(包括粘贴、捆绑等)进行安装固定,不需要对车辆部件进行拆装,因此安装要求低;且由于霍尔传感装置或磁体的安装位置可以位于车辆的方向支撑座上,安装位置较为隐蔽;同时,由于磁铁、霍尔传感装置不与驾驶员需要操作的设备存在机械连接,因此不会干扰正常驾驶。
3、本发明实施例不需要将传感装置安装到车辆的CAN总线上,同时也不需要车辆的电源进行供电,同车辆的系统物理隔绝,独立于车辆的电子系统运行,因此产生干扰的可能性较低;
4、本发明实施例是利用传感装置直接对拨杆状态进行测量,环境带来的干扰小,检测错误率低。例如,霍尔传感装置可以直接测量磁感应强度,在使用环境下,磁感应强度的分布只与磁铁的特性及位置有关系,环境中磁感应强度相比于磁铁产生的磁感应强度小很多,且不用考虑车辆的本身运动, 因此受环境带来的干扰小。相反,使用加速度、角速度传感器的方法,由于车辆本身也是运动的,由此会带来加速度和角速度的改变,易造成误检测。
5、本发明实施例中上述说明的传感装置可以不要求连续检测,对系统要求低,易做低功耗。
图12为本发明实施例一提供的信息处理装置的结构示意图,如图12所示,本实施例的信息处理装置110可以包括:处理器111和传感装置112。其中,
传感装置112,用于检测目标检测物的状态,以输出传感数据;所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物。
处理器111,用于获取所述传感装置输出的传感数据,根据所述传感数据,确定所述目标检测物的当前状态。
可选的,所述目标检测物为拨杆式车灯开关或旋转式车灯开关。
可选的,所述旋转式车灯开关为所述车辆的方向盘。
可选的,所述目标检测物的当前状态为向第一方向拨动或旋转,指示车辆左转向灯开启;或者,
所述目标检测物的当前状态为向第二方向拨动或旋转,指示车辆右转向灯开启。
可选的,所述目标检测物的当前状态为向第三方向拨动或旋转,指示车辆切换至开启远光灯;或者,
所述目标检测物的当前状态为向第四方向拨动或旋转,指示车辆切换至开启近光灯。
可选的,所述处理器111,具体用于:
确定所述传感数据的大小的相对变化趋势。
根据所述相对变化趋势确定所述目标检测物的拨动方向或旋转方向。
可选的,所述处理器111,具体用于:
根据所述传感数据的数据编码格式,以及预设的数据编码格式与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
可选的,所述传感数据的数据编码格式为根据二分法和/或二进制法确定。
可选的,当所述传感数据为二进制数据时,所述处理器111,具体用于:
根据所述二进制数据中预设数量、预设数值位置的二进制特征位,以及预设的二进制数据与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
可选的,所述二进制数据为对所述二进制数据中的二进制特征位进行权重化和/或重排序确定。
可选的,所述传感装置112包括:霍尔传感器装置和磁铁。
所述霍尔传感器装置远离所述目标检测物,所述磁铁安装于目标检测物上;或者,所述霍尔传感器装置安装于目标检测物上,所述磁铁远离所述目标检测物。
可选的,所述传感数据为三轴磁感应数据。
所述处理器111,具体用于:
根据所述三轴磁感应数据,确定所述霍尔传感器装置的方向特征数据和强度特征数据。
根据所述方向特征数据和所述强度特征数据,确定所述目标检测物的当前状态。
可选的,所述传感装置112包括:距离传感器。
所述距离传感器安装于正对所述目标检测物且距离所述目标检测物预设距离的位置,所述传感数据包括所述距离传感器与所述目标检测物之间的距离。
可选的,所述距离传感器包括:接近/近距离传感器、飞行时间TOF传感器或者红外线IR传感器中的至少一种。
可选的,所述距离传感器安装于所述车辆的方向盘支撑座上或所述车辆的顶棚上或所述车辆的仪表盘上。
可选的,所述传感装置112包括:摇杆传感器和连杆。
所述连杆的一端与所述目标检测物连接,所述连杆的另一端与所述摇杆传感器连接,且所述摇杆传感器远离所述目标检测物。
可选的,所述传感数据为所述目标检测物的转动角度。
可选的,将所述传感装置112至少部分远离所述目标检测物设置为所述传感装置112至少部分设于所述目标检测物上;
所述处理器111,具体用于:
根据所述传感数据,确定所述传感装置112与待检测物之间的相对位置关系。
根据所述传感装置112与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态,所述目标检测物能够相对于所述待检测物运动。
可选的,所述处理器111在根据所述传感装置112与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态时,具体用于:
根据所述传感装置112与所述待检测物之间的相对位置关系,确定所述目标检测物与所述待检测物之间的相对位置关系。
根据所述目标检测物与所述待检测物之间的相对位置关系,确定所述目标检测物的当前状态。
可选的,所述处理器111,具体用于:
在所述传感数据超出预设范围时,根据所述传感数据,确定所述目标检测物的当前状态。
本实施例的装置,可以用于执行本发明上述各方法实施例中信息处理方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (38)

  1. 一种信息处理方法,其特征在于,应用于车辆中,包括:
    获取传感装置输出的传感数据,所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物,所述传感装置用于检测所述目标检测物的状态;
    根据所述传感数据,确定所述目标检测物的当前状态。
  2. 根据权利要求1所述的方法,其特征在于,所述目标检测物为拨杆式车灯开关或旋转式车灯开关。
  3. 根据权利要求2所述的方法,其特征在于,所述目标检测物的当前状态为向第一方向拨动或旋转,指示车辆左转向灯开启;或者,
    所述目标检测物的当前状态为向第二方向拨动或旋转,指示车辆右转向灯开启。
  4. 根据权利要求2所述的方法,其特征在于,所述目标检测物的当前状态为向第三方向拨动或旋转,指示车辆切换至开启远光灯;或者,
    所述目标检测物的当前状态为向第四方向拨动或旋转,指示车辆切换至开启近光灯。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据所述传感数据,确定所述目标检测物的当前状态,包括:
    确定所述传感数据的大小的相对变化趋势;
    根据所述相对变化趋势确定所述目标检测物的拨动方向或旋转方向。
  6. 根据权利要求3或4所述的方法,其特征在于,所述根据所述传感数据,确定所述目标检测物的当前状态,包括:
    根据所述传感数据的数据编码格式,以及预设的数据编码格式与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
  7. 根据权利要求6所述的方法,其特征在于,所述传感数据的数据编码格式为根据二分法和/或二进制法确定。
  8. 根据权利要求7所述的方法,其特征在于,当所述传感数据为二进制数据时,所述根据所述传感数据的数据编码格式,以及预设的数据编码格式与目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态,包括:
    根据所述二进制数据中预设数量、预设数值位置的二进制特征位,以及预设的二进制数据与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
  9. 根据权利要求8所述的方法,其特征在于,所述二进制数据为对所述二进制数据中的二进制特征位进行权重化和/或重排序确定。
  10. 根据权利要求2所述的方法,其特征在于,所述传感装置包括:霍尔传感器装置和磁铁;
    所述霍尔传感器装置远离所述目标检测物,所述磁铁安装于目标检测物上;或者,所述霍尔传感器装置安装于目标检测物上,所述磁铁远离所述目标检测物。
  11. 根据权利要求10所述的方法,其特征在于,所述传感数据为三轴磁感应数据;
    所述根据所述传感数据,确定所述目标检测物的当前状态,包括:
    根据所述三轴磁感应数据,确定所述霍尔传感器装置的方向特征数据和强度特征数据;
    根据所述方向特征数据和所述强度特征数据,确定所述目标检测物的当前状态。
  12. 根据权利要求2所述的方法,其特征在于,所述传感装置包括:距离传感器;
    所述距离传感器安装于正对所述目标检测物且距离所述目标检测物预设距离的位置,所述传感数据包括所述距离传感器与所述目标检测物之间的距离。
  13. 根据权利要求12所述的方法,其特征在于,所述距离传感器包括:接近/近距离传感器、飞行时间TOF传感器或者红外线IR传感器中的至少一种。
  14. 根据权利要求12所述的方法,其特征在于,所述距离传感器安装于所述车辆的方向盘支撑座上或所述车辆的顶棚上或所述车辆的仪表盘上。
  15. 根据权利要求2所述的方法,其特征在于,所述传感装置包括:摇杆传感器和连杆;
    所述连杆的一端与所述目标检测物连接,所述连杆的另一端与所述摇杆 传感器连接,且所述摇杆传感器远离所述目标检测物。
  16. 根据权利要求15所述的方法,其特征在于,所述传感数据为所述目标检测物的转动角度。
  17. 根据权利要求1所述的方法,其特征在于,将所述传感装置至少部分远离所述目标检测物设置为所述传感装置至少部分设于所述目标检测物上;
    所述根据所述传感数据,确定所述目标检测物的当前状态,包括:
    根据所述传感数据,确定所述传感装置与待检测物之间的相对位置关系;
    根据所述传感装置与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态,所述目标检测物能够相对于所述待检测物运动。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述传感装置与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态,包括:
    根据所述传感装置与所述待检测物之间的相对位置关系,确定所述目标检测物与所述待检测物之间的相对位置关系;
    根据所述目标检测物与所述待检测物之间的相对位置关系,确定所述目标检测物的当前状态。
  19. 根据权利要求1所述的方法,其特征在于,所述根据所述传感数据,确定所述目标检测物的当前状态,包括:
    在所述传感数据超出预设范围时,根据所述传感数据,确定所述目标检测物的当前状态。
  20. 一种信息处理装置,其特征在于,应用于车辆中,包括:处理器和传感装置;
    所述传感装置,用于检测目标检测物的状态,以输出传感数据;所述传感装置位于所述车辆中目标检测物的预设距离范围内且所述传感装置至少部分远离所述目标检测物;
    所述处理器,用于获取所述传感装置输出的传感数据,根据所述传感数据,确定所述目标检测物的当前状态。
  21. 根据权利要求20所述的装置,其特征在于,所述目标检测物为拨杆式车灯开关或旋转式车灯开关。
  22. 根据权利要求21所述的装置,其特征在于,所述目标检测物的当前 状态为向第一方向拨动或旋转,指示车辆左转向灯开启;或者,
    所述目标检测物的当前状态为向第二方向拨动或旋转,指示车辆右转向灯开启。
  23. 根据权利要求21所述的装置,其特征在于,所述目标检测物的当前状态为向第三方向拨动或旋转,指示车辆切换至开启远光灯;或者,
    所述目标检测物的当前状态为向第四方向拨动或旋转,指示车辆切换至开启近光灯。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理器,具体用于:
    确定所述传感数据的大小的相对变化趋势;
    根据所述相对变化趋势确定所述目标检测物的拨动方向或旋转方向。
  25. 根据权利要求22或23所述的装置,其特征在于,所述处理器,具体用于:
    根据所述传感数据的数据编码格式,以及预设的数据编码格式与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
  26. 根据权利要求25所述的装置,其特征在于,所述传感数据的数据编码格式为根据二分法和/或二进制法确定。
  27. 根据权利要求26所述的装置,其特征在于,当所述传感数据为二进制数据时,所述处理器,具体用于:
    根据所述二进制数据中预设数量、预设数值位置的二进制特征位,以及预设的二进制数据与所述目标检测物的状态之间的对应关系,确定所述目标检测物的当前状态。
  28. 根据权利要求27所述的装置,其特征在于,所述二进制数据为对所述二进制数据中的二进制特征位进行权重化和/或重排序确定。
  29. 根据权利要求21所述的装置,其特征在于,所述传感装置包括:霍尔传感器装置和磁铁;
    所述霍尔传感器装置远离所述目标检测物,所述磁铁安装于目标检测物上;或者,所述霍尔传感器装置安装于目标检测物上,所述磁铁远离所述目标检测物。
  30. 根据权利要求29所述的装置,其特征在于,所述传感数据为三轴磁 感应数据;
    所述处理器,具体用于:
    根据所述三轴磁感应数据,确定所述霍尔传感器装置的方向特征数据和强度特征数据;
    根据所述方向特征数据和所述强度特征数据,确定所述目标检测物的当前状态。
  31. 根据权利要求21所述的装置,其特征在于,所述传感装置包括:距离传感器;
    所述距离传感器安装于正对所述目标检测物且距离所述目标检测物预设距离的位置,所述传感数据包括所述距离传感器与所述目标检测物之间的距离。
  32. 根据权利要求31所述的装置,其特征在于,所述距离传感器包括:接近/近距离传感器、飞行时间TOF传感器或者红外线IR传感器中的至少一种。
  33. 根据权利要求32所述的装置,其特征在于,所述距离传感器安装于所述车辆的方向盘支撑座上或所述车辆的顶棚上或所述车辆的仪表盘上。
  34. 根据权利要求21所述的装置,其特征在于,所述传感装置包括:摇杆传感器和连杆;
    所述连杆的一端与所述目标检测物连接,所述连杆的另一端与所述摇杆传感器连接,且所述摇杆传感器远离所述目标检测物。
  35. 根据权利要求34所述的装置,其特征在于,所述传感数据为所述目标检测物的转动角度。
  36. 根据权利要求20所述的装置,其特征在于,将所述传感装置至少部分远离所述目标检测物设置为所述传感装置至少部分设于所述目标检测物上;
    所述处理器,具体用于:
    根据所述传感数据,确定所述传感装置与待检测物之间的相对位置关系;
    根据所述传感装置与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态,所述目标检测物能够相对于所述待检测物相对运动。
  37. 根据权利要求36所述的装置,其特征在于,所述处理器在根据所述 传感装置与所述待检测物之间的相对位置关系确定所述目标检测物的当前状态时,具体用于:
    根据所述传感装置与所述待检测物之间的相对位置关系,确定所述目标检测物与所述待检测物之间的相对位置关系;
    根据所述目标检测物与所述待检测物之间的相对位置关系,确定所述目标检测物的当前状态。
  38. 根据权利要求20所述的装置,其特征在于,所述处理器,具体用于:
    在所述传感数据超出预设范围时,根据所述传感数据,确定所述目标检测物的当前状态。
PCT/CN2018/125728 2018-12-29 2018-12-29 信息处理方法和装置 WO2020133454A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880042401.XA CN110809537A (zh) 2018-12-29 2018-12-29 信息处理方法和装置
PCT/CN2018/125728 WO2020133454A1 (zh) 2018-12-29 2018-12-29 信息处理方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125728 WO2020133454A1 (zh) 2018-12-29 2018-12-29 信息处理方法和装置

Publications (1)

Publication Number Publication Date
WO2020133454A1 true WO2020133454A1 (zh) 2020-07-02

Family

ID=69487894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125728 WO2020133454A1 (zh) 2018-12-29 2018-12-29 信息处理方法和装置

Country Status (2)

Country Link
CN (1) CN110809537A (zh)
WO (1) WO2020133454A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103264660A (zh) * 2013-05-10 2013-08-28 浙江吉利汽车研究院有限公司杭州分公司 车辆安全预警系统
US20140267415A1 (en) * 2013-03-12 2014-09-18 Xueming Tang Road marking illuminattion system and method
CN107031660A (zh) * 2016-02-03 2017-08-11 武汉极目智能技术有限公司 一种基于adas技术的车辆转向检测系统及检测方法
CN207207878U (zh) * 2017-05-16 2018-04-10 深圳市保千里电子有限公司 一种转向灯检测装置及交通车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206848802U (zh) * 2017-03-01 2018-01-05 北京图森未来科技有限公司 一种车辆控制装置
CN107161075B (zh) * 2017-05-24 2020-09-04 东风汽车公司 一种基于自动驾驶的转向信号灯自动控制方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267415A1 (en) * 2013-03-12 2014-09-18 Xueming Tang Road marking illuminattion system and method
CN103264660A (zh) * 2013-05-10 2013-08-28 浙江吉利汽车研究院有限公司杭州分公司 车辆安全预警系统
CN107031660A (zh) * 2016-02-03 2017-08-11 武汉极目智能技术有限公司 一种基于adas技术的车辆转向检测系统及检测方法
CN207207878U (zh) * 2017-05-16 2018-04-10 深圳市保千里电子有限公司 一种转向灯检测装置及交通车辆

Also Published As

Publication number Publication date
CN110809537A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2020140985A1 (en) Systems and methods for driver profile based warning and vehicle control
CN106256656B (zh) 用于车辆停车辅助的系统和方法
US20190220001A1 (en) Mobile device tethering for remote parking assist
CN110103953B (zh) 用于辅助车辆的驾驶控制的方法、设备、介质和系统
CN108979413B (zh) 一种车门自动控制方法及装置
JP6810504B2 (ja) 車両方向指示器のための装置、方法及び物品
US20190255893A1 (en) Real-time activation of tire pressure measurement systems
US9381778B2 (en) Tire pressure monitoring system
US9950579B2 (en) Facility-use management system, in-vehicle control apparatus, and in-facility apparatus
US10232673B1 (en) Tire pressure monitoring with vehicle park-assist
CN109308065A (zh) 根据性能产品探测的车辆校准
US11287895B2 (en) System for remote vehicle door and window opening
WO2020133454A1 (zh) 信息处理方法和装置
US9573598B2 (en) Detection system using photo-sensors
JP2018117726A (ja) 生体センサ制御装置および生体センサ制御方法
CN106672075B (zh) 一种用于检测汽车拨杆位置的转向传感器系统及控制方法
US10507868B2 (en) Tire pressure monitoring for vehicle park-assist
CN101957250A (zh) 电动车跷跷板运动平衡检测系统
CN115273280A (zh) 车辆及其基于手势识别的钥匙的控制方法、装置以及介质
CN105904918B (zh) 胎压监测方法、胎压监测装置及其升级系统
JPH01173300A (ja) 駐車アドバイス装置
EP2995475B1 (en) Tire pressure monitoring system
CN211107382U (zh) 一种基于摄像头的驾驶员手握方向盘监测系统
JP2021138231A (ja) 運転支援装置及び運転支援方法
CN106828349B (zh) 车载导航系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945276

Country of ref document: EP

Kind code of ref document: A1