WO2019000195A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2019000195A1
WO2019000195A1 PCT/CN2017/090102 CN2017090102W WO2019000195A1 WO 2019000195 A1 WO2019000195 A1 WO 2019000195A1 CN 2017090102 W CN2017090102 W CN 2017090102W WO 2019000195 A1 WO2019000195 A1 WO 2019000195A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
terminal device
self
interference
network device
Prior art date
Application number
PCT/CN2017/090102
Other languages
English (en)
French (fr)
Inventor
张治�
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to US16/623,729 priority Critical patent/US11234246B2/en
Priority to CN201780090906.9A priority patent/CN110637422A/zh
Priority to PCT/CN2017/090102 priority patent/WO2019000195A1/zh
Priority to EP17915729.2A priority patent/EP3627724A4/en
Publication of WO2019000195A1 publication Critical patent/WO2019000195A1/zh
Priority to IL271276A priority patent/IL271276A/en
Priority to PH12019502803A priority patent/PH12019502803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2615Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid frequency-time division multiple access [FDMA-TDMA]

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for wireless communication.
  • the transmitter While the transmitter is transmitting the signal, if the receiver receives the signal at the same time, and the signal transmitted by the terminal device is the same as the received signal, the signal transmitted by the terminal device may interfere with the same-frequency signal received by the terminal device. This phenomenon can be called self-interference, and the generation of self-interference can cause a decline in communication performance.
  • the embodiment of the present invention provides a wireless communication method and device, which can avoid self-interference of the terminal device and improve communication performance.
  • a wireless communication method including:
  • the first message includes the following information:
  • the first message is further used to indicate that the first uplink frequency band and the first downlink frequency band are generated by the terminal device.
  • the type of self-interference is a prefix of the first uplink frequency band and the first downlink frequency band.
  • the self-interference strength is a self-interference strength of the terminal device at the first transmit power
  • a transmit power is a transmit power that the terminal device transmits to the network device by using the first uplink frequency band.
  • the first message further includes information for indicating the first transmit power.
  • determining, by the terminal device, the first uplink frequency band and the first downlink frequency band to the terminal device The resulting self-interference strength, including:
  • the preset list includes at least one combination of an uplink frequency band and a downlink frequency band that generate self-interference, and a combination corresponding to Self-interference strength.
  • the preset list further includes: combining the types of the corresponding self-interferences.
  • combining the corresponding self-interference strengths includes:
  • the self-interference strength of each of the uplink frequency bands in the combination at at least one transmit power.
  • the sending, by the network device, the first message includes:
  • the first message is sent to the network device after the terminal device enters the network coverage of the network device or after receiving the indication of the network device.
  • determining, by the terminal device, the first uplink frequency band and the first downlink frequency band to the terminal device The resulting self-interference strength, including:
  • the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device is determined by measurement.
  • the method further includes:
  • the terminal device And receiving the first indication information sent by the network device, where the first indication information is used to indicate that the terminal device measures and/or reports the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the self-interference strength is a self-interference strength of the terminal device at the first transmit power
  • a transmit power is a transmit power of the terminal device transmitting a signal to the network device by using the first uplink frequency band
  • the method also includes:
  • the second indication information sent by the network device is received, where the second indication information is used to indicate that the terminal device measures and/or reports the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device under the first transmit power.
  • determining, by measurement, determining a self-interference intensity generated by the first uplink frequency band and the first downlink frequency band on the terminal device include:
  • the intensity of the received signal is determined as the self-interference strength.
  • the method further includes:
  • third indication information is used to indicate that the terminal device measures the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device in the first time period.
  • the first message carries a first channel quality indicator CQI, where the first CQI is used to represent the first downlink frequency band. And the self-interference intensity generated by the first uplink frequency band on the terminal device.
  • the method before the first information is sent by the terminal device to the network device, the method further includes:
  • a first CQI is determined based on the second CQI and the determined self-interference strength.
  • the first message carries the first bit
  • the CQI characterizing the first message is the second CQI.
  • the first uplink frequency band includes multiple frequency bands;
  • the first downlink frequency band includes multiple frequency bands.
  • a wireless communication method including:
  • the terminal device Receiving, by the terminal device, the first message, where the first message is used to identify the self-interference strength generated by the first uplink frequency band and the first downlink frequency band that the terminal device communicates with the network device;
  • the terminal device is scheduled according to the self-interference strength.
  • the first message includes the following information:
  • the first message is further used to indicate:
  • the type of self-interference generated by the first uplink frequency band and the first downlink frequency band to the terminal device and/or,
  • the first transmit power is a transmit power of the terminal device transmitting a signal to the network device by using the first uplink frequency band.
  • the method before the receiving the first message sent by the terminal device, the method further includes:
  • the indication information is used to indicate:
  • the terminal device measures and/or reports the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device.
  • the indication information is further used to indicate at least one of the following:
  • the method further includes:
  • the downlink signal is not transmitted to the terminal device by using the first downlink frequency band during the period of measuring the self-interference strength indicated by the indication information.
  • the first message carries a first channel quality indicator CQI, where the first CQI is used to represent the first downlink frequency band. And the self-interference intensity generated by the first uplink frequency band on the terminal device.
  • the first message carries the first bit
  • the CQI characterizing the first message is the second CQI, and the second CQI is not used to characterize the self-interference strength.
  • the first uplink frequency band includes multiple frequency bands;
  • the first downlink frequency band includes multiple frequency bands.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises functional modules for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises functional modules for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the terminal device performs any of the above first aspect or any possible implementation of the first aspect The method in .
  • a network device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the network device performs any of the second or second aspects of the foregoing possible implementations The method in .
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing any one of the methods described above or any possible implementation.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any one of the above methods or any of the possible implementations.
  • the terminal device determines the self-interference strength generated by the first uplink frequency band and the first downlink frequency band that the terminal device communicates with the network device, and reports the self-interference strength to the network device.
  • the information may be such that the network device can schedule the terminal device according to the information indicating the self-interference strength, thereby avoiding self-interference on the terminal side and improving communication performance.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a system chip in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device in accordance with an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • the internet Device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • D2D device to device communication
  • D2D device to device
  • the 5G system or network may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and A and B exist separately. There are three cases of B.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the transmitter of the terminal device transmits a signal
  • the receiver receives the signal at the same time, and the signal transmitted by the terminal device is the same frequency as the received signal, the signal transmitted by the terminal device may receive the same-frequency signal to the terminal device. Interference occurs, which can be called self-interference.
  • self-interference can be divided into three types: harmonic interference, harmonic mixing interference, and intermodulation interference.
  • Each type of self-interference can also be subdivided into smaller granularity types.
  • intermodulation interference when the order of the intermodulation signals is different, it can be divided into different types of interference.
  • harmonic interference when the frequency multiplication of the signal is different when harmonic interference occurs, it can be divided into different types of interference.
  • the frequency of a certain order intermodulation signal (IM, intermodulation) of the uplink carrier of F1 and the uplink carrier of F2 overlaps or partially overlaps with the downlink signal frequency of carrier F3.
  • carriers F1 and F2 constitute intermodulation interference for F3.
  • F3 may be one of the carriers F1 or F2, or another carrier different from F1/F2 (in this case, the terminal device operates on more than two carriers at the same time).
  • the terminal device is configured with both the LTE carrier of Band 1 and Band 7 and the NR carrier (3400-3800 MHz), if the UL of the band 7 and the UL of the NR are simultaneously transmitted, the influence of the 5th-order intermodulation generated by the terminal device affects the band 1 DL receiver sensitivity.
  • the frequency multiplication of the uplink carrier of F1 overlaps or partially overlaps with the downlink signal frequency of F2. Then carrier F1 forms a harmonic interference with F2.
  • the uplink of LTE Band 3 is 1710-1785 MHz, and its second-order harmonic range is 3420-3570 MHz. If a terminal performs LTE uplink transmission on band 3 and DL reception on NR band 3400-3800 MHz at the same time, the second-order harmonic may interfere with the sensitivity of the NR DL receiver.
  • the frequency multiplication of the downlink carrier of F1 overlaps or partially overlaps with the uplink signal frequency of F2 (and its adjacent frequencies). Then carrier F2 forms a harmonic mixing interference for F1.
  • LTE Band 3 has a downstream 1805-1880 MHz with a second-order harmonic range of 3610-3760 MHz. If a terminal performs LTE downlink reception on band 3 and uplink transmission on NR band 3400-3800 MHz, the second-order harmonic mixing of NR may be dry. Disturb the sensitivity of LTE DL receivers.
  • the embodiments of the present application provide the following methods and devices.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 is optionally applicable to the system shown in FIG. 1, but is not limited thereto.
  • the method 200 can optionally be performed by a terminal device.
  • the method 200 includes at least some of the following.
  • the terminal device determines a self-interference strength generated by the first uplink frequency band and the first downlink frequency band that the terminal device communicates with the network device.
  • the terminal device may determine, according to the preset list, the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the terminal device may determine, by using a measurement manner, the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device.
  • the self-interference strength may be: a signal received in the first downlink frequency band (excluding the received signal from the outside) when the uplink signal is sent by using the first uplink frequency band. strength.
  • the first uplink frequency band includes multiple frequency bands; and/or the first downlink frequency band includes multiple frequency bands.
  • the first uplink frequency band and the first downlink frequency band generate self-interference to the terminal device, that is, the signal pair sent by the terminal device in all or part of the frequency range of the first uplink frequency band is simultaneously Signals received in all or part of the frequency range of the first downlink frequency band cause interference.
  • the terminal device sends a first message to the network device, where the first message is used to represent the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the first message includes the following information: information of the first uplink frequency band; information of the first downlink frequency band; and information that characterizes the self-interference strength.
  • the information of the first uplink frequency band may include a starting frequency of the frequency band, or include a starting frequency and a frequency band size of the frequency band, or include a termination frequency and a frequency band size of the frequency band.
  • the information of the first downlink frequency band may include a start frequency of the frequency band, or include a starting frequency and a frequency band size of the frequency band, or include a termination frequency and a frequency band size of the frequency band,
  • the information that characterizes the self-interference strength may directly represent the self-interference strength.
  • the self-interference strength is the strength of the received signal in the first downlink frequency band, and the self-interference strength is directly reported to the network device.
  • the information characterizing the self-interference strength may indirectly characterize the self-interference strength.
  • the self-interference strength may be characterized by using a Channel Quality Indication (CQI).
  • CQI Channel Quality Indication
  • the first message carries a first channel quality indicator CQI, where the first CQI is used to represent the self-interference strength generated by the first downlink frequency band and the first uplink frequency band to the terminal device.
  • the terminal device determines a second CQI according to the reference signal sent by the network device to the terminal device by using the first downlink frequency; and determining, by the terminal device, the first according to the second CQI and the determined self-interference strength.
  • CQI is not used to characterize the self-interference strength, and is optionally related to a Modulation and Coding Scheme (MCS) of the signal.
  • MCS Modulation and Coding Scheme
  • the reporting of the terminal device to the network device can also be embodied in the calculation of the CQI by the terminal device, and the terminal can calculate the signal strength of the interfered band/(noise intensity + self) The ratio of the interference intensity) and convert this ratio into CQI to report to the network.
  • the terminal device may report the CQI that is characterized by the self-interference strength to the terminal device by using physical layer signaling.
  • the network device needs the CQI report of the terminal device in the certain frequency band to include the self-interference of the terminal device, it is represented by a certain field of the indication message.
  • the value of the field is 1 to indicate that the reported CQI includes the self-interference strength.
  • a value of 0 indicates that the reported CQI does not contain self-interference strength.
  • the first message reported by the terminal device to the network device may include a first bit; when the first bit takes a first value (for example, 1), the CQI carried by the first message is represented as the first CQI; When the first bit takes a value of a second value (for example, 0), the CQI characterizing the first message is the second CQI.
  • a first value for example, 1
  • a second value for example, 0
  • CQI information that simultaneously characterizes the second CQI and the self-interference strength
  • CQI information that simultaneously characterizes the second CQI and the self-interference strength
  • the first message is further used to indicate a type of self-interference generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the first uplink frequency band may include multiple uplink frequency bands, and the first downlink frequency band includes a downlink frequency band.
  • the generated interference type may be intermodulation interference, where the type of interference may also be The subdivision is further subdivided according to the order of the intermodulation signal that produces the interference.
  • the first uplink frequency band may include an uplink frequency band
  • the first downlink frequency band includes a downlink frequency band.
  • the generated interference type may be harmonic interference or harmonic mixing interference, where The type of interference may also be subdivided according to the multiplication frequency of the uplink frequency band that interferes with the downlink frequency band, or may be subdivided according to the multiple frequency of the downlink frequency band interfered by the uplink frequency band.
  • the self-interference strength generated by the terminal device and the first downlink frequency band may be related to the transmit power
  • the self-interference strength reported by the terminal device to the network may be The self-interference strength of the terminal device at the first transmit power, where the first transmit power is a transmit power of the terminal device transmitting a signal to the network device by using the first uplink frequency band.
  • the first message further includes information indicating the first transmit power.
  • the transmit power of the uplink signal may be separately transmitted on each frequency band.
  • the transmit powers in the multiple frequency bands may be the same or different.
  • the network device combines the self-interference strength generated by the first uplink frequency band and the first downlink frequency band with the terminal device at a specific transmission power, and schedules the terminal device, for example, in the transmission.
  • the interference strength is high, the transmission power of the terminal equipment can be reduced, or the scheduling terminal equipment can be simultaneously sent and received in the first uplink frequency band and the first downlink frequency band; or, under the transmission power, the interference intensity scheduling is compared. If it is low, you can try to increase the transmit power of the terminal equipment.
  • the terminal device may determine the self-interference strength generated by the first uplink frequency band and the downlink frequency band on the terminal device in multiple manners. For ease of understanding, the following two implementations are described.
  • the terminal device determines, according to the preset list, the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the self-interference is generated internally by the terminal device, and a terminal device is designed, the supported frequency bands are already known, and if there is mutual interference between the frequency bands, the mutual interference severity may also be in the terminal device. It is measured during the design process and is already preset in the terminal device when the terminal is manufactured.
  • the terminal device may also measure the self-interference strength of each frequency band combination in turn after being completed, and pre-stored on the terminal device.
  • the preset list includes at least one combination of an uplink frequency band and a downlink frequency band that generate self-interference, and a self-interference strength corresponding to the combination.
  • the combination of the first uplink frequency band and the first downlink frequency band may be any one of the at least one combination.
  • the information of the frequency band in the combination may include a start and stop frequency position of the uplink frequency band and a start and stop frequency position of the downlink frequency band.
  • each combination may include multiple uplink frequency bands and/or multiple downlink frequency bands, and in this case, start and stop frequencies of each frequency band are included.
  • the frequency band in the combination may be a frequency band supported by the terminal device, and the granularity of the frequency band division may be determined according to actual conditions, wherein the combination of the uplink frequency band and the downlink frequency band that generate self-interference may indicate: all of the uplink frequency band Or part of the frequency range produces self-interference for all or part of the frequency range of the downlink frequency band.
  • the preset list further includes: a type of self-interference corresponding to the combination.
  • the self-interference strength when the transmit signals on each uplink frequency band in the combination respectively adopt multiple transmit powers.
  • the transmit power of each uplink frequency band may be different or the same, and the preset list may indicate the transmit power of each uplink frequency band.
  • the transmit power of the transmitted signal on each uplink carrier may be preset in the preset list.
  • the terminal device after the terminal device enters the network coverage of the network device, or after receiving the indication of the network device, the terminal device sends the first message to the network device.
  • the information in the preset list may be automatically reported. Or, after receiving the indication of the network device, report the information in the preset list according to the indication of the network device (all or part of the information in the preset list may be reported), where the network device may indicate which frequency band combination the terminal device reports The self-interference strength, or the self-interference strength at which the combination of the transmission power is reported.
  • the terminal device determines, by using the measurement, the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device.
  • the terminal device may receive the first indication information that is sent by the network device, where the first indication information is used to indicate that the terminal device measures and/or reports the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the self-interference intensity produced is used to indicate that the terminal device measures and/or reports the first uplink frequency band and the first downlink frequency band to the terminal device. The self-interference intensity produced.
  • the network device mentioned in the embodiment of the present application indicates that the self-interference strength reported by the terminal device may be information that directly reports the self-interference strength, or reports information that indirectly represents the self-interference strength.
  • the self-interference strength is a self-interference strength of the terminal device at the first transmit power, where the first transmit power is a transmit power that the terminal device sends a signal to the network device by using the first uplink frequency band; Receiving, by the network device, second indication information, where the second indication information is used to indicate that the terminal device measures and/or reports the first uplink frequency band and the first downlink frequency band to the terminal at the first transmit power The self-interference intensity produced by the device.
  • the uplink signal is sent to the network device by using the first uplink frequency, and the signal is received on the first downlink frequency; and the strength of the received signal is determined as the self-interference strength.
  • receiving the third indication information that is sent by the network device where the third indication information is used to indicate that the terminal device measures the first uplink frequency band and the first downlink frequency band to the terminal in the first time period.
  • the self-interference intensity produced by the device is not limited
  • the terminal device may be capable of measuring the self-interference strength under the indication of the network device.
  • the terminal device can report to the network device that the terminal device has the capability of measuring self-interference strength.
  • the network device may instruct the terminal device to measure the self-interference strength generated by the combination of the specific frequency bands, and the indication of the network device combines at least the frequency band, and optionally the transmission power of the uplink frequency band transmission signal in the frequency band combination, Wherein, if multiple uplink frequency bands (such as intermodulation interference) are included, the transmission power of each uplink frequency band needs to be indicated.
  • the terminal device may measure the self-interference strength generated by the combination of the specific frequency bands, and the indication of the network device combines at least the frequency band, and optionally the transmission power of the uplink frequency band transmission signal in the frequency band combination, wherein, if multiple uplink frequency bands (such as intermodulation interference) are included, the transmission power of each uplink frequency band needs to be indicated.
  • the indication of the network device may further include: the start and stop time of the self-interference strength measurement by the terminal device, because the terminal device may not receive the downlink signal of the network device normally when performing the measurement specified by the network device, so the network device may be the terminal
  • the device allocates a certain time slot (such as some idle subframes, or idle symbols); the terminal device will complete the measurement in the time slot allocated by the network device, and the terminal device will be at least in the measured frequency band during the measurement by the terminal device. Does not receive downstream signals from the network.
  • the terminal device reports the measurement result to the network device, for example, reports to the network device through high layer signaling.
  • the terminal device may perform self-interference strength measurement according to the indication of the network device, and report information indicating the self-interference strength, thereby preventing the terminal device from presetting excessive self-interference information, and avoiding pre-prevention.
  • the self-interference information set is not accurate.
  • the self-interference information measured during the design process may be different from the self-interference generated when a terminal device is actually used. If the method of measuring after the terminal device is manufactured, it can only be applied to a small number of terminal devices, which is not realistic for a large number of terminal devices.
  • the amount of all possible self-interference information can be very large. For example, if the intermodulation interference occurs, the bandwidth of the two uplink signals that generate intermodulation interference will affect the bandwidth affected by the intermodulation interference, and the power of the two uplink signals that generate the intermodulation interference will also affect the interference strength. And the above results will be different depending on the type of intermodulation (order). Considering all of the above combinations, plus the various combinations of bands that produce interference, the amount of final self-interference information is very large.
  • the first uplink frequency band and the first downlink frequency band may be respectively scheduled by different network devices, and the terminal device may report the self-interference strength to any one or all of the network devices.
  • the first uplink frequency band is a frequency band in which the terminal device communicates with the first network device
  • the second uplink frequency band is a frequency band in which the terminal device communicates with the second network device
  • the terminal device may be in the first network device and/or the second
  • the network device reports the self-interference strength and other information described above.
  • FIG. 3 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
  • the method 300 can optionally be applied to the wireless communication system shown in FIG.
  • the method can optionally be performed by a network device.
  • the method 300 includes at least a portion of the following.
  • the network device receives a first message sent by the terminal device, where the first message is used to represent the self-interference strength generated by the terminal device and the first downlink frequency band and the first downlink frequency band. .
  • the first uplink frequency band includes multiple frequency bands; and/or the first downlink frequency band includes multiple frequency bands.
  • the first message includes the following information: information of the first uplink frequency band; information of the first downlink frequency band; and information that characterizes the self-interference strength.
  • the first message is further used to indicate: a type of self-interference generated by the first uplink frequency band and the first downlink frequency band to the terminal device; and/or a first transmit power, the first transmit power Transmitting, by the terminal device, the transmit power of the signal to the network device by using the first uplink frequency band.
  • the network device before receiving the first message sent by the terminal device, the network device sends the indication information to the terminal device, where the indication information is used to indicate: the terminal device measures And/or reporting the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device.
  • the indication information is further used to indicate at least one of: transmitting, by the terminal device, a transmit power of a signal sent to the network device by using the first uplink frequency when measuring the self-interference strength; and/or measuring a time of the self-interference strength segment.
  • the network device does not use the first downlink frequency band to send a downlink signal to the terminal device during the period of measuring the self-interference strength indicated by the indication information.
  • the first message carries a first CQI, where the first CQI is used to represent the self-interference strength generated by the first downlink frequency band and the first uplink frequency band to the terminal device.
  • the first message carries the first bit; when the first bit takes the first value, the CQI carried by the first message is used as the first CQI; when the first bit takes the second value, The CQI characterizing the first message is a second CQI, and the second CQI is not used to characterize the self-interference strength.
  • the network device schedules the terminal device according to the self-interference strength.
  • the network device after receiving the first message reported by the terminal device, the network device will know in which frequency bands the terminal device generates self-interference, and how much interference intensity is.
  • the network device can perform scheduling correspondingly, for example, to prevent the scheduling terminal device from receiving the downlink signal on the receiving frequency band with strong self-interference; or not scheduling the terminal device to simultaneously send and receive signals on the frequency band combination that will generate self-interference.
  • the terminal device determines the self-interference strength generated by the first uplink frequency band and the first downlink frequency band that the terminal device communicates with the network device, and reports the self-interference strength to the network device.
  • the information may be such that the network device can schedule the terminal device according to the information indicating the self-interference strength, thereby avoiding self-interference on the terminal side and improving communication performance.
  • FIG. 4 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 4, the terminal device 400 includes a processing unit 410 and a communication unit 420;
  • the processing unit 410 is configured to: determine a self-interference strength generated by the first uplink frequency band and the first downlink frequency band that the terminal device communicates with the network device to the terminal device;
  • the communication unit 420 is configured to send a first message to the network device, where the first message is used to represent the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the first message includes the following information:
  • the first message is further used to indicate a type of self-interference generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the self-interference strength is a self-interference strength of the terminal device at the first transmit power, where the first transmit power is a transmit power that the terminal device sends a signal to the network device by using the first uplink frequency band.
  • the first message further includes information for indicating the first transmit power.
  • processing unit 410 is further configured to:
  • the preset list includes at least one combination of an uplink frequency band and a downlink frequency band that generate self-interference, and a self-interference strength corresponding to the combination.
  • the preset list further includes: a type of self-interference corresponding to the combination.
  • the self-interference strength corresponding to the combination includes:
  • the self-interference strength of each of the uplink frequency bands in the combination at at least one transmit power.
  • the communication unit 420 is further configured to:
  • the terminal device When the terminal device enters the network coverage of the network device, or after receiving the indication of the network device, sending the first message to the network device.
  • the communication unit 420 is further configured to:
  • the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device is determined by measurement.
  • the communication unit 420 is further configured to:
  • the terminal device And receiving the first indication information sent by the network device, where the first indication information is used to indicate that the terminal device measures and/or reports the self-interference strength generated by the first uplink frequency band and the first downlink frequency band to the terminal device.
  • the self-interference strength is a self-interference strength of the terminal device at the first transmit power, where the first transmit power is a transmit power that the terminal device sends a signal to the network device by using the first uplink frequency band;
  • the communication unit 420 is further configured to:
  • Second indication information is used to indicate that the terminal device measures and/or reports the first uplink frequency band and the first downlink frequency band to the terminal at the first transmit power The self-interference intensity produced by the device.
  • the communication unit 420 is further configured to:
  • the processing unit 410 is further configured to determine the strength of the signal received by the communication unit 420 as the self-interference strength.
  • the communication unit 420 is further configured to:
  • third indication information is used to indicate that the terminal device detects the first uplink frequency band and the first downlink frequency band generated by the terminal device in the first time period. Interference intensity.
  • the first message carries a first channel quality indicator CQI, where the first CQI is used to represent the self-interference strength generated by the first downlink frequency band and the first uplink frequency band to the terminal device.
  • processing unit 410 is further configured to:
  • the first CQI is determined according to the second CQI and the determined self-interference strength.
  • the first message carries the first bit
  • the CQI carried by the first message is represented as the first CQI
  • the CQI characterizing the first message is the second CQI.
  • the first uplink frequency band includes multiple frequency bands; and/or,
  • the first downlink frequency band includes a plurality of frequency bands.
  • terminal device 400 may correspond to the terminal device in the method embodiment, and the corresponding operations implemented by the terminal device in the method embodiment may be implemented. For brevity, details are not described herein again.
  • FIG. 5 is a schematic block diagram of a network device 500 in accordance with an embodiment of the present application.
  • the network device 500 includes a communication unit 510 and a processing unit 520;
  • the communication unit 510 is configured to: receive a first message sent by the terminal device, where the first message is used to identify the self-interference generated by the terminal device and the first downlink frequency band and the first downlink frequency band. strength;
  • the processing unit 520 is configured to: schedule the terminal device according to the self-interference strength.
  • the first message includes the following information:
  • the first message is further used to indicate:
  • the first transmit power is a transmit power of the terminal device transmitting a signal to the network device by using the first uplink frequency band.
  • the communication unit 510 is further configured to:
  • the indication information is used to indicate:
  • the terminal device measures and/or reports the self-interference strength generated by the first uplink frequency band and the first downlink frequency band on the terminal device.
  • the indication information is further used to indicate at least one of the following:
  • the terminal device Measuring, by the terminal device, the transmit power of the signal sent to the network device by using the first uplink frequency when measuring the self-interference strength; and/or,
  • the time period of the self-interference intensity is measured.
  • the communication unit 510 is further configured to:
  • the downlink signal is not sent to the terminal device by using the first downlink frequency band during the period of measuring the self-interference strength indicated by the indication information.
  • the first message carries a first channel quality indicator CQI, where the first CQI is used to represent the self-interference strength generated by the first downlink frequency band and the first uplink frequency band to the terminal device.
  • the first message carries the first bit
  • the CQI carried by the first message is represented as the first CQI
  • the CQI characterizing the first message is a second CQI, and the second CQI is not used to represent the self-interference strength.
  • the first uplink frequency band includes multiple frequency bands; and/or,
  • the first downlink frequency band includes a plurality of frequency bands.
  • network device 500 may correspond to the network device in the method embodiment, and the corresponding operations implemented by the network device in the method embodiment may be implemented. For brevity, details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a system chip 600 according to an embodiment of the present application.
  • the chip 600 includes an input interface 601, an output interface 602, the processor 603, and the memory 604 may be connected by an internal communication connection line, and the processor 603 is configured to execute code in the memory 604.
  • the processor 603 when the code is executed, the processor 603 implements a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 603 when the code is executed, the processor 603 implements a method performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • FIG. 7 is a schematic block diagram of a communication device 700 in accordance with an embodiment of the present application.
  • the communication device 700 includes a processor 710 and a memory 720.
  • the memory 720 can store program code, and the processor 710 can execute the program code stored in the memory 720.
  • the communication device 700 can include a transceiver 730 that can control the transceiver 730 to communicate externally.
  • the processor 710 can call the program code stored in the memory 720 to perform the corresponding operations of the network device in the method embodiment.
  • the processor 710 can call the program code stored in the memory 720 to perform the corresponding operations of the network device in the method embodiment.
  • the processor 710 can call the program code stored in the memory 720 to perform the corresponding operations of the terminal device in the method embodiment.
  • the processor 710 can call the program code stored in the memory 720 to perform the corresponding operations of the terminal device in the method embodiment.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory.
  • the memory may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例提供一种无线通信方法和设备,能够尽量避免终端设备的自干扰,提升通信性能。该方法包括:确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对终端设备产生的自干扰强度;向网络设备发送第一消息,第一消息用于表征第一上行频段和第一下行频段对终端设备产生的自干扰强度。

Description

无线通信方法和设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信方法和设备。
背景技术
终端设备在发射机在发射信号的同时,如果接收机同时在接收信号,且终端设备发射的信号与接收的信号同频,则终端设备发射的信号会对终端设备接收的同频信号产生干扰,此种现象可以称为自干扰,自干扰的产生会造成通信性能的下降。
在未来的通信系统中,对通信性能的要求越来越高。
如何尽量避免终端设备的自干扰,是一项亟待解决的问题。
发明内容
本申请实施例提供一种无线通信方法和设备,能够尽量避免终端设备的自干扰,提升通信性能。
第一方面,提供了一种无线通信方法,包括:
确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对终端设备产生的自干扰强度;
向网络设备发送第一消息,第一消息用于表征第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面,在第一方面的一种可能的实现方式中,第一消息包括以下信息:
第一上行频段的信息;
第一下行频段的信息;和
表征自干扰强度的信息。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一消息还用于指示第一上行频段和第一下行频段对终端设备产生的自干扰的类型。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,自干扰强度为终端设备在第一发射功率下的自干扰强度,第 一发射功率为终端设备利用第一上行频段向网络设备发送信号的发射功率。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一消息还包括用于指示第一发射功率的信息。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对终端设备产生的自干扰强度,包括:
根据预设列表,确定第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,预设列表包括至少一个产生自干扰的上行频段和下行频段的组合,以及组合对应的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,预设列表还包括:组合对应的自干扰的类型。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,组合对应的自干扰强度包括:
组合中的每个上行频段在至少一个发射功率下的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,向网络设备发送第一消息,包括:
在终端设备进入网络设备的网络覆盖范围之内时,或者接收到网络设备的指示之后,向网络设备发送第一消息。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对终端设备产生的自干扰强度,包括:
通过测量,确定第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,方法还包括:
接收网络设备发送的第一指示信息,第一指示信息用于指示终端设备测量和/或上报第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,自干扰强度为终端设备在第一发射功率下的自干扰强度,第 一发射功率为终端设备利用第一上行频段向网络设备发送信号的发射功率;
方法还包括:
接收网络设备发送的第二指示信息,第二指示信息用于指示终端设备测量和/或上报在第一发射功率下,第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,通过测量,确定第一上行频段和第一下行频段对终端设备产生的自干扰强度,包括:
在第一时间段内,利用第一上行频率向网络设备发送上行信号,以及在第一下行频率上接收信号;
将接收的信号的强度确定为自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,方法还包括:
接收网络设备发送的第三指示信息,第三指示信息用于指示终端设备在第一时间段内,测量第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一消息携带第一信道质量指示CQI,第一CQI用于表征第一下行频段和第一上行频段对终端设备产生的自干扰强度。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,在终端设备向网络设备第一消息之前,方法还包括:
根据网络设备利用第一下行频率向终端设备发送的参考信号,确定第二CQI;
根据第二CQI和确定的自干扰强度,确定第一CQI。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一消息携带第一比特;
在第一比特取第一值时,表征第一消息携带的CQI为第一CQI;
在第一比特取值为第二值时,表征第一消息的CQI为第二CQI。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一上行频段包括多个频段;和/或,
第一下行频段包括多个频段。
第二方面,提供了一种无线通信方法,包括:
接收终端设备发送的第一消息,第一消息用于表征终端设备与网络设备进行通信的第一上行频段和第一下行频段对终端设备产生的自干扰强度;
根据自干扰强度,对终端设备进行调度。
结合第二方面,在第二方面的一种可能的实现方式中,第一消息包括以下信息:
第一上行频段的信息;
第一下行频段的信息;和
表征自干扰强度的信息。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一消息还用于指示:
第一上行频段和第一下行频段对终端设备产生的自干扰的类型;和/或,
第一发射功率,第一发射功率为终端设备利用第一上行频段向网络设备发送信号的发射功率。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,在接收终端设备发送的第一消息之前,方法还包括:
向终端设备发送指示信息,指示信息用于指示:
终端设备测量和/或上报第一上行频段和第一下行频段对终端设备产生的自干扰强度。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,指示信息还用于指示以下中的至少一种:
测量自干扰强度时终端设备利用第一上行频率向网络设备发送信号的发射功率;和/或,
测量自干扰强度的时间段。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,方法还包括:
在指示信息指示的测量自干扰强度的时间段内,不利用第一下行频段向终端设备发送下行信号。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一消息携带第一信道质量指示CQI,第一CQI用于表征第一下行频段和第一上行频段对终端设备产生的自干扰强度。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一消息携带第一比特;
在第一比特取第一值时,表征第一消息携带的CQI为第一CQI;
在第一比特取值为第二值时,表征第一消息的CQI为第二CQI,第二CQI不用于表征自干扰强度。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一上行频段包括多个频段;和/或,
第一下行频段包括多个频段。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述终端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述网络设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述任意一种方法或任意可能的实现方式中的指令。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意一种方法或任意可能的实现方式中的方法。
因此,在本申请实施例中,终端设备确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度,并向网络设备上报表征该自干扰强度的信息,从而网络设备可以根据表征该自干扰强度的信息,对终端设备进行调度,尽量避免在终端侧产生自干扰,提升通信性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的无线通信系统的示意性图。
图2是根据本申请实施例的无线通信方法的示意性流程图。
图3是根据本申请实施例的无线通信方法的示意性流程图。
图4是根据本申请实施例的终端设备的示意性框图。
图5是根据本申请实施例的网络设备的示意性框图。
图6是根据本申请实施例的系统芯片的示意性框图。
图7是根据本申请实施例的通信设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络 设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独 存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
可选地,终端设备的发射机在发射信号时,如果接收机同时在接收信号,且终端设备发射的信号与接收的信号同频,则终端设备发射的信号会对终端设备接收的同频信号产生干扰,此种现象可以称为自干扰。
可选地,自干扰可以分为谐波干扰、谐波混频干扰和互调干扰三种类型。每种类型的自干扰还可以细分更小粒度的类型,例如,对于互调干扰而言,互调信号的阶数不同时,可以分为不同类型的干扰。例如,对于谐波干扰而言,谐波干扰时信号的倍频不同时,可以分为不同类型的干扰。
以下以终端设备同时工作在载波F1和载波F2进行举例说明自干扰的几种类型,其中,假设载波F1工作在低频段,载波F2工作在高频段。
在一种可能中,F1的上行载波和F2的上行载波的某阶互调信号(IM,intermodulation)的频率与载波F3的下行信号频率重叠或部分重叠。那么载波F1和F2就对F3构成了互调干扰。这里F3可能是载波F1或F2中某一个,或是不同于F1/F2的另一个载波(此时,终端设备同时工作在两个以上的载波)。
例如,终端设备同时配置了Band 1和Band 7的LTE载波,NR载波(3400-3800MHz),则如果band 7的UL和NR的UL同时传输,其产生的5阶互调影响会影响band 1的DL接收机灵敏度。
在一种可能中,F1的上行载波的倍频与F2的下行信号频率重叠或部分重叠。那么载波F1对F2就构成了谐波(harmonic)干扰。
例如,LTE Band 3的上行1710-1785MHz,其2阶谐波范围为3420-3570MHz。则一个终端如果同时在band 3上进行LTE上行传输和在NR频段3400-3800MHz上进行DL接收,则2阶谐波可能会干扰NR的DL接收机的灵敏度。
在一种可能中,F1的下行载波的倍频与F2的上行信号频率(及其邻近频率)重叠或部分重叠。那么载波F2对F1就构成了谐波混频(harmonic mixing)干扰。
例如,LTE Band 3的下行1805-1880MHz,其2阶谐波范围为3610-3760MHz。则一个终端如果同时在band 3上进行LTE下行接收和在NR频段3400-3800MHz上进行上行发送,则NR的2阶谐波混频可能会干 扰LTE的DL接收机的灵敏度。
为了尽量避免自干扰,本申请实施例提供了以下的方法和装置。
图2是根据本申请实施例的无线通信方法200的示意性流程图。该方法200可选地可以应用于图1所示的系统,但并不限于此。该方法200可选地可以有终端设备执行。该方法200包括以下内容中的至少部分内容。
在210中,终端设备确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度。
在一种实现方式中,终端设备可以根据预设列表,确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
在另一种实现方式中,终端设备可以通过测量的方式,确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,在本申请实施例中,该自干扰强度可以是:在利用第一上行频段发送上行信号时,在第一下行频段接收到的信号(不包括接收的来自外界的信号)的强度。
可选地,在本申请实施例中,该第一上行频段包括多个频段;和/或,该第一下行频段包括多个频段。
应理解,在本申请实施例中,第一上行频段和第一下行频段对所述终端设备产生自干扰意味着:终端设备在第一上行频段的全部或部分频率范围发送的信号对同时在第一下行频段的全部或部分频率范围接收的信号产生干扰。
在220中,终端设备向该网络设备发送第一消息,该第一消息用于表征该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该第一消息包括以下信息:该第一上行频段的信息;该第一下行频段的信息;和表征该自干扰强度的信息。
可选地,第一上行频段的信息可以包括该频段的起止频频,或包括该频段的起始频率和频段大小,或包括该频段的终止频率和频段大小。
可选地,第一下行频段的信息可以包括该频段的起止频频,或包括该频段的起始频率和频段大小,或包括该频段的终止频率和频段大小,
可选地,表征该自干扰强度的信息可以直接表征该自干扰强度,例如,该自干扰强度为在第一下行频段接收信号的强度,则直接将该自干扰强度上报给网络设备。
可选地,表征该自干扰强度的信息可以间接表征该自干扰强度,例如,可以借用基于参考信号获取的(Channel Quality Indication,CQI)来表征该自干扰强度。
可选地,该第一消息携带第一信道质量指示CQI,该第一CQI用于表征该第一下行频段和该第一上行频段对该终端设备产生的自干扰强度。
可选地,终端设备根据该网络设备利用该第一下行频率向该终端设备发送的参考信号,确定第二CQI;根据该第二CQI和确定的该自干扰强度,终端设备确定该第一CQI。其中,该第二CQI不用于表征自干扰强度,可选地与信号的调制编码方案(Modulation and Coding Scheme,MCS)有关。
具体地,由于自干扰会降低终端设备的下行接收性能,所以终端设备向网络设备的汇报也可以体现在终端设备对CQI的计算上,终端可以计算受干扰频段的信号强度/(噪声强度+自干扰强度)的比率,并将这个比率折算成CQI向网络汇报。
可选地,终端设备可以通过物理层信令向终端设备汇报该表征自干扰强度的CQI。
可选地,如果网络设备需要终端设备在某些频段的CQI汇报包含终端设备的自干扰,通过指示消息的某一字段来表示,例如,该字段取值为1表示汇报的CQI包含自干扰强度,字段取值为0表示汇报的CQI不包含自干扰强度。
可选地,终端设备向网络设备汇报的第一消息可以包括第一比特;在该第一比特取第一值(例如1)时,表征该第一消息携带的CQI为该第一CQI;在该第一比特取值为第二值(例如0)时,表征该第一消息的CQI为该第二CQI。
应理解,同时表征第二CQI和自干扰强度的信息也可以不被称为CQI,还可以有其他的叫法,只要实质与本申请的第二CQI一致,均在本申请的保护范围之内。
可选地,在本申请实施例中,该第一消息还用于指示该第一上行频段和该第一下行频段对该终端设备产生的自干扰的类型。
在一种实现方式中,该第一上行频段可以包括多个上行频段,该第一下行频段包括一个下行频段,此时,产生的干扰类型可以是互调干扰,其中,干扰的类型还可以按照产生干扰的互调信号的阶数进一步细分。
在一种实现方式中,该第一上行频段可以包括一个上行频段,该第一下行频段包括一个下行频段,此时,产生的干扰类型可以是谐波干扰或谐波混频干扰,其中,干扰的类型还可以按照对下行频段产生干扰的上行频段的倍频进行细分,或者还可以按照被该上行频段干扰的下行频段的倍频进行细分。
可选地,在本申请实施例中,第一上行频段和第一下行频段对该终端设备产生的自干扰强度还可以跟发射功率有关,则终端设备向网络上报的该自干扰强度可以是该终端设备在第一发射功率下的自干扰强度,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率。
在该种实现方式中,该第一消息还包括用于指示该第一发射功率的信息。
可选地,在该第一上行频段包括多个频段时,可以包括在每个频段上分别发送上行信号的发射功率。其中,该多个频段上的发射功率可以相同,也可以不相同。
因此,在该种实现方式中,网络设备结合终端设备在特定发射功率下,第一上行频段和第一下行频段对终端设备产生的自干扰强度,对终端设备进行调度,例如,在该发射功率下,干扰强度较高,则可以降低终端设备的发射功率,或者避免调度终端设备在第一上行频段和第一下行频段同时进行信号收发;或者,在该发射功率下,干扰强度调度较低,则可以尝试升高终端设备的发射功率。
可选地,在本申请实施例中,终端设备可以采用多种方式,确定第一上行频段和下行频段对终端设备产生的自干扰强度。为了便于理解,以下将介绍两种实现方式。
在一种实现方式中,根据预设列表,终端设备确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,由于自干扰是终端设备内部产生的,而一个终端设备在设计时,所支持的频段就已经知道,那么如果这些频段之间存在互干扰,这些互干扰严重程度也可以在终端设备的设计过程中就被测量获得,在终端被制造时就已经被预先设置在终端设备的内部。
可选地,终端设备也可以在制作完成后,依次测量各个频段组合下的自干扰强度,并预存储在终端设备上。
可选地,该预设列表包括至少一个产生自干扰的上行频段和下行频段的组合,以及该组合对应的自干扰强度。
可选地,第一上行频段和第一下行频段的组合可以是该至少一个组合中的任意一个组合。
其中,组合中的频段的信息可以包括上行频段的起止频率位置和下行频段的起止频率位置。
可选地,每个组合可以包括多个上行频段和/或多个下行频段,此时,则包括每个频段的起止频率。
可选地,该组合中的频段可以是终端设备支持的频段,频段划分的颗粒度可以根据实际情况而定,其中,产生自干扰的上行频段和下行频段的组合可以表示:该上行频段的全部或部分频率范围对该下行频段的全部或部分频率范围产生自干扰。
可选地,该预设列表还包括:该组合对应的自干扰的类型。
可选地,该组合中每个上行频带上发射信号分别采用多个发射功率时的自干扰强度。
可选地,在组合包括多个上行频带时,每个上行频带的发射功率可以不同,也可以相同,该预设列表可以指示每个上行频段的发射功率。
例如,对于互调干扰而言,则预设列表中可以预设每个上行载波上发送信号的发射功率。
可选地,在该终端设备进入该网络设备的网络覆盖范围之内时,或者接收到该网络设备的指示之后,该终端设备向该网络设备发送该第一消息。
具体地,在终端设备在进入该网络设备的覆盖范围之内时,可以自动上报预设列表中的信息。或者,接收到网络设备的指示后,按照网络设备的指示上报该预设列表中的信息(可以上报预设列表中的全部或部分信息),其中,网络设备可以指示终端设备上报哪个频段组合下的自干扰强度,或者上报哪个频段组合在哪个发射功率下的自干扰强度。
在另一种实现方式中,通过测量,终端设备确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,终端设备可以接收该网络设备发送的第一指示信息,该第一指示信息用于指示该终端设备测量和/或上报该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
应理解,本申请实施例中提到的网络设备指示终端设备上报自干扰强度可以是上报直接表征该自干扰强度的信息,或者上报间接表征该自干扰强度的信息。
可选地,该自干扰强度为该终端设备在第一发射功率下的自干扰强度,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率;终端设备接收该网络设备发送的第二指示信息,该第二指示信息用于指示该终端设备测量和/或上报在该第一发射功率下,该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,在第一时间段内,利用该第一上行频率向该网络设备发送上行信号,以及在该第一下行频率上接收信号;将接收的信号的强度确定为该自干扰强度。
可选地,接收该网络设备发送的第三指示信息,该第三指示信息用于指示该终端设备在该第一时间段内,测量该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
具体地,终端设备可以是可以在网络设备的指示下去测量自干扰强度。具体来说,终端设备可以向网络设备汇报终端设备具有测量自干扰强度的能力。
网络设备在获知终端设备的能力后,可以指示终端设备测量特定频段组合产生的自干扰强度,网络设备的指示将至少该频段组合,以及可选地包括频段组合中上行频段发射信号的发射功率,其中,如果包含多个上行频段(譬如互调干扰),则需要指示各个上行频段的发射功率。
网络设备的指示还可以包括,终端设备进行自干扰强度测量的起止时间,因为终端设备在进行网络设备所指定的测量时,终端设备可能无法正常接收网络设备的下行信号,所以网络设备会为终端设备分配一定的时隙(譬如一些空闲子帧,或空闲符号);终端设备将在网络设备分配的时隙内完成测量,在终端设备进行测量的过程中,终端设备将至少在测量的频段上不接收来自网络的下行信号。当终端设备测量完成后,终端设备将向网络设备汇报测量的结果,譬如通过高层信令向网络设备汇报。
因此,在该种实现方式中,终端设备可以按照网络设备的指示进行自干扰强度的测量,并且上报表征该自干扰强度的信息,可以避免终端设备预设过多的自干扰信息,以及避免预设的自干扰信息的不准确。
例如,即使是同一类型的终端设备,由于所用的射频器件很难保证完全一样的参数,设计过程中测量的自干扰信息,可能和一个终端设备实际使用时产生的自干扰还是有所区别。如果采用终端设备制造出来以后再测量的办法,只能适用于少量的终端设备,对于生产数量巨大的终端设备,不太现实。
再例如,当产生自干扰的频段组合较多时,所有可能的自干扰信息量会非常大。譬如互调干扰,产生互调干扰的两个上行信号的带宽分别会对受互调干扰影响的带宽产生影响,同时产生互调干扰的两个上行信号的功率,也会对干扰的强度产生影响,而且随着互调种类(阶数)的不同,上述结果还会不同。预先考虑上述所有组合,再加上产生干扰的各种频段组合,最后的自干扰信息量是非常巨大的。
应理解,本申请实施例中第一上行频段和第一下行频段可以分别是由不同的网络设备调度的,终端设备可以向其中的任一个或全部网络设备上报该自干扰强度。例如,第一上行频段是终端设备与第一网络设备进行通信的频段,第二上行频段是终端设备与第二网络设备进行通信的频段,该终端设备可以向第一网络设备和/或第二网络设备上报该自干扰强度以及上述其他的信息。
图3是根据本申请实施例的无线通信方法300的示意性流程图。该方法300可选地可以应用于图1所示的无线通信系统中。该方法可选地可以由网络设备执行。该方法300包括以下内容中的至少部分内容。
在310中,网络设备接收终端设备发送的第一消息,该第一消息用于表征该终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度。
可选地,该第一上行频段包括多个频段;和/或,该第一下行频段包括多个频段。
可选地,该第一消息包括以下信息:该第一上行频段的信息;该第一下行频段的信息;和表征该自干扰强度的信息。
可选地,该第一消息还用于指示:该第一上行频段和该第一下行频段对该终端设备产生的自干扰的类型;和/或,第一发射功率,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率。
可选地,在本申请实施例中,在接收终端设备发送的第一消息之前,网络设备向该终端设备发送指示信息,该指示信息用于指示:该终端设备测量 和/或上报该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
该指示信息还用于指示以下中的至少一种:测量该自干扰强度时该终端设备利用该第一上行频率向该网络设备发送信号的发射功率;和/或,测量该自干扰强度的时间段。
可选地,在该指示信息指示的测量该自干扰强度的时间段内,网络设备不利用该第一下行频段向该终端设备发送下行信号。
可选地,该第一消息携带第一CQI,该第一CQI用于表征该第一下行频段和该第一上行频段对该终端设备产生的自干扰强度。
可选地,第一消息携带第一比特;在该第一比特取第一值时,表征该第一消息携带的CQI为该第一CQI;在该第一比特取值为第二值时,表征该第一消息的CQI为第二CQI,该第二CQI不用于表征该自干扰强度。
在320中,根据该自干扰强度,网络设备对该终端设备进行调度。
具体地,网络设备接收到终端设备汇报的该第一消息后,将知道终端设备在哪些频段上会产生自干扰,并且干扰强度有多大。网络设备可以对应的做出调度,例如,避免调度终端设备在有强自干扰的接收频段上接收下行信号;或者不调度终端设备在会产生自干扰的频段组合上同时收发信号。
应理解,该方法300中的各种实现方式可以参考方法200的描述,为了简洁,在此不再赘述。
因此,在本申请实施例中,终端设备确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度,并向网络设备上报表征该自干扰强度的信息,从而网络设备可以根据表征该自干扰强度的信息,对终端设备进行调度,尽量避免在终端侧产生自干扰,提升通信性能。
图4是根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括处理单元410和通信单元420;其中,
该处理单元410用于:确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度;
该通信单元420用于:向该网络设备发送第一消息,该第一消息用于表征该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该第一消息包括以下信息:
该第一上行频段的信息;
该第一下行频段的信息;和
表征该自干扰强度的信息。
可选地,该第一消息还用于指示该第一上行频段和该第一下行频段对该终端设备产生的自干扰的类型。
可选地,该自干扰强度为该终端设备在第一发射功率下的自干扰强度,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率。
可选地,该第一消息还包括用于指示该第一发射功率的信息。
可选地,该处理单元410进一步用于:
根据预设列表,确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该预设列表包括至少一个产生自干扰的上行频段和下行频段的组合,以及该组合对应的自干扰强度。
可选地,该预设列表还包括:该组合对应的自干扰的类型。
可选地,该组合对应的自干扰强度包括:
该组合中的每个上行频段在至少一个发射功率下的自干扰强度。
可选地,该通信单元420进一步用于:
在该终端设备进入该网络设备的网络覆盖范围之内时,或者接收到该网络设备的指示之后,向该网络设备发送该第一消息。
可选地,该通信单元420进一步用于:
通过测量,确定该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该通信单元420进一步用于:
接收该网络设备发送的第一指示信息,该第一指示信息用于指示该终端设备测量和/或上报该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该自干扰强度为该终端设备在第一发射功率下的自干扰强度,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率;
该通信单元420进一步用于:
接收该网络设备发送的第二指示信息,该第二指示信息用于指示该终端设备测量和/或上报在该第一发射功率下,该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该通信单元420进一步用于:
在第一时间段内,利用该第一上行频率向该网络设备发送上行信号,以及在该第一下行频率上接收信号;
该处理单元410进一步用于:将该通信单元420接收的信号的强度确定为该自干扰强度。
可选地,该通信单元420进一步用于:
接收该网络设备发送的第三指示信息,该第三指示信息用于指示该终端设备在该第一时间段内,测量该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该第一消息携带第一信道质量指示CQI,该第一CQI用于表征该第一下行频段和该第一上行频段对该终端设备产生的自干扰强度。
可选地,该处理单元410进一步用于:
根据该网络设备利用该第一下行频率向该终端设备发送的参考信号,确定第二CQI;
根据该第二CQI和确定的该自干扰强度,确定该第一CQI。
可选地,第一消息携带第一比特;
在该第一比特取第一值时,表征该第一消息携带的CQI为该第一CQI;
在该第一比特取值为第二值时,表征该第一消息的CQI为该第二CQI。
可选地,该第一上行频段包括多个频段;和/或,
该第一下行频段包括多个频段。
应理解,该终端设备400可以对应于方法实施例中的终端设备,可以实现方法实施例中终端设备实现的相应操作,为了简洁,在此不再赘述。
图5是根据本申请实施例的网络设备500的示意性框图。如图5所示,该网络设备500包括通信单元510和处理单元520;其中,
该通信单元510用于:接收终端设备发送的第一消息,该第一消息用于表征该终端设备与网络设备进行通信的第一上行频段和第一下行频段对该终端设备产生的自干扰强度;
该处理单元520用于:根据该自干扰强度,对该终端设备进行调度。
可选地,该第一消息包括以下信息:
该第一上行频段的信息;
该第一下行频段的信息;和
表征该自干扰强度的信息。
可选地,该第一消息还用于指示:
该第一上行频段和该第一下行频段对该终端设备产生的自干扰的类型;和/或,
第一发射功率,该第一发射功率为该终端设备利用该第一上行频段向该网络设备发送信号的发射功率。
可选地,该通信单元510进一步用于:
向该终端设备发送指示信息,该指示信息用于指示:
该终端设备测量和/或上报该第一上行频段和该第一下行频段对该终端设备产生的自干扰强度。
可选地,该指示信息还用于指示以下中的至少一种:
测量该自干扰强度时该终端设备利用该第一上行频率向该网络设备发送信号的发射功率;和/或,
测量该自干扰强度的时间段。
可选地,该通信单元510进一步用于:
在该指示信息指示的测量该自干扰强度的时间段内,不利用该第一下行频段向该终端设备发送下行信号。
可选地,该第一消息携带第一信道质量指示CQI,该第一CQI用于表征该第一下行频段和该第一上行频段对该终端设备产生的自干扰强度。
可选地,第一消息携带第一比特;
在该第一比特取第一值时,表征该第一消息携带的CQI为该第一CQI;
在该第一比特取值为第二值时,表征该第一消息的CQI为第二CQI,该第二CQI不用于表征该自干扰强度。
可选地,该第一上行频段包括多个频段;和/或,
该第一下行频段包括多个频段。
应理解,该网络设备500可以对应于方法实施例中的网络设备,可以实现方法实施例中网络设备实现的相应操作,为了简洁,在此不再赘述。
图6是本申请实施例的系统芯片600的一个示意性结构图。图6的系统 芯片600包括输入接口601、输出接口602、所述处理器603以及存储器604之间可以通过内部通信连接线路相连,所述处理器603用于执行所述存储器604中的代码。
可选地,当所述代码被执行时,所述处理器603实现方法实施例中由网络设备执行的方法。为了简洁,在此不再赘述。
可选地,当所述代码被执行时,所述处理器603实现方法实施例中由终端设备执行的方法。为了简洁,在此不再赘述。
图7是根据本申请实施例的通信设备700的示意性框图。如图7所示,该通信设备700包括处理器710和存储器720。其中,该存储器720可以存储有程序代码,该处理器710可以执行该存储器720中存储的程序代码。
可选地,如图7所示,该通信设备700可以包括收发器730,处理器710可以控制收发器730对外通信。
可选地,该处理器710可以调用存储器720中存储的程序代码,执行方法实施例中的网络设备的相应操作,为了简洁,在此不再赘述。
可选地,该处理器710可以调用存储器720中存储的程序代码,执行方法实施例中的终端设备的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存 储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (56)

  1. 一种无线通信方法,其特征在于,包括:
    确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度;
    向所述网络设备发送第一消息,所述第一消息用于表征所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括以下信息:
    所述第一上行频段的信息;
    所述第一下行频段的信息;和
    表征所述自干扰强度的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息还用于指示所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰的类型。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述自干扰强度为所述终端设备在第一发射功率下的自干扰强度,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率。
  5. 根据权利要求4所述的方法,其特征在于,所述第一消息还包括用于指示所述第一发射功率的信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度,包括:
    根据预设列表,确定所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  7. 根据权利要求6所述的方法,其特征在于,所述预设列表包括至少一个产生自干扰的上行频段和下行频段的组合,以及所述组合对应的自干扰强度。
  8. 根据权利要求7所述的方法,其特征在于,所述预设列表还包括:所述组合对应的自干扰的类型。
  9. 根据权利要求7或8所述的方法,其特征在于,所述组合对应的自 干扰强度包括:
    所述组合中的每个上行频段在至少一个发射功率下的自干扰强度。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述向所述网络设备发送第一消息,包括:
    在所述终端设备进入所述网络设备的网络覆盖范围之内时,或者接收到所述网络设备的指示之后,向所述网络设备发送所述第一消息。
  11. 根据权利要求1至5中任一项所述的方法,其特征在于,所述确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度,包括:
    通过测量,确定所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备测量和/或上报所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  13. 根据权利要求11或12所述的方法,其特征在于,所述自干扰强度为所述终端设备在第一发射功率下的自干扰强度,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率;
    所述方法还包括:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备测量和/或上报在所述第一发射功率下,所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述通过测量,确定所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度,包括:
    在第一时间段内,利用所述第一上行频率向所述网络设备发送上行信号,以及在所述第一下行频率上接收信号;
    将接收的信号的强度确定为所述自干扰强度。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一时间段内,测量所述第一上行频段和所述第一下行频 段对所述终端设备产生的自干扰强度。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一消息携带第一信道质量指示CQI,所述第一CQI用于表征所述第一下行频段和所述第一上行频段对所述终端设备产生的自干扰强度。
  17. 根据权利要求16所述的方法,其特征在于,在所述终端设备向所述网络设备第一消息之前,所述方法还包括:
    根据所述网络设备利用所述第一下行频率向所述终端设备发送的参考信号,确定第二CQI;
    根据所述第二CQI和确定的所述自干扰强度,确定所述第一CQI。
  18. 根据权利要求17所述的方法,其特征在于,第一消息携带第一比特;
    在所述第一比特取第一值时,表征所述第一消息携带的CQI为所述第一CQI;
    在所述第一比特取值为第二值时,表征所述第一消息的CQI为所述第二CQI。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一上行频段包括多个频段;和/或,
    所述第一下行频段包括多个频段。
  20. 一种无线通信方法,其特征在于,包括:
    接收终端设备发送的第一消息,所述第一消息用于表征所述终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度;
    根据所述自干扰强度,对所述终端设备进行调度。
  21. 根据权利要求20所述的方法,其特征在于,所述第一消息包括以下信息:
    所述第一上行频段的信息;
    所述第一下行频段的信息;和
    表征所述自干扰强度的信息。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一消息还用于指示:
    所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰 的类型;和/或,
    第一发射功率,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,在接收终端设备发送的第一消息之前,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示:
    所述终端设备测量和/或上报所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  24. 根据权利要求23所述的方法,其特征在于,所述指示信息还用于指示以下中的至少一种:
    测量所述自干扰强度时所述终端设备利用所述第一上行频率向所述网络设备发送信号的发射功率;和/或,
    测量所述自干扰强度的时间段。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    在所述指示信息指示的测量所述自干扰强度的时间段内,不利用所述第一下行频段向所述终端设备发送下行信号。
  26. 根据权利要求20至25中任一项所述的方法,其特征在于,所述第一消息携带第一信道质量指示CQI,所述第一CQI用于表征所述第一下行频段和所述第一上行频段对所述终端设备产生的自干扰强度。
  27. 根据权利要求26所述的方法,其特征在于,第一消息携带第一比特;
    在所述第一比特取第一值时,表征所述第一消息携带的CQI为所述第一CQI;
    在所述第一比特取值为第二值时,表征所述第一消息的CQI为第二CQI,所述第二CQI不用于表征所述自干扰强度。
  28. 根据权利要求21至27中任一项所述的方法,其特征在于,所述第一上行频段包括多个频段;和/或,
    所述第一下行频段包括多个频段。
  29. 一种终端设备,其特征在于,包括处理单元和通信单元;其中,
    所述处理单元用于:确定终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度;
    所述通信单元用于:向所述网络设备发送第一消息,所述第一消息用于表征所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一消息包括以下信息:
    所述第一上行频段的信息;
    所述第一下行频段的信息;和
    表征所述自干扰强度的信息。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述第一消息还用于指示所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰的类型。
  32. 根据权利要求29至31中任一项所述的终端设备,其特征在于,所述自干扰强度为所述终端设备在第一发射功率下的自干扰强度,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一消息还包括用于指示所述第一发射功率的信息。
  34. 根据权利要求29至33中任一项所述的终端设备,其特征在于,所述处理单元进一步用于:
    根据预设列表,确定所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  35. 根据权利要求34所述的终端设备,其特征在于,所述预设列表包括至少一个产生自干扰的上行频段和下行频段的组合,以及所述组合对应的自干扰强度。
  36. 根据权利要求35所述的终端设备,其特征在于,所述预设列表还包括:所述组合对应的自干扰的类型。
  37. 根据权利要求35或36所述的终端设备,其特征在于,所述组合对应的自干扰强度包括:
    所述组合中的每个上行频段在至少一个发射功率下的自干扰强度。
  38. 根据权利要求34至37中任一项所述的终端设备,其特征在于,所述通信单元进一步用于:
    在所述终端设备进入所述网络设备的网络覆盖范围之内时,或者接收到所述网络设备的指示之后,向所述网络设备发送所述第一消息。
  39. 根据权利要求29至33中任一项所述的终端设备,其特征在于,所述通信单元进一步用于:
    通过测量,确定所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  40. 根据权利要求39所述的终端设备,其特征在于,所述通信单元进一步用于:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备测量和/或上报所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  41. 根据权利要求39或40所述的终端设备,其特征在于,所述自干扰强度为所述终端设备在第一发射功率下的自干扰强度,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率;
    所述通信单元进一步用于:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备测量和/或上报在所述第一发射功率下,所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  42. 根据权利要求39至41中任一项所述的终端设备,其特征在于,所述通信单元进一步用于:
    在第一时间段内,利用所述第一上行频率向所述网络设备发送上行信号,以及在所述第一下行频率上接收信号;
    所述处理单元进一步用于:将所述通信单元接收的信号的强度确定为所述自干扰强度。
  43. 根据权利要求42所述的终端设备,其特征在于,所述通信单元进一步用于:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一时间段内,测量所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  44. 根据权利要求29至43中任一项所述的终端设备,其特征在于,所述第一消息携带第一信道质量指示CQI,所述第一CQI用于表征所述第一下 行频段和所述第一上行频段对所述终端设备产生的自干扰强度。
  45. 根据权利要求44所述的终端设备,其特征在于,所述处理单元进一步用于:
    根据所述网络设备利用所述第一下行频率向所述终端设备发送的参考信号,确定第二CQI;
    根据所述第二CQI和确定的所述自干扰强度,确定所述第一CQI。
  46. 根据权利要求45所述的终端设备,其特征在于,第一消息携带第一比特;
    在所述第一比特取第一值时,表征所述第一消息携带的CQI为所述第一CQI;
    在所述第一比特取值为第二值时,表征所述第一消息的CQI为所述第二CQI。
  47. 根据权利要求29至46中任一项所述的终端设备,其特征在于,所述第一上行频段包括多个频段;和/或,
    所述第一下行频段包括多个频段。
  48. 一种网络设备,其特征在于,包括通信单元和处理单元;其中,
    所述通信单元用于:接收终端设备发送的第一消息,所述第一消息用于表征所述终端设备与网络设备进行通信的第一上行频段和第一下行频段对所述终端设备产生的自干扰强度;
    所述处理单元用于:根据所述自干扰强度,对所述终端设备进行调度。
  49. 根据权利要求48所述的网络设备,其特征在于,所述第一消息包括以下信息:
    所述第一上行频段的信息;
    所述第一下行频段的信息;和
    表征所述自干扰强度的信息。
  50. 根据权利要求48或49所述的网络设备,其特征在于,所述第一消息还用于指示:
    所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰的类型;和/或,
    第一发射功率,所述第一发射功率为所述终端设备利用所述第一上行频段向所述网络设备发送信号的发射功率。
  51. 根据权利要求48至50中任一项所述的网络设备,其特征在于,所述通信单元进一步用于:
    向所述终端设备发送指示信息,所述指示信息用于指示:
    所述终端设备测量和/或上报所述第一上行频段和所述第一下行频段对所述终端设备产生的自干扰强度。
  52. 根据权利要求51所述的网络设备,其特征在于,所述指示信息还用于指示以下中的至少一种:
    测量所述自干扰强度时所述终端设备利用所述第一上行频率向所述网络设备发送信号的发射功率;和/或,
    测量所述自干扰强度的时间段。
  53. 根据权利要求52所述的网络设备,其特征在于,所述通信单元进一步用于:
    在所述指示信息指示的测量所述自干扰强度的时间段内,不利用所述第一下行频段向所述终端设备发送下行信号。
  54. 根据权利要求48至53中任一项所述的网络设备,其特征在于,所述第一消息携带第一信道质量指示CQI,所述第一CQI用于表征所述第一下行频段和所述第一上行频段对所述终端设备产生的自干扰强度。
  55. 根据权利要求54所述的网络设备,其特征在于,第一消息携带第一比特;
    在所述第一比特取第一值时,表征所述第一消息携带的CQI为所述第一CQI;
    在所述第一比特取值为第二值时,表征所述第一消息的CQI为第二CQI,所述第二CQI不用于表征所述自干扰强度。
  56. 根据权利要求49至55中任一项所述的网络设备,其特征在于,所述第一上行频段包括多个频段;和/或,
    所述第一下行频段包括多个频段。
PCT/CN2017/090102 2017-06-26 2017-06-26 无线通信方法和设备 WO2019000195A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/623,729 US11234246B2 (en) 2017-06-26 2017-06-26 Wireless communication method and device
CN201780090906.9A CN110637422A (zh) 2017-06-26 2017-06-26 无线通信方法和设备
PCT/CN2017/090102 WO2019000195A1 (zh) 2017-06-26 2017-06-26 无线通信方法和设备
EP17915729.2A EP3627724A4 (en) 2017-06-26 2017-06-26 WIRELESS COMMUNICATION METHOD AND DEVICE
IL271276A IL271276A (en) 2017-06-26 2019-12-09 Wireless communication method and device
PH12019502803A PH12019502803A1 (en) 2017-06-26 2019-12-12 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090102 WO2019000195A1 (zh) 2017-06-26 2017-06-26 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2019000195A1 true WO2019000195A1 (zh) 2019-01-03

Family

ID=64740761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090102 WO2019000195A1 (zh) 2017-06-26 2017-06-26 无线通信方法和设备

Country Status (6)

Country Link
US (1) US11234246B2 (zh)
EP (1) EP3627724A4 (zh)
CN (1) CN110637422A (zh)
IL (1) IL271276A (zh)
PH (1) PH12019502803A1 (zh)
WO (1) WO2019000195A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756317B (zh) * 2017-11-07 2022-02-18 华为技术有限公司 干扰确定方法及网络设备
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
US11743021B2 (en) * 2020-05-08 2023-08-29 Qualcomm Incorporated Interference measurements for full duplex transmissions
US20220045775A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Techniques for self-interference measurement for a repeater node
WO2024098201A1 (zh) * 2022-11-07 2024-05-16 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN116112933B (zh) * 2023-04-12 2023-08-29 荣耀终端有限公司 一种通信方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052074A (zh) * 2011-10-12 2013-04-17 中兴通讯股份有限公司 降低上行同频干扰的方法及装置
CN104521271A (zh) * 2013-07-30 2015-04-15 华为技术有限公司 处理小区同频干扰的方法、装置、系统、基站及用户终端
CN104838610A (zh) * 2012-12-11 2015-08-12 Lg电子株式会社 在无线通信系统中收发信号的方法及其设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112066A1 (en) * 2009-03-31 2010-10-07 Nokia Siemens Networks Oy Controlling ue emissions for avoiding self-interference and for demanding coexistence situations
JP5365739B2 (ja) * 2010-03-12 2013-12-11 富士通株式会社 通信区間設定方法、中継局、基地局、移動通信システム
US8594000B2 (en) * 2010-06-22 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for controlling self-interference in a cellular communications system
US9025478B2 (en) 2011-08-16 2015-05-05 Google Technology Holdings LLC Self-interference handling in a wireless communication terminal supporting carrier aggregation
CN103209415B (zh) * 2012-01-16 2017-08-04 华为技术有限公司 全双工干扰处理方法和装置
US8842584B2 (en) * 2012-07-13 2014-09-23 At&T Intellectual Property I, L.P. System and method for full duplex cancellation
CN103716266B (zh) * 2012-09-29 2017-09-12 华为技术有限公司 信号处理方法、装置及系统
US9654274B2 (en) * 2012-11-09 2017-05-16 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for mitigating self-interference
KR20160019431A (ko) * 2013-06-10 2016-02-19 엘지전자 주식회사 자기 간섭 채널을 측정하는 방법 및 단말
WO2015031830A1 (en) * 2013-08-29 2015-03-05 Kumu Networks, Inc. Full-duplex relays
US10673519B2 (en) * 2013-08-29 2020-06-02 Kuma Networks, Inc. Optically enhanced self-interference cancellation
CN104868228B (zh) * 2014-02-25 2018-05-11 华为技术有限公司 双极化天线及天线阵列
US9420606B2 (en) * 2014-06-25 2016-08-16 Qualcomm Incorporated Full duplex operation in a wireless communication network
MX360550B (es) * 2014-06-26 2018-10-26 Huawei Tech Co Ltd Aparato y método de cancelación de interferencia.
WO2016072813A2 (ko) * 2014-11-09 2016-05-12 엘지전자 주식회사 무선 통신 시스템에서 단말간 간섭 측정 지시 방법 및 이를 위한 장치
CN105376864A (zh) * 2015-11-11 2016-03-02 深圳市金立通信设备有限公司 一种数据传输控制方法,及网络设备
US9935757B2 (en) * 2015-11-13 2018-04-03 National Instruments Corporation Channel quality reporting for full-duplex radio
CN107277908B (zh) * 2016-04-06 2021-06-15 华为技术有限公司 一种功率控制方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052074A (zh) * 2011-10-12 2013-04-17 中兴通讯股份有限公司 降低上行同频干扰的方法及装置
CN104838610A (zh) * 2012-12-11 2015-08-12 Lg电子株式会社 在无线通信系统中收发信号的方法及其设备
CN104521271A (zh) * 2013-07-30 2015-04-15 华为技术有限公司 处理小区同频干扰的方法、装置、系统、基站及用户终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627724A4 *

Also Published As

Publication number Publication date
US11234246B2 (en) 2022-01-25
CN110637422A (zh) 2019-12-31
EP3627724A4 (en) 2020-06-17
EP3627724A1 (en) 2020-03-25
IL271276A (en) 2020-01-30
US20210153214A1 (en) 2021-05-20
PH12019502803A1 (en) 2020-09-14

Similar Documents

Publication Publication Date Title
US20200127692A1 (en) Wireless communication method and device
WO2019000195A1 (zh) 无线通信方法和设备
WO2019165638A1 (zh) 无线通信方法和设备
US20210007060A1 (en) Wireless communication method and device
US10959140B2 (en) Wireless communication method and device
US11277852B2 (en) Data transmission method, terminal device, and network device
US11490336B2 (en) Wireless communication method and terminal device
WO2022127489A1 (zh) 信道估计方法及装置、计算机可读存储介质、终端
US20210160716A1 (en) Signal reporting method, terminal device, and network device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
US20210105077A1 (en) Wireless link monitoring method, terminal device, and network device
US11064502B2 (en) Method for sending information, method for receiving information, network device, and terminal device
CN112655250B (zh) 无线通信的方法、终端设备和网络设备
CA3064964C (en) Method and device for radio communication
US11129114B2 (en) Method for sounding reference signal communication method and terminal device
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
CN112567635B (zh) 测量干扰的方法和设备
US20210084662A1 (en) Method and device for radio resource management measurement
CN112703808B (zh) Bwp切换的方法和设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020124548A1 (zh) 时频资源确定方法、装置、芯片及计算机程序
US20200128516A1 (en) Wireless Communication Method, Terminal Device, and Network Device
CN112400333A (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017915729

Country of ref document: EP

Effective date: 20191214

NENP Non-entry into the national phase

Ref country code: DE