WO2020129609A1 - 半導体装置、および半導体装置の製造方法 - Google Patents

半導体装置、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2020129609A1
WO2020129609A1 PCT/JP2019/047161 JP2019047161W WO2020129609A1 WO 2020129609 A1 WO2020129609 A1 WO 2020129609A1 JP 2019047161 W JP2019047161 W JP 2019047161W WO 2020129609 A1 WO2020129609 A1 WO 2020129609A1
Authority
WO
WIPO (PCT)
Prior art keywords
wirings
insulating layer
semiconductor device
thickness direction
semiconductor element
Prior art date
Application number
PCT/JP2019/047161
Other languages
English (en)
French (fr)
Inventor
和則 富士
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE112019006263.8T priority Critical patent/DE112019006263T5/de
Priority to CN201980083173.5A priority patent/CN113196470A/zh
Priority to JP2020561266A priority patent/JP7286676B2/ja
Priority to US17/295,801 priority patent/US11830843B2/en
Publication of WO2020129609A1 publication Critical patent/WO2020129609A1/ja
Priority to US18/490,468 priority patent/US20240047405A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02311Additive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02321Reworking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0235Shape of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0235Shape of the redistribution layers
    • H01L2224/02351Shape of the redistribution layers comprising interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02375Top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05569Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/2101Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/211Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present disclosure relates to a so-called Fan-Out type semiconductor device.
  • the semiconductor device includes a semiconductor element having a plurality of electrodes, an insulating layer in contact with the semiconductor element, a plurality of wirings arranged in the insulating layer and connected to the plurality of electrodes, and a portion of the semiconductor element in contact with the insulating layer. And a sealing resin that covers the portion.
  • the plurality of wirings include a portion located outside the semiconductor element. Accordingly, there is an advantage that the shape of the wiring pattern of the wiring board on which the semiconductor device is mounted can be flexibly dealt with while reducing the size of the semiconductor device.
  • Patent Document 1 discloses an example of a method for manufacturing a Fan-Out type semiconductor device.
  • the manufacturing method includes a step of embedding a semiconductor element having a plurality of electrodes in a sealing resin (cured body in Patent Document 1) and an insulating layer in contact with both the semiconductor element and the sealing resin (buffer coating film in Patent Document 1). And a step of forming a plurality of wirings connected to a plurality of electrodes.
  • the plurality of electrodes are exposed from the sealing resin.
  • a plurality of openings are formed in the insulating layer by photolithography patterning using a mask so that the plurality of electrodes are exposed.
  • a plating layer is formed on the plurality of openings in the insulating layer and on the insulating layer.
  • the encapsulation resin cures and shrinks, causing displacement of the semiconductor element.
  • the positions of the plurality of openings and the plurality of electrodes are displaced.
  • a positional deviation will occur at the joint between the plurality of electrodes and the plurality of wirings. Therefore, in order to further improve the reliability of the semiconductor device, it is desired to suppress this deviation.
  • a semiconductor device provided by the first aspect of the present disclosure includes a first insulating layer having a first surface and a second surface facing opposite sides in a thickness direction, and at least a part of the first insulating layer embedded in the first insulating layer.
  • a plurality of first wirings having a first embedded portion and a first rewiring portion arranged on the second surface and connected to the first embedded portion; and provided in the vicinity of the first surface,
  • a sealing resin covering the portion, and the first rewiring portion of the plurality of first wirings includes a portion positioned outside the semiconductor element when viewed along the thickness direction.
  • the first insulating layer has a plurality of first grooves that are recessed from the second surface toward the thickness direction, and the first redistribution parts of the plurality of first wirings
  • a method for manufacturing a semiconductor device provided by the second aspect of the present disclosure includes a method of sealing a semiconductor element having a plurality of electrodes provided on either side in a thickness direction such that the plurality of electrodes are exposed.
  • a step of embedding in a resin a step of forming an insulating layer laminated on the sealing resin and covering the plurality of electrodes, an embedded portion embedded in the insulating layer and connected to any of the plurality of electrodes, And a step of forming a plurality of wirings having a rewiring portion that is disposed on the insulating layer and that is connected to the embedded portion, wherein the insulating layer includes a thermosetting synthetic resin, and the plurality of wirings.
  • the step of forming the plurality of wirings which is made of a material containing an additive containing a metal element that constitutes a part of the wiring, exposes the plurality of electrodes while image-recognizing the positions of the plurality of electrodes.
  • a plurality of holes and a plurality of grooves that are recessed from the surface of the insulating layer and connected to the plurality of holes in the insulating layer by a laser, a wall surface that defines each of the plurality of holes, and the plurality of holes.
  • the method includes a step of depositing an underlayer covering the groove and a step of forming a plating layer covering the underlayer.
  • FIG. 3 is a plan view of the semiconductor device according to the first embodiment of the present disclosure, in which a sealing resin is transparent.
  • FIG. 2 is a plan view of the semiconductor device further transparent to FIG. 1. It is a bottom view of the semiconductor device shown in FIG.
  • FIG. 4 is a bottom view corresponding to FIG. 3, in which a protective layer and a plurality of terminals are transparent.
  • FIG. 5 is a sectional view taken along line VV of FIG. 1.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 1.
  • FIG. 6 is a partially enlarged view of FIG. 5.
  • FIG. 6 is a partially enlarged view of FIG. 5. It is a partial expanded sectional view which follows the IX-IX line of FIG. FIG.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 13 is a partially enlarged view of FIG. 12.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 15 is a partially enlarged view of FIG. 14.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor device shown in FIG. 1. It is a top view of the semiconductor device concerning a 2nd embodiment of this indication, and has penetrated sealing resin.
  • FIG. 20 is a plan view corresponding to FIG. 19, further penetrating the first insulating layer and the semiconductor element.
  • FIG. 20 is a bottom view of the semiconductor device shown in FIG. 19.
  • FIG. 22 is a bottom view corresponding to FIG. 21, in which the protective layer and a plurality of terminals are transparent. It is sectional drawing which follows the XXIII-XXIII line of FIG.
  • FIG. 21 is a sectional view taken along line XXIV-XXIV in FIG. 20.
  • FIG. 24 is a partially enlarged view of FIG. 23.
  • FIG. 21 is a partially enlarged cross-sectional view taken along the line XXVI-XXVI of FIG. 20.
  • FIG. 11 is a plan view of a semiconductor device according to a third embodiment of the present disclosure, in which a heat dissipation member, a bonding layer, and a sealing resin are transparent.
  • FIG. 28 is a bottom view of the semiconductor device shown in FIG. 27.
  • FIG. 29 is a bottom view corresponding to FIG. 28, and is a bottom view in which the first insulating layer, the protective layer, and the plurality of terminals are transparent.
  • FIG. 28 is a sectional view taken along line XXX-XXX in FIG. 27.
  • FIG. 28 is a cross-sectional view taken along the line XXXI-XXXI in FIG. 27.
  • FIG. 31 is a partially enlarged view of FIG. 30.
  • FIG. 11 is a plan view of a semiconductor device according to a fourth embodiment of the present disclosure, in which a transparent resin is transmitted.
  • FIG. 34 is a plan view corresponding to FIG. 33, and further penetrates the first insulating layer and the plurality of first wirings. It is sectional drawing which follows the XXXV-XXXV line of FIG.
  • the semiconductor device A10 includes a first insulating layer 11, a plurality of first wirings 21, a semiconductor element 30, a sealing resin 41, a protective layer 42, and a plurality of terminals 50.
  • the semiconductor device A10 is a Fan-Out type package which is surface-mounted on the wiring board.
  • the sealing resin 41 is transmitted.
  • FIG. 2 further penetrates the semiconductor element 30 with respect to FIG. 1 for convenience of understanding.
  • the protective layer 42 and the plurality of terminals 50 are transparent. It should be noted that in FIG. 2, the outer shape of the transparent semiconductor element 30 is shown by an imaginary line (two-dot chain line).
  • the thickness direction of the first insulating layer 11 is referred to as “thickness direction z”.
  • the direction orthogonal to the thickness direction z is called "first direction x”.
  • a direction orthogonal to both the thickness direction z and the first direction x is referred to as a “second direction y”.
  • the outer shape of the semiconductor device A10 is rectangular when viewed along the thickness direction z.
  • the first direction x corresponds to the longitudinal direction of the semiconductor device A10.
  • the second direction y corresponds to the lateral direction of the semiconductor device A10.
  • the thickness direction z, the first direction x, and the second direction y are also applied in the description of the semiconductor devices A20 to A40 described later.
  • the first insulating layer 11 faces the semiconductor element 30 in the thickness direction z, as shown in FIGS. 5 and 6.
  • the first insulating layer 11 is made of a material containing a thermosetting synthetic resin and an additive containing a metal element forming a part of the plurality of first wirings 21.
  • the synthetic resin is, for example, an epoxy resin or a polyimide resin.
  • the first insulating layer 11 has a first surface 11A, a second surface 11B, and a plurality of end surfaces 11C.
  • the first surface 11A and the second surface 11B face opposite sides in the thickness direction z.
  • the first surface 11A faces the semiconductor element 30.
  • the second surface 11B faces the wiring board when the semiconductor device A10 is mounted on the wiring board.
  • the plurality of end faces 11C are connected to both the first face 11A and the second face 11B. Each of the plurality of end faces 11C faces either the first direction x or the second direction y.
  • the first insulating layer 11 has a plurality of first grooves 111.
  • the plurality of first grooves 111 are recessed from the second surface 11B in the thickness direction z.
  • the side surface of each of the plurality of first grooves 111 is tapered in the thickness direction z from the bottom surface of the first groove 111 to the second surface 11B.
  • the dimension c1 of the bottom surface of the first groove 111 in the first direction x is between two boundaries between the first groove 111 and the second surface 11B that are separated from each other in the first direction x. Is smaller than the dimension c2.
  • the plurality of first wirings 21 are arranged on the first insulating layer 11 as shown in FIGS. 5 and 6.
  • the plurality of first wirings 21 form a conductive path for supplying electric power to the semiconductor element 30 and for inputting/outputting a signal.
  • Each of the plurality of first wirings 21 has a first embedding portion 211 and a first rewiring portion 212. At least a part (all in the semiconductor device A10) of the first embedded portion 211 is embedded in the first insulating layer 11. As shown in FIG. 7, the side surface of the first embedded portion 211 is tapered in the thickness direction z from the first surface 11A of the first insulating layer 11 toward the second surface 11B.
  • the dimension b1 in the direction orthogonal to the thickness direction z of the end surface of the first embedded portion 211 closest to the first surface 11A is the thickness direction of the end surface of the first embedded portion 211 closest to the second surface 11B. It is smaller than the dimension b2 in the direction orthogonal to z.
  • the first redistribution part 212 is disposed on the second surface 11B of the first insulating layer 11. The first redistribution part 212 is connected to the first embedding part 211. As shown in FIGS. 1 to 4, the first redistribution portions 212 of the plurality of first wirings 21 include a portion located outside the semiconductor element 30 when viewed along the thickness direction z.
  • the first redistribution parts 212 of the plurality of first wires 21 are in contact with the plurality of first grooves 111 of the first insulating layer 11. Therefore, the first redistribution portions 212 of the plurality of first wirings 21 are configured such that some of them are embedded in the plurality of first grooves 111.
  • each of the first embedded portions 211 of the plurality of first wirings 21 and the first rewiring portions 212 of the plurality of first wirings 21 includes a base layer 21A and a plating layer 21B.
  • the base layer 21A is composed of the metal element contained in the additive contained in the first insulating layer 11.
  • the plating layer 21B is made of a material containing copper (Cu), for example.
  • the base layer 21A of the first embedded portion 211 is in contact with the first insulating layer 11.
  • the plating layer 21B of the first embedded portion 211 is surrounded by the base layer 21A of the first embedded portion 211 around the thickness direction z.
  • the base layer 21A of the first redistribution part 212 is in contact with any of the plurality of first grooves 111 of the first insulating layer 11.
  • the plating layer 21B of the first redistribution part 212 covers the base layer 21A of the first redistribution part 212.
  • the plating layer 21B of the first redistribution part 212 has a recess 212A that is recessed in the thickness direction z.
  • the recess 212A extends along a direction in which any of the first redistribution portions 212 of the plurality of first wirings 21 extends.
  • the semiconductor element 30 is connected to the plurality of first wirings 21 as shown in FIGS. 5 and 6.
  • the semiconductor element 30 is in contact with the first surface 11A of the first insulating layer 11.
  • the semiconductor element 30 is, for example, an LSI (Large Scale Integration) including a voltage control circuit such as an LDO (Low Drop Out) and an amplifier circuit such as an operational amplifier.
  • the semiconductor element 30 is a flip-chip type element.
  • the semiconductor element 30 has a plurality of electrodes 31.
  • the plurality of electrodes 31 are provided near the first surface 11A.
  • the plurality of electrodes 31 are electrically connected to the circuit formed in the semiconductor element 30.
  • the plurality of electrodes 31 include, for example, aluminum (Al).
  • the plurality of electrodes 31 are directly connected to at least a part (all in the semiconductor device A10) of the first embedded portions 211 of the plurality of first wirings 21.
  • the semiconductor element 30 is electrically connected to the plurality of first wirings 21.
  • the sealing resin 41 covers a part of the semiconductor element 30, as shown in FIGS. 5 and 6.
  • the sealing resin 41 is in contact with the first surface 11A of the first insulating layer 11.
  • the sealing resin 41 is made of, for example, a material containing black epoxy resin.
  • the sealing resin 41 has a plurality of side surfaces 411. Each of the plurality of side surfaces 411 faces either the first direction x or the second direction y. Each of the plurality of side surfaces 411 is flush with any of the plurality of end surfaces 11C of the first insulating layer 11.
  • the protective layer 42 is in contact with the second surface 11B of the first insulating layer 11 as shown in FIGS. 5 and 6.
  • the first redistribution portions 212 of the plurality of first wirings 21 are covered with the protective layer 42.
  • the protective layer 42 has electrical insulation.
  • the protective layer 42 is made of a material containing polyimide, for example.
  • the protective layer 42 has a plurality of openings 421.
  • the plurality of openings 421 penetrate the protective layer 42 in the thickness direction z. A part of the first redistribution parts 212 of the plurality of first wires 21 is exposed from the plurality of openings 421.
  • the plurality of terminals 50 are individually bonded to a part of the first redistribution portions 212 of the plurality of first wirings 21 exposed from the plurality of openings 421 of the protective layer 42. ing.
  • the plurality of terminals 50 are used to mount the semiconductor device A10 on the wiring board.
  • the plurality of terminals 50 project from the protective layer 42 in the thickness direction z.
  • each of the plurality of terminals 50 has a base portion 51 and a bump portion 52.
  • the base 51 is in contact with a part of any of the first redistribution parts 212 of the plurality of first wirings 21.
  • the base portion 51 has a plurality of metal layers in which a nickel (Ni) layer, a palladium layer (Pd), and a gold (Au) layer are stacked in this order in a direction away from the second surface 11B of the first insulating layer 11 in the thickness direction z. Consists of. Of these metal layers, the palladium layer may not be provided.
  • the bump portion 52 is in contact with both the base portion 51 and the protective layer 42.
  • the bump portion 52 includes a portion protruding from the protective layer 42 in the thickness direction z.
  • the bump portion 52 is made of a material containing tin (Sn).
  • FIGS. 11 to 18 are the same as the cross-sectional positions in FIG.
  • the semiconductor element 30 is embedded in the sealing resin 81.
  • the sealing resin 81 is made of a material containing a black epoxy resin.
  • the semiconductor element 30 has a plurality of electrodes 31 provided on either side in the thickness direction z.
  • compression molding is performed.
  • the semiconductor element 30 is embedded in the sealing resin 81.
  • the plurality of electrodes 31 are exposed from the sealing resin 81.
  • an insulating layer 82 laminated on the sealing resin 81 and covering the plurality of electrodes 31 of the semiconductor element 30 is formed.
  • the insulating layer 82 is made of a material containing a thermosetting synthetic resin and an additive containing a metal element that forms a part of a plurality of wirings 83 (details will be described later).
  • the synthetic resin is, for example, an epoxy resin or a polyimide resin.
  • the insulating layer 82 is formed by compression molding.
  • each of the plurality of wirings 83 has an embedded portion 831 and a rewiring portion 832.
  • the embedded portion 831 is embedded in the wiring 83 and connected to any of the plurality of electrodes 31.
  • the rewiring portion 832 is disposed on the insulating layer 82 and is connected to the embedding portion 831. As shown in FIG.
  • each of the embedded portion 831 of the plurality of wirings 83 and the rewiring portion 832 of the plurality of wirings 83 has a base layer 83A and a plated layer 83B.
  • the step of forming the plurality of wirings 83 includes a step of depositing a base layer 83A covering the surface of the insulating layer 82 and a step of forming a plating layer 83B covering the base layer 83A.
  • a base layer 83A that covers the surface of the insulating layer 82 is deposited.
  • a plurality of holes 821 and a plurality of grooves 822 are formed in the insulating layer 82 by laser.
  • the plurality of holes 821 penetrate the insulating layer 82 in the thickness direction z.
  • the plurality of electrodes 31 of the semiconductor element 30 are individually exposed through the plurality of holes 821.
  • the plurality of holes 821 are formed by irradiating the insulating layer 82 with a laser until the plurality of electrodes 31 are exposed while recognizing the positions of the plurality of electrodes 31 by an infrared camera or the like.
  • the laser irradiation position is corrected one by one based on the position information of the plurality of electrodes 31 obtained by image recognition.
  • the plurality of grooves 822 are recessed from the surface of the insulating layer 82 and are connected to the plurality of holes 821.
  • the plurality of grooves 822 are formed by irradiating the surface of the insulating layer 82 with a laser.
  • the laser is, for example, an ultraviolet laser having a wavelength of 355 nm and a beam diameter of 17 ⁇ m.
  • a base layer 83A that covers the wall surfaces defining each of the plurality of holes 821 and the plurality of grooves 822 is deposited.
  • the base layer 83A is composed of the metal element contained in the additive contained in the insulating layer 82.
  • the metal element contained in the additive is excited by the laser irradiation. As a result, a metal layer containing the metal element is deposited as the base layer 83A.
  • a plating layer 83B that covers the base layer 83A is formed.
  • the plating layer 83B is made of a material containing copper.
  • the plating layer 83B is formed by electroless plating.
  • an embedded portion 831 is formed in each of the plurality of holes 821.
  • a rewiring portion 832 is formed in each of the plurality of grooves 822. As described above, the plurality of wirings 83 are formed.
  • a protective layer 84 that is laminated on the insulating layer 82 and covers a part of the plurality of wirings 83 is formed.
  • the protective layer 84 has a plurality of openings 841 penetrating in the thickness direction z.
  • a photosensitive polyimide is applied to the surface of the insulating layer 82 and the surfaces of the plurality of wirings 83 using a spin coater.
  • a plurality of openings 841 are formed in the photosensitive polyimide by photolithography patterning. At this time, a part of the rewiring portion 832 of the plurality of wirings 83 is exposed from the plurality of openings 841.
  • the protective layer 84 is formed.
  • a plurality of terminals 50 individually bonded to the rewiring portions 832 of the plurality of wirings 83 exposed from the plurality of openings 841 of the protective layer 84 are formed.
  • the base portions 51 of the plurality of terminals 50 shown in FIG. 8 are formed.
  • the base 51 is formed by electroless plating.
  • the bump portions 52 of the plurality of terminals 50 shown in FIG. 8 are formed.
  • the bump portion 52 is formed by melting a conductive material containing tin such as solder by reflow and then solidifying it by cooling. As described above, the plurality of terminals 50 are formed.
  • the sealing resin 81, the insulating layer 82, and the protective layer 84 are cut along a cutting line CL with a dicing blade or the like to be divided into a plurality of pieces.
  • the individual piece includes one semiconductor element 30 and a plurality of wirings 83 connected thereto.
  • the encapsulating resin 81, the insulating layer 82, and the protective layer 84 that are separated into pieces by this step correspond to the encapsulating resin 41, the first insulating layer 11, and the protective layer 42 of the semiconductor device A10. Through the above steps, the semiconductor device A10 is manufactured.
  • the semiconductor device A10 includes a first insulating layer 11 having a second surface 11B and a plurality of first wirings 21 having a first embedded portion 211 and a first rewiring portion 212.
  • the first redistribution portions 212 of the plurality of first wirings 21 are arranged on the second surface 11B and connected to the first embedded portions 211 of the plurality of first wirings 21 connected to the plurality of electrodes 31 of the semiconductor element 30. ing.
  • the first insulating layer 11 has a plurality of first grooves 111 that are recessed from the second surface 11B in the thickness direction z.
  • the first redistribution parts 212 of the plurality of first wirings 21 are in contact with the plurality of first grooves 111.
  • the plurality of first trenches 111 correspond to the plurality of trenches 822 formed in the insulating layer 82 by laser in the process of forming the plurality of wirings 83 in manufacturing the semiconductor device A10.
  • the step of forming the plurality of wirings 83 according to the method of manufacturing the semiconductor device A10 includes a step of depositing the underlayer 83A on the surface of the insulating layer 82 and a step of forming a plating layer 83B covering the underlayer 83A.
  • the plurality of wirings 83 correspond to the plurality of first wirings 21 of the semiconductor device A10.
  • the insulating layer 82 is made of a material including a thermosetting synthetic resin and an additive containing a metal element that constitutes a part of the plurality of wirings 83 (underlying layer 83A).
  • a plurality of holes 821 and a plurality of grooves 822 are formed in the insulating layer 82 by a laser, so that the wall surface defining each of the plurality of holes 821 and the plurality of grooves 822 are covered.
  • Formation 83A is deposited.
  • the plurality of holes 821 are formed by exposing the plurality of electrodes 31 while image-recognizing the positions of the plurality of electrodes 31 of the semiconductor element 30. As a result, even if the semiconductor element 30 is displaced due to the curing shrinkage of the sealing resin 81, the position correction corresponding to the displacement of the plurality of electrodes 31 is performed by the image recognition at the time of laser irradiation.
  • the plating layer 83B is formed by electroless plating. As a result, it is not necessary to deposit the underlying layer 83A that serves as a conductive path for forming plating, as compared with the case of electric field plating, so that the plurality of wirings 83 can be formed more efficiently.
  • Each of the first redistribution parts 212 of the plurality of first wirings 21 has a base layer 21A that is in contact with any of the plurality of first grooves 111, and a plating layer 21B that covers the base layer 21A.
  • the plating layer 21B has a recess 212A that is recessed in the thickness direction z.
  • the recess 212A is a trace due to the plating layer 83B being formed on the base layer 83A covering the plurality of trenches 822 in the step of forming the plurality of wirings 83 according to the method of manufacturing the semiconductor device A10. Therefore, the recessed portion 212A is configured to extend along the direction in which any of the first redistribution portions 212 of the plurality of first wirings 21 extends.
  • the semiconductor device A10 further includes a protective layer 42 in contact with the second surface 11B of the first insulating layer 11, and a plurality of terminals 50.
  • the plurality of terminals 50 are individually joined to a part of the first redistribution portions 212 of the plurality of first wirings 21 exposed from the plurality of openings 421 of the protective layer 42.
  • the plurality of terminals 50 project from the protective layer 42 in the thickness direction z.
  • the plurality of terminals 50 are made of a material containing tin. This makes it easier to mount the semiconductor device A10 on the wiring board.
  • FIGS. 19 to 26 A semiconductor device A20 according to the second embodiment of the present disclosure will be described with reference to FIGS. 19 to 26.
  • the same or similar elements as those of the semiconductor device A10 described above are designated by the same reference numerals, and duplicated description will be omitted.
  • the semiconductor device A20 is different from the above-described semiconductor device A10 in that the semiconductor device A20 is further provided with the second insulating layer 12 and the plurality of second wirings 22 and the configurations of the protective layer 42 and the plurality of terminals 50.
  • the sealing resin 41 is transmitted in FIG. 19, for convenience of understanding.
  • the first insulating layer 11 and the semiconductor element 30 are further transmitted as compared with FIG. 19.
  • the protective layer 42 and the plurality of terminals 50 are transparent. Note that, in FIG. 20, the outer shape of the semiconductor element 30 which is transparent is shown by an imaginary line.
  • the second insulating layer 12 is in contact with the second surface 11B of the first insulating layer 11 as shown in FIGS. 23 and 24. Therefore, the first insulating layer 11 is configured to be sandwiched between the second insulating layer 12 and the sealing resin 41.
  • the second insulating layer 12 is made of a material containing a thermosetting synthetic resin and an additive containing a metal element that forms a part of the plurality of second wirings 22.
  • the synthetic resin is, for example, an epoxy resin or a polyimide resin.
  • the second insulating layer 12 has a third surface 12A, a fourth surface 12B and a plurality of end surfaces 12C. The third surface 12A and the fourth surface 12B face opposite sides in the thickness direction z.
  • the third surface 12A is in contact with the second surface 11B.
  • the fourth surface 12B faces the wiring board when the semiconductor device A20 is mounted on the wiring board.
  • the plurality of end faces 12C are connected to both the third face 12A and the fourth face 12B.
  • Each of the plurality of end faces 12C faces either the first direction x or the second direction y.
  • Each of the plurality of end faces 12C is flush with both of the plurality of end faces 11C of the first insulating layer 11 and any of the plurality of side faces 411 of the sealing resin 41.
  • the second insulating layer 12 has a plurality of second grooves 121.
  • the plurality of second grooves 121 are recessed from the fourth surface 12B in the thickness direction z.
  • the side surface of each of the plurality of second grooves 121 is tapered in the thickness direction z from the bottom surface of the second groove 121 to the fourth surface 12B.
  • the dimension c3 of the bottom surface of the second groove 121 in the first direction x is between two boundaries between the second groove 121 and the fourth surface 12B that are separated from each other in the first direction x. Is smaller than the dimension c4.
  • the plurality of second wirings 22 are arranged on the second insulating layer 12 as shown in FIGS. 23 and 24.
  • the plurality of second wirings 22 and the plurality of first wirings 21 form a conductive path extending to the semiconductor element 30.
  • Each of the plurality of second wirings 22 has a second embedded portion 221 and a second rewiring portion 222.
  • the second embedded portion 221 is embedded in the second insulating layer 12. As shown in FIG. 25, the side surface of the second embedded portion 221 is tapered in the thickness direction z from the third surface 12A to the fourth surface 12B of the second insulating layer 12.
  • the dimension b3 in the direction orthogonal to the thickness direction z of the end surface of the second embedded portion 221 closest to the third surface 12A is the thickness direction of the end surface of the second embedded portion 221 closest to the fourth surface 12B. It is smaller than the dimension b4 in the direction orthogonal to z.
  • the second redistribution part 222 is arranged on the fourth surface 12B of the second insulating layer 12.
  • the second redistribution part 222 is connected to the first redistribution part 212.
  • the second redistribution portions 222 of the plurality of second wirings 22 are in contact with the second grooves 121 of the second insulating layer 12. Therefore, the second redistribution portions 222 of the plurality of second wirings 22 are configured such that some of them are embedded in the plurality of second grooves 121.
  • the second embedding portions 221 of the plurality of second wirings 22 are connected to the first rewiring portions 212 of the plurality of first wirings 21.
  • the semiconductor element 30 is electrically connected to the plurality of second wirings 22 via the plurality of first wirings 21.
  • the second embedded portions 221 of the plurality of second wirings 22 are covered with the second insulating layer 12.
  • the second rewiring portions 222 of the plurality of second wirings 22 overlap the first rewiring portions 212 of the plurality of first wirings 21 when viewed along the thickness direction z. Including parts.
  • each of the second embedded portions 221 of the plurality of second wirings 22 and the second redistribution portions 222 of the plurality of second wirings 22 has a base layer 22A and a plated layer 22B.
  • the base layer 22A is composed of the metal element contained in the additive contained in the second insulating layer 12.
  • the plating layer 22B is made of a material containing copper, for example.
  • the underlying layer 22A of the second embedded portion 221 is in contact with the second insulating layer 12.
  • the plating layer 22B of the second embedded portion 221 is surrounded by the base layer 22A of the second embedded portion 221 around the thickness direction z.
  • the base layer 22A of the second redistribution part 222 is in contact with any of the plurality of second grooves 121 of the second insulating layer 12.
  • the plating layer 22B of the second redistribution part 222 covers the base layer 22A of the second redistribution part 222.
  • the plating layer 22B of the second redistribution part 222 has a recess 222A that is recessed in the thickness direction z.
  • the recessed portion 222A extends along a direction in which any of the second rewiring portions 222 of the plurality of second wirings 22 extends.
  • the protective layer 42 is in contact with the fourth surface 12B of the second insulating layer 12.
  • the second redistribution parts 222 of the plurality of second wirings 22 are covered with the protective layer 42.
  • a part of the second rewiring portions 222 of the plurality of second wirings 22 is exposed from the plurality of openings 421 of the protective layer 42.
  • the plurality of terminals 50 are individually joined to a part of the second rewiring portions 222 of the plurality of second wirings 22 exposed from the plurality of openings 421.
  • the semiconductor device A20 includes a first insulating layer 11 having a second surface 11B and a plurality of first wirings 21 having a first embedded portion 211 and a first rewiring portion 212.
  • the first redistribution portions 212 of the plurality of first wirings 21 are arranged on the second surface 11B and connected to the first embedded portions 211 of the plurality of first wirings 21 connected to the plurality of electrodes 31 of the semiconductor element 30. ing.
  • the first insulating layer 11 has a plurality of first grooves 111 that are recessed from the second surface 11B in the thickness direction z.
  • the first redistribution parts 212 of the plurality of first wirings 21 are in contact with the plurality of first grooves 111. Therefore, the semiconductor device A20 also suppresses the positional deviation at the joints between the plurality of electrodes 31 of the semiconductor element 30 and the plurality of first wirings 21.
  • the semiconductor device A20 further includes a second insulating layer 12 having a third surface 12A and a fourth surface 12B, and a plurality of second wirings 22 having a second embedded portion 221 and a second rewiring portion 222.
  • the third surface 12A is in contact with the second surface 11B of the first insulating layer 11.
  • the second rewiring portions 222 of the plurality of second wirings 22 are arranged on the fourth surface 12B and connected to the second embedding portions 221 of the plurality of second wirings 22 embedded in the second insulating layer 12. There is.
  • the first redistribution portions 212 of the plurality of first wirings 21 are connected to the second embedded portions 221 of the plurality of second wirings 22 and are covered with the second insulating layer 12.
  • the semiconductor device A20 the plurality of first wirings 21 and the plurality of second wirings 22 can be arranged in multiple layers in the thickness direction z. Therefore, when viewed along the thickness direction z, the second rewiring portions 222 of the plurality of second wirings 22 can be arranged so as to overlap the first rewiring portions 212 of the plurality of first wirings 21. .. Therefore, the semiconductor device A20 can have a more complicated wiring pattern than the semiconductor device A10.
  • FIGS. 27 to 32 A semiconductor device A30 according to the third embodiment of the present disclosure will be described with reference to FIGS. 27 to 32.
  • the same or similar elements as those of the semiconductor device A10 described above are designated by the same reference numerals, and duplicated description will be omitted.
  • the semiconductor device A30 further includes the heat dissipation member 23 and the bonding layer 39, and the configurations of the first embedded portions 211 of the plurality of first wirings 21 and the semiconductor element 30 are different from those of the semiconductor device A10 described above. different.
  • the heat dissipation member 23, the bonding layer 39, and the sealing resin 41 are transmitted.
  • the first insulating layer 11, the protective layer 42, and the plurality of terminals 50 are transparent. Note that, in FIG. 27, the outer shapes of the radiating member 23 and the bonding layer 39 that have passed through are shown by imaginary lines.
  • the semiconductor element 30 is a switching element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Therefore, the semiconductor device A30 is used for a DC/DC converter, an inverter of various electric products, and the like.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the heat dissipation member 23 is located on the opposite side of the semiconductor element 30 from the first insulating layer 11 in the thickness direction z. At least a part of the heat dissipation member 23 is covered with the sealing resin 41.
  • the heat dissipation member 23 is a metal plate containing copper, for example. The heat dissipation member 23 dissipates heat generated from the semiconductor element 30 when the semiconductor device A30 is used, and also forms a conductive path with the semiconductor element 30 together with the plurality of first wirings 21.
  • the semiconductor element 30 is, for example, a MOSFET composed of a semiconductor material mainly containing silicon carbide (SiC).
  • the semiconductor element 30 is not limited to the MOSFET and may be a field effect transistor including a MISFET (Metal-Insulator-Semiconductor Field-Effect Transistor) or a bipolar transistor such as an IGBT (Insulated Gate Bipolar Transistor).
  • MISFET Metal-Insulator-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the plurality of electrodes 31 of the semiconductor element 30 include a main surface electrode 311 and a gate electrode 312.
  • the area of the principal surface electrode 311 is larger than the area of the gate electrode 312 when viewed along the thickness direction z.
  • a source current flows from the inside of the semiconductor element 30 to the principal surface electrode 311.
  • a gate voltage for driving the semiconductor element 30 is applied to the gate electrode 312.
  • the semiconductor element 30 has a back electrode 32 and an insulating film 33.
  • the back surface electrode 32 is located farther from the first surface 11A of the first insulating layer 11 than the main surface electrode 311 and the gate electrode 312 in the thickness direction z.
  • the back surface electrode 32 faces the heat dissipation member 23.
  • the back surface electrode 32 is provided over the entire surface of the semiconductor element 30 facing the heat dissipation member 23. A drain current flows through the back surface electrode 32 toward the inside of the semiconductor element 30.
  • the insulating film 33 is provided in the vicinity of the first surface 11A of the first insulating layer 11 similarly to the main surface electrode 311 and the gate electrode 312. As shown in FIG. 29, the insulating film 33 surrounds the principal surface electrode 311 and the gate electrode 312 when viewed in the thickness direction z.
  • the insulating film 33 is formed by stacking, for example, a silicon dioxide (SiO 2 ) layer, a silicon nitride (Si 3 N 4 ) layer, and a polybenzoxazole (PBO) layer in the order of approaching the first surface 11A in the thickness direction z. It was done.
  • a polyimide layer may be used instead of the polybenzoxazole layer.
  • the bonding layer 39 is interposed between the back surface electrode 32 of the semiconductor element 30 and the heat dissipation member 23, as shown in FIGS. 30 to 32.
  • the bonding layer 39 is, for example, lead-free solder containing tin as a main component, or baked silver. Thereby, the back surface electrode 32 is joined to the heat dissipation member 23. In addition, the heat dissipation member 23 is electrically connected to the back surface electrode 32 via the bonding layer 39.
  • the first embedded portions 211 of the plurality of first wirings 21 are embedded in the first insulating layer 11 and both the first insulating layer 11 and the sealing resin 41. Including things and.
  • the first embedded portions 211 of the plurality of first wirings 21 embedded in the first insulating layer 11 are connected to the plurality of electrodes 31 (main surface electrode 311 and gate electrode 312) of the semiconductor element 30.
  • the first embedded portions 211 of the plurality of first wirings 21 embedded in both the first insulating layer 11 and the sealing resin 41 are joined to the heat dissipation member 23.
  • the semiconductor device A30 includes a first insulating layer 11 having a second surface 11B and a plurality of first wirings 21 having a first embedded portion 211 and a first rewiring portion 212.
  • the first redistribution portions 212 of the plurality of first wirings 21 are arranged on the second surface 11B and connected to the first embedded portions 211 of the plurality of first wirings 21 connected to the plurality of electrodes 31 of the semiconductor element 30. ing.
  • the first insulating layer 11 has a plurality of first grooves 111 that are recessed from the second surface 11B in the thickness direction z.
  • the first redistribution parts 212 of the plurality of first wirings 21 are in contact with the plurality of first grooves 111. Therefore, also in the semiconductor device A30, the positional deviation at the joint between the plurality of electrodes 31 of the semiconductor element 30 and the plurality of first wirings 21 is suppressed.
  • the semiconductor device A30 further includes a heat dissipation member 23 located on the opposite side of the semiconductor element 30 from the first insulating layer 11.
  • the back surface electrode 32 of the semiconductor element 30 and a part of the first embedded portions 211 of the plurality of first wirings 21 are joined to the heat dissipation member 23.
  • the heat dissipation member 23 becomes a conductive path of the semiconductor element 30 through which the drain current flows.
  • heat generated from the semiconductor element 30 can be efficiently radiated to the outside.
  • FIGS. 33 to 35 A semiconductor device A40 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 33 to 35.
  • the same or similar elements as those of the semiconductor device A10 described above are designated by the same reference numerals, and duplicated description will be omitted.
  • the semiconductor device A40 is different from the above-described semiconductor device A10 in that it further includes a plurality of through wirings 24 and a translucent resin 43, and that the configurations of the first insulating layer 11, the semiconductor element 30, and the plurality of terminals 50 are different. ..
  • the semiconductor device A40 does not include the protective layer 42.
  • the transparent resin 43 is transmitted for the sake of easy understanding.
  • the first insulating layer 11 and the plurality of first wirings 21 are further transmitted with respect to FIG. 33. Note that, in FIG. 34, the outer shape of the transparent first insulating layer 11 is shown by an imaginary line.
  • the first insulating layer 11 includes portions that are separated from each other in the first direction x.
  • the semiconductor element 30 includes a portion that is not covered with the first insulating layer 11.
  • the semiconductor element 30 is an optical element whose portion emits light.
  • the optical element is an LED.
  • the plurality of through wirings 24 are located outside the semiconductor element 30 when viewed in the thickness direction z. As shown in FIG. 35, the plurality of through wirings 24 are connected to the first redistribution portions 212 of the plurality of first wirings 21. The plurality of through wirings 24 extend in the thickness direction z from the first rewiring portions 212 of the plurality of first wirings 21 and penetrate the sealing resin 41. The plurality of through wirings 24 are made of a material containing copper, for example.
  • the translucent resin 43 contacts the sealing resin 41, as shown in FIG.
  • the translucent resin 43 covers each of the first insulating layer 11, the semiconductor element 30, and the first redistribution portions 212 of the plurality of first wirings 21.
  • the light emitted from the semiconductor element 30 passes through the translucent resin 43.
  • the translucent resin 43 is made of, for example, a material containing a transparent epoxy resin or a synthetic resin containing silicone.
  • the plurality of terminals 50 are individually joined to a part of the plurality of through wirings 24 exposed from the sealing resin 41.
  • the plurality of terminals 50 protrude from the sealing resin 41 in the thickness direction z.
  • the semiconductor device A40 includes a first insulating layer 11 having a second surface 11B and a plurality of first wirings 21 having a first embedded portion 211 and a first rewiring portion 212.
  • the first redistribution portions 212 of the plurality of first wirings 21 are arranged on the second surface 11B and connected to the first embedded portions 211 of the plurality of first wirings 21 connected to the plurality of electrodes 31 of the semiconductor element 30. ing.
  • the first insulating layer 11 has a plurality of first grooves 111 that are recessed from the second surface 11B in the thickness direction z.
  • the first redistribution parts 212 of the plurality of first wirings 21 are in contact with the plurality of first grooves 111. Therefore, also in the semiconductor device A40, the positional deviation at the joint between the plurality of electrodes 31 of the semiconductor element 30 and the plurality of first wirings 21 is suppressed.
  • the semiconductor element 30 is an optical element whose portion not covered with the first insulating layer 11 emits light.
  • the semiconductor device A40 further includes a plurality of through wirings 24 that are located outside the semiconductor element 30 as viewed in the thickness direction z and that are connected to the first redistribution portions 212 of the plurality of first wirings 21.
  • the plurality of through wirings 24 extend in the thickness direction z from the first rewiring portions 212 of the plurality of first wirings 21 and penetrate the sealing resin 41. Accordingly, the semiconductor device A40 can be mounted on the wiring board so as to face the wiring board in the direction opposite to the direction in which light is emitted from the semiconductor element 30 in the thickness direction z.
  • the present disclosure is not limited to the embodiments described above.
  • the semiconductor element 30 is singular, but it may have a plurality of configurations.
  • the outer shape is rectangular when viewed in the thickness direction z, but these outer shapes are not limited to the rectangular shape, and may be circular or hexagonal, for example.
  • the specific configuration of each unit of the present disclosure can be modified in various ways.
  • Appendix 1 A first insulating layer having a first surface and a second surface facing opposite sides in the thickness direction; A plurality of first wirings having a first embedded portion at least partially embedded in the first insulating layer, and a first redistribution portion arranged on the second surface and connected to the first embedded portion; , A semiconductor element which is provided in the vicinity of the first surface and has a plurality of electrodes connected to at least a part of the first embedded portions of the plurality of first wirings, and which is in contact with the first surface; A sealing resin that is in contact with the first surface and covers a part of the semiconductor element, When viewed along the thickness direction, the first rewiring portions of the plurality of first wirings include a portion positioned outside the semiconductor element, The first insulating layer has a plurality of first grooves that are recessed from the second surface in the thickness direction, The semiconductor device, wherein the first redistribution parts of the plurality of first wirings are in contact with the plurality of first grooves.
  • Appendix 2 The semiconductor device according to Appendix 1, wherein the first insulating layer is made of a material containing a thermosetting synthetic resin and an additive containing a metal element that forms a part of the plurality of first wirings.
  • Each of the first redistribution parts of the plurality of first wirings has a base layer in contact with any of the plurality of first grooves, and a plating layer covering the base layer,
  • the underlayer is composed of the metal element contained in the additive,
  • Appendix 4. The semiconductor device according to appendix 3, wherein the recess extends along a direction in which any one of the first redistribution portions of the plurality of first wirings extends.
  • Appendix 5 Further comprising a protective layer in contact with the second surface, The protective layer has a plurality of openings penetrating in the thickness direction, 5.
  • Appendix 6 Further equipped with a plurality of terminals, The plurality of terminals are individually joined to a part of the first redistribution portions of the plurality of first wirings exposed from the plurality of openings, The semiconductor device according to appendix 5, wherein the plurality of terminals project from the protective layer in the thickness direction.
  • Appendix 7 The semiconductor device according to appendix 6, wherein the plurality of terminals are made of a material containing tin.
  • Appendix 8 A second insulating layer having a third surface and a fourth surface facing opposite sides in the thickness direction, and the third surface being in contact with the second surface; A second embedded portion embedded in the second insulating layer, and a plurality of second wirings having a second redistribution portion arranged on the fourth surface and connected to the second embedded portion. , The first rewiring portion of the plurality of first wirings is connected to the second embedded portion of the plurality of second wirings and is covered by the second insulating layer.
  • Appendix 9 The semiconductor according to appendix 8, wherein the second rewiring portions of the plurality of second wirings include a portion that overlaps the first rewiring portions of the plurality of first wirings when viewed along the thickness direction. apparatus.
  • the second insulating layer has a plurality of second grooves that are recessed from the fourth surface in the thickness direction, The semiconductor device according to appendix 9, wherein the second redistribution parts of the plurality of second wirings are in contact with the plurality of second grooves.
  • Appendix 11 The semiconductor device according to appendix 10, wherein the second insulating layer is made of a material containing a thermosetting synthetic resin and an additive containing a metal element that forms a part of the plurality of second wirings.
  • Appendix 12 Further comprising a heat dissipation member located on the opposite side of the semiconductor element from the first insulating layer,
  • the plurality of electrodes includes a main surface electrode and a gate electrode,
  • the semiconductor element has a back surface electrode located farther from the main surface electrode and the gate electrode with respect to the first surface in the thickness direction,
  • the back surface electrode and a part of the first embedded portions of the plurality of first wirings are joined to the heat dissipation member, 12.
  • the semiconductor device according to any one of appendices 1 to 11, wherein at least a part of the heat dissipation member is covered with the sealing resin.
  • the semiconductor element is an optical element that emits light in a portion not covered by the first insulating layer, Further comprising a plurality of through wirings located outside the semiconductor element as viewed along the thickness direction and connected to the first rewiring portions of the plurality of first wirings, 5.
  • Appendix 14 Further comprising a translucent resin in contact with the sealing resin, 14.
  • Appendix 15 Further equipped with a plurality of terminals, The plurality of terminals are individually joined to a part of the plurality of through wirings exposed from the sealing resin, 15. The semiconductor device according to appendix 13 or 14, wherein the plurality of terminals project from the sealing resin in the thickness direction.
  • Appendix 16 A step of embedding a semiconductor element having a plurality of electrodes provided on either side in the thickness direction in a sealing resin so that the plurality of electrodes are exposed, A step of forming an insulating layer laminated on the sealing resin and covering the plurality of electrodes; Forming a plurality of wirings having a buried portion embedded in the insulating layer and connected to any of the plurality of electrodes, and a rewiring portion disposed on the insulating layer and connected to the embedded portion And,
  • the insulating layer is made of a material containing a thermosetting synthetic resin and an additive containing a metal element that forms a part of the plurality of wirings, In the step of forming the plurality of wirings, while recognizing the positions of the plurality of electrodes as an image, a plurality of holes exposing the plurality of electrodes and a plurality of holes recessed from the surface of the insulating layer and connected to the plurality of holes Forming a groove on the insulating layer by
  • Appendix 17. The method of manufacturing a semiconductor device according to appendix 16, wherein the plating layer is formed by electroless plating in the step of forming the plating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

半導体装置は、第1絶縁層、複数の第1配線、半導体素子および封止樹脂を備える。前記第1絶縁層は、その厚さ方向において互いに反対側を向く第1面および第2面を有する。前記複数の第1配線の各々は、前記第1絶縁層に少なくとも一部が埋め込まれた第1埋込部と、前記第2面に配置され、かつ前記第1埋込部につながる第1再配線部と、を有する。前記半導体素子は、前記第1面の近傍に設けられ、かつ前記複数の第1配線の前記第1埋込部の少なくとも一部につながる複数の電極を有する。前記半導体素子は、前記第1面に接している。前記封止樹脂は、前記半導体素子の一部を覆うとともに、前記第1面に接している。前記厚さ方向に沿って視て、前記複数の第1配線の前記第1再配線部は、前記半導体素子よりも外方に位置する部分を含む。前記第1絶縁層は、前記第2面から前記厚さ方向に向けて凹む複数の第1溝を有する。前記複数の第1配線の前記第1再配線部は、前記複数の第1溝に接している。

Description

半導体装置、および半導体装置の製造方法
 本開示は、いわゆるFan-Out型の半導体装置に関する。
 近年における電子機器の小型化に伴い、当該電子機器に用いられる半導体装置の小型化が進められている。こうした動向を受け、いわゆるFan-Out型の半導体装置が知られている。当該半導体装置は、複数の電極を有する半導体素子と、半導体素子に接する絶縁層と、絶縁層に配置され、かつ複数の電極につながる複数の配線と、絶縁層に接し、かつ前記半導体素子の一部を覆う封止樹脂とを備える。厚さ方向に沿って視て、複数の配線は、半導体素子よりも外方に位置する部分を含む。これにより、半導体装置の小型化を図りつつ、当該半導体装置が実装される配線基板の配線パターンの形状に柔軟に対応できるという利点を有する。
 特許文献1には、Fan-Out型の半導体装置の製造方法の一例が開示されている。当該製造方法は、複数の電極を有する半導体素子を封止樹脂(特許文献1では硬化体)に埋め込む工程と、半導体素子および封止樹脂の双方に接する絶縁層(特許文献1はバッファーコート膜)を形成する工程と、複数の電極につながる複数の配線を形成する工程とを含む。半導体素子を封止樹脂に埋め込む工程では、複数の電極が封止樹脂から露出するようにする。絶縁層を形成する工程では、マスクを用いたフォトリソグラフィパターニングにより複数の電極が露出するように絶縁層に複数の開口を形成する。複数の配線を形成する工程では、絶縁層の複数の開口と、絶縁層の上とにめっき層を形成する。
 封止樹脂に半導体素子を埋め込む工程の際、封止樹脂が硬化収縮するため、半導体素子に変位が生じる。この状態で絶縁層に複数の開口を形成すると、複数の開口と、複数の電極との位置にずれが生じる。この場合において複数の配線を形成すると、複数の電極と、複数の配線との接合部における位置ずれが生じてしまう。したがって、半導体装置の信頼性をより向上させるために、このずれを抑制することが望まれる。
特開2016-89081号公報
 本開示は上述の事情に鑑み、半導体素子の複数の電極と、複数の配線との接合部における位置ずれを抑制することが可能な半導体装置およびその製造方法を提供することをその課題とする。
 本開示の第1の側面によって提供される半導体装置は、厚さ方向において互いに反対側を向く第1面および第2面を有する第1絶縁層と、前記第1絶縁層に少なくとも一部が埋め込まれた第1埋込部、および前記第2面に配置され、かつ前記第1埋込部につながる第1再配線部を有する複数の第1配線と、前記第1面の近傍に設けられ、かつ前記複数の第1配線の前記第1埋込部の少なくとも一部につながる複数の電極を有するとともに、前記第1面に接する半導体素子と、前記第1面に接し、かつ前記半導体素子の一部を覆う封止樹脂と、を備え、前記厚さ方向に沿って視て、前記複数の第1配線の前記第1再配線部は、前記半導体素子よりも外方に位置する部分を含み、前記第1絶縁層は、前記第2面から前記厚さ方向に向けて凹む複数の第1溝を有し、前記複数の第1配線の前記第1再配線部は、前記複数の第1溝に接している。
 本開示の第2の側面によって提供される半導体装置の製造方法は、厚さ方向のいずれかの側に設けられた複数の電極を有する半導体素子を、前記複数の電極が露出するように封止樹脂に埋め込む工程と、前記封止樹脂に積層され、かつ前記複数の電極を覆う絶縁層を形成する工程と、前記絶縁層に埋め込まれ、かつ前記複数の電極のいずれかにつながる埋込部、および前記絶縁層の上に配置され、かつ前記埋込部につながる再配線部を有する複数の配線を形成する工程と、を備え、前記絶縁層は、熱硬化性の合成樹脂、および前記複数の配線の一部を組成する金属元素が含有された添加剤を含む材料からなり、前記複数の配線を形成する工程は、前記複数の電極の位置を画像認識しつつ、前記複数の電極を露出させる複数の孔と、前記絶縁層の表面から凹み、かつ前記複数の孔につながる複数の溝をレーザにより前記絶縁層に形成することにより、前記複数の孔の各々を規定する壁面と、前記複数の溝と、を覆う下地層を析出させる工程と、前記下地層を覆うめっき層を形成する工程と、を含む。
 本開示のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
本開示の第1実施形態にかかる半導体装置の平面図であり、封止樹脂を透過している。 図1に対して半導体素子をさらに透過した平面図である。 図1に示す半導体装置の底面図である。 図3に対応する底面図であり、保護層、および複数の端子を透過している。 図1のV-V線に沿う断面図である。 図1のVI-VI線に沿う断面図である。 図5の部分拡大図である。 図5の部分拡大図である。 図1のIX-IX線に沿う部分拡大断面図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図12の部分拡大図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図14の部分拡大図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図1に示す半導体装置の製造工程を説明する断面図である。 図1に示す半導体装置の製造工程を説明する断面図である。 本開示の第2実施形態にかかる半導体装置の平面図であり、封止樹脂を透過している。 図19に対応する平面図であり、第1絶縁層および半導体素子をさらに透過している。 図19に示す半導体装置の底面図である。 図21に対応する底面図であり、保護層、および複数の端子を透過している。 図20のXXIII-XXIII線に沿う断面図である。 図20のXXIV-XXIV線に沿う断面図である。 図23の部分拡大図である。 図20のXXVI-XXVI線に沿う部分拡大断面図である。 本開示の第3実施形態にかかる半導体装置の平面図であり、放熱部材、接合層および封止樹脂を透過している。 図27に示す半導体装置の底面図である。 図28に対応する底面図であり、第1絶縁層、保護層、および複数の端子を透過した底面図である。 図27のXXX-XXX線に沿う断面図である。 図27のXXXI-XXXI線に沿う断面図である。 図30の部分拡大図である。 本開示の第4実施形態にかかる半導体装置の平面図であり、透光樹脂を透過している。 図33に対応する平面図であり、第1絶縁層、および複数の第1配線をさらに透過している。 図33のXXXV-XXXV線に沿う断面図である。
 本開示を実施するための形態について、添付図面に基づいて説明する。
 〔第1実施形態〕
 図1~図9に基づき、本開示の第1実施形態にかかる半導体装置A10について説明する。半導体装置A10は、第1絶縁層11、複数の第1配線21、半導体素子30、封止樹脂41、保護層42、および複数の端子50を備える。半導体装置A10は、配線基板に表面実装されるFan-Out型のパッケージである。ここで、図1は、理解の便宜上、封止樹脂41を透過している。図2は、理解の便宜上、図1に対して半導体素子30をさらに透過している。図4は、理解の便宜上、保護層42、および複数の端子50を透過している。なお、図2において透過した半導体素子30の外形を想像線(二点鎖線)で示している。
 半導体装置A10の説明においては、第1絶縁層11の厚さ方向を「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。図1に示すように、半導体装置A10の外形は、厚さ方向zに沿って視て矩形状である。第1方向xは、半導体装置A10の長手方向に対応する。第2方向yは、半導体装置A10の短手方向に対応する。なお、厚さ方向z、第1方向xおよび第2方向yは、後述する半導体装置A20~半導体装置A40の説明においても適用する。
 第1絶縁層11は、図5および図6に示すように、厚さ方向zにおいて半導体素子30に対向している。第1絶縁層11は、熱硬化性の合成樹脂、および複数の第1配線21の一部を組成する金属元素が含有された添加剤を含む材料からなる。当該合成樹脂は、たとえばエポキシ樹脂やポリイミド樹脂である。第1絶縁層11は、第1面11A、第2面11Bおよび複数の端面11Cを有する。第1面11Aおよび第2面11Bは、厚さ方向zにおいて互いに反対側を向く。第1面11Aは、半導体素子30に対向している。半導体装置A10においては、第2面11Bは、半導体装置A10を配線基板に実装した際、当該配線基板に対向する。複数の端面11Cは、第1面11Aおよび第2面11Bの双方につながっている。複数の端面11Cの各々は、第1方向xおよび第2方向yのいずれかを向く。
 図7~図9に示すように、第1絶縁層11は、複数の第1溝111を有する。複数の第1溝111は、第2面11Bから厚さ方向zに向けて凹んでいる。図9に示すように、複数の第1溝111の各々の側面は、厚さ方向zにおいて第1溝111の底面から第2面11Bにかけてテーパが付されている。複数の第1溝111の各々において、第1溝111の底面の第1方向xの寸法c1は、第1方向xにおいて互いに離間した第1溝111と第2面11Bとの2つの境界の間の寸法c2よりも小である。
 複数の第1配線21は、図5および図6に示すように、第1絶縁層11に配置されている。複数の第1配線21は、半導体素子30に電力を供給するため、かつ信号を入出力するための導電経路を構成している。複数の第1配線21の各々は、第1埋込部211および第1再配線部212を有する。第1埋込部211は、第1絶縁層11に少なくともその一部(半導体装置A10においては全部)が埋め込まれている。図7に示すように、第1埋込部211の側面は、厚さ方向zにおいて第1絶縁層11の第1面11Aから第2面11Bに向けてテーパが付されている。第1面11Aに最も近い第1埋込部211の端面の厚さ方向zに対して直交する方向の寸法b1は、第2面11Bに最も近い第1埋込部211の端面の厚さ方向zに対して直交する方向の寸法b2よりも小である。第1再配線部212は、第1絶縁層11の第2面11Bに配置されている。第1再配線部212は、第1埋込部211につながっている。図1~図4に示すように、厚さ方向zに沿って視て、複数の第1配線21の第1再配線部212は、半導体素子30よりも外方に位置する部分を含む。複数の第1配線21の第1再配線部212は、第1絶縁層11の複数の第1溝111に接している。このため、複数の第1配線21の第1再配線部212は、それらの一部が複数の第1溝111に埋め込まれた構成となっている。
 図7および図8に示すように、複数の第1配線21の第1埋込部211、および複数の第1配線21の第1再配線部212の各々は、下地層21Aおよびめっき層21Bを有する。下地層21Aは、第1絶縁層11に含まれる添加剤に含有された金属元素により組成される。めっき層21Bは、たとえば銅(Cu)を含む材料からなる。第1埋込部211の下地層21Aは、第1絶縁層11に接している。第1埋込部211のめっき層21Bは、第1埋込部211の下地層21Aに厚さ方向z回りに囲まれている。第1再配線部212の下地層21Aは、第1絶縁層11の複数の第1溝111のいずれかに接している。第1再配線部212のめっき層21Bは、第1再配線部212の下地層21Aを覆っている。図9に示すように、第1再配線部212のめっき層21Bは、厚さ方向zに向けて凹む凹部212Aを有する。凹部212Aは、複数の第1配線21の第1再配線部212のいずれかが延びる方向に沿って延びている。
 半導体素子30は、図5および図6に示すように、複数の第1配線21につながっている。半導体素子30は、第1絶縁層11の第1面11Aに接している。半導体装置A10においては、半導体素子30は、たとえば、LDO(Low Drop Out)などの電圧制御回路や、オペアンプなどの増幅回路などが構成されたLSI(Large Scale Integration)である。また、半導体装置A10においては、半導体素子30は、フリップチップ型の素子である。図1、図5および図6に示すように、半導体素子30は、複数の電極31を有する。複数の電極31は、第1面11Aの近傍に設けられている。複数の電極31は、半導体素子30に構成された回路に導通している。複数の電極31は、たとえばアルミニウム(Al)を含む。複数の電極31は、複数の第1配線21の第1埋込部211の少なくとも一部(半導体装置A10においては全部)に直接つながっている。これにより、半導体素子30は、複数の第1配線21に導通している。
 封止樹脂41は、図5および図6に示すように、半導体素子30の一部を覆っている。封止樹脂41は、第1絶縁層11の第1面11Aに接している。封止樹脂41は、たとえば黒色のエポキシ樹脂を含む材料からなる。封止樹脂41は、複数の側面411を有する。複数の側面411の各々は、第1方向xおよび第2方向yのいずれかを向く。複数の側面411の各々は、第1絶縁層11の複数の端面11Cのいずれかと面一である。
 保護層42は、図5および図6に示すように、第1絶縁層11の第2面11Bに接している。複数の第1配線21の第1再配線部212は、保護層42に覆われている。保護層42は、電気絶縁性を有する。保護層42は、たとえばポリイミドを含む材料からなる。図3および図8に示すように、保護層42は、複数の開口部421を有する。複数の開口部421は、保護層42を厚さ方向zに貫通している。複数の開口部421から、複数の第1配線21の第1再配線部212の一部が露出している。
 複数の端子50は、図3および図8に示すように、保護層42の複数の開口部421から露出する、複数の第1配線21の第1再配線部212の一部に個別に接合されている。複数の端子50は、半導体装置A10を配線基板に実装するために利用される。複数の端子50は、保護層42から厚さ方向zに向けて突出している。図8に示すように、半導体装置A10が示す例においては、複数の端子50の各々は、基部51およびバンプ部52を有する。基部51は、複数の第1配線21の第1再配線部212のいずれかの一部に接している。基部51は、第1絶縁層11の第2面11Bから厚さ方向zに離れる向きにおいて、ニッケル(Ni)層、パラジウム層(Pd)、金(Au)層の順に積層された複数の金属層からなる。なお、これらの金属層のうち、パラジウム層は設けなくてもよい。バンプ部52は、基部51および保護層42の双方に接している。バンプ部52は、保護層42から厚さ方向zに向けて突出する部分を含む。バンプ部52は、錫(Sn)を含む材料からなる。
 次に、図11~図18に基づき、半導体装置A10の製造方法の一例について説明する。なお、図11~図18(図13および図15を除く)の断面位置は、図5の断面位置と同一である。
 最初に、図10に示すように、半導体素子30を封止樹脂81に埋め込む。封止樹脂81は、黒色のエポキシ樹脂を含む材料からなる。半導体素子30は、厚さ方向zのいずれかの側に設けられた複数の電極31を有する。本工程においては、金型内に封止樹脂81の材料と、半導体素子30とを配置した後、コンプレッション成形を行う。これにより、半導体素子30が封止樹脂81に埋め込まれる。この際、複数の電極31が封止樹脂81から露出するようにする。
 次いで、図11に示すように、封止樹脂81に積層され、かつ半導体素子30の複数の電極31を覆う絶縁層82を形成する。絶縁層82は、熱硬化性の合成樹脂、および複数の配線83(詳細は後述)の一部を組成する金属元素が含有された添加剤を含む材料からなる。当該合成樹脂は、たとえばエポキシ樹脂やポリイミド樹脂である。絶縁層82は、コンプレッション成形により形成される。
 次いで、図12~図15に示すように、半導体素子30の複数の電極31につながる複数の配線83を形成する。複数の配線83が、半導体装置A10の複数の第1配線21に相当する。図14に示すように、複数の配線83の各々は、埋込部831および再配線部832を有する。埋込部831は、配線83に埋め込まれ、かつ複数の電極31のいずれかにつながる。再配線部832は、絶縁層82の上に配置され、かつ埋込部831につながる。図15に示すように、複数の配線83の埋込部831、および複数の配線83の再配線部832の各々は、下地層83Aおよびめっき層83Bを有する。複数の配線83を形成する工程は、絶縁層82の表面を覆う下地層83Aを析出させる工程と、下地層83Aを覆うめっき層83Bを形成する工程とを含む。
 まず、図13に示すように、絶縁層82の表面を覆う下地層83Aを析出させる。本工程では、図12に示すように、複数の孔821および複数の溝822をレーザにより絶縁層82に形成する。複数の孔821は、絶縁層82を厚さ方向zに貫通している。複数の孔821から、半導体素子30の複数の電極31が個別に露出している。複数の孔821は、複数の電極31の位置を赤外線カメラなどにより画像認識しつつ、複数の電極31が露出するまで絶縁層82にレーザを照射させることにより形成される。レーザが照射される位置は、画像認識により得られた複数の電極31の位置情報に基づき、逐一補正される。複数の溝822は、絶縁層82の表面から凹み、かつ複数の孔821につながっている。複数の溝822は、絶縁層82の表面にレーザを照射させることにより形成される。なお、当該レーザは、たとえば波長が355nm、かつビームの直径が17μmの紫外線レーザである。複数の孔821および複数の溝822を絶縁層82に形成することにより、図13に示すように、複数の孔821の各々を規定する壁面と、複数の溝822とを覆う下地層83Aが析出される。下地層83Aは、絶縁層82に含まれる添加剤に含有された金属元素により組成される。レーザ照射により当該添加剤に含有された金属元素が励起される。これにより、当該金属元素を含む金属層が下地層83Aとして析出される。
 次いで、図15に示すように、下地層83Aを覆うめっき層83Bを形成する。めっき層83Bは、銅を含む材料からなる。めっき層83Bは、無電解めっきにより形成される。これにより、図14に示すように、複数の孔821の各々には、埋込部831が形成される。あわせて、複数の溝822の各々には、再配線部832が形成される。以上により、複数の配線83の形成がなされる。
 次いで、図16に示すように、絶縁層82に積層され、かつ複数の配線83の一部を覆う保護層84を形成する。保護層84は、厚さ方向zに貫通する複数の開口部841を有する。まず、スピンコータを用いて絶縁層82の表面と、複数の配線83の表面とに感光性ポリイミドを塗布する。次いで、フォトリソグラフィパターニングにより、複数の開口部841を当該感光性ポリイミドに形成する。この際、複数の配線83の再配線部832の一部が、複数の開口部841から露出する。以上により、保護層84の形成がなされる。
 次いで、図17に示すように、保護層84の複数の開口部841から露出する、複数の配線83の再配線部832に個別に接合された複数の端子50を形成する。まず、図8に示す複数の端子50の基部51を形成する。基部51は、無電解めっきにより形成される。次いで、図8に示す複数の端子50のバンプ部52を形成する。バンプ部52は、ハンダなどの錫を含む導電材料をリフローにより溶融させた後、冷却により固化させることにより形成される。以上により、複数の端子50の形成がなされる。
 最後に、図18に示すように、封止樹脂81、絶縁層82および保護層84を切断線CLに沿ってダイシングブレードなどで切断することにより、複数の個片に分割する。当該個片は、1つの半導体素子30と、これにつながる複数の配線83とが含まれるようにする。本工程により個片となった封止樹脂81、絶縁層82および保護層84が、半導体装置A10の封止樹脂41、第1絶縁層11および保護層42に相当する。以上の工程を経ることにより、半導体装置A10が製造される。
 次に、半導体装置A10、および半導体装置A10の製造方法の作用効果について説明する。
 半導体装置A10は、第2面11Bを有する第1絶縁層11と、第1埋込部211および第1再配線部212を有する複数の第1配線21とを備える。複数の第1配線21の第1再配線部212は、第2面11Bに配置されるとともに、半導体素子30の複数の電極31につながる複数の第1配線21の第1埋込部211につながっている。第1絶縁層11は、第2面11Bから厚さ方向zに向けて凹む複数の第1溝111を有する。複数の第1配線21の第1再配線部212は、複数の第1溝111に接している。複数の第1溝111は、半導体装置A10の製造にかかる複数の配線83を形成するための工程において、レーザにより絶縁層82に形成された複数の溝822に相当する。
 半導体装置A10の製造方法にかかる複数の配線83を形成する工程は、絶縁層82の表面に下地層83Aを析出させる工程と、下地層83Aを覆うめっき層83Bを形成する工程とを含む。複数の配線83は、半導体装置A10の複数の第1配線21に相当する。絶縁層82は、熱硬化性の合成樹脂、および複数の配線83の一部(下地層83A)を組成する金属元素が含有された添加剤を含む材料からなる。下地層83Aを析出させる工程は、複数の孔821および複数の溝822をレーザにより絶縁層82に形成することにより、複数の孔821の各々を規定する壁面と、複数の溝822とを覆う下地層83Aが析出される。複数の孔821は、半導体素子30の複数の電極31の位置を画像認識しつつ、複数の電極31を露出させることで形成される。これにより、封止樹脂81の硬化収縮により半導体素子30に変位が生じた場合であっても、画像認識により複数の電極31の変位に対応した位置補正がレーザ照射の際になされるため、複数の電極31が露出する複数の孔821を精度よく形成することができる。すなわち、複数の電極31の位置に合致した複数の配線83を精度よく形成することができる。したがって、半導体装置A10、および半導体装置A10の製造によれば、半導体素子30の複数の電極31と、複数の配線83(複数の第1配線21)との接合部における位置ずれを抑制することが可能となる。
 半導体装置A10の製造方法にかかる複数の配線83を形成する工程では、めっき層83Bは無電解めっきにより形成される。これにより、電界めっきの場合と比較して、めっきを形成するための導電経路となる下地層83Aを析出させることが不要となるため、複数の配線83を、より効率よく形成することができる。
 複数の第1配線21の第1再配線部212の各々は、複数の第1溝111のいずれかに接する下地層21Aと、下地層21Aを覆うめっき層21Bを有する。めっき層21Bは、厚さ方向zに向けて凹む凹部212Aを有する。凹部212Aは、半導体装置A10の製造方法にかかる複数の配線83を形成する工程において、複数の溝822を覆う下地層83Aに対してめっき層83Bを形成したことによる痕跡である。このため、凹部212Aは、複数の第1配線21の第1再配線部212のいずれかが延びる方向に沿って延びる構成をとる。
 半導体装置A10は、第1絶縁層11の第2面11Bに接する保護層42と、複数の端子50とをさらに備える。複数の端子50は、保護層42の複数の開口部421から露出する複数の第1配線21の第1再配線部212の一部に個別に接合されている。複数の端子50は、保護層42から厚さ方向zに向けて突出している。複数の端子50は、錫を含む材料からなる。これにより、半導体装置A10を配線基板に実装する際、より実装しやすくなる。
 〔第2実施形態〕
 図19~図26に基づき、本開示の第2実施形態にかかる半導体装置A20について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。
 半導体装置A20においては、第2絶縁層12および複数の第2配線22をさらに備えることと、保護層42および複数の端子50の構成とが、先述した半導体装置A10に対して異なる。ここで、図19は、理解の便宜上、封止樹脂41を透過している。図20は、理解の便宜上、図19に対して第1絶縁層11および半導体素子30をさらに透過している。図22は、理解の便宜上、保護層42、および複数の端子50を透過している。なお、図20において透過した半導体素子30の外形を想像線で示している。
 第2絶縁層12は、図23および図24に示すように、第1絶縁層11の第2面11Bに接している。このため、第1絶縁層11は、第2絶縁層12と封止樹脂41とに挟まれた構成となっている。第2絶縁層12は、熱硬化性の合成樹脂、および複数の第2配線22の一部を組成する金属元素が含有された添加剤を含む材料からなる。当該合成樹脂は、たとえばエポキシ樹脂やポリイミド樹脂である。第2絶縁層12は、第3面12A、第4面12Bおよび複数の端面12Cを有する。第3面12Aおよび第4面12Bは、厚さ方向zにおいて互いに反対側を向く。第3面12Aは、第2面11Bに接している。第4面12Bは、半導体装置A20を配線基板に実装した際、当該配線基板に対向する。複数の端面12Cは、第3面12Aおよび第4面12Bの双方につながっている。複数の端面12Cの各々は、第1方向xおよび第2方向yのいずれかを向く。複数の端面12Cの各々は、第1絶縁層11の複数の端面11Cのいずれかと、封止樹脂41の複数の側面411のいずれかとの双方と面一である。
 図25および図26に示すように、第2絶縁層12は、複数の第2溝121を有する。複数の第2溝121は、第4面12Bから厚さ方向zに向けて凹んでいる。図26に示すように、複数の第2溝121の各々の側面は、厚さ方向zにおいて第2溝121の底面から第4面12Bにかけてテーパが付されている。複数の第2溝121の各々において、第2溝121の底面の第1方向xの寸法c3は、第1方向xにおいて互いに離間した第2溝121と第4面12Bとの2つの境界の間の寸法c4よりも小である。
 複数の第2配線22は、図23および図24に示すように、第2絶縁層12に配置されている。複数の第2配線22は、複数の第1配線21とともに半導体素子30にかかる導電経路を構成している。複数の第2配線22の各々は、第2埋込部221および第2再配線部222を有する。第2埋込部221は、第2絶縁層12に埋め込まれている。図25に示すように、第2埋込部221の側面は、厚さ方向zにおいて第2絶縁層12の第3面12Aから第4面12Bに向けてテーパが付されている。第3面12Aに最も近い第2埋込部221の端面の厚さ方向zに対して直交する方向の寸法b3は、第4面12Bに最も近い第2埋込部221の端面の厚さ方向zに対して直交する方向の寸法b4よりも小である。第2再配線部222は、第2絶縁層12の第4面12Bに配置されている。第2再配線部222は、第1再配線部212につながっている。複数の第2配線22の第2再配線部222は、第2絶縁層12の第2溝121に接している。このため、複数の第2配線22の第2再配線部222は、それらの一部が複数の第2溝121に埋め込まれた構成となっている。
 図23および図24に示すように、複数の第2配線22の第2埋込部221は、複数の第1配線21の第1再配線部212につながっている。これにより、半導体素子30は、複数の第1配線21を介して複数の第2配線22に導通している。複数の第2配線22の第2埋込部221は、第2絶縁層12に覆われている。図20および図22に示すように、厚さ方向zに沿って視て、複数の第2配線22の第2再配線部222は、複数の第1配線21の第1再配線部212に重なる部分を含む。
 図25に示すように、複数の第2配線22の第2埋込部221、および複数の第2配線22の第2再配線部222の各々は、下地層22Aおよびめっき層22Bを有する。下地層22Aは、第2絶縁層12に含まれる添加剤に含有された金属元素により組成される。めっき層22Bは、たとえば銅を含む材料からなる。第2埋込部221の下地層22Aは、第2絶縁層12に接している。第2埋込部221のめっき層22Bは、第2埋込部221の下地層22Aに厚さ方向z回りに囲まれている。第2再配線部222の下地層22Aは、第2絶縁層12の複数の第2溝121のいずれかに接している。第2再配線部222のめっき層22Bは、第2再配線部222の下地層22Aを覆っている。図26に示すように、第2再配線部222のめっき層22Bは、厚さ方向zに向けて凹む凹部222Aを有する。凹部222Aは、複数の第2配線22の第2再配線部222のいずれかが延びる方向に沿って延びている。
 図23および図24に示すように、保護層42は、第2絶縁層12の第4面12Bに接している。複数の第2配線22の第2再配線部222は、保護層42に覆われている。保護層42の複数の開口部421から、複数の第2配線22の第2再配線部222の一部が露出している。図21および図25に示すように、複数の端子50は、複数の開口部421から露出する、複数の第2配線22の第2再配線部222の一部に個別に接合されている。
 次に、半導体装置A20の作用効果について説明する。
 半導体装置A20は、第2面11Bを有する第1絶縁層11と、第1埋込部211および第1再配線部212を有する複数の第1配線21とを備える。複数の第1配線21の第1再配線部212は、第2面11Bに配置されるとともに、半導体素子30の複数の電極31につながる複数の第1配線21の第1埋込部211につながっている。第1絶縁層11は、第2面11Bから厚さ方向zに向けて凹む複数の第1溝111を有する。複数の第1配線21の第1再配線部212は、複数の第1溝111に接している。したがって、半導体装置A20によっても、半導体素子30の複数の電極31と、複数の第1配線21との接合部における位置ずれが抑制されたものとなる。
 半導体装置A20は、第3面12Aおよび第4面12Bを有する第2絶縁層12と、第2埋込部221および第2再配線部222を有する複数の第2配線22とをさらに備える。第3面12Aは、第1絶縁層11の第2面11Bに接している。複数の第2配線22の第2再配線部222は、第4面12Bに配置されるとともに、第2絶縁層12に埋め込まれた複数の第2配線22の第2埋込部221につながっている。複数の第1配線21の第1再配線部212は、複数の第2配線22の第2埋込部221につながり、かつ第2絶縁層12に覆われている。これにより、半導体装置A20において、複数の第1配線21と複数の第2配線22を厚さ方向zにおいて多層配置させることができる。このため、厚さ方向zに沿って視て、複数の第2配線22の第2再配線部222は、複数の第1配線21の第1再配線部212に重なる配置形態をとることができる。したがって、半導体装置A20によれば、半導体装置A10よりも複雑な配線パターンをとることができる。
 〔第3実施形態〕
 図27~図32に基づき、本開示の第3実施形態にかかる半導体装置A30について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。
 半導体装置A30においては、放熱部材23および接合層39をさらに備えることと、複数の第1配線21の第1埋込部211、および半導体素子30の構成とが、先述した半導体装置A10に対して異なる。ここで、図27は、理解の便宜上、放熱部材23、接合層39および封止樹脂41を透過している。図29は、理解の便宜上、第1絶縁層11、保護層42、および複数の端子50を透過している。なお、図27において透過した放熱部材23および接合層39の各々の外形を想像線で示している。
 半導体装置A30においては、半導体素子30は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのスイッチング素子である。このため、半導体装置A30は、DC/DCコンバータ、および様々な電気製品のインバータなどに用いられる。
 放熱部材23は、図30および31に示すように、厚さ方向zにおいて半導体素子30に対して第1絶縁層11とは反対側に位置する。放熱部材23の少なくとも一部は、封止樹脂41に覆われている。放熱部材23は、たとえば銅を含む金属板である。放熱部材23は、半導体装置A30の使用時に半導体素子30から発生した熱を外部に放出させることに加え、複数の第1配線21とともに半導体素子30にかかる導電経路を構成している。
 半導体装置A30においては、半導体素子30は、たとえば、炭化ケイ素(SiC)を主とする半導体材料から構成されたMOSFETである。なお、半導体素子30は、MOSFETに限らずMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)を含む電界効果トランジスタや、IGBT(Insulated Gate Bipolar Transistor)のようなバイポーラトランジスタでもよい。半導体装置A30の説明においては、半導体素子30がnチャンネル型のMOSFETである場合を対象とする。
 図27、および図29~図32に示すように、半導体素子30の複数の電極31は、主面電極311およびゲート電極312を含む。厚さ方向zに沿って視て、主面電極311の面積は、ゲート電極312の面積よりも大である。主面電極311には、半導体素子30の内部からソース電流が流れる。ゲート電極312には、半導体素子30を駆動させるためのゲート電圧が印加される。
 図32に示すように、半導体素子30は、裏面電極32および絶縁膜33を有する。図30~図32に示すように、裏面電極32は、厚さ方向zにおいて第1絶縁層11の第1面11Aに対して主面電極311およびゲート電極312よりも離れて位置する。裏面電極32は、放熱部材23に対向している。裏面電極32は、放熱部材23に対向する半導体素子30の表面全体にわたって設けられている。裏面電極32には、半導体素子30の内部に向けてドレイン電流が流れる。
 図32に示すように、絶縁膜33は、主面電極311およびゲート電極312と同様に、第1絶縁層11の第1面11Aの近傍に設けられている。図29に示すように、絶縁膜33は、厚さ方向zに沿って視て主面電極311およびゲート電極312をそれぞれ囲んでいる。絶縁膜33は、厚さ方向zにおいて第1面11Aに近づく向きに向けて、たとえば二酸化ケイ素(SiO2)層、窒化ケイ素(Si34)層、ポリベンゾオキサゾール(PBO)層の順に積層されたものである。なお、絶縁膜33においては、当該ポリベンゾオキサゾール層に代えてポリイミド層でもよい。
 接合層39は、図30~図32に示すように、半導体素子30の裏面電極32と、放熱部材23との間に介在している。接合層39は、たとえば、錫を主成分とする鉛フリーハンダ、または焼成銀である。これにより、裏面電極32は、放熱部材23に接合されている。あわせて、放熱部材23は、接合層39を介して裏面電極32に導通している。
 図30に示すように、複数の第1配線21の第1埋込部211は、第1絶縁層11に埋め込まれたものと、第1絶縁層11および封止樹脂41の双方に埋め込まれたものとを含む。第1絶縁層11に埋め込まれた複数の第1配線21の第1埋込部211は、半導体素子30の複数の電極31(主面電極311およびゲート電極312)につながっている。第1絶縁層11および封止樹脂41の双方に埋め込まれた複数の第1配線21の第1埋込部211は、放熱部材23に接合されている。
 次に、半導体装置A30の作用効果について説明する。
 半導体装置A30は、第2面11Bを有する第1絶縁層11と、第1埋込部211および第1再配線部212を有する複数の第1配線21とを備える。複数の第1配線21の第1再配線部212は、第2面11Bに配置されるとともに、半導体素子30の複数の電極31につながる複数の第1配線21の第1埋込部211につながっている。第1絶縁層11は、第2面11Bから厚さ方向zに向けて凹む複数の第1溝111を有する。複数の第1配線21の第1再配線部212は、複数の第1溝111に接している。したがって、半導体装置A30によっても、半導体素子30の複数の電極31と、複数の第1配線21との接合部における位置ずれが抑制されたものとなる。
 半導体装置A30は、半導体素子30に対して第1絶縁層11とは反対側に位置する放熱部材23をさらに備える。半導体素子30の裏面電極32と、複数の第1配線21の第1埋込部211の一部とが、放熱部材23に接合されている。これにより、半導体素子30がnチャンネル型のMOSFETである場合、放熱部材23は、ドレイン電流が流れる半導体素子30の導電経路となる。あわせて、半導体装置A30の使用時に、半導体素子30から発生する熱を効率よく外部に放出させることができる。
 〔第4実施形態〕
 図33~図35に基づき、本開示の第4実施形態にかかる半導体装置A40について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。
 半導体装置A40においては、複数の貫通配線24、および透光樹脂43をさらに備えることと、第1絶縁層11、半導体素子30および複数の端子50の構成が、先述した半導体装置A10に対して異なる。また、半導体装置A40は、保護層42を備えない構成となっている。図33は、理解の便宜上、透光樹脂43を透過している。図34は、理解の便宜上、図33に対して第1絶縁層11、および複数の第1配線21をさらに透過している。なお、図34において透過した第1絶縁層11の外形を想像線で示している。
 図33~図35に示すように、第1絶縁層11は、第1方向xにおいて互いに離間した部分を含む。これにより、半導体素子30は、第1絶縁層11に覆われていない部分を含む。半導体装置A40においては、半導体素子30は、当該部分が発光する光学素子である。半導体装置A40が示す例においては、当該光学素子はLEDである。半導体素子30の複数の電極31に電圧が印加されると、当該部分から厚さ方向zにむけて光を発する。
 複数の貫通配線24は、図33および図34に示すように、厚さ方向zに沿って視て半導体素子30よりも外方に位置する。図35に示すように、複数の貫通配線24は、複数の第1配線21の第1再配線部212につながっている。複数の貫通配線24は、複数の第1配線21の第1再配線部212から厚さ方向zに延び、かつ封止樹脂41を貫通している。複数の貫通配線24は、たとえば銅を含む材料からなる。
 透光樹脂43は、図35に示すように、封止樹脂41に接する。透光樹脂43は、第1絶縁層11、半導体素子30、および複数の第1配線21の第1再配線部212のそれぞれ一部ずつを覆っている。半導体素子30から発せられた光は、透光樹脂43を透過する。透光樹脂43は、たとえば透明なエポキシ樹脂、またはシリコーンが含有された合成樹脂を含む材料からなる。
 図35に示すように、複数の端子50は、封止樹脂41から露出する複数の貫通配線24の一部に個別に接合されている。複数の端子50は、封止樹脂41から厚さ方向zに向けて突出している。
 次に、半導体装置A40の作用効果について説明する。
 半導体装置A40は、第2面11Bを有する第1絶縁層11と、第1埋込部211および第1再配線部212を有する複数の第1配線21とを備える。複数の第1配線21の第1再配線部212は、第2面11Bに配置されるとともに、半導体素子30の複数の電極31につながる複数の第1配線21の第1埋込部211につながっている。第1絶縁層11は、第2面11Bから厚さ方向zに向けて凹む複数の第1溝111を有する。複数の第1配線21の第1再配線部212は、複数の第1溝111に接している。したがって、半導体装置A40によっても、半導体素子30の複数の電極31と、複数の第1配線21との接合部における位置ずれが抑制されたものとなる。
 半導体装置A40においては、半導体素子30は、第1絶縁層11に覆われていない部分が発光する光学素子である。半導体装置A40は、厚さ方向zに沿って視て半導体素子30よりも外方に位置し、かつ複数の第1配線21の第1再配線部212につながる複数の貫通配線24をさらに備える。複数の貫通配線24は、複数の第1配線21の第1再配線部212から厚さ方向zに延び、かつ封止樹脂41を貫通している。これにより、厚さ方向zにおいて半導体素子30から光が発する向きとは逆向きにおいて配線基板に対向するように、半導体装置A40を当該配線基板に実装することができる。
 本開示は、先述した実施形態に限定されるものではない。たとえば、先述した実施形態はいずれも半導体素子30が単数であるが、これが複数の構成でもよい。また、先述した実施形態は、いずれも外形が厚さ方向zに沿って視て矩形状であるが、これらの外形は矩形状に限定されず、たとえば円形状や六角形状でもよい。本開示の各部の具体的な構成は、種々に設計変更自在である。
 本開示における種々の実施形態は、以下の付記として規定しうる。
 付記1.厚さ方向において互いに反対側を向く第1面および第2面を有する第1絶縁層と、
 前記第1絶縁層に少なくとも一部が埋め込まれた第1埋込部、および前記第2面に配置され、かつ前記第1埋込部につながる第1再配線部を有する複数の第1配線と、
 前記第1面の近傍に設けられ、かつ前記複数の第1配線の前記第1埋込部の少なくとも一部につながる複数の電極を有するとともに、前記第1面に接する半導体素子と、
 前記第1面に接し、かつ前記半導体素子の一部を覆う封止樹脂と、を備え、
 前記厚さ方向に沿って視て、前記複数の第1配線の前記第1再配線部は、前記半導体素子よりも外方に位置する部分を含み、
 前記第1絶縁層は、前記第2面から前記厚さ方向に向けて凹む複数の第1溝を有し、
 前記複数の第1配線の前記第1再配線部は、前記複数の第1溝に接している、半導体装置。
 付記2.前記第1絶縁層は、熱硬化性の合成樹脂、および前記複数の第1配線の一部を組成する金属元素が含有された添加剤を含む材料からなる、付記1に記載の半導体装置。
 付記3.前記複数の第1配線の前記第1再配線部の各々は、前記複数の第1溝のいずれかに接する下地層と、前記下地層を覆うめっき層と、を有し、
 前記下地層は、前記添加剤に含有された前記金属元素により組成され、
 前記めっき層は、前記厚さ方向に向けて凹む凹部を有する、付記2に記載の半導体装置。
 付記4.前記凹部は、前記複数の第1配線の前記第1再配線部のいずれかが延びる方向に沿って延びている、付記3に記載の半導体装置。
 付記5.前記第2面に接する保護層をさらに備え、
 前記保護層は、前記厚さ方向に貫通する複数の開口部を有し、
 前記複数の開口部から、前記複数の第1配線の前記第1再配線部の一部が露出している、付記4に記載の半導体装置。
 付記6.複数の端子をさらに備え、
 前記複数の端子は、前記複数の開口部から露出する前記複数の第1配線の前記第1再配線部の一部に個別に接合され、
 前記複数の端子は、前記保護層から前記厚さ方向に向けて突出している、付記5に記載の半導体装置。
 付記7.前記複数の端子は、錫を含む材料からなる、付記6に記載の半導体装置。
 付記8.厚さ方向において互いに反対側を向く第3面および第4面を有し、かつ前記第3面が前記第2面に接する第2絶縁層と、
 前記第2絶縁層に埋め込まれた第2埋込部、および前記第4面に配置され、かつ前記第2埋込部につながる第2再配線部を有する複数の第2配線と、をさらに備え、
 前記複数の第1配線の前記第1再配線部は、前記複数の第2配線の前記第2埋込部につながり、かつ前記第2絶縁層に覆われている、付記1ないし4のいずれかに記載の半導体装置。
 付記9.前記厚さ方向に沿って視て、前記複数の第2配線の前記第2再配線部は、前記複数の第1配線の前記第1再配線部に重なる部分を含む、付記8に記載の半導体装置。
 付記10.前記第2絶縁層は、前記第4面から前記厚さ方向に向けて凹む複数の第2溝を有し、
 前記複数の第2配線の前記第2再配線部は、前記複数の第2溝に接している、付記9に記載の半導体装置。
 付記11.前記第2絶縁層は、熱硬化性の合成樹脂、および前記複数の第2配線の一部を組成する金属元素が含有された添加剤を含む材料からなる、付記10に記載の半導体装置。
 付記12.前記半導体素子に対して前記第1絶縁層とは反対側に位置する放熱部材をさらに備え、
 前記複数の電極は、主面電極およびゲート電極を含み、
 前記半導体素子は、前記厚さ方向において前記第1面に対して前記主面電極および前記ゲート電極よりも離れて位置する裏面電極を有し、
 前記裏面電極と、前記複数の第1配線の前記第1埋込部の一部と、が前記放熱部材に接合され、
 前記放熱部材の少なくとも一部が前記封止樹脂に覆われている、付記1ないし11のいずれかに記載の半導体装置。
 付記13.前記半導体素子は、前記第1絶縁層に覆われていない部分が発光する光学素子であり、
 前記厚さ方向に沿って視て前記半導体素子よりも外方に位置し、かつ前記複数の第1配線の前記第1再配線部につながる複数の貫通配線をさらに備え、
 前記複数の貫通配線は、前記複数の第1配線の前記第1再配線部から前記厚さ方向に延び、かつ前記封止樹脂を貫通している、付記1ないし4のいずれかに記載の半導体装置。
 付記14.前記封止樹脂に接する透光樹脂をさらに備え、
 前記透光樹脂は、前記第1絶縁層、前記半導体素子、および前記複数の第1配線の前記第1再配線部のそれぞれ一部ずつを覆っている、付記13に記載の半導体装置。
 付記15.複数の端子をさらに備え、
 前記複数の端子は、前記封止樹脂から露出する前記複数の貫通配線の一部に個別に接合され、
 前記複数の端子は、前記封止樹脂から前記厚さ方向に向けて突出している、付記13または14に記載の半導体装置。
 付記16.厚さ方向のいずれかの側に設けられた複数の電極を有する半導体素子を、前記複数の電極が露出するように封止樹脂に埋め込む工程と、
 前記封止樹脂に積層され、かつ前記複数の電極を覆う絶縁層を形成する工程と、
 前記絶縁層に埋め込まれ、かつ前記複数の電極のいずれかにつながる埋込部、および前記絶縁層の上に配置され、かつ前記埋込部につながる再配線部を有する複数の配線を形成する工程と、を備え、
 前記絶縁層は、熱硬化性の合成樹脂、および前記複数の配線の一部を組成する金属元素が含有された添加剤を含む材料からなり、
 前記複数の配線を形成する工程は、前記複数の電極の位置を画像認識しつつ、前記複数の電極を露出させる複数の孔と、前記絶縁層の表面から凹み、かつ前記複数の孔につながる複数の溝をレーザにより前記絶縁層に形成することにより、前記複数の孔の各々を規定する壁面と、前記複数の溝と、を覆う下地層を析出させる工程と、
 前記下地層を覆うめっき層を形成する工程と、を含む、半導体装置の製造方法。
 付記17.前記めっき層を形成する工程では、無電解めっきにより前記めっき層が形成される、付記16に記載の半導体装置の製造方法。

Claims (17)

  1.  厚さ方向において互いに反対側を向く第1面および第2面を有する第1絶縁層と、
     前記第1絶縁層に少なくとも一部が埋め込まれた第1埋込部、および前記第2面に配置され、かつ前記第1埋込部につながる第1再配線部を有する複数の第1配線と、
     前記第1面の近傍に設けられ、かつ前記複数の第1配線の前記第1埋込部の少なくとも一部につながる複数の電極を有するとともに、前記第1面に接する半導体素子と、
     前記第1面に接し、かつ前記半導体素子の一部を覆う封止樹脂と、を備え、
     前記厚さ方向に沿って視て、前記複数の第1配線の前記第1再配線部は、前記半導体素子よりも外方に位置する部分を含み、
     前記第1絶縁層は、前記第2面から前記厚さ方向に向けて凹む複数の第1溝を有し、
     前記複数の第1配線の前記第1再配線部は、前記複数の第1溝に接している、半導体装置。
  2.  前記第1絶縁層は、熱硬化性の合成樹脂、および前記複数の第1配線の一部を組成する金属元素が含有された添加剤を含む材料からなる、請求項1に記載の半導体装置。
  3.  前記複数の第1配線の前記第1再配線部の各々は、前記複数の第1溝のいずれかに接する下地層と、前記下地層を覆うめっき層と、を有し、
     前記下地層は、前記添加剤に含有された前記金属元素により組成され、
     前記めっき層は、前記厚さ方向に向けて凹む凹部を有する、請求項2に記載の半導体装置。
  4.  前記凹部は、前記複数の第1配線の前記第1再配線部のいずれかが延びる方向に沿って延びている、請求項3に記載の半導体装置。
  5.  前記第2面に接する保護層をさらに備え、
     前記保護層は、前記厚さ方向に貫通する複数の開口部を有し、
     前記複数の開口部から、前記複数の第1配線の前記第1再配線部の一部が露出している、請求項4に記載の半導体装置。
  6.  複数の端子をさらに備え、
     前記複数の端子は、前記複数の開口部から露出する前記複数の第1配線の前記第1再配線部の一部に個別に接合され、
     前記複数の端子は、前記保護層から前記厚さ方向に向けて突出している、請求項5に記載の半導体装置。
  7.  前記複数の端子は、錫を含む材料からなる、請求項6に記載の半導体装置。
  8.  厚さ方向において互いに反対側を向く第3面および第4面を有し、かつ前記第3面が前記第2面に接する第2絶縁層と、
     前記第2絶縁層に埋め込まれた第2埋込部、および前記第4面に配置され、かつ前記第2埋込部につながる第2再配線部を有する複数の第2配線と、をさらに備え、
     前記複数の第1配線の前記第1再配線部は、前記複数の第2配線の前記第2埋込部につながり、かつ前記第2絶縁層に覆われている、請求項1ないし4のいずれかに記載の半導体装置。
  9.  前記厚さ方向に沿って視て、前記複数の第2配線の前記第2再配線部は、前記複数の第1配線の前記第1再配線部に重なる部分を含む、請求項8に記載の半導体装置。
  10.  前記第2絶縁層は、前記第4面から前記厚さ方向に向けて凹む複数の第2溝を有し、
     前記複数の第2配線の前記第2再配線部は、前記複数の第2溝に接している、請求項9に記載の半導体装置。
  11.  前記第2絶縁層は、熱硬化性の合成樹脂、および前記複数の第2配線の一部を組成する金属元素が含有された添加剤を含む材料からなる、請求項10に記載の半導体装置。
  12.  前記半導体素子に対して前記第1絶縁層とは反対側に位置する放熱部材をさらに備え、
     前記複数の電極は、主面電極およびゲート電極を含み、
     前記半導体素子は、前記厚さ方向において前記第1面に対して前記主面電極および前記ゲート電極よりも離れて位置する裏面電極を有し、
     前記裏面電極と、前記複数の第1配線の前記第1埋込部の一部と、が前記放熱部材に接合され、
     前記放熱部材の少なくとも一部が前記封止樹脂に覆われている、請求項1ないし11のいずれかに記載の半導体装置。
  13.  前記半導体素子は、前記第1絶縁層に覆われていない部分が発光する光学素子であり、
     前記厚さ方向に沿って視て前記半導体素子よりも外方に位置し、かつ前記複数の第1配線の前記第1再配線部につながる複数の貫通配線をさらに備え、
     前記複数の貫通配線は、前記複数の第1配線の前記第1再配線部から前記厚さ方向に延び、かつ前記封止樹脂を貫通している、請求項1ないし4のいずれかに記載の半導体装置。
  14.  前記封止樹脂に接する透光樹脂をさらに備え、
     前記透光樹脂は、前記第1絶縁層、前記半導体素子、および前記複数の第1配線の前記第1再配線部のそれぞれ一部ずつを覆っている、請求項13に記載の半導体装置。
  15.  複数の端子をさらに備え、
     前記複数の端子は、前記封止樹脂から露出する前記複数の貫通配線の一部に個別に接合され、
     前記複数の端子は、前記封止樹脂から前記厚さ方向に向けて突出している、請求項13または14に記載の半導体装置。
  16.  厚さ方向のいずれかの側に設けられた複数の電極を有する半導体素子を、前記複数の電極が露出するように封止樹脂に埋め込む工程と、
     前記封止樹脂に積層され、かつ前記複数の電極を覆う絶縁層を形成する工程と、
     前記絶縁層に埋め込まれ、かつ前記複数の電極のいずれかにつながる埋込部、および前記絶縁層の上に配置され、かつ前記埋込部につながる再配線部を有する複数の配線を形成する工程と、を備え、
     前記絶縁層は、熱硬化性の合成樹脂、および前記複数の配線の一部を組成する金属元素が含有された添加剤を含む材料からなり、
     前記複数の配線を形成する工程は、前記複数の電極の位置を画像認識しつつ、前記複数の電極を露出させる複数の孔と、前記絶縁層の表面から凹み、かつ前記複数の孔につながる複数の溝をレーザにより前記絶縁層に形成することにより、前記複数の孔の各々の壁面と、前記複数の溝と、を覆う下地層を析出させる工程と、
     前記下地層を覆うめっき層を形成する工程と、を含む、半導体装置の製造方法。
  17.  前記めっき層を形成する工程では、無電解めっきにより前記めっき層が形成される、請求項16に記載の半導体装置の製造方法。
PCT/JP2019/047161 2018-12-18 2019-12-03 半導体装置、および半導体装置の製造方法 WO2020129609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019006263.8T DE112019006263T5 (de) 2018-12-18 2019-12-03 Halbleiterbauteil und herstellungsverfahren für halbleiterbauteil
CN201980083173.5A CN113196470A (zh) 2018-12-18 2019-12-03 半导体装置及半导体装置的制造方法
JP2020561266A JP7286676B2 (ja) 2018-12-18 2019-12-03 半導体装置
US17/295,801 US11830843B2 (en) 2018-12-18 2019-12-03 Semiconductor device and manufacturing method for semiconductor device
US18/490,468 US20240047405A1 (en) 2018-12-18 2023-10-19 Semiconductor device and manufacturing method for semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236079 2018-12-18
JP2018236079 2018-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/295,801 A-371-Of-International US11830843B2 (en) 2018-12-18 2019-12-03 Semiconductor device and manufacturing method for semiconductor device
US18/490,468 Continuation US20240047405A1 (en) 2018-12-18 2023-10-19 Semiconductor device and manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
WO2020129609A1 true WO2020129609A1 (ja) 2020-06-25

Family

ID=71101550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047161 WO2020129609A1 (ja) 2018-12-18 2019-12-03 半導体装置、および半導体装置の製造方法

Country Status (5)

Country Link
US (2) US11830843B2 (ja)
JP (2) JP7286676B2 (ja)
CN (1) CN113196470A (ja)
DE (1) DE112019006263T5 (ja)
WO (1) WO2020129609A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240030115A1 (en) * 2022-07-22 2024-01-25 Stmicroelectronics Pte Ltd Power package with copper plating and molding structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019370A1 (en) * 2008-07-24 2010-01-28 Infineon Technologies Ag Semiconductor device and manufacturing method
US20110198762A1 (en) * 2010-02-16 2011-08-18 Deca Technologies Inc. Panelized packaging with transferred dielectric
JP2014197568A (ja) * 2011-10-19 2014-10-16 パナソニック株式会社 半導体パッケージの製造方法、半導体パッケージ、及び半導体装置
JP2016062954A (ja) * 2014-09-16 2016-04-25 株式会社プライマテック 電子回路基板用積層体および電子回路基板
JP2016063178A (ja) * 2014-09-22 2016-04-25 富士通株式会社 半導体装置及びその製造方法
JP2018006385A (ja) * 2016-06-27 2018-01-11 ルネサスエレクトロニクス株式会社 半導体装置
US20180182913A1 (en) * 2016-12-27 2018-06-28 Advanced Semiconductor Engineering, Inc. Optical device, optical module structure and manufacturing process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080880B2 (en) * 2009-03-20 2011-12-20 Infineon Technologies Ag Semiconductor device with arrangement of parallel conductor lines being insulated, between and orthogonal to external contact pads
US20110180891A1 (en) * 2009-08-06 2011-07-28 Advanced Chip Engineering Technology Inc. Conductor package structure and method of the same
US8421226B2 (en) * 2010-02-25 2013-04-16 Infineon Technologies Ag Device including an encapsulated semiconductor chip and manufacturing method thereof
US8338231B2 (en) * 2010-03-29 2012-12-25 Infineon Technologies Ag Encapsulated semiconductor chip with external contact pads and manufacturing method thereof
US20150364430A1 (en) * 2014-06-16 2015-12-17 Stats Chippac, Ltd. Semiconductor Device and Method of Forming a Dampening Structure to Improve Board Level Reliability
JP5976073B2 (ja) 2014-11-07 2016-08-23 日東電工株式会社 半導体装置の製造方法
KR101892869B1 (ko) * 2017-10-20 2018-08-28 삼성전기주식회사 팬-아웃 반도체 패키지
TWI707408B (zh) * 2019-04-10 2020-10-11 力成科技股份有限公司 天線整合式封裝結構及其製造方法
US11257747B2 (en) * 2019-04-12 2022-02-22 Powertech Technology Inc. Semiconductor package with conductive via in encapsulation connecting to conductive element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019370A1 (en) * 2008-07-24 2010-01-28 Infineon Technologies Ag Semiconductor device and manufacturing method
US20110198762A1 (en) * 2010-02-16 2011-08-18 Deca Technologies Inc. Panelized packaging with transferred dielectric
JP2014197568A (ja) * 2011-10-19 2014-10-16 パナソニック株式会社 半導体パッケージの製造方法、半導体パッケージ、及び半導体装置
JP2016062954A (ja) * 2014-09-16 2016-04-25 株式会社プライマテック 電子回路基板用積層体および電子回路基板
JP2016063178A (ja) * 2014-09-22 2016-04-25 富士通株式会社 半導体装置及びその製造方法
JP2018006385A (ja) * 2016-06-27 2018-01-11 ルネサスエレクトロニクス株式会社 半導体装置
US20180182913A1 (en) * 2016-12-27 2018-06-28 Advanced Semiconductor Engineering, Inc. Optical device, optical module structure and manufacturing process

Also Published As

Publication number Publication date
US20240047405A1 (en) 2024-02-08
US11830843B2 (en) 2023-11-28
JPWO2020129609A1 (ja) 2021-11-11
JP7286676B2 (ja) 2023-06-05
US20220028818A1 (en) 2022-01-27
DE112019006263T5 (de) 2021-09-09
JP2023099739A (ja) 2023-07-13
CN113196470A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US9142473B2 (en) Stacked type power device module
US9192049B2 (en) Wiring substrate and semiconductor package
US20240047405A1 (en) Semiconductor device and manufacturing method for semiconductor device
JP2010050286A (ja) 半導体装置
US9685391B2 (en) Wiring board and semiconductor package
US20240055329A1 (en) Semiconductor device
US9721900B2 (en) Semiconductor package and its manufacturing method
US20200251405A1 (en) Manufacturing method of packaging device
US10629452B2 (en) Manufacturing method of a chip package structure
WO2021205926A1 (ja) 半導体装置
JP2021125624A (ja) 半導体装置
TW201705439A (zh) 半導體裝置
WO2021241447A1 (ja) 半導体装置、および半導体装置の製造方法
US20230163069A1 (en) Semiconductor device
US11545426B2 (en) Semiconductor device package including multiple substrates connected through via
JP5214550B2 (ja) 電力半導体装置の製造方法
JP2021180269A (ja) 半導体装置
JP2022060630A (ja) 半導体レーザ素子、半導体レーザユニット、半導体レーザ装置
JP2006005366A (ja) 半導体装置
JP2006121071A (ja) 半導体装置およびその製造方法
JP2006173376A (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561266

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19899162

Country of ref document: EP

Kind code of ref document: A1