WO2020133132A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020133132A1
WO2020133132A1 PCT/CN2018/124596 CN2018124596W WO2020133132A1 WO 2020133132 A1 WO2020133132 A1 WO 2020133132A1 CN 2018124596 W CN2018124596 W CN 2018124596W WO 2020133132 A1 WO2020133132 A1 WO 2020133132A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
interference
calibration period
type
period
Prior art date
Application number
PCT/CN2018/124596
Other languages
English (en)
French (fr)
Inventor
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880096769.4A priority Critical patent/CN112586023B/zh
Priority to PCT/CN2018/124596 priority patent/WO2020133132A1/zh
Publication of WO2020133132A1 publication Critical patent/WO2020133132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • Embodiments of the present application provide a wireless communication method, terminal device, and network device.
  • the terminal device can report the effect of self-interference cancellation to the network device, so that the network device can accurately grasp certain uplink Under the interference signal strength, when the terminal equipment uses self-interference cancellation technology, the degree of interference to the downlink signal to improve system performance.
  • a wireless communication method includes:
  • the terminal device sends first information, which is used to indicate the effect of self-interference cancellation of the terminal device.
  • the terminal device sends the first information to the network device.
  • a wireless communication method includes:
  • the network device receives the first information, which is used to indicate the effect of self-interference cancellation at the peer end.
  • the network device receives the first information sent by the terminal device.
  • the first information is specifically used to indicate the effect of self-interference cancellation of the terminal device.
  • a terminal device for executing the method in the above-mentioned first aspect or various implementations thereof.
  • the terminal device includes a functional module for performing the method in the above-mentioned first aspect or various implementations thereof.
  • a network device for performing the method in the above-mentioned second aspect or various implementations thereof.
  • the network device includes a functional module for performing the method in the above-mentioned second aspect or various implementations thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or its various implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementations.
  • a chip is provided for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects or the various implementations thereof.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the first to second aspects or the various implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the above first to second aspects or the respective implementations thereof.
  • the terminal device after performing self-interference cancellation calibration, the terminal device can report the effect of self-interference cancellation to the network device, so that the network device can accurately grasp a certain uplink interference signal strength when the terminal device uses the self-interference cancellation technology After that, the degree of interference to the downstream signal improves the system performance.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR new wireless
  • NR Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Areas
  • next-generation communication system or other communication systems etc.
  • D2D Device to Device
  • M2M machine-to-machine
  • MTC machine-type communication
  • V2V vehicle-to-vehicle
  • the communication system in the embodiments of the present application may be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, or a standalone (SA) configuration. Web scene.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiments of the present application do not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • the terminal device may also be called a user equipment (User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal equipment can be a station (STAION, ST) in the WLAN, it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in public land mobile network (PLMN) networks that will evolve in the future.
  • STAION, ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices, which is a general term for applying wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not rely on smartphones, such as smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smartphones Use, such as various smart bracelets and smart jewelry for sign monitoring.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a WCDMA
  • a base station (NodeB, NB) can also be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in an NR network Or network equipment in the PLMN network that will evolve in the future.
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example The cell corresponding to the base station) can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here may include: a metro cell, a micro cell, and a pico cell cells), femtocells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the self-interference signal can be classified into three types according to the source.
  • the first type of self-interfering signal may be harmonic or intermodulation interference generated by one or several transmitted signals of the communication system.
  • it may be harmonic or intermodulation interference generated by one or several transmitted signals of a cellular communication system.
  • the second type of self-interference signal comes from the interference between different wireless communication modules inside the mobile phone, for example, the interference between wireless fidelity (WiFi) signal and cellular signal.
  • WiFi wireless fidelity
  • the third type of self-interference signal mainly originates from the electromagnetic waves generated by some active electronic devices inside the terminal.
  • the electromagnetic waves generated by devices such as the display screen of the terminal device, the memory reading operation of the terminal device, the camera and the electric motor of the terminal device.
  • the frequency range of the electromagnetic wave may be tens of MHz to hundreds of MHz.
  • the electromagnetic wave will receive the cellular frequency band Interference.
  • the terminal device when the terminal device performs self-interference cancellation calibration and self-interference cancellation effect reporting, it may be directed to the above-mentioned first-type self-interference signal, second-type self-interference signal, and third-type self-interference signal. At least one.
  • the terminal device when targeting the first-type self-interference signal, the terminal device performs self-interference cancellation calibration and self-interference cancellation effect reporting on the first-type self-interference signal.
  • carrier F1 works in a low frequency band
  • carrier F2 works in a high frequency band
  • mutual interference there may be three different types of mutual interference:
  • the frequency of a certain order intermodulation signal (IM) of the uplink carrier of F1 and the uplink carrier of F2 overlaps or partially overlaps with the frequency of the downlink signal of a carrier F3. Then carrier F1 and carrier F2 interfere with carrier F3.
  • Carrier F3 may be one of carrier F1 or carrier F2, or another carrier different from carrier F1 and carrier F2 (in this case, the terminal may work on more than two carriers simultaneously).
  • a terminal device is configured with LTE carriers in band 1 and band 7, and NR carriers (3400-3800MHz). If the uplink (UL) of band 7 and UL of NR are transmitted at the same time, The resulting 5th order intermodulation affects the downlink (DL) receiver sensitivity of band 1.
  • Type 2 The frequency multiplier of F1's uplink carrier overlaps or partially overlaps with the frequency of F2's downlink signal. Then carrier F1 to F2 constitute harmonic interference.
  • the uplink of LTE Band 3 is 1710-1785MHz, and its 2nd order harmonic range is 3420-3570MHz. If a terminal performs LTE uplink transmission on band 3 and DL reception on the NR band 3400-3800MHz at the same time, the second-order harmonics may interfere with the sensitivity of NR's DL receiver.
  • Type three the frequency multiplication of F1's downlink carrier overlaps or partially overlaps with F2's uplink signal frequency (and its adjacent frequencies). Then carrier F2 to F1 constitutes harmonic intermodulation (harmonic mixing) interference.
  • carrier F2 to F1 constitutes harmonic intermodulation (harmonic mixing) interference.
  • the downlink 1805-1880MHz of LTE Band 3 has a 2nd order harmonic range of 3610-3760MHz. If a terminal performs LTE downlink reception on band 3 and uplink transmission on the NR band 3400-3800 MHz at the same time, the second-order harmonic intermodulation of NR may interfere with the sensitivity of the LTE DL receiver.
  • the basic principle of self-interference cancellation on the terminal side is to couple or sample a part of the transmitted signal as a reference signal, and then apply corresponding gain, delay, and phase adjustments to the reference signal to construct a signal with equal power and opposite phase to the actual self-interference signal. To cancel the signal, finally realize the destructive interference cancellation of the self-interfering signal at the receiving end.
  • the above process is essentially a model for self-interference reconstruction within the terminal.
  • the self-interference cancellation technology depends largely on the terminal implementation, it is important to measure the effect of self-interference cancellation in the actual communication process.
  • a calibration process needs to be introduced for the self-interference cancellation technology.
  • the purpose of the calibration process is to obtain the effect of self-interference cancellation. Since the effect of self-interference cancellation depends on many other factors, how to let network equipment know the effect of self-interference cancellation is a problem.
  • the embodiments of the present application provide a method for a terminal device to report the effect of self-interference cancellation.
  • the network device can learn the effect of self-interference cancellation of the terminal device, so that it can accurately grasp a certain uplink interference signal strength.
  • the degree of interference to the downlink signal will further improve system performance.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 2, the method 200 may include the following content:
  • the terminal device sends first information to the network device, where the first information is used to indicate the self-interference cancellation effect of the terminal device.
  • the first information includes the interference signal strength of the terminal device that is not eliminated after performing self-interference cancellation calibration and/or the downlink measured by the terminal device after performing self-interference cancellation calibration Signal to noise ratio (Signal to Interference plus Noise Ratio, SINR).
  • Signal to noise ratio Signal to Noise Ratio
  • the obtained information characterizing the effect of self-interference cancellation is different, that is, the first information is also different.
  • the first information includes the strength of the interference signal that has not been eliminated by the terminal device after performing self-interference cancellation calibration.
  • the first information includes the strength of the interference signal that the terminal device has not eliminated after performing self-interference cancellation calibration and/or the terminal device is performing self-interference cancellation The measured downlink SINR after calibration.
  • interference signals exist in the first type of calibration period, and there are interference signals and known downlink signals in the second type of calibration period.
  • the signal entering the receiver of the terminal equipment should be the interference signal that has not been completely eliminated + the background noise of the receiver itself. Since the background noise level of the receiver of the terminal device can be measured by other means (known methods), the strength of the interference signal that has not been eliminated can be known through the first type of calibration period.
  • the terminal device may report the strength of the interference signal that has not been eliminated to the network device.
  • the network device can know that under a certain uplink interference signal strength, when the terminal device uses the self-interference cancellation technology, the downlink signal The degree of interference.
  • the network device may notify the terminal device of the background noise intensity, which is often due to the strong interference caused by the downlink signals or uplink signals of other cells, which is then superimposed on the background noise of the terminal.
  • the background noise strength or level notified by the network equipment will be used, generally in units of dBm (decibel milliwatts).
  • the terminal device can evaluate or calibrate the self-interference cancellation capability when there is a downlink signal. Since the downlink signal is known, the terminal device can measure the downlink SINR, and then determine whether the effect of interference cancellation is as expected. After the terminal device reports the measured SINR to the network device, the network device can know the received signal quality of the terminal at a certain downlink and uplink transmission power.
  • the background noise level of the terminal device receiver can be measured by other means or obtained by notification from the network device, for the second type of calibration period, it can also be calculated by the signal processing method.
  • the intensity of the undisturbed interference signal obtained in the first type of calibration period If required by the network equipment, the terminal equipment may also report this strength to the network equipment. It should be pointed out that although the intensity of the undisturbed interference signal can be obtained by signal processing for the second type of calibration period, it may not be as accurate as the measurement in the first type of calibration period, because the first type of calibration period is the terminal The device is measured directly at the receiving end, and the second type of calibration period requires post-signal processing.
  • the terminal device receives first configuration information sent by the network device, and the first configuration information includes but is not limited to at least one of the following information:
  • a type of each calibration period in at least one calibration period wherein the type of each calibration period is the first type calibration period or the second type calibration period;
  • the strength of the interference signal for each calibration period in the at least one calibration period is the strength of the interference signal for each calibration period in the at least one calibration period.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted for each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • B8(0.9G)+B3(1.8G) For example, B3(1.8G)+n78(3.5G), B8(0.9G)+B3(1.8G).
  • B3 refers to band 3 (band 3).
  • B8 refers to band 8 and n78 refers to NR band 78.
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • harmonic interference For a specific frequency band combination, there can be more than one type of interference.
  • the calibration period is for, such as the above B3 (1.8G) + n78 (3.5G), there is harmonic and intermodulation interference, Therefore, it is necessary to indicate whether the type of interference targeted during the calibration period is a separate harmonic interference or a separate intermodulation interference.
  • the network device indicates a specific interference type for the calibration period, during this calibration period, the network device also schedules uplink signal transmission that causes the specific interference type.
  • the parameter of interference type should be a sub-parameter under the band combination parameter.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • the terminal device performs self-interference cancellation calibration respectively in the at least one calibration period according to the first configuration information.
  • the equipment can measure intermodulation and harmonic interference more accurately.
  • the network equipment can schedule calibration periods separately: for example, two calibration periods, one for harmonic interference and the other for intermodulation interference.
  • calibrating harmonic interference there is only B3's transmitted signal; when calibrating intermodulation interference, there are both B3 and n78's transmitted signals.
  • the network device must indicate to the terminal device the type of calibration interference targeted by the calibration period.
  • the network device can provide a calibration period for the B3+n78 band combination to the terminal device for harmonics and intermodulation interference.
  • the duration of each calibration period is a symbol and is the maximum transmit power, which is the calibration harmonic.
  • the transmit power of B3 is 23dbm (assuming that it is a terminal device of power level 3).
  • the transmit power of B3 and n78 are each 20dbm.
  • the terminal device each time the self-interference cancellation calibration is performed, the terminal device sends the first information, where the first information is used to indicate the self-interference cancellation of the terminal device in the current calibration period effect.
  • the terminal device receives second configuration information sent by the network device, where the second configuration information is used to configure a calibration time unit, and the calibration time unit includes but is not limited to at least one of the following information:
  • Types of interference targeted by each calibration period in multiple calibration periods are Types of interference targeted by each calibration period in multiple calibration periods
  • the strength of the interference signal for each calibration period in the plurality of calibration periods is the strength of the interference signal for each calibration period in the plurality of calibration periods.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted by each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • B8(0.9G)+B3(1.8G) For example, B3(1.8G)+n78(3.5G), B8(0.9G)+B3(1.8G).
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • harmonic interference For a specific frequency band combination, there can be more than one type of interference. In this case, it is necessary to clarify which type of interference the calibration period is for. Therefore, it is necessary to indicate whether the type of interference targeted during the calibration period is a separate harmonic interference or a separate intermodulation interference.
  • the network device When the network device indicates a specific interference type for the calibration period, during this calibration period, the network device also schedules uplink signal transmission that causes the specific interference type.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • the multiple calibration periods are continuous in the time domain
  • the calibration time unit is a full downlink subframe structure composed of the multiple calibration periods continuous in the time domain.
  • the duration of each calibration period is 1 symbol
  • the calibration time unit can be considered as a subframe structure of all downlinks composed of calibration periods that are continuous in the time domain. That is, the calibration performed by the terminal device is completed within one subframe.
  • the type of calibration period constituting the calibration time unit determines that there are three types of calibration time units:
  • Calibration time unit type 1 The calibration time period constituting the calibration time unit is all the first type of calibration time period;
  • Calibration time unit type 2 The calibration periods that make up the calibration time unit are all the second type of calibration period;
  • Hybrid calibration time unit There are the first type of calibration period and the second type of calibration period in the calibration period constituting the calibration time unit.
  • the network device specifically configures the parameters of the calibration time unit
  • the two-dimensional data set shown in Table 1 below may be used for configuration.
  • the terminal device performs self-interference cancellation calibration in the plurality of calibration periods, respectively.
  • the terminal device after performing self-interference cancellation calibration in the multiple calibration periods, sends the first information, where the first information is used to indicate the multiple calibration periods The effect of self-interference cancellation of the terminal equipment in each calibration period.
  • the first information may be :
  • the terminal device may report the effect of self-interference cancellation in multiple calibration periods to the network device in the first information, avoiding the relatively large signaling overhead caused by the separate reporting.
  • the actual background interference level (interference caused by non-terminal self-interference) experienced by the terminal device will vary with the scheduling and location of the terminal device.
  • the calibration results of the terminal device at different calibration periods cannot be The guarantee is made under the same interference level, and the result may be inaccurate. Therefore, the parameters of the calibration time unit need to be configured uniformly.
  • the network device may uniformly configure the parameters of the calibration time unit through the second configuration information to save signaling overhead.
  • the multiple calibration periods may all be the first type calibration period or the second type calibration period.
  • the length of each calibration period in the plurality of calibration periods is the same.
  • the frequency band combination for each calibration period in the plurality of calibration periods is the same.
  • each calibration period in the plurality of calibration periods is directed to the same type of interference.
  • the multiple calibration periods are all the first-type calibration periods, and the frequency band combination for each calibration period in the multiple calibration periods is B3+ n78.
  • the interference type for each calibration period in the plurality of calibration periods is intermodulation, and the strength of the interference signal for each calibration period in the plurality of calibration periods is different.
  • the type of each calibration period, the frequency band combination of each calibration period, the type of interference targeted by each calibration period, and the strength of the interference signal targeted by each calibration period is the type of each calibration period, the frequency band combination of each calibration period, the type of interference targeted by each calibration period, and the strength of the interference signal targeted by each calibration period.
  • the parameters of the calibration period type, frequency band combination and interference type are the same, the interference intensity shows an equidistance distribution, and the tolerance is 3.
  • the band combination for each calibration period is configurable, the most likely situation in reality is that a calibration time unit corresponds to only one band combination and only one interference type, as above Table 2 shows.
  • the frequency band combination/interference type can be configured uniformly to save signaling overhead.
  • the power of the two transmitted signals needs to be indicated separately. In the above table, the powers of the two transmitted signals are the same, but in practice there may be different situations.
  • the terminal device after performing self-interference cancellation calibration in the multiple calibration periods, the terminal device sends the first information, where the first information is used to A calibration period is a reference difference indicating the effect of self-interference cancellation of the terminal device in each calibration period of the plurality of calibration periods, and the first calibration period belongs to the plurality of calibration periods.
  • the first calibration period is calibration period 1
  • the first information may be:
  • the first calibration period is pre-configured or indicated by the network device.
  • the terminal device may also receive first indication information sent by the network device, where the first indication information is used to instruct the terminal device to use the first calibration period as a reference Differentially report the effect of self-interference cancellation of the terminal device in each calibration period of the plurality of calibration periods.
  • the terminal device can use this calibrated time unit to obtain certain types of interference in a certain frequency band combination to the receiver under different transmit power conditions. Interference level. Since the calibration performed by the terminal device is completed in one subframe, the calibration conditions can be considered to be basically the same. As shown in the configuration shown in Table 2 above, when the network device configures the terminal device to report the calibration result (the effect of self-interference cancellation, or the interference level suffered by the receiver), it can specify one of the calibration periods as a reference for differential reporting.
  • the strength of the uninterrupted interference signal corresponding to calibration period 4 is 3 dBm
  • the strength of the uninterrupted interference signal corresponding to calibration period 3/2/1 is the uncorrected interference signal corresponding to calibration period 4
  • the difference value of the intensity of the interference signal for example, the calibration period 3/2/1 is: 6dBm, 9dBm, 12dBm.
  • the terminal device may further report differentially in order when reporting the interference level to further compress signaling overhead. Still taking Table 2 above as an example, taking the interference level of calibration period 4 as a reference, the reported value of calibration period 3 is the difference from the value of calibration period 4, and so on.
  • the reported value of calibration period 2 is the value of calibration period 3 Difference
  • the reported value of calibration period 1 is the difference from the value of calibration period 2.
  • the difference values reported for the intensity of the undisturbed interference signal corresponding to the calibration period 3/2/1 are: 3, 3, 3, respectively.
  • the terminal device may report the effect of self-interference cancellation to the network device, so that the network device can accurately grasp a certain uplink interference signal strength when the terminal device uses After the self-interference cancellation technology, the degree of interference received by the downlink signal, thereby improving system performance.
  • the network device can configure a calibration time unit, so that the terminal device can report the self-interference cancellation effect in multiple calibration periods to the network device in the first information, avoiding the relatively large signaling overhead caused by the separate reporting.
  • the terminal device may use the first calibration period as a reference to differentially indicate the effect of self-interference cancellation of the terminal device in each calibration period of the plurality of calibration periods to further compress signaling overhead.
  • FIG. 3 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 3, the method 300 may include the following content:
  • the network device receives first information sent by the terminal device, where the first information is used to indicate the effect of self-interference cancellation of the terminal device.
  • the first information includes the strength of the interference signal that has not been eliminated after the self-interference cancellation calibration is performed by the peer and/or the downlink SINR measured by the peer after performing the self-interference cancellation calibration.
  • the first information includes the strength of the interference signal that has not been eliminated by the peer after performing the self-interference cancellation calibration;
  • the first information includes the strength of the interference signal that has not been eliminated after performing self-interference cancellation calibration and/or measured by the opposite end after performing self-interference cancellation calibration Downlink SINR.
  • interference signals exist in the first type of calibration period, and there are interference signals and known downlink signals in the second type of calibration period.
  • the network device sends first configuration information to the terminal device, where the first configuration information is used for the peer to perform self-interference cancellation calibration in at least one calibration period,
  • the first configuration information includes at least one of the following information:
  • a type of each calibration period in the at least one calibration period where the type of each calibration period is the first type calibration period or the second type calibration period;
  • the strength of the interference signal for each calibration period in the at least one calibration period is the strength of the interference signal for each calibration period in the at least one calibration period.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted for each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • B8(0.9G)+B3(1.8G) For example, B3(1.8G)+n78(3.5G), B8(0.9G)+B3(1.8G).
  • B3 refers to band 3
  • B8 refers to band 8
  • n78 refers to NR band 78.
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • harmonic interference For a specific frequency band combination, there can be more than one type of interference. In this case, it is necessary to clarify which type of interference the calibration period is for. Therefore, it is necessary to indicate whether the type of interference targeted during the calibration period is a separate harmonic interference or a separate intermodulation interference.
  • the network device When the network device indicates a specific interference type for the calibration period, during this calibration period, the network device also schedules uplink signal transmission that causes the specific interference type.
  • the parameter of interference type should be a sub-parameter under the band combination parameter.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • the first information is specifically used to indicate the effect of self-interference cancellation of the peer end in the current calibration period. That is, when the terminal device performs self-interference cancellation calibration in the at least one calibration period according to the first configuration information, the first information is specifically used to indicate the effect of self-interference cancellation by the peer within the current calibration period.
  • the network device sends second configuration information to the terminal device, the second configuration information is used to configure a calibration time unit, and the second configuration information is used for multiple calibrations at the opposite end Perform self-interference cancellation calibration during the period,
  • the calibration time unit includes at least one of the following information:
  • the strength of the interference signal for each calibration period in the plurality of calibration periods is the strength of the interference signal for each calibration period in the plurality of calibration periods.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted by each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • B8(0.9G)+B3(1.8G) For example, B3(1.8G)+n78(3.5G), B8(0.9G)+B3(1.8G).
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • harmonic interference For a specific frequency band combination, there can be more than one type of interference. In this case, it is necessary to clarify which type of interference the calibration period is for. Therefore, it is necessary to indicate whether the type of interference targeted during the calibration period is a separate harmonic interference or a separate intermodulation interference.
  • the network device When the network device indicates a specific interference type for the calibration period, during this calibration period, the network device also schedules uplink signal transmission that causes the specific interference type.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • the multiple calibration periods are continuous in the time domain
  • the calibration time unit is a full downlink subframe structure composed of the multiple calibration periods continuous in the time domain.
  • the duration of each calibration period is 1 symbol
  • the calibration time unit can be considered as a subframe structure of all downlinks composed of calibration periods that are continuous in the time domain. That is, the calibration performed by the terminal device is completed within one subframe.
  • the type of calibration period constituting the calibration time unit determines that there are three types of calibration time units:
  • Calibration time unit type 1 The calibration time period constituting the calibration time unit is all the first type of calibration time period;
  • Calibration time unit type 2 The calibration periods that make up the calibration time unit are all the second type of calibration period;
  • Hybrid calibration time unit The calibration period constituting the calibration time unit includes both the first type calibration period and the second type calibration period.
  • the first information is specifically used to indicate the effect of self-interference cancellation of the peer end in each calibration period of the plurality of calibration periods. That is, when the terminal device performs self-interference cancellation calibration in the plurality of calibration periods according to the second configuration information, the first information is specifically used to indicate the self-test of the peer end in each calibration period of the plurality of calibration periods The effect of interference cancellation.
  • the network device may uniformly configure the parameters of the calibration time unit through the second configuration information to save signaling overhead.
  • the multiple calibration periods may all be the first type calibration period or the second type calibration period.
  • the length of each calibration period in the plurality of calibration periods is the same.
  • the frequency band combination for each calibration period in the plurality of calibration periods is the same.
  • each calibration period in the plurality of calibration periods is directed to the same type of interference.
  • the first information is specifically used to differentially indicate the effect of self-interference cancellation of the peer end in each calibration period of the plurality of calibration periods using the first calibration period as a reference, and the first calibration period belongs to the plurality of calibrations Period. That is, when the network device uniformly configures the parameters of the calibration time unit through the second configuration information, the first information is specifically used to indicate the difference between the peers in each calibration period of the plurality of calibration periods using the first calibration period as a reference difference The effect of self-interference cancellation.
  • the network device before the network device receives the first information, the network device sends first indication information to the terminal device, where the first indication information is used to instruct the peer end to differentially report the multiple information based on the first calibration period The effect of self-interference cancellation at the peer end in each calibration period of each calibration period.
  • the terminal device may report the effect of self-interference cancellation to the network device, so that the network device can accurately grasp a certain uplink interference signal strength when the terminal device uses After the self-interference cancellation technology, the degree of interference received by the downlink signal, thereby improving system performance.
  • the network device can configure a calibration time unit, so that the terminal device can report the self-interference cancellation effect in multiple calibration periods to the network device in the first information, avoiding the relatively large signaling overhead caused by the separate reporting.
  • the terminal device may use the first calibration period as a reference to differentially indicate the effect of self-interference cancellation of the terminal device in each calibration period of the plurality of calibration periods to further compress signaling overhead.
  • FIG. 4 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to send first information that is used to indicate the effect of self-interference cancellation of the terminal device.
  • the first information includes the interference signal strength of the terminal device that has not been eliminated after performing the self-interference cancellation calibration and/or the downlink SINR measured by the terminal device after performing the self-interference cancellation calibration.
  • the first information includes the strength of the interference signal that the terminal device has not eliminated after performing the self-interference cancellation calibration
  • the first information includes the strength of the interference signal that the terminal device has not eliminated after performing self-interference cancellation calibration and/or the terminal device is performing self-interference cancellation The measured downlink SINR after calibration.
  • interference signals exist in the first type of calibration period, and there are interference signals and known downlink signals in the second type of calibration period.
  • the communication unit 410 is further configured to receive first configuration information, where the first configuration information includes at least one of the following information:
  • a type of each calibration period in at least one calibration period wherein the type of each calibration period is the first type calibration period or the second type calibration period;
  • the strength of the interference signal for each calibration period in the at least one calibration period is the strength of the interference signal for each calibration period in the at least one calibration period.
  • the terminal device 400 further includes:
  • the processing unit 420 is configured to perform self-interference cancellation calibration respectively in the at least one calibration period according to the first configuration information.
  • the communication unit 410 is specifically used to:
  • the first information is sent every time self-interference cancellation calibration is performed, where the first information is used to indicate the effect of self-interference cancellation of the terminal device in the current calibration period.
  • the communication unit 410 is further configured to receive second configuration information, and the second configuration information is used to configure a calibration time unit, and the calibration time unit includes at least one of the following information:
  • Types of interference targeted by each calibration period in multiple calibration periods are Types of interference targeted by each calibration period in multiple calibration periods
  • the strength of the interference signal for each calibration period in the plurality of calibration periods is the strength of the interference signal for each calibration period in the plurality of calibration periods.
  • the multiple calibration periods are continuous in the time domain
  • the calibration time unit is a full downlink subframe structure composed of the multiple calibration periods continuous in the time domain.
  • the processing unit 420 is further configured to perform self-interference cancellation calibration within the multiple calibration periods according to the second configuration information.
  • the communication unit 410 is specifically used to:
  • the first information is sent, where the first information is used to indicate the self-interference cancellation of the terminal device in each calibration period of the multiple calibration periods effect.
  • the plurality of calibration periods are all the first type calibration period or the second type calibration period.
  • the length of each calibration period in the plurality of calibration periods is the same.
  • the frequency band combination for each calibration period in the plurality of calibration periods is the same.
  • each calibration period in the plurality of calibration periods targets the same type of interference.
  • the communication unit 410 is specifically used to:
  • the first information is sent, where the first information is used to indicate the difference within each calibration period of the plurality of calibration periods using the first calibration period as a reference difference
  • the first calibration period belongs to the multiple calibration periods.
  • the communication unit 410 is further configured to receive first indication information, which is used to instruct the terminal device to differentially report within each calibration period of the plurality of calibration periods based on the first calibration period The effect of self-interference cancellation of the terminal equipment.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted for each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of the units in the terminal device 400 are respectively for implementing the method shown in FIG. 2
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • FIG. 5 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the communication unit 510 is configured to receive first information, and the first information is used to indicate an effect of self-interference cancellation at the opposite end.
  • the first information includes the strength of the interference signal that has not been eliminated by the peer after performing self-interference cancellation calibration and/or the downlink SINR measured by the peer after performing the self-interference cancellation calibration.
  • the first information includes the strength of the interference signal that has not been eliminated by the peer after performing the self-interference cancellation calibration;
  • the first information includes the strength of the interference signal that has not been eliminated after performing self-interference cancellation calibration and/or measured by the opposite end after performing self-interference cancellation calibration Downlink SINR.
  • interference signals exist in the first type of calibration period, and there are interference signals and known downlink signals in the second type of calibration period.
  • the communication unit 510 is further configured to send first configuration information, and the first configuration information is used to perform self-interference cancellation calibration for the peer end in at least one calibration period,
  • the first configuration information includes at least one of the following information:
  • a type of each calibration period in the at least one calibration period where the type of each calibration period is the first type calibration period or the second type calibration period;
  • the strength of the interference signal for each calibration period in the at least one calibration period is the strength of the interference signal for each calibration period in the at least one calibration period.
  • the first information is specifically used to indicate the effect of self-interference cancellation of the peer end in the current calibration period.
  • the communication unit 510 is further configured to send second configuration information, the second configuration information is used to configure a calibration time unit, and the second configuration information is used to perform self-interference cancellation for the opposite end in multiple calibration periods, respectively calibration,
  • the calibration time unit includes at least one of the following information:
  • the strength of the interference signal for each calibration period in the plurality of calibration periods is the strength of the interference signal for each calibration period in the plurality of calibration periods.
  • the multiple calibration periods are continuous in the time domain
  • the calibration time unit is a full downlink subframe structure composed of the multiple calibration periods continuous in the time domain.
  • the first information is specifically used to indicate the effect of self-interference cancellation of the peer end in each calibration period of the plurality of calibration periods.
  • the plurality of calibration periods are all the first type calibration period or the second type calibration period.
  • the length of each calibration period in the plurality of calibration periods is the same.
  • the frequency band combination for each calibration period in the plurality of calibration periods is the same.
  • each calibration period in the plurality of calibration periods targets the same type of interference.
  • the first information is specifically used to differentially indicate the effect of self-interference cancellation of the peer end in each calibration period of the plurality of calibration periods using the first calibration period as a reference, and the first calibration period belongs to the plurality of calibrations Period.
  • the communication unit 510 is further configured to send first indication information, which is used to instruct the opposite end to differentially report the pair within each calibration period of the plurality of calibration periods based on the first calibration period. The effect of self-interference elimination at the end.
  • the duration of each calibration period includes at least one symbol.
  • the frequency band combination targeted for each calibration period includes a combination of at least one frequency band for uplink transmission and at least one frequency band for downlink reception.
  • the interference type targeted for each calibration period includes harmonic interference and/or intermodulation interference.
  • the intensity of the interference signal is the intensity of the transmitted signal causing the harmonics
  • the strength of the interfering signal is the respective strength of the two signals that cause intermodulation
  • the strength of the interfering signal is the strength of the signal on each line that causes the interference.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for implementing the method shown in FIG. 3
  • the corresponding process of the network device in 300 will not be repeated here for brevity.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiments of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be a mobile terminal/terminal device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for simplicity And will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. No longer.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method.
  • the processor in the embodiments of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • the computer program product may be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. And will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer is implemented by the mobile terminal/terminal device in performing various methods of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,终端设备在进行自干扰消除校准之后,可以向网络设备上报自干扰消除的效果,从而,网络设备可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,以改善系统性能。该无线通信方法包括:终端设备发送第一信息,该第一信息用于指示该终端设备的自干扰消除的效果。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
在用于蜂窝通信的无线终端的内部,会产生各种各样的自干扰信号:也就是终端内部产生/发出的信号,会干扰终端正常的接收。如何校准终端设备的自干扰消除效果,以及如何让网络设备获知自干扰消除的效果是一个亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,终端设备在进行自干扰消除校准之后,可以向网络设备上报自干扰消除的效果,从而,网络设备可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,以改善系统性能。
第一方面,提供了一种无线通信方法,该方法包括:
终端设备发送第一信息,该第一信息用于指示该终端设备的自干扰消除的效果。
可选地,该终端设备向网络设备发送该第一信息。
应理解,由于自干扰消除技术在很大程度上取决于终端设备的实现,因此在实际通信过程中衡量自干扰消除的效果就很重要。
第二方面,提供了一种无线通信方法,该方法包括:
网络设备接收第一信息,该第一信息用于指示对端的自干扰消除的效果。
可选地,该网络设备接收终端设备发送的该第一信息。该第一信息具体用于指示终端设备的自干扰消除的效果。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备在进行自干扰消除校准之后,可以向网络设备上报自干扰消除的效果,从而网络设备可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,进而提升系统性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图3是根据本申请实施例提供的另一种无线通信方法的示意性流程图。
图4是根据本申请实施例提供的一种终端设备的示意性框图。
图5是根据本申请实施例提供的一种网络设备的示意性框图。
图6是根据本申请实施例提供的一种通信设备的示意性框图。
图7是根据本申请实施例提供的一种芯片的示意性框图。
图8是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入 点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,在用于蜂窝通信的无线终端的内部,会产生各种各样的自干扰信号:也就是终端内部产生/发出的信号,会干扰终端正常的接收。
在本申请的一些实施例中,可以根据自干扰信号的来源,将其分为三类。
其中,第一类自干扰信号可以是由通信系统的一个或几个发射信号产生的谐波或互调干扰。例如,可以是由蜂窝通信系统的一个或几个发射信号产生的谐波或互调干扰。
第二类自干扰信号来源于手机内部不同的无线通信模块之间的干扰,例如,无线保真(Wireless-Fidelity,WiFi)信号和蜂窝信号之间的干扰。
第三类自干扰信号主要源于终端内部的一些有源电子器件产生的电磁波。例如,终端设备的显示屏、终端设备的内存读取操作、终端设备的相机和电动马达等器件产生的电磁波。所述电磁波的频率范围可以为几十MHz至几百MHz,当其谐波落在蜂窝频段上,或其谐波与蜂窝频段的发射信号产生互调时,所述电磁波会对蜂窝频段的接收产生干扰。
本申请实施例中,终端设备在进行自干扰消除校准和自干扰消除的效果的上报时,可以是针对上述第一类自干扰信号、第二类自干扰信号以及第三类自干扰信号中的至少一种。如,在针对上述第一类自干扰信号时,终端设备针对第一类自干扰信号进行自干扰消除校准和自干扰消除的效果的上报。
具体地,假设载波F1工作在低频段,载波F2工作在高频段,那么可能会有三种不同类型的互干扰存在:
类型一,F1的上行载波和F2的上行载波的某一阶互调信号(intermodulation,IM)的频率与某载波F3的下行信号频率重叠或部分重叠。那么载波F1和载波F2就对载波F3构成了干扰。载波F3可能是载波F1或载波F2中某一个,或是不同于载波F1与载波F2的另一个载波(此时终端可能同时工作在两个以上的载波)。一个例子是一个终端设备同时配置了频段(band)1和band 7的LTE载波,以及NR载波(3400-3800MHz),则如果band 7的上行链路(Uplink,UL)和NR的UL同时传输,其产生的5阶互调影响会影响band 1的下行链路(Downlink,DL)接收机灵敏度。
类型二,F1的上行载波的倍频与F2的下行信号频率重叠或部分重叠。那么载波F1对F2就构成了谐波(harmonic)干扰。例如:LTE Band 3的上行1710-1785MHz,其2阶谐波范围为3420-3570MHz。则一个终端如果同时在band 3上进行LTE上行传输和在NR频段3400-3800MHz上进行DL接收,则2阶谐波可能会干扰NR的DL接收机的灵敏度。
类型三,F1的下行载波的倍频,与F2的上行信号频率(及其邻近频率)重叠或部分重叠。那么载波F2对F1就构成了谐波互调(harmonic mixing)干扰。例如:LTE Band 3的下行1805-1880MHz,其2阶谐波范围为3610-3760MHz。则一个终端如果同时在band 3上进行LTE下行接收和在NR频段3400-3800MHz上进行上行发送,则NR的2阶谐波互调可能会干扰LTE的DL接收机的灵敏度。
终端侧自干扰消除的基本原理是:将发射信号耦合或采样出一部分后作为参考信号,再对参考信号施加相应的增益、延时和相位调节,构建与实际自干扰信号功率相等、相位相反的对消信号,最后在接收端实现自干扰信号的相消干涉消除。上述过程本质上是终端内部实现一个自干扰重建的模型。
由于自干扰消除技术很大程度上取决于终端实现,在实际通信过程中如何衡量自干扰消除的效果就很重要。在实际通信过程中,需要为自干扰消除技术引入一个校准过程,校准过程的目的是为了获得自干扰消除的效果。由于自干扰消除的效果取决于很多其它因素,因此如何让网络设备获知自干扰消除的效果是个问题。基于这一问题,本申请实施例提供了一种终端设备上报自干扰消除的效果的方法,网络设备可以获知终端设备的自干扰消除的效果,从而可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,进而提升系统性能。
图2是根据本申请实施例的无线通信方法200的示意性流程图,如图2所示,该方法200可以包括如下内容:
S210,终端设备向网络设备发送第一信息,该第一信息用于指示该终端设备的自干扰消除的效果。
可选地,在本申请实施例中,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或该终端设备在执行自干扰消除校准之后测量得到的下行信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
可选地,在本申请实施例中,终端设备在不同类型的校准时段内执行自干扰消除校准之后,所得到的表征自干扰消除的效果的信息不同,即该第一信息也不同。
若该终端设备在第一类校准时段内进行自干扰消除校准,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度;或者
若该终端设备在第二类校准时段内进行自干扰消除校准,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或该终端设备在执行自干扰消除校准之后测量得到的下行SINR。
可选地,在该第一类校准时段内仅存在干扰信号,在该第二类校准时段内存在干扰信号和已知的下行信号。
具体地,在第一类校准时段内,只有干扰信号而无下行接收信号。当终端设备已经进行自干扰消除时,那么在第一类校准时段中,进入终端设备接收机中的信号应当是没有被完全消除的干扰信号+接收机本身的背景噪声。由于终端设备接收机自己的背景噪声水平可以通过别的方式(已知的方式)测得,那么通过该第一类校准时段就可以得知没被消除的干扰信号的强度。终端设备可以向网络设备汇报没被消除的干扰信号的强度。由于上行干扰信号的强度是受网络设备调度控制的,收到终端设备的汇报以后,网络设备就能知道在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度。在某些情况下,网络设备可以向终端设备通知背景噪声强度,这往往是由于其它小区的下行信号或上行信号构成了较强的干扰,进而叠加进终端的背景噪声中,此时终端设备在计算没被消除的干扰信号的强度时,将使用网络设备通知的背景噪声强度或水平,一般以dBm(分贝毫瓦)为单位。
具体地,在第二类校准时段内,存在干扰信号和已知的下行信号。由于下行信号已知,终端设备可以评估或校准在有下行信号时的自干扰消除能力。由于下行信号已知,终端设备可以测量下行的SINR,进而判断干扰消除的效果是否符合预期。当终端设备向网络设备汇报测量得到的SINR后,网络设备就可以知道在一定的下行和上行发射功率下的终端的接收信号质量。
需要说明的是,由于终端设备接收机自己的背景噪声水平可以通过别的方式测得或通过网络设备的通知获得,对于第二类校准时段而言,也是可以通过信号处理的方法计算得到在第一类校准时段中得到的没被消除的干扰信号的强度。如果网络设备要求,终端设备也可以向网络设备汇报这一强度。需要指出的是,虽然对于第二类校准时段可以用信号处理的方式得出未被消除的干扰信号的强度,但可能不如在第一类校准时段下测量准确,因为第一类校准时段是终端设备直接在接收端测量得到,而第二类校准时段则需要作后期的信号处理。
可选地,作为实施例一,该终端设备接收网络设备发送的第一配置信息,该第一配置信息包括但不限于以下信息中的至少一种:
至少一个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
至少一个校准时段中的每个校准时段的时长;
至少一个校准时段中的每个校准时段所针对的频段组合;
至少一个校准时段中的每个校准时段所针对的干扰类型;
至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,在该第一配置信息中,该每个校准时段的时长包括至少一个符号(symbol)。
可选地,在该第一配置信息中,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。譬如B3(1.8G)+n78(3.5G),B8(0.9G)+B3(1.8G)。
应理解,B3是指band 3(频段3),同理,B8是指band 8,n78是指NR频段78。
可选地,在该第一配置信息中,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。对于某个特定的频段组合,可以存在不止一种干扰,此时需要明确校准时段是针对哪种干扰的,譬如上述B3(1.8G)+n78(3.5G),存在谐波和互调干扰,所以需要指出校准时段所针对的干扰种类,是单独的谐波干扰,还是单独的互调干扰。当网络设备指出针对校准时段的特定干扰类型时,在此校准时段中,网络设备也会调度引起特定干扰类型的上行信号发射。
需要说明的是,干扰类型这一参数,应当是频段组合参数下的一个子参数。
可选地,在该第一配置信息中,
若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
具体地,在该实施例一中,该终端设备根据该第一配置信息在该至少一个校准时段内分别进行自干扰消除校准。
需要说明的是,在该实施例一中,对某些特定的频带组合,可能存在多种干扰,譬如:B3(1.8G)+n78(3.5G),就存在互调和谐波干扰,为了终端设备能更精确的测得互调和谐波干扰,网络设备可以分别调度校准时段:譬如两个校准时段,一个校准谐波干扰,另一个校准互调干扰。当校准谐波干扰时,只有B3的发射信号;当校准互调干扰时,同时有B3和n78的发射信号。当然也可以有一个校准时段,同时校准谐波和互调干扰。此时,网络设备在调度校准时段时,必须向终端设备指出此校准时段所针对的校准干扰的类型。譬如,网络设备可以为B3+n78这个频段组合向终端设备就谐波和互调干扰各提供一个校准时段,每个校准时段的时长是一个符号,并且都是最大发射功率,也就是校准谐波干扰时,B3的发射功率是23dbm(假设是功率等级3的终端设备),校准互调干扰时,B3和n78的发射功率各是20dbm。
可选地,在该实施例一中,每执行一次自干扰消除校准,该终端设备发送一次该第一信息,其中,该第一信息用于指示当前校准时段内该终端设备的自干扰消除的效果。
可选地,作为实施例二,该终端设备接收网络设备发送的第二配置信息,该第二配置信息用于配置校准时间单元,该校准时间单元包括但不限于以下信息中的至少一种:
多个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
多个校准时段中的每个校准时段的时长;
多个校准时段中的每个校准时段所针对的频段组合;
多个校准时段中的每个校准时段所针对的干扰类型;
多个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,在该校准时间单元中,该每个校准时段的时长包括至少一个符号(symbol)。
可选地,在该校准时间单元中,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。譬如B3(1.8G)+n78(3.5G),B8(0.9G)+B3(1.8G)。
可选地,在该校准时间单元中,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。对于某个特定的频段组合,可以存在不止一种干扰,此时需要明确校准时段是针对哪种干扰的,譬如上述B3(1.8G)+n78(3.5G),存在谐波和互调干扰,所以需要指出校准时段所针对的干扰种类,是单独的谐波干扰,还是单独的互调干扰。当网络设备指出针对校准时段的特定干扰类型时,在此校准时段中,网络设备也会调度引起特定干扰类型的上行信号发射。
可选地,在该校准时间单元中,
若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
可选地,在该校准时间单元中,该多个校准时段在时域上连续,且该校准时间单元为时域上连续的该多个校准时段构成的一个全下行的子帧结构。
例如,每个校准时段的时长都是1个符号,那么校准时间单元就可以认为是由时域连续的校准时段构成的全下行的一种子帧结构。即终端设备所作的校准都是在一个子帧内完成。
可选地,构成校准时间单元的校准时段的类型决定了有三种校准时间单元类型:
校准时间单元类型1:构成校准时间单元的校准时段全部是第一类校准时段;
校准时间单元类型2:构成校准时间单元的校准时段全部是第二类校准时段;
混合型校准时间单元:构成校准时间单元的校准时段中有第一类校准时段,也有第二类校准时段。
可选地,网络设备具体在配置校准时间单元的参数时,例如可以使用如下表1所示的二维数据组进行配置。
表1
Figure PCTCN2018124596-appb-000001
需要说明的是,上述表1中各参数均是可以配置的。
可选地,在该实施例二中,该终端设备根据该第二配置信息,在该多个校准时段内分别进行自干扰消除校准。
可选地,在该实施例二中,在该多个校准时段内都进行自干扰消除校准之后,该终端设备发送该第一信息,其中,该第一信息用于指示该多个校准时段中的每个校准时段内该终端设备的自干扰消除的效果。
假设该校准时间单元包括校准时段1至校准时段4,且校准时段1和校准时段2为第一类校准时段,校准时段3和校准时段4为第二类校准时段,则该第一信息可以是:
校准时段1,信号强度a;
校准时段2,信号强度b;
校准时段3,SINR a;
校准时段4,SINR b。
因此,终端设备可以第一信息中向网络设备上报多个校准时段内的自干扰消除的效果,避免了各自单独上报所造成的比较大的信令开销。
终端设备所受的实际背景干扰水平(非终端自干扰而带来的干扰)会随着终端设备所受调度、位置等因素的不同而发生变化,终端设备在不同校准时段上的校准结果,无法保证是在同一干扰水平下做出的,其结果可能会不准。因此,需要对该校准时间单元的参数统一配置。
可选地,在该实施例二中,网络设备可以通过该第二配置信息统一配置该校准时间单元的参数,以节约信令开销。
例如,该多个校准时段可以全部为该第一类校准时段或者该第二类校准时段。
又例如,该多个校准时段中的每个校准时段的时长相同。
再例如,该多个校准时段中的每个校准时段所针对的频段组合相同。
再例如,该多个校准时段中的每个校准时段所针对的干扰类型相同。
具体地,可以如下表2所示,在该校准时间单元中,该多个校准时段全部为该第一类校准时段,该多个校准时段中的每个校准时段所针对的频段组合为B3+n78,该多个校准时段中的每个校准时段所针对的干扰类型为互调,且该多个校准时段中的每个校准时段所针对的干扰信号的强度不同。
表2
Figure PCTCN2018124596-appb-000002
在上表2中,校准时间单元中的各个参数的相关配置都被列出,具体包括如下参数:
每一个校准时段的类型,每一个校准时段的频带组合,每一个校准时段所针对的干扰类型,以及每一个校准时段所针对的干扰信号的强度。
在上述表2中,校准时段类型、频带组合和干扰类型的参数相同,干扰强度呈现出等差分布,且公差为3。
需要指出的是,虽然每个校准时段的频带组合都是可配置的,但在实际情况下最可能出现的情况是一个校准时间单元只对应一种频带组合,以及只对应一种干扰类型,如上表2所示。这种情况下,频带组合/干扰类型可以统一配置,以节约信令开销。另外对于互调干扰,两路发射信号的功率需要分别指示。上表中两路发射信号功率是一样的,但在实际中有可能出现不一样的情况。
可选地,采用如上表2所示配置的校准时间单元,在该多个校准时段内都进行自干扰消除校准之后,该终端设备发送该第一信息,其中,该第一信息用于以第一校准时段为基准差分指示该多个校准时段中的每个校准时段内该终端设备的自干扰消除的效果,该第一校准时段属于该多个校准时段。
例如,该第一校准时段为校准时段1,该第一信息可以是:
校准时段1,信号强度a;
校准时段2,信号强度a-3;
校准时段3,信号强度a-6;
校准时段4,信号强度a-9。
需要说明的是,该第一校准时段为预配置的,或者为网络设备指示的。
例如,在该终端设备发送该第一信息之前,该终端设备还可以接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备以所述第一校准时段为基准差分上报所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果。
具体地,采用如上表2所示配置的校准时间单元的一个好处是,终端设备可以通过这个校准时间单元,得到在某个频带组合下某种类型的干扰在不同发射功率情况下对接收机的干扰程度。由于终端设备所做的校准都是在一个子帧内完成的,其校准条件可以认为是基本相同的。如上表2所示的配置,网络设备在配置终端设备汇报校准结果时(自干扰消除的效果,或者接收机所受的干扰水平),可以指定以其中某一个校准时段为基准作差分汇报。譬如,在表2中,校准时段4对应的未被消除的干扰信号的强度为3dBm,则校准时段3/2/1对应的未被消除的干扰信号的强度就是校准时段4对应的未被消除的干扰信号的强度的差分值,譬如校准时段3/2/1分别为:6dBm,9dBm,12dBm。假如网络设备对各个校准时段的干扰功率的配置是按升序或降序排列,终端设备在汇报干扰水平时可以进一步按照依次差分去汇报,以进一步压缩信令开销。仍然以上表2为例,以校准时段4的干扰水平作为基准,校准时段3的汇报值是与校准时段4的值的差分,依次类推,校准时段2的汇报值是与校准时段3的值的差分,校准时段1的汇报值是与校准时段2的值的差分。此时,对校准时段3/2/1对应的未被消除的干扰信号的强度的汇报的差分值分别为:3,3,3。
因此,在本申请实施例中,终端设备在进行自干扰消除校准之后,可以向网络设备上报自干扰消除的效果,从而网络设备可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,进而提升系统性能。
进一步地,网络设备可以配置校准时间单元,从而终端设备可以第一信息中向网络设备上报多个校准时段内的自干扰消除的效果,避免了各自单独上报所造成的比较大的信令开销。
更进一步地,终端设备可以以第一校准时段为基准差分指示多个校准时段中的每个校准时段内终端设备的自干扰消除的效果,以进一步压缩信令开销。
图3是根据本申请实施例的无线通信方法300的示意性流程图,如图3所示,该方法300可以包括如下内容:
S310,网络设备接收终端设备发送的第一信息,该第一信息用于指示该终端设备的自干扰消除的效果。
可选地,在本申请实施例中,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
具体地,若在第一类校准时段内进行自干扰消除校准,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度;或者
若在第二类校准时段内进行自干扰消除校准,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
可选地,在该第一类校准时段内仅存在干扰信号,在该第二类校准时段内存在干扰信号和已知的下行信号。
可选地,在本申请实施例中,该网络设备向该终端设备发送第一配置信息,该第一配置信息用于对端在至少一个校准时段内分别进行自干扰消除校准,
该第一配置信息包括以下信息中的至少一种:
该至少一个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
该至少一个校准时段中的每个校准时段的时长;
该至少一个校准时段中的每个校准时段所针对的频段组合;
该至少一个校准时段中的每个校准时段所针对的干扰类型;
该至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,在该第一配置信息中,该每个校准时段的时长包括至少一个符号(symbol)。
可选地,在该第一配置信息中,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。譬如B3(1.8G)+n78(3.5G),B8(0.9G)+B3(1.8G)。
应理解,B3是指band 3,同理,B8是指band 8,n78是指NR频段78。
可选地,在该第一配置信息中,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。对于某个特定的频段组合,可以存在不止一种干扰,此时需要明确校准时段是针对哪种干扰的,譬如上述B3(1.8G)+n78(3.5G),存在谐波和互调干扰,所以需要指出校准时段所针对的干扰种类,是单独的谐波干扰,还是单独的互调干扰。当网络设备指出针对校准时段的特定干扰类型时,在此校准时段中,网络设备也会调度引起特定干扰类型的上行信号发射。
需要说明的是,干扰类型这一参数,应当是频段组合参数下的一个子参数。
可选地,在该第一配置信息中,
若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
可选地,在本申请实施例中,该第一信息具体用于指示当前校准时段内对端的自干扰消除的效果。即在终端设备根据该第一配置信息在该至少一个校准时段内分别进行自干扰消除校准时,该第一信息具体用于指示当前校准时段内对端的自干扰消除的效果。
可选地,在本申请实施例中,该网络设备向该终端设备发送第二配置信息,该第二配置信息用于配置校准时间单元,且该第二配置信息用于对端在多个校准时段内分别进行自干扰消除校准,
该校准时间单元包括以下信息中的至少一种:
该多个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
该多个校准时段中的每个校准时段的时长;
该多个校准时段中的每个校准时段所针对的频段组合;
该多个校准时段中的每个校准时段所针对的干扰类型;
该多个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,在该校准时间单元中,该每个校准时段的时长包括至少一个符号(symbol)。
可选地,在该校准时间单元中,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。譬如B3(1.8G)+n78(3.5G),B8(0.9G)+B3(1.8G)。
可选地,在该校准时间单元中,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。对于某个特定的频段组合,可以存在不止一种干扰,此时需要明确校准时段是针对哪种干扰的,譬如上述B3(1.8G)+n78(3.5G),存在谐波和互调干扰,所以需要指出校准时段所针对的干扰种类,是单独的谐波干扰,还是单独的互调干扰。当网络设备指出针对校准时段的特定干扰类型时,在此校准时段中,网络设备也会调度引起特定干扰类型的上行信号发射。
可选地,在该校准时间单元中,
若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
可选地,在该校准时间单元中,该多个校准时段在时域上连续,且该校准时间单元为时域上连续的该多个校准时段构成的一个全下行的子帧结构。
例如,每个校准时段的时长都是1个符号,那么校准时间单元就可以认为是由时域连续的校准时段构成的全下行的一种子帧结构。即终端设备所作的校准都是在一个子帧内完成。
可选地,构成校准时间单元的校准时段的类型决定了有三种校准时间单元类型:
校准时间单元类型1:构成校准时间单元的校准时段全部是第一类校准时段;
校准时间单元类型2:构成校准时间单元的校准时段全部是第二类校准时段;
混合型校准时间单元:构成校准时间单元的校准时段中既有第一类校准时段,也有第二类校准时段。
可选地,该第一信息具体用于指示该多个校准时段中的每个校准时段内对端的自干扰消除的效果。即在该终端设备根据该第二配置信息,在该多个校准时段内分别进行自干扰消除校准时,该第一信息具体用于指示该多个校准时段中的每个校准时段内对端的自干扰消除的效果。
可选地,在本申请实施例中,网络设备可以通过该第二配置信息统一配置该校准时间单元的参数,以节约信令开销。
例如,该多个校准时段可以全部为该第一类校准时段或者该第二类校准时段。
又例如,该多个校准时段中的每个校准时段的时长相同。
再例如,该多个校准时段中的每个校准时段所针对的频段组合相同。
再例如,该多个校准时段中的每个校准时段所针对的干扰类型相同。
可选地,该第一信息具体用于以第一校准时段为基准差分指示该多个校准时段中的每个校准时段内对端的自干扰消除的效果,该第一校准时段属于该多个校准时段。即在网络设备通过该第二配置信息统一配置该校准时间单元的参数时,该第一信息具体用于以第一校准时段为基准差分指示该多个校 准时段中的每个校准时段内对端的自干扰消除的效果。
可选地,在该网络设备接收该第一信息之前,该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示对端以该第一校准时段为基准差分上报该多个校准时段中的每个校准时段内对端的自干扰消除的效果。
应理解,无线通信方法300中的步骤可以参考无线通信方法200中的相应步骤,具体地,关于第一信息,第一配置信息,第二配置信息,以及第一指示信息的相关描述可以参考无线通信方法200中的描述,为了简洁,在此不再赘述。
因此,在本申请实施例中,终端设备在进行自干扰消除校准之后,可以向网络设备上报自干扰消除的效果,从而网络设备可以准确掌握在一定的上行干扰信号强度下,当终端设备使用了自干扰消除技术后,下行信号所受干扰的程度,进而提升系统性能。
进一步地,网络设备可以配置校准时间单元,从而终端设备可以第一信息中向网络设备上报多个校准时段内的自干扰消除的效果,避免了各自单独上报所造成的比较大的信令开销。
更进一步地,终端设备可以以第一校准时段为基准差分指示多个校准时段中的每个校准时段内终端设备的自干扰消除的效果,以进一步压缩信令开销。
图4示出了根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括:
通信单元410,用于发送第一信息,该第一信息用于指示该终端设备的自干扰消除的效果。
可选地,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或该终端设备在执行自干扰消除校准之后测量得到的下行SINR。
可选地,若该终端设备在第一类校准时段内进行自干扰消除校准,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度;或者
若该终端设备在第二类校准时段内进行自干扰消除校准,该第一信息包括该终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或该终端设备在执行自干扰消除校准之后测量得到的下行SINR。
可选地,在该第一类校准时段内仅存在干扰信号,在该第二类校准时段内存在干扰信号和已知的下行信号。
可选地,该通信单元410还用于接收第一配置信息,该第一配置信息包括以下信息中的至少一种:
至少一个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
至少一个校准时段中的每个校准时段的时长;
至少一个校准时段中的每个校准时段所针对的频段组合;
至少一个校准时段中的每个校准时段所针对的干扰类型;
至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,该终端设备400还包括:
处理单元420,用于根据该第一配置信息在该至少一个校准时段内分别进行自干扰消除校准。
可选地,该通信单元410具体用于:
每执行一次自干扰消除校准,发送一次该第一信息,其中,该第一信息用于指示当前校准时段内该终端设备的自干扰消除的效果。
可选地,该通信单元410还用于接收第二配置信息,该第二配置信息用于配置校准时间单元,该校准时间单元包括以下信息中的至少一种:
多个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
多个校准时段中的每个校准时段的时长;
多个校准时段中的每个校准时段所针对的频段组合;
多个校准时段中的每个校准时段所针对的干扰类型;
多个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,该多个校准时段在时域上连续,且该校准时间单元为时域上连续的该多个校准时段构成的一个全下行的子帧结构。
可选地,该处理单元420还用于根据该第二配置信息,在该多个校准时段内分别进行自干扰消除校准。
可选地,该通信单元410具体用于:
在该多个校准时段内都进行自干扰消除校准之后,发送该第一信息,其中,该第一信息用于指示该多个校准时段中的每个校准时段内该终端设备的自干扰消除的效果。
可选地,该多个校准时段全部为该第一类校准时段或者该第二类校准时段。
可选地,该多个校准时段中的每个校准时段的时长相同。
可选地,该多个校准时段中的每个校准时段所针对的频段组合相同。
可选地,该多个校准时段中的每个校准时段所针对的干扰类型相同。
可选地,该通信单元410具体用于:
在该多个校准时段内都进行自干扰消除校准之后,发送该第一信息,其中,该第一信息用于以第一校准时段为基准差分指示该多个校准时段中的每个校准时段内该终端设备的自干扰消除的效果,该第一校准时段属于该多个校准时段。
可选地,该通信单元410还用于接收第一指示信息,该第一指示信息用于指示该终端设备以该第一校准时段为基准差分上报该多个校准时段中的每个校准时段内该终端设备的自干扰消除的效果。
可选地,该每个校准时段的时长包括至少一个符号。
可选地,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。
可选地,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
可选地,若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图5示出了根据本申请实施例的网络设备500的示意性框图。如图5所示,该网络设备500包括:
通信单元510,用于接收第一信息,该第一信息用于指示对端的自干扰消除的效果。
可选地,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
可选地,若在第一类校准时段内进行自干扰消除校准,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度;或者
若在第二类校准时段内进行自干扰消除校准,该第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
可选地,在该第一类校准时段内仅存在干扰信号,在该第二类校准时段内存在干扰信号和已知的下行信号。
可选地,该通信单元510还用于发送第一配置信息,该第一配置信息用于对端在至少一个校准时段内分别进行自干扰消除校准,
该第一配置信息包括以下信息中的至少一种:
该至少一个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
该至少一个校准时段中的每个校准时段的时长;
该至少一个校准时段中的每个校准时段所针对的频段组合;
该至少一个校准时段中的每个校准时段所针对的干扰类型;
该至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,该第一信息具体用于指示当前校准时段内对端的自干扰消除的效果。
可选地,该通信单元510还用于发送第二配置信息,该第二配置信息用于配置校准时间单元,且该第二配置信息用于对端在多个校准时段内分别进行自干扰消除校准,
该校准时间单元包括以下信息中的至少一种:
该多个校准时段中的每个校准时段的类型,其中,该每个校准时段的类型为该第一类校准时段或该第二类校准时段;
该多个校准时段中的每个校准时段的时长;
该多个校准时段中的每个校准时段所针对的频段组合;
该多个校准时段中的每个校准时段所针对的干扰类型;
该多个校准时段中的每个校准时段所针对的干扰信号的强度。
可选地,该多个校准时段在时域上连续,且该校准时间单元为时域上连续的该多个校准时段构成的一个全下行的子帧结构。
可选地,该第一信息具体用于指示该多个校准时段中的每个校准时段内对端的自干扰消除的效果。
可选地,该多个校准时段全部为该第一类校准时段或者该第二类校准时段。
可选地,该多个校准时段中的每个校准时段的时长相同。
可选地,该多个校准时段中的每个校准时段所针对的频段组合相同。
可选地,该多个校准时段中的每个校准时段所针对的干扰类型相同。
可选地,该第一信息具体用于以第一校准时段为基准差分指示该多个校准时段中的每个校准时段内对端的自干扰消除的效果,该第一校准时段属于该多个校准时段。
可选地,该通信单元510还用于发送第一指示信息,该第一指示信息用于指示对端以该第一校准时段为基准差分上报该多个校准时段中的每个校准时段内对端的自干扰消除的效果。
可选地,该每个校准时段的时长包括至少一个符号。
可选地,该每个校准时段所针对的频段组合包括至少一个用于上行发送的频段和至少一个用于下行接收的频段的组合。
可选地,该每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
可选地,若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备 820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的 具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (90)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备发送第一信息,所述第一信息用于指示所述终端设备的自干扰消除的效果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或所述终端设备在执行自干扰消除校准之后测量得到的下行信号干扰噪声比SINR。
  3. 根据权利要求2所述的方法,其特征在于,
    若所述终端设备在第一类校准时段内进行自干扰消除校准,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度;或者
    若所述终端设备在第二类校准时段内进行自干扰消除校准,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或所述终端设备在执行自干扰消除校准之后测量得到的下行SINR。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一类校准时段内仅存在干扰信号,在所述第二类校准时段内存在干扰信号和已知的下行信号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息包括以下信息中的至少一种:
    至少一个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    至少一个校准时段中的每个校准时段的时长;
    至少一个校准时段中的每个校准时段所针对的频段组合;
    至少一个校准时段中的每个校准时段所针对的干扰类型;
    至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一配置信息在所述至少一个校准时段内分别进行自干扰消除校准。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备发送第一信息,包括:
    每执行一次自干扰消除校准,所述终端设备发送一次所述第一信息,其中,所述第一信息用于指示当前校准时段内所述终端设备的自干扰消除的效果。
  8. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于配置校准时间单元,所述校准时间单元包括以下信息中的至少一种:
    多个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    多个校准时段中的每个校准时段的时长;
    多个校准时段中的每个校准时段所针对的频段组合;
    多个校准时段中的每个校准时段所针对的干扰类型;
    多个校准时段中的每个校准时段所针对的干扰信号的强度。
  9. 根据权利要求8所述的方法,其特征在于,所述多个校准时段在时域上连续,且所述校准时间单元为时域上连续的所述多个校准时段构成的一个全下行的子帧结构。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第二配置信息,在所述多个校准时段内分别进行自干扰消除校准。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备发送第一信息,包括:
    在所述多个校准时段内都进行自干扰消除校准之后,所述终端设备发送所述第一信息,其中,所述第一信息用于指示所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果。
  12. 根据权利要求8至10中任一项所述的方法,其特征在于,
    所述多个校准时段全部为所述第一类校准时段或者所述第二类校准时段。
  13. 根据权利要求12所述的方法,其特征在于,所述多个校准时段中的每个校准时段的时长相同。
  14. 根据权利要求12或13所述的方法,其特征在于,所述多个校准时段中的每个校准时段所针对的频段组合相同。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述多个校准时段中的每个校准时段所针对的干扰类型相同。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述终端设备发送第一信息,包 括:
    在所述多个校准时段内都进行自干扰消除校准之后,所述终端设备发送所述第一信息,其中,所述第一信息用于以第一校准时段为基准差分指示所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果,所述第一校准时段属于所述多个校准时段。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示所述终端设备以所述第一校准时段为基准差分上报所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果。
  18. 根据权利要求5至17中任一项所述的方法,其特征在于,所述每个校准时段的时长包括至少一个符号。
  19. 根据权利要求5至18中任一项所述的方法,其特征在于,
    所述每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。
  20. 根据权利要求5至19中任一项所述的方法,其特征在于,
    所述每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
  21. 根据权利要求20所述的方法,其特征在于,
    若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
    若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
    若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
  22. 一种无线通信方法,其特征在于,包括:
    网络设备接收第一信息,所述第一信息用于指示对端的自干扰消除的效果。
  23. 根据权利要求22所述的方法,其特征在于,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行信号干扰噪声比SINR。
  24. 根据权利要求23所述的方法,其特征在于,
    若在第一类校准时段内进行自干扰消除校准,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度;或者
    若在第二类校准时段内进行自干扰消除校准,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
  25. 根据权利要求24所述的方法,其特征在于,在所述第一类校准时段内仅存在干扰信号,在所述第二类校准时段内存在干扰信号和已知的下行信号。
  26. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一配置信息,所述第一配置信息用于对端在至少一个校准时段内分别进行自干扰消除校准,
    所述第一配置信息包括以下信息中的至少一种:
    所述至少一个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    所述至少一个校准时段中的每个校准时段的时长;
    所述至少一个校准时段中的每个校准时段所针对的频段组合;
    所述至少一个校准时段中的每个校准时段所针对的干扰类型;
    所述至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
  27. 根据权利要求26所述的方法,其特征在于,所述第一信息具体用于指示当前校准时段内对端的自干扰消除的效果。
  28. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二配置信息,所述第二配置信息用于配置校准时间单元,且所述第二配置信息用于对端在多个校准时段内分别进行自干扰消除校准,
    所述校准时间单元包括以下信息中的至少一种:
    所述多个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    所述多个校准时段中的每个校准时段的时长;
    所述多个校准时段中的每个校准时段所针对的频段组合;
    所述多个校准时段中的每个校准时段所针对的干扰类型;
    所述多个校准时段中的每个校准时段所针对的干扰信号的强度。
  29. 根据权利要求28所述的方法,其特征在于,所述多个校准时段在时域上连续,且所述校准时间单元为时域上连续的所述多个校准时段构成的一个全下行的子帧结构。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第一信息具体用于指示所述多个校准时段中的每个校准时段内对端的自干扰消除的效果。
  31. 根据权利要求28或29所述的方法,其特征在于,
    所述多个校准时段全部为所述第一类校准时段或者所述第二类校准时段。
  32. 根据权利要求31所述的方法,其特征在于,所述多个校准时段中的每个校准时段的时长相同。
  33. 根据权利要求31或32所述的方法,其特征在于,所述多个校准时段中的每个校准时段所针对的频段组合相同。
  34. 根据权利要求31至33中任一项所述的方法,其特征在于,所述多个校准时段中的每个校准时段所针对的干扰类型相同。
  35. 根据权利要求31至34中任一项所述的方法,其特征在于,所述第一信息具体用于以第一校准时段为基准差分指示所述多个校准时段中的每个校准时段内对端的自干扰消除的效果,所述第一校准时段属于所述多个校准时段。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示对端以所述第一校准时段为基准差分上报所述多个校准时段中的每个校准时段内对端的自干扰消除的效果。
  37. 根据权利要求26至36中任一项所述的方法,其特征在于,所述每个校准时段的时长包括至少一个符号。
  38. 根据权利要求26至37中任一项所述的方法,其特征在于,
    所述每个校准时段所针对的频段组合包括至少一个用于上行发送的频段和至少一个用于下行接收的频段的组合。
  39. 根据权利要求26至38中任一项所述的方法,其特征在于,
    所述每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
  40. 根据权利要求39所述的方法,其特征在于,
    若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
    若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
    若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
  41. 一种终端设备,其特征在于,包括:
    通信单元,用于发送第一信息,所述第一信息用于指示所述终端设备的自干扰消除的效果。
  42. 根据权利要求41所述的终端设备,其特征在于,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或所述终端设备在执行自干扰消除校准之后测量得到的下行信号干扰噪声比SINR。
  43. 根据权利要求42所述的终端设备,其特征在于,
    若所述终端设备在第一类校准时段内进行自干扰消除校准,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度;或者
    若所述终端设备在第二类校准时段内进行自干扰消除校准,所述第一信息包括所述终端设备在执行自干扰消除校准之后未被消除的干扰信号强度和/或所述终端设备在执行自干扰消除校准之后测量得到的下行SINR。
  44. 根据权利要求43所述的终端设备,其特征在于,在所述第一类校准时段内仅存在干扰信号,在所述第二类校准时段内存在干扰信号和已知的下行信号。
  45. 根据权利要求43或44所述的终端设备,其特征在于,所述通信单元还用于接收第一配置信息,所述第一配置信息包括以下信息中的至少一种:
    至少一个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    至少一个校准时段中的每个校准时段的时长;
    至少一个校准时段中的每个校准时段所针对的频段组合;
    至少一个校准时段中的每个校准时段所针对的干扰类型;
    至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
  46. 根据权利要求45所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述第一配置信息在所述至少一个校准时段内分别进行自干扰消除校准。
  47. 根据权利要求46所述的终端设备,其特征在于,所述通信单元具体用于:
    每执行一次自干扰消除校准,发送一次所述第一信息,其中,所述第一信息用于指示当前校准时段内所述终端设备的自干扰消除的效果。
  48. 根据权利要求43或44所述的终端设备,其特征在于,所述通信单元还用于接收第二配置信息,所述第二配置信息用于配置校准时间单元,所述校准时间单元包括以下信息中的至少一种:
    多个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    多个校准时段中的每个校准时段的时长;
    多个校准时段中的每个校准时段所针对的频段组合;
    多个校准时段中的每个校准时段所针对的干扰类型;
    多个校准时段中的每个校准时段所针对的干扰信号的强度。
  49. 根据权利要求48所述的终端设备,其特征在于,所述多个校准时段在时域上连续,且所述校准时间单元为时域上连续的所述多个校准时段构成的一个全下行的子帧结构。
  50. 根据权利要求48或49所述的终端设备,其特征在于,所述处理单元还用于根据所述第二配置信息,在所述多个校准时段内分别进行自干扰消除校准。
  51. 根据权利要求50所述的终端设备,其特征在于,所述通信单元具体用于:
    在所述多个校准时段内都进行自干扰消除校准之后,发送所述第一信息,其中,所述第一信息用于指示所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果。
  52. 根据权利要求48至50中任一项所述的终端设备,其特征在于,
    所述多个校准时段全部为所述第一类校准时段或者所述第二类校准时段。
  53. 根据权利要求52所述的终端设备,其特征在于,所述多个校准时段中的每个校准时段的时长相同。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述多个校准时段中的每个校准时段所针对的频段组合相同。
  55. 根据权利要求52至54中任一项所述的终端设备,其特征在于,所述多个校准时段中的每个校准时段所针对的干扰类型相同。
  56. 根据权利要求52至55中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    在所述多个校准时段内都进行自干扰消除校准之后,发送所述第一信息,其中,所述第一信息用于以第一校准时段为基准差分指示所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果,所述第一校准时段属于所述多个校准时段。
  57. 根据权利要求56所述的终端设备,其特征在于,所述通信单元还用于接收第一指示信息,所述第一指示信息用于指示所述终端设备以所述第一校准时段为基准差分上报所述多个校准时段中的每个校准时段内所述终端设备的自干扰消除的效果。
  58. 根据权利要求45至57中任一项所述的终端设备,其特征在于,所述每个校准时段的时长包括至少一个符号。
  59. 根据权利要求45至58中任一项所述的终端设备,其特征在于,
    所述每个校准时段所针对的频段组合包括至少一个用于上行发送的频段与至少一个用于下行接收的频段的组合。
  60. 根据权利要求45至59中任一项所述的终端设备,其特征在于,
    所述每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
  61. 根据权利要求60所述的终端设备,其特征在于,
    若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
    若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
    若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
  62. 一种网络设备,其特征在于,包括:
    通信单元,用于接收第一信息,所述第一信息用于指示对端的自干扰消除的效果。
  63. 根据权利要求62所述的网络设备,其特征在于,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行信号干扰噪声比SINR。
  64. 根据权利要求63所述的网络设备,其特征在于,
    若在第一类校准时段内进行自干扰消除校准,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度;或者
    若在第二类校准时段内进行自干扰消除校准,所述第一信息包括对端在执行自干扰消除校准之后未被消除的干扰信号强度和/或对端在执行自干扰消除校准之后测量得到的下行SINR。
  65. 根据权利要求64所述的网络设备,其特征在于,在所述第一类校准时段内仅存在干扰信号,在所述第二类校准时段内存在干扰信号和已知的下行信号。
  66. 根据权利要求64或65所述的网络设备,其特征在于,所述通信单元还用于发送第一配置信息,所述第一配置信息用于对端在至少一个校准时段内分别进行自干扰消除校准,
    所述第一配置信息包括以下信息中的至少一种:
    所述至少一个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    所述至少一个校准时段中的每个校准时段的时长;
    所述至少一个校准时段中的每个校准时段所针对的频段组合;
    所述至少一个校准时段中的每个校准时段所针对的干扰类型;
    所述至少一个校准时段中的每个校准时段所针对的干扰信号的强度。
  67. 根据权利要求66所述的网络设备,其特征在于,所述第一信息具体用于指示当前校准时段内对端的自干扰消除的效果。
  68. 根据权利要求64或65所述的网络设备,其特征在于,所述通信单元还用于发送第二配置信息,所述第二配置信息用于配置校准时间单元,且所述第二配置信息用于对端在多个校准时段内分别进行自干扰消除校准,
    所述校准时间单元包括以下信息中的至少一种:
    所述多个校准时段中的每个校准时段的类型,其中,所述每个校准时段的类型为所述第一类校准时段或所述第二类校准时段;
    所述多个校准时段中的每个校准时段的时长;
    所述多个校准时段中的每个校准时段所针对的频段组合;
    所述多个校准时段中的每个校准时段所针对的干扰类型;
    所述多个校准时段中的每个校准时段所针对的干扰信号的强度。
  69. 根据权利要求68所述的网络设备,其特征在于,所述多个校准时段在时域上连续,且所述校准时间单元为时域上连续的所述多个校准时段构成的一个全下行的子帧结构。
  70. 根据权利要求68或69所述的网络设备,其特征在于,所述第一信息具体用于指示所述多个校准时段中的每个校准时段内对端的自干扰消除的效果。
  71. 根据权利要求68或69所述的网络设备,其特征在于,
    所述多个校准时段全部为所述第一类校准时段或者所述第二类校准时段。
  72. 根据权利要求71所述的网络设备,其特征在于,所述多个校准时段中的每个校准时段的时长相同。
  73. 根据权利要求71或72所述的网络设备,其特征在于,所述多个校准时段中的每个校准时段所针对的频段组合相同。
  74. 根据权利要求71至73中任一项所述的网络设备,其特征在于,所述多个校准时段中的每个校准时段所针对的干扰类型相同。
  75. 根据权利要求71至74中任一项所述的网络设备,其特征在于,所述第一信息具体用于以第一校准时段为基准差分指示所述多个校准时段中的每个校准时段内对端的自干扰消除的效果,所述第一校准时段属于所述多个校准时段。
  76. 根据权利要求75所述的网络设备,其特征在于,所述通信单元还用于发送第一指示信息,所述第一指示信息用于指示对端以所述第一校准时段为基准差分上报所述多个校准时段中的每个校准时段内对端的自干扰消除的效果。
  77. 根据权利要求66至76中任一项所述的网络设备,其特征在于,所述每个校准时段的时长包括至少一个符号。
  78. 根据权利要求66至77中任一项所述的网络设备,其特征在于,
    所述每个校准时段所针对的频段组合包括至少一个用于上行发送的频段和至少一个用于下行接收的频段的组合。
  79. 根据权利要求66至78中任一项所述的网络设备,其特征在于,
    所述每个校准时段所针对的干扰类型包括谐波干扰和/或互调干扰。
  80. 根据权利要求79所述的网络设备,其特征在于,
    若干扰类型为谐波干扰,则干扰信号的强度为引起谐波的发射信号的强度;
    若干扰类型为互调干扰,则干扰信号的强度为引起互调的两路上行信号分别的强度;
    若干扰类型为谐波干扰和互调干扰,则干扰信号的强度为引起干扰的每一路上行信号分别的强度。
  81. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  82. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求22至40中任一项所述的方法。
  83. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  84. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求22至40中任一项所述的方法。
  85. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  86. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求22至40中任一项所述的方法。
  87. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  88. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求22至40中任一项所述的方法。
  89. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  90. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求22至40中任一项所述的方法。
PCT/CN2018/124596 2018-12-28 2018-12-28 无线通信方法、终端设备和网络设备 WO2020133132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880096769.4A CN112586023B (zh) 2018-12-28 2018-12-28 无线通信方法、终端设备和网络设备
PCT/CN2018/124596 WO2020133132A1 (zh) 2018-12-28 2018-12-28 无线通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124596 WO2020133132A1 (zh) 2018-12-28 2018-12-28 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2020133132A1 true WO2020133132A1 (zh) 2020-07-02

Family

ID=71126156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124596 WO2020133132A1 (zh) 2018-12-28 2018-12-28 无线通信方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN112586023B (zh)
WO (1) WO2020133132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173967A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195013A1 (en) * 2012-01-27 2013-08-01 Pantech Co., Ltd. Apparatus and method for controlling in-device coexistence interference in wireless communication system
CN107079314A (zh) * 2015-02-06 2017-08-18 联发科技股份有限公司 Idc指示消息的优先化生成以移除对于ue效能的idc影响
CN107210978A (zh) * 2015-01-23 2017-09-26 Lg 电子株式会社 通过使用fdr方案的设备估计非线性自干扰信号信道的方法
CN107534872A (zh) * 2015-04-09 2018-01-02 上海诺基亚贝尔股份有限公司 用户设备的用以抑制干扰的能力的确定

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773950B2 (en) * 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US9692539B2 (en) * 2011-11-04 2017-06-27 Qualcomm Incorporated Incremental interference cancelation capability and signaling
US9210605B2 (en) * 2012-06-29 2015-12-08 Qualcomm Incorporated Channel state information reporting for partially cancelled interference
US9426813B2 (en) * 2012-11-02 2016-08-23 Lg Electronics Inc. Interference cancellation receiving method and interference cancellation receiving terminal
CN103858355B (zh) * 2013-12-17 2017-04-12 华为技术有限公司 降低互调干扰的方法和设备
US9351307B2 (en) * 2014-03-31 2016-05-24 Qualcomm Incorporated CSI report with different receiver capabilities
CN108934041B (zh) * 2017-05-27 2021-02-12 维沃移动通信有限公司 一种测量事件处理方法、相关设备和系统
CN108933610B (zh) * 2017-05-27 2021-01-08 维沃移动通信有限公司 一种干扰测量处理方法、相关设备和系统
CN108934005B (zh) * 2017-05-27 2021-01-08 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195013A1 (en) * 2012-01-27 2013-08-01 Pantech Co., Ltd. Apparatus and method for controlling in-device coexistence interference in wireless communication system
CN107210978A (zh) * 2015-01-23 2017-09-26 Lg 电子株式会社 通过使用fdr方案的设备估计非线性自干扰信号信道的方法
CN107079314A (zh) * 2015-02-06 2017-08-18 联发科技股份有限公司 Idc指示消息的优先化生成以移除对于ue效能的idc影响
CN107534872A (zh) * 2015-04-09 2018-01-02 上海诺基亚贝尔股份有限公司 用户设备的用以抑制干扰的能力的确定

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.,: "Consideration on the Details of In-device Interference,", R2-105587, 3GPP TSG-RAN WG2 MEETING #71BIS, XIAN, CHINA,, 5 October 2010 (2010-10-05), XP050452641, DOI: 20190722140240A *

Also Published As

Publication number Publication date
CN112586023A (zh) 2021-03-30
CN112586023B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
US11133839B2 (en) Detection of intermodulation issues and transmission scheme configuration to remedy intermodulation issues
KR102090763B1 (ko) 상호변조 이슈들의 검출, 및 상호변조 이슈들을 교정하기 위한 송신 스킴 구성
WO2020133163A1 (zh) 无线通信方法、终端设备和网络设备
US11350455B2 (en) Method and device for performing channel detection on unlicensed carrier
WO2019000195A1 (zh) 无线通信方法和设备
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
AU2018422466A1 (en) Information determination method, terminal apparatus, and network apparatus
US20210392530A1 (en) Wireless communication method, terminal device and network device
US20220394461A1 (en) Sidelink capability sending method and terminal device
CN109802733B (zh) 信号测量的方法和设备
WO2020133132A1 (zh) 无线通信方法、终端设备和网络设备
CN112585875B (zh) 采样信号的方法、终端设备和网络设备
CN112567635B (zh) 测量干扰的方法和设备
CN116762311A (zh) 无线通信的方法、终端设备和网络设备
WO2024098201A1 (zh) 无线通信的方法、终端设备和网络设备
US11903011B2 (en) Adjusting base station transmit power based on user equipment signal measurements
WO2023108556A1 (zh) 无线通信的方法、终端设备和网络设备
US20230371056A1 (en) Frequency band configuration method, terminal device, network device, chip and storage medium
WO2023283889A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022027684A1 (zh) 信息上报方法、信息处理方法、终端设备和网络设备
CN112585878B (zh) 采样自干扰信号的方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944962

Country of ref document: EP

Kind code of ref document: A1