WO2020129456A1 - Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover - Google Patents

Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover Download PDF

Info

Publication number
WO2020129456A1
WO2020129456A1 PCT/JP2019/043868 JP2019043868W WO2020129456A1 WO 2020129456 A1 WO2020129456 A1 WO 2020129456A1 JP 2019043868 W JP2019043868 W JP 2019043868W WO 2020129456 A1 WO2020129456 A1 WO 2020129456A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalyst
composite material
inorganic particle
protection member
Prior art date
Application number
PCT/JP2019/043868
Other languages
French (fr)
Japanese (ja)
Inventor
安永 正
裕之 八重樫
英宏 望月
充 倉沢
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020129456A1 publication Critical patent/WO2020129456A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices

Definitions

  • the present disclosure relates to a photocatalyst composite material, a display protection member for signage, a protection member for touch panel, a protection member for solar cell, a protection member for sensor cover, a display for signage, a touch panel, a solar cell and a sensor cover.
  • Japanese Unexamined Patent Publication (Kokai) No. 9-262481 discloses a method for producing a photocatalyst body in which a catalyst is carried and fixed on a substrate, and which uses a photocatalyst and an amorphous titanium peroxide sol.
  • an aqueous solution containing a peroxide group-containing amorphous titanium oxide in a range of 0.5 wt% or more and 2.0 wt% or less contains 0.025 wt of anatase-type titanium oxide fine particles.
  • the antifouling coating agent is contained in the range of 0.1% to 1.2% by weight, and the silicone-based surfactant is contained in the range of 0.01% to less than 0.8% by weight.
  • Japanese Unexamined Patent Publication No. 2003-55580 describes an aqueous coating material containing fine particles of a titania-based peroxo compound, peroxotitanic acid, and fine particles of silica.
  • Japanese Patent Laid-Open No. 2013-104035 describes a titanium oxide coating solution containing at least the following components.
  • A Titanium oxide particles
  • B Peroxotitanic acid
  • C Chelating agent
  • D Water
  • Alcohol Alcohol as binder component
  • Japanese Patent Laid-Open No. 2010-99651 discloses a method for producing a composite material in which a photocatalyst layer and a functional layer are formed on the surface of a base material, after forming a photocatalyst layer containing a photocatalyst on the surface of the base material, It has a step of forming a functional layer containing an organic substance that can be decomposed by a photocatalyst, and a step of irradiating the functional layer with light to activate the photocatalyst in the photocatalyst layer to decompose the organic substance in the functional layer.
  • a photocatalyst film is formed on a surface of a base material, and a hydrophilic substance film is formed on the photocatalyst film so as to be porous.
  • an antifogging element using a coating agent in which photocatalyst particles are dispersed in a titanium peroxide solution obtained by allowing hydrogen peroxide to act on titanium hydroxide gel (orthotitanic acid) is described.
  • JP-A-2014-111717 discloses an aqueous composition obtained by mixing an epoxy group-containing alkoxysilane, an epoxy group-free alkoxysilane, and a metal complex, wherein the epoxy group-containing alkoxysilane and the epoxy group-free
  • the ratio of the epoxy group-containing alkoxysilane to the total alkoxysilane composed of alkoxysilane is 20 to 85% by mass, and the ratio of the metal complex to the epoxy group-containing alkoxysilane is 17 to 70 mol %.
  • the functional layer may improve antireflection property, for example. It is speculated that it can be added. However, the antireflection property obtained from the two-layer structure of the layer containing the photocatalyst material and the functional layer may be insufficient, and a better antireflection property is required.
  • the embodiment of the present disclosure relates to providing a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and excellent antireflection property when light enters from the inorganic particle-containing layer side.
  • Another embodiment of the present disclosure is excellent in photocatalytic activity on the surface of the inorganic particle-containing layer side, and a signage display protection provided with a photocatalyst composite material having excellent antireflection properties when light enters from the inorganic particle-containing layer side.
  • touch panel protection member including the photocatalyst composite material
  • solar cell protection member including the photocatalyst composite material
  • sensor cover protection member including the photocatalyst composite material
  • signage display including the signage display protection member
  • the present invention relates to providing a touch panel including a touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
  • the present disclosure includes the following aspects. ⁇ 1> A siloxane resin containing an organic structure, an inorganic particle-containing layer containing inorganic particles, a photocatalyst layer containing titanium oxide, an amorphous titanium peroxide type inorganic binder, and an antireflection containing a siloxane resin containing an organic structure A layer in this order, the inorganic particle-containing layer has a thickness of 80 nm to 115 nm and a refractive index of less than 1.50, and the antireflection layer has a thickness of 20 nm to 140 nm, and , A photocatalytic composite material having a refractive index of 1.50 to 1.90.
  • ⁇ 2> The photocatalyst composite material according to ⁇ 1>, wherein the titanium oxide contained in the photocatalyst layer is anatase type titanium oxide.
  • ⁇ 3> The photocatalyst composite material according to ⁇ 1> or ⁇ 2>, wherein the photocatalyst layer has a refractive index of 1.5 or more and 2.5 or less.
  • ⁇ 4> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 3>, wherein the antireflection layer has a thickness of 60 nm to 90 nm.
  • ⁇ 5> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 4>, wherein the antireflection layer has a refractive index of 1.55 to 1.86.
  • the inorganic particle-containing layer has a thickness of 80 nm to 100 nm, and the antireflection layer has a thickness of 70 nm to 80 nm and a refractive index of 1.70 to 1.85.
  • ⁇ 5> The photocatalyst composite material according to any one of ⁇ 5>.
  • ⁇ 7> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 6>, further including a base material layer on a side of the antireflection layer opposite to the photocatalyst layer side.
  • a display protection member for signage comprising the photocatalyst composite material according to any one of ⁇ 1> to ⁇ 7>.
  • a touch panel protection member including the photocatalytic composite material according to any one of ⁇ 1> to ⁇ 7>.
  • a protective member for a solar cell comprising the photocatalytic composite material according to any one of ⁇ 1> to ⁇ 7>.
  • a sensor cover protective member including the photocatalyst composite material according to any one of ⁇ 1> to ⁇ 7>.
  • a signage display including the signage display protection member according to ⁇ 8>.
  • a touch panel comprising the touch panel protection member according to ⁇ 9>.
  • a solar cell including the solar cell protection member according to ⁇ 10>.
  • a sensor cover including the sensor cover protective member according to ⁇ 11>.
  • a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and excellent antireflection properties when light is incident from the inorganic particle-containing layer side. .. Further, according to another embodiment of the present disclosure, a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and having excellent antireflection property when light is incident from the inorganic particle-containing layer side is provided.
  • Signage display protection member touch panel protection member including the photocatalyst composite material, solar cell protection member including the photocatalyst composite material, sensor cover protection member including the photocatalyst composite material, signage including the signage display protection member.
  • Display a touch panel including the touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • (meth)acryl is a term used as a concept including both acryl and methacryl
  • (meth)acryloxy is a term used as a concept including both acryloxy and methacryloxy. is there.
  • the term “process” is included in this term as long as the intended purpose of the process is achieved, not only when it is an independent process but also when it cannot be clearly distinguished from other processes.
  • the amount of each component of the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. ..
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present disclosure are gels using columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both manufactured by Tosoh Corporation). It is a molecular weight detected by a solvent THF (tetrahydrofuran) and a differential refractometer by a permeation chromatography (GPC) analyzer and converted by using polystyrene as a standard substance.
  • a combination of preferable modes is a more preferable mode.
  • a photocatalyst composite material includes (i) a siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles, (ii) a photocatalyst layer containing titanium oxide, and (iii) an amorphous titanium peroxide type.
  • An inorganic binder and an antireflection layer containing a siloxane resin having an organic structure are included in this order, and the inorganic particle-containing layer has a thickness of 80 nm to 115 nm and a refractive index of less than 1.50.
  • the antireflection layer has a thickness of 20 nm to 140 nm and a refractive index of 1.50 to 1.90.
  • the inorganic particle-containing layer according to the present disclosure has a function of improving antireflection property when light is incident on the photocatalyst composite material from the inorganic particle-containing layer side.
  • a functional layer made of a material used for a layer having a conventional antireflection function is simply laminated on a conventional photocatalyst layer, the functional layer of radicals generated in the photocatalyst layer is probably used. Due to the problem of migration to the surface, the photocatalytic activity on the surface of the photocatalyst composite material on the inorganic particle-containing layer side may decrease.
  • the reason why the above drop occurs is probably not simple and involves multiple physical processes.
  • the inventors of the present application have used a photocatalyst layer, have a functional layer as (a) a siloxane resin containing an organic structure and (b) an inorganic particle-containing layer containing inorganic particles, and have a thickness of the inorganic particle-containing layer. It has been found that a proper selection can suppress a decrease in photocatalytic activity when a functional layer is laminated on the photocatalytic layer.
  • the inorganic particle-containing layer and the photocatalyst layer are configured as described above, whereby the inorganic particle-containing layer can form a porous structure.
  • the radicals generated in the photocatalyst layer can reach the surface of the inorganic particle-containing layer through the pores of the inorganic particle-containing layer, and as a result, the photocatalyst composite material of the present disclosure is presumed to be able to maintain high photocatalytic activity. .. Further, the photocatalyst composite material according to the present disclosure has excellent antireflection properties when light enters from the inorganic particle-containing layer side.
  • the above effect is to provide an antireflection layer containing an amorphous titanium peroxide type inorganic binder and a siloxane resin, a photocatalyst layer, and an inorganic particle-containing layer arranged on the side opposite to the antireflection layer side of the photocatalyst layer, It is presumed that a combination of making the refractive index of the antireflection layer larger than that of the inorganic particle-containing layer and setting the thickness of the antireflection layer within a specific range are manifested together.
  • the photocatalyst composite material of the present disclosure is excellent in photocatalytic activity on the surface of the inorganic particle-containing layer side and is also excellent in antireflection property when light is incident from the inorganic particle-containing layer side.
  • the photocatalyst layer in the present disclosure contains titanium oxide, and may contain other components as necessary.
  • titanium oxide used in the present disclosure has photocatalytic activity.
  • radicals for example, hydroxy radicals, superoxide anion radicals, etc.
  • the excellent effects of the above-mentioned antifouling, antibacterial, antiviral, deodorant, antifungal, etc. are also referred to as “excellent photocatalytic activity”.
  • the titanium oxide that can be used in the present disclosure is not particularly limited, and examples thereof include anatase type, rutile type, and brookite type. Among them, the anatase type is preferable from the viewpoint of photocatalytic activity.
  • the photocatalyst layer in the present disclosure may contain titanium oxide alone, or may contain two or more kinds of titanium oxide particles.
  • the photocatalyst layer according to the present disclosure preferably contains anatase type titanium oxide. Confirmation that the titanium oxide contained in the photocatalyst layer is anatase type titanium oxide can be performed by X-ray diffraction measurement or Raman spectroscopy measurement.
  • the existing form of titanium oxide is not particularly limited, but may be a mode in which titanium oxide particles are contained in the photocatalyst layer (hereinafter, also referred to as the first mode), or a titanium oxide film formed by vapor deposition or the like. May be used as the photocatalyst layer (hereinafter, also referred to as a second mode).
  • the shape of the titanium oxide particles in the present disclosure is not particularly limited, but it is preferably substantially spherical.
  • the number average particle diameter of the titanium oxide particles in the present disclosure is preferably 2 nm to 200 nm, more preferably 5 nm to 50 nm.
  • the number average particle size is calculated using a SU-8030 type FE-SEM (field emission scanning electron microscope, accelerating voltage 2 kV, secondary electron image acquisition) manufactured by Hitachi High-Technologies Corporation. To do. Specifically, it can be determined from the photograph obtained by observing the dispersed particles by FE-SEM.
  • the projected area of each particle is determined, and the equivalent circle diameter of each particle is determined from the projected area, which is used as the particle diameter (that is, the primary particle diameter) of each particle.
  • the number average particle diameter in the present disclosure can be calculated as the arithmetic mean value of the calculated equivalent circle diameters by measuring the projected area of 300 or more particles to determine the equivalent circle diameter of each particle.
  • the number average particle diameter of commercially available titanium oxide particles may be calculated by the FE-SEM, and products having a desired particle diameter may be selected and used.
  • the content of titanium oxide (TiO 2 ) in the titanium oxide particles in the present disclosure is preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass with respect to the total mass of the titanium oxide particles. It is more preferably at least mass%, particularly preferably at least 90 mass%.
  • Components other than TiO 2 contained in the titanium oxide particles include, for example, SO 4 2 ⁇ , Na 2 O, etc., but are not limited thereto and may contain other components.
  • Tio Sky Coat A liquid manufactured by Tio Systems Co., Ltd.
  • anatase type titanium oxide particles can be used.
  • the content of the titanium oxide particles in the present disclosure is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, based on the total mass of the antireflection layer.
  • the photocatalyst layer in the present disclosure may contain titanium oxide particles alone, or may contain two or more kinds of titanium oxide particles.
  • the photocatalyst layer in the present disclosure is preferably a layer containing anatase type titanium oxide particles as the above titanium oxide and an amorphous titanium peroxide type inorganic binder.
  • the amorphous titanium peroxide type inorganic binder is an amorphous binder containing a Ti—O bond.
  • the amorphous titanium peroxide type inorganic binder is preferably obtained by heating peroxotitanic acid. Specifically, it is considered that by heating peroxotitanic acid at 100° C. to 150° C. for several hours, an oxygen atom or a hydroxy group is eliminated from peroxotitanic acid to obtain a titanium oxide.
  • an anatase phase may be formed in at least a part of amorphous titanium oxide by increasing the heating temperature of peroxotitanic acid, lengthening the heating time, or the like.
  • the method for producing peroxotitanic acid is not particularly limited, but it can be obtained by allowing hydrogen peroxide to act on titanium hydroxide (eg orthotitanic acid). Titanium hydroxide is obtained, for example, by reacting titanium tetrachloride with a base.
  • JP-A-9-262481 can be referred to.
  • the content of the amorphous titanium peroxide type inorganic binder is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, based on the total mass of the photocatalyst layer.
  • the photocatalyst layer in the present disclosure may contain one kind of amorphous titanium peroxide type inorganic binder alone, or may use two or more kinds in combination.
  • the fact that the amorphous titanium peroxide type inorganic binder is contained in the photocatalyst layer can be judged by carrying out the structure identification by the analysis peak and the confirmation that the crystal peak does not appear by X-ray diffraction measurement or Raman spectroscopy measurement. it can.
  • the photocatalyst layer in the present disclosure may further contain other components.
  • known additives such as surfactants can be used without particular limitation.
  • the photocatalyst layer in the present disclosure can be obtained, for example, by applying the composition for forming a photocatalyst layer on the antireflection layer described below and heating.
  • the composition for forming a photocatalyst layer preferably contains the above-mentioned titanium oxide particles and peroxotitanic acid.
  • the composition for forming a photocatalyst layer is prepared by adding and dispersing titanium oxide particles to a composition containing peroxotitanic acid and a solvent.
  • composition containing peroxotitanic acid and a solvent a commercially available product may be used, and for example, TIO SKYCOAT A liquid (manufactured by Tio Systems Co., Ltd.) may be used. Further, in order to make the thickness of the photocatalyst layer within the above range, it is preferable to thicken the composition for forming the photocatalyst layer.
  • a thickener can be used for thickening. Examples of the thickener include hydroxyalkyl (C1 to C3) cellulose and the like.
  • a method of applying the photocatalyst layer forming composition and heating (that is, drying) a plurality of times may be adopted.
  • the method of applying the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the heating method for drying the photocatalyst layer-forming composition after coating is not particularly limited and may be a known method, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared ray. Examples include a method using a laser.
  • the heating time and the heating temperature at the time of heating may be appropriately adjusted in consideration of the heating time and the heating temperature in the production of the above-mentioned amorphous titanium peroxide type inorganic binder.
  • the method for forming the anatase-type titanium oxide film is not particularly limited and may be formed by a known method.
  • a titanium oxide film is formed on the antireflection layer by a known vapor deposition method or the like.
  • a method of heating at 400° C. or higher and 700° C. or lower to change the crystal structure of titanium oxide to anatase type can be mentioned.
  • the photocatalyst layer is made porous (that is, made porous).
  • the method for making the porous is not particularly limited, and a known method can be used.
  • the thickness of the photocatalyst layer is not particularly limited, but from the viewpoint of photocatalytic activity, it is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more. Further, the thickness is preferably 2,000 nm or less, and preferably 1,000 nm or less from the viewpoint of suppressing the occurrence of cracks and poor adhesion due to an increase in shrinkage stress during coating film formation. More preferable.
  • the thickness of the photocatalyst layer is a value measured with a contact-type film thickness meter (for example, contact-type film thickness meter manufactured by Anritsu Corporation).
  • the refractive index of the photocatalyst layer is preferably 1.5 or more and 2.5 or less, more preferably 1.6 to 2.4, and further preferably 1.7 to 2.3. More preferable.
  • the refractive index is a value measured at 25° C. by ellipsometry (for example, high speed spectroscopic ellipsometer M-2000U, JA Woollam Japan Co., Ltd.) at a wavelength of 600 nm, unless otherwise specified. is there.
  • the inorganic particle-containing layer contains a siloxane resin having an organic structure and inorganic particles, and has a thickness of 80 nm to 115 nm and a refractive index of less than 1.5.
  • the photocatalytic activity on the surface of the photocatalyst composite on the inorganic particle-containing layer side can be improved. it can.
  • the inorganic particle-containing layer is a hard coat layer having a protective function
  • the inorganic particle-containing layer is preferably the outermost layer in the photocatalyst composite material according to the present disclosure.
  • a protective layer such as a known hard coat layer may be further provided on the inorganic particle-containing layer.
  • the thickness of the inorganic particle-containing layer in the present disclosure is 80 nm to 115 nm.
  • the thickness of the inorganic particle-containing layer is 80 nm or more, the reflectance can be suppressed and the antireflection property is improved.
  • the thickness of the inorganic particle-containing layer is 115 nm or less, reflection can be suppressed low, and the photocatalytic composite material has excellent photocatalytic activity.
  • the thickness of the inorganic particle-containing layer can be controlled by adjusting the coating amount of the composition for forming an inorganic particle-containing layer described below.
  • the thickness of the inorganic particle-containing layer may be designed according to the application, but from the above viewpoint, it is preferably 80 nm to 100 nm.
  • the thickness of the inorganic particle-containing layer is a value measured by using Dektak150 manufactured by Bruker.
  • the refractive index of the inorganic particle-containing layer is less than 1.5. This can improve the antireflection property. From the above viewpoint, the refractive index of the inorganic particle-containing layer is preferably 1.3 or more and less than 1.5, and more preferably 1.4 or more and less than 1.5.
  • the refractive index of the inorganic particle-containing layer includes the type of siloxane resin having an organic structure, the material of the inorganic particles contained, the content of the inorganic particles, the structure of the inorganic particle-containing layer (for example, a porous structure, etc.), the inorganic particle-containing layer. Can be adjusted according to the thickness of the.
  • the refractive index of the inorganic particle-containing layer can be measured by the same method as the method for measuring the refractive index of the photocatalyst layer described above.
  • the inorganic particle-containing layer in the present disclosure contains inorganic particles.
  • the inorganic particles may be crosslinked with a siloxane resin having an organic structure in the inorganic particle-containing layer.
  • examples of the inorganic particles include metal oxide particles that are transparent to light having a wavelength of 350 nm.
  • metal oxide particles that are transparent to light having a wavelength of 400 nm to 700 nm are preferable in applications such as signage, touch panels, solar cells, and sensor covers described below.
  • being transparent to the light of the wavelength A means that the transmittance of the light of the wavelength A is 50% or more.
  • the transmittance is preferably 70% or more, more preferably 80% or more.
  • the reflectance is preferably less than 50%, more preferably less than 20%, and even more preferably less than 10% with respect to the light of wavelength A.
  • “transparent to wavelengths A to B” means that when the transmittance of light having a wavelength between wavelength A and wavelength B is measured in steps of 10 nm, the arithmetic average value of all transmittances is 50. % Or more.
  • the transmittance is preferably 70% or more, more preferably 80% or more. Further, the transmittance is measured using a spectrophotometer V670 (manufactured by JASCO Corporation).
  • the metal oxide particles include silicon dioxide (silica), aluminum oxide (alumina), zirconium oxide (zirconia), and the like, and include silica particles from the viewpoint of crosslinkability with an alkoxysilane compound described later. It is preferable.
  • the inorganic particles in the present disclosure preferably include silica particles, and the silica particles are preferably colloidal silica.
  • Commercially available products may be used as the silica particles, and examples of the commercially available products include Snowtex series (colloidal silica; manufactured by Nissan Chemical Industries, Ltd.; eg: Snowtex OXS, Snowtex OZL, Snow). Tex AK-A) and the like.
  • silica particles dry powdery silica produced by combustion of silicon tetrachloride can be used, and colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable.
  • colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable.
  • Specific examples thereof include, but are not limited to, Snowtex series manufactured by Nissan Chemical Industries, Ltd. such as Snowtex 033.
  • the number average particle diameter of the colloidal silica is preferably 3 nm to 100 nm, more preferably 3 nm to 50 nm, further preferably 4 nm to 50 nm, further preferably 4 nm to 40 nm, further preferably 5 nm to 35 nm is particularly preferable.
  • the colloidal silica is more preferably adjusted to have a pH in the range of 2 to 7 when added to the composition for forming an inorganic particle-containing layer described below.
  • the pH is 2 to 7
  • the stability of silanol, which is a hydrolyzate of an alkoxysilane compound, is better, and the increase in viscosity of the coating solution due to the rapid progress of the dehydration condensation reaction of this silanol can be suppressed. it can.
  • the number average particle diameter of the inorganic particles in the present disclosure is preferably 3 nm to 100 nm, more preferably 4 nm to 50 nm, further preferably 4 nm to 40 nm, and particularly preferably 5 nm to 35 nm. ..
  • the number average particle diameter of commercially available inorganic particles may be calculated by the FE-SEM, and a product containing a desired particle diameter may be selected and used.
  • the shape of the inorganic particles in the present disclosure is not particularly limited, but from the viewpoint of dispersibility, it is preferably substantially spherical.
  • the content of the inorganic particles is preferably more than 0 mass% and 80 mass% or less, more preferably 1 mass% to 70 mass%, 3 It is more preferable that the amount is from 65% by mass to 65% by mass.
  • the inorganic particle-containing layer in the present disclosure may contain one type of inorganic particles alone, or may use two or more types in combination.
  • the inorganic particle-containing layer contains a siloxane resin having an organic structure.
  • the “organic structure” refers to a partial structure containing a carbon atom and bonded to —SiO— constituting the siloxane resin.
  • the organic structure in the siloxane resin containing the organic structure in the inorganic particle-containing layer is preferably a crosslinked structure.
  • the “crosslinked structure” refers to a partial structure in which —SiO— skeletons are connected to each other to form a two-dimensional or three-dimensional network structure.
  • At least one of the organic structure in the siloxane resin contained in the inorganic particle-containing layer and the organic structure in the siloxane resin contained in the antireflection layer is preferably a crosslinked structure, and contained in the inorganic particle-containing layer. It is more preferable that both the organic structure in the siloxane resin and the organic structure in the siloxane resin contained in the antireflection layer are crosslinked structures.
  • the organic structure is a crosslinked structure, the siloxane resins may be crosslinked, or the siloxane resin and the inorganic particles may be crosslinked.
  • the above organic structure can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from nuclear magnetic resonance spectrum (NMR) measurement. Further, the crosslinked structure can be confirmed by not dissolving when the siloxane resin is dissolved in an organic solvent (for example, toluene).
  • the organic structure contained as the above-mentioned crosslinked structure is preferably a structure represented by any of the following formulas 1-1 to 1-3.
  • R 11 represents a single bond, an oxygen atom, an aryleneoxy group, an aryleneoxyalkylene group, or an alkylene group
  • R 12 to R 14 are each independently a hydrogen atom or an alkyl group. At least two of R 12 to R 14 may be bonded to each other to form a ring structure
  • R 21 represents a single bond or an alkylene group
  • R 31 represents a single bond, an alkyleneoxycarbonyl group, an alkylene group. It represents an aminocarbonyl group, an alkyleneoxy group, an oxygen atom or an arylene group
  • R 32 represents a hydrogen atom or an alkyl group
  • ⁇ and * each independently represent a bonding site with another structure.
  • the structure represented by Formula 1-1 is formed, for example, by using an alkoxysilane compound having an epoxy group as the alkoxysilane compound described below.
  • R 11 is preferably an oxygen atom or an alkyleneoxyalkylene group.
  • R 12 to R 14 are hydrogen atoms.
  • R 12 or R 13 and R 14 bond together.
  • the above-mentioned ring structure is preferably a hydrocarbon ring, more preferably a cyclohexane ring.
  • the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
  • the target to which the binding site, ⁇ , is bound is not particularly limited, but is preferably an atom contained in the siloxane resin.
  • the atom is preferably an oxygen atom.
  • R 11 is a propyleneoxy group
  • R 12 to R 14 are hydrogen atoms. In that case, for example, ⁇ bonds to an oxygen atom or the like in the siloxane resin.
  • the structure represented by Formula 1-2 is formed, for example, by using an alkoxysilane compound having an isocyanate group as the alkoxysilane compound described later.
  • R 21 represents a single bond or an alkylene group, and is preferably an alkylene group having 2 to 10 carbon atoms.
  • the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
  • the target to which the binding site, ⁇ , is bound is not particularly limited, but is preferably an atom contained in the siloxane resin.
  • the atom is preferably an oxygen atom.
  • * is bonded to the Si atom and R 21 is a propylene group. In that case, for example, ⁇ bonds to an oxygen atom or the like in the siloxane resin.
  • R 31 preferably represents an alkyleneoxycarbonyl group, an alkyleneaminocarbonyl group or an arylene group, and has an alkyleneoxycarbonyl group having 2 to 10 carbon atoms, an alkyleneaminocarbonyl group having 2 to 10 carbon atoms or phenylene.
  • a group is more preferable, and an alkyleneoxycarbonyl group having 2 to 10 carbon atoms is further preferable.
  • the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
  • the target to which the binding site, ⁇ , binds is not particularly limited, but it is preferably a structure represented by another Formula 1-3.
  • 3-methacryloxypropylmethyldiethoxysilane is used as the alkoxysilane compound
  • * is bonded to the Si atom and R 31 is a propyleneoxycarbonyl group.
  • will polymerize with the methacryloxy group in the other 3-methacryloxypropylmethyldiethoxysilane.
  • the siloxane resin containing an organic structure used in the present disclosure may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, a carboxy group or the like as an organic structure.
  • the total content of the organic structure is preferably 90% by mass or less, and more preferably 75% by mass or less, based on the total mass of the siloxane resin.
  • the lower limit of the total content of the organic structure can be 5% by mass or more with respect to the total mass of the siloxane resin in terms of improving the film strength.
  • the inorganic particle-containing layer may contain one kind of siloxane resin containing an organic structure, or may contain two or more kinds thereof.
  • the content of the siloxane resin containing an organic structure in the inorganic particle-containing layer is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 35% by mass or more, based on the total mass of the inorganic particle-containing layer. ..
  • the content of the siloxane resin containing an organic structure in the inorganic particle-containing layer is preferably 99% by mass or less, more preferably 97% by mass or less, and further preferably 90% by mass or less.
  • the inorganic particle-containing layer is preferably a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles (hereinafter, also referred to as “inorganic particle-containing layer forming composition”).
  • the siloxane resin containing the organic structure is preferably a condensate of an alkoxysilane compound.
  • the above-mentioned alkoxysilane compound is preferably a water-soluble or water-dispersible material from the viewpoint of reducing environmental pollution due to VOCs (volatile organic compounds).
  • the composition for forming an inorganic particle-containing layer is preferably an aqueous composition containing water as a solvent.
  • the composition for forming an inorganic particle-containing layer contains water as a solvent, after the formation of the photocatalyst layer, Even when the composition for forming an inorganic particle-containing layer is applied onto the photocatalyst layer, mixing between layers can be suppressed. Further, the composition for forming a layer containing inorganic particles preferably contains substantially no organic solvent. In the present disclosure, “not substantially containing” means that the content is less than 1% by mass, and preferably less than 0.1% by mass.
  • the composition for forming an inorganic particle-containing layer is applied and dried by substantially not containing an organic solvent, a component that evaporates mainly becomes a water component. Therefore, the load on the environment can be significantly reduced as compared with the case where the organic solvent is included.
  • the alkoxysilane compound preferably contains a crosslinkable group-containing alkoxysilane compound and a crosslinkable group-free alkoxysilane compound, and contains an epoxy group-containing alkoxysilane compound and an epoxy group-free alkoxysilane compound. Is more preferable.
  • Both the crosslinkable group-containing alkoxysilane compound and the non-crosslinkable group-containing alkoxysilane compound can have a hydrolyzable group.
  • the hydrolyzable group is hydrolyzed in, for example, an acidic aqueous solution to produce silanol, and the silanols are condensed with each other to produce a siloxane resin.
  • a part of the crosslinkable group-containing alkoxysilane compound and the non-crosslinkable group-containing alkoxysilane compound may be hydrolyzed.
  • Crosslinkable group-containing alkoxysilane compound examples include an epoxy group, an isocyanate group and a radical polymerizable group.
  • examples of the crosslinkable group-containing alkoxysilane compound include an epoxy group-containing alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, and a radically polymerizable group-containing alkoxysilane compound, and preferably include an epoxy group-containing alkoxysilane compound.
  • the epoxy group-containing alkoxysilane compound is an alkoxysilane compound having an epoxy group.
  • the epoxy group-containing alkoxysilane compound may be one having at least one epoxy group in one molecule, and the number of epoxy groups is not particularly limited.
  • the epoxy group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group in addition to the epoxy group.
  • Examples of the epoxy group-containing alkoxysilane compound used in the present disclosure include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, and 2-(3,4 -Epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, Examples thereof include 3-glycidoxypropyltriethoxysilane. Examples of commercially available products include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the isocyanate group-containing alkoxysilane compound is an alkoxysilane compound having an isocyanate group.
  • the isocyanate group-containing alkoxysilane compound may be any alkoxysilane compound having one or more isocyanate groups in one molecule, and the number of isocyanate groups is not particularly limited.
  • the isocyanate group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group, in addition to the isocyanate group.
  • Examples of the isocyanate group-containing alkoxysilane compound used in the present disclosure include 3-isocyanatepropyltriethoxysilane and 3-isocyanatepropyltrimethoxysilane.
  • Examples of commercially available products include KBE-9007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the radical-polymerizable group-containing alkoxysilane compound is an alkoxysilane compound having a radical-polymerizable group.
  • the radical polymerizable group-containing alkoxysilane compound may be any alkoxysilane compound having one or more radical polymerizable groups in one molecule, and the number of radical polymerizable groups is not particularly limited.
  • the radically polymerizable group is not particularly limited, and examples thereof include (meth)acryloxy group, (meth)acrylamide group, vinylphenyl group, vinyl group, and allyl group.
  • the radical polymerizable group-containing alkoxysilane compound may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group in addition to the radical polymerizable group.
  • radical polymerizable group-containing alkoxysilane compound used in the present disclosure examples include vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. , 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like.
  • compositions for forming an inorganic particle-containing layer contain a radically polymerizable group-containing alkoxysilane compound
  • the composition for forming an inorganic particle-containing layer may further contain a known radical polymerization initiator.
  • the content of the crosslinkable group-containing alkoxysilane compound, the stability of the inorganic particle-containing layer forming composition, and from the viewpoint of improving the alkali resistance of the resulting inorganic particle-containing layer, to the inorganic particle-containing layer forming composition is preferably 20% by mass to 85% by mass with respect to the total mass of the alkoxysilane compound contained.
  • the content of the crosslinkable group-containing alkoxysilane compound is more preferably 25% by mass or more and 30% by mass or more based on the total mass of the alkoxysilane compound contained in the composition for forming an inorganic particle-containing layer. Is more preferable.
  • the content of the crosslinkable group-containing alkoxysilane compound is more preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the crosslinkable group-free alkoxysilane compound is an alkoxysilane compound having no crosslinkable group.
  • the crosslinkable group-free alkoxysilane compound may be any alkoxysilane compound having no crosslinkable group, and has a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group or a carboxy group. You may have.
  • the crosslinkable group-free alkoxysilane compound is preferably a tetraalkoxysilane compound or a trialkoxysilane compound, or a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound.
  • the crosslinkable group-free alkoxysilane compound is preferably a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound, and by mixing and containing a tetraalkoxysilane compound and a trialkoxysilane compound, the inorganic particle-containing layer is formed. When formed, sufficient hardness can be obtained while having appropriate flexibility.
  • the crosslinkable group-free alkoxysilane compound is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound
  • the molar ratio of the tetraalkoxysilane compound and the trialkoxysilane compound is 25:75 to 85:15.
  • the ratio is preferably 30:70 to 80:20, more preferably 30:70 to 65:35.
  • the tetraalkoxysilane compound is a tetrafunctional alkoxysilane compound, and it is more preferable that each alkoxy group has 1 to 4 carbon atoms. Among them, a tetramethoxysilane compound or a tetraethoxysilane compound is particularly preferably used.
  • the hydrolysis rate of the tetraalkoxysilane compound when mixed with acidic water does not become too low, and the time required for dissolution to form a uniform aqueous solution is further improved. It gets shorter. Thereby, the formation efficiency at the time of forming an inorganic particle content layer can be raised. Examples of commercially available products include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the trialkoxysilane compound is a trifunctional alkoxysilane compound represented by the following formula A.
  • R-Si(OR 1 ) 3 formula A In the formula A, R is an organic group containing no amino group and having 1 to 15 carbon atoms, and R 1 is an alkyl group having 4 or less carbon atoms.
  • the trifunctional alkoxysilane compound represented by the formula A preferably does not contain an amino group as a functional group. That is, the trifunctional alkoxysilane compound has the organic group R having no amino group. Since R does not have an amino group, when a trifunctional alkoxysilane compound is mixed with a tetrafunctional alkoxysilane compound and hydrolyzed, it is difficult for dehydration condensation to be promoted between silanols produced, and thus the inorganic particle-containing layer The stability of the forming composition is improved.
  • R may be any organic group having a molecular chain length of 1 to 15 carbon atoms.
  • the flexibility of the inorganic particle-containing layer does not become too large, and sufficient hardness can be obtained.
  • an inorganic particle-containing layer having excellent brittleness can be obtained.
  • the adhesion between the photocatalyst layer and the inorganic particle-containing layer can be improved.
  • R is preferably a group in which the Si atom in formula A and the carbon atom in R are directly bonded.
  • the organic group represented by R may have a hetero atom such as oxygen, nitrogen or sulfur. When the organic group has a hetero atom, the adhesion with the photocatalyst layer can be improved.
  • trialkoxysilane compounds include 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and methyl.
  • examples thereof include triethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane and phenyltrimethoxysilane.
  • methyltriethoxysilane and methyltrimethoxysilane are particularly preferably used.
  • Examples of commercially available products include KBE-13 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the content of the crosslinkable group-free alkoxysilane compound is an inorganic particle-containing layer from the viewpoint of improving the stability of the composition for forming an inorganic particle-containing layer, and from the viewpoint of improving the alkali resistance of the obtained inorganic particle-containing layer. It is preferably 15% by mass to 80% by mass based on the total mass of the alkoxysilane compound contained in the composition for forming.
  • the content of the crosslinkable group-free alkoxysilane compound is more preferably 20% by mass or more and 30% by mass or more based on the total mass of the alkoxysilane compound contained in the composition for forming an inorganic particle-containing layer. More preferably, The content of the crosslinkable group-free alkoxysilane compound is more preferably 75% by mass or less, further preferably 70% by mass or less.
  • the inorganic particle-containing layer forming composition contains inorganic particles.
  • the inorganic particles in the composition for forming an inorganic particle-containing layer are the same as the inorganic particles in the above-mentioned inorganic particle-containing layer, and the preferred embodiments are also the same.
  • the content of the inorganic particles in the composition for forming an inorganic particle-containing layer is, from the viewpoint of photocatalytic activity and alkali resistance of the inorganic particle-containing layer, the content of the inorganic particles based on the total solid content of the composition for forming an inorganic particle-containing layer is x. When it is defined as mass %, it is preferable that 0 mass % ⁇ x mass % ⁇ 80 mass %.
  • the x mass% is more preferably 1 mass% or more, further preferably 3 mass% or more. Further, x mass% is preferably 80 mass% or less, more preferably 70 mass% or less, and further preferably 65 mass% or less.
  • the content of the inorganic particles with respect to the total solid content of the composition for forming an inorganic particle-containing layer is x mass %
  • the content of the crosslinkable group-containing alkoxysilane compound with respect to the total mass of the alkoxysilane compound is y mass %.
  • y mass% ⁇ x mass% ⁇ 5 mass% is preferable
  • y mass% ⁇ x mass% is more preferable.
  • the inorganic particle-containing layer forming composition preferably contains a metal complex (curing agent). That is, the inorganic particle-containing layer in the present disclosure preferably contains a metal complex.
  • a metal complex having at least one metal selected from the group consisting of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf, and Zr is preferable, and these can be used in combination.
  • the metal complex in the present disclosure can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • chelating agents include ⁇ -diketones such as acetylacetone, benzoylacetone and dibenzoylmethane, ⁇ -keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • metal complex examples include ethyl acetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), alkylacetoacetate aluminum diisopropylate, aluminum monoacetylacetate bis(ethylacetoacetate), aluminum tris(acetyl).
  • Acetonate) and other aluminum chelate compounds ethyl acetoacetate magnesium monoisopropylate, magnesium bis(ethylacetoacetate), alkylacetoacetate magnesium monoisopropylate, magnesium bis(acetylacetonate) and other magnesium chelate compounds, zirconium tetraacetylacetate Examples include nato, zirconium tributoxyacetylacetonate, zirconium acetylacetonate bis(ethylacetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate, and titanium oxyacetylacetonate.
  • aluminum tris(acetylacetonate), aluminum tris(ethylacetoacetate), magnesium bis(acetylacetonate), magnesium bis(ethylacetoacetate), and zirconium tetraacetylacetonate which are storage stable.
  • aluminum tris(acetylacetonate) and aluminum tris(ethylacetoacetate), which are aluminum chelate complexes are particularly preferable.
  • Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, and aluminum chelate M (manufactured by Kawaken Fine Chemicals Co., Ltd.).
  • the content of the metal complex is preferably 17 mol% to 70 mol% with respect to the total molar amount of the crosslinkable group-containing alkoxysilane compound.
  • the content is more preferably 20 mol% or more.
  • the content is more preferably 65 mol% or less, further preferably 60 mol% or less.
  • the content of the metal complex is 17 mol% or more, excellent alkali resistance can be obtained when the inorganic particle-containing layer is formed.
  • the content of the metal complex is 70 mol% or less, the dispersibility of the metal complex in the composition for forming an inorganic particle-containing layer can be improved, and the manufacturing cost can be suppressed.
  • the inorganic particle-containing layer forming composition used in the present disclosure, and the inorganic particle-containing layer may contain a surfactant for the purpose of improving the smoothness of the layer and reducing the friction on the surface of the coating film. ..
  • the surfactant include the surfactants described in paragraphs 0039 to 0044 of JP-A-2014-111717.
  • the inorganic particle-containing layer may be colored by dispersing a pigment, a dye, or other particles.
  • an antioxidant and the like may be added to the composition for forming an inorganic particle-containing layer and the inorganic particle-containing layer used in the present disclosure for the purpose of improving weather resistance.
  • the inorganic particle-containing layer is formed by applying the composition on the photocatalyst layer and heating (that is, drying).
  • the method of applying the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the heating method for drying the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared laser. And the like.
  • An easily-adhesive layer described below may be provided between the inorganic particle-containing layer and the photocatalyst layer.
  • the inorganic particle-containing layer is a layer having an antireflection function.
  • the inorganic particle-containing layer can be provided with a plurality of functions such as excellent scratch resistance.
  • the refractive index is a value measured at 25° C. by ellipsometry at a wavelength of 600 nm unless otherwise specified.
  • the antireflection layer in the present disclosure contains an amorphous titanium peroxide type inorganic binder and a siloxane resin having an organic structure, has a thickness of 20 nm to 140 nm and a refractive index of 1.50 to 1.90.
  • an antireflection layer may be provided between the substrate and the photocatalyst layer, and the thickness and refractive index of the antireflection layer may be specified as described above. is important.
  • an amorphous titanium peroxide type inorganic binder that is a component that can be included in the photocatalyst layer, and a siloxane resin that is a component included in the inorganic particle-containing layer can be used. Work efficiency can be improved.
  • the thickness of the antireflection layer is 20 nm to 140 nm. As a result, the reflectance can be suppressed low and the antireflection property can be improved. From the same viewpoint as above, the thickness of the antireflection layer is preferably 40 nm to 110 nm, more preferably 50 nm to 100 nm, further preferably 60 nm to 90 nm, and particularly preferably 70 nm to 80 nm. The thickness of the antireflection layer can be measured by the same method as the method for measuring the thickness of the inorganic particle-containing layer described above.
  • the refractive index of the antireflection layer is 1.50 to 1.90. Thereby, the antireflection property can be further improved. From the same viewpoint as above, the refractive index of the antireflection layer is preferably 1.55 to 1.86, more preferably 1.70 to 1.85. The refractive index of the antireflection layer can be measured by the same method as described above.
  • the refractive index of the antireflection layer is adjusted by the type and content of the siloxane resin having an organic structure and the amorphous titanium peroxide type inorganic binder, the structure of the antireflection layer (for example, a porous structure), the thickness of the antireflection layer, and the like. It is possible.
  • the refractive index of the antireflection layer can be adjusted by changing the ratio of the content of the amorphous titanium peroxide type inorganic binder to the content of the siloxane resin having an organic structure.
  • the antireflection layer in the present disclosure includes an amorphous titanium peroxide type inorganic binder.
  • amorphous titanium peroxide type inorganic binder in the antireflection layer the same specific examples as the specific examples given in the description of the amorphous titanium peroxide type inorganic binder in the photocatalyst layer can be used, and the preferred embodiments are also the same.
  • the content of the amorphous titanium peroxide type inorganic binder is 5% by mass to 95% by mass based on the total mass of the siloxane resin containing an organic structure described below and the amorphous titanium peroxide type inorganic binder in the antireflection layer. It is more preferably from 18% by mass to 93% by mass.
  • the antireflection layer in the present disclosure may contain one type of amorphous titanium peroxide type inorganic binder alone, or may use two or more types in combination.
  • the fact that the amorphous titanium peroxide type inorganic binder is contained in the antireflection layer can be confirmed by the same method as the method for confirming that the photocatalyst layer contains the amorphous titanium peroxide type inorganic binder.
  • the antireflection layer in the present disclosure includes a siloxane resin having an organic structure.
  • a siloxane resin having an organic structure As the siloxane resin containing an organic structure in the antireflection layer, the same siloxane resin containing an organic structure in the above-mentioned inorganic particle-containing layer can be used, and the preferred embodiments are also the same.
  • the content of the siloxane resin containing an organic structure is preferably 20% by mass to 80% by mass, and 30% by mass with respect to the total mass of the siloxane resin containing an organic structure and the amorphous titanium peroxide type inorganic binder in the antireflection layer. % To 70% by mass is more preferable.
  • the ratio of the content of the siloxane resin containing an organic structure to the content of the amorphous titanium peroxide type inorganic binder is preferably 20/80 to 80/20, and 30/70 to 70/30 is more preferable.
  • the antireflection layer in the present disclosure may include titanium oxide.
  • Specific examples of the titanium oxide that may be contained in the antireflection layer in the present disclosure are the same as the specific examples given in the description of the titanium oxide, and the preferred embodiments are also the same.
  • the antireflection layer in the present disclosure may further contain other components.
  • known additives such as surfactants can be used without particular limitation.
  • the antireflection layer in the present disclosure can be obtained by applying the composition for forming an antireflection layer to, for example, a base material described later and heating (that is, drying).
  • the antireflection layer-forming composition preferably contains the alkoxysilane compound in the inorganic particle-containing layer described above and peroxotitanic acid.
  • the antireflection layer-forming composition is prepared by mixing and dispersing an alkoxysilane compound in a composition containing peroxotitanic acid and a solvent.
  • composition containing peroxotitanic acid and a solvent a commercially available product can be used, and for example, TIO SKYCOAT C liquid (manufactured by Tio Systems Co., Ltd.) can be used. Further, in order to set the thickness of the antireflection layer in the above range, the composition for thickening the antireflection layer is thickened, and the coating and heating (that is, drying) of the composition for antireflection layer formation are performed a plurality of times. May be adopted.
  • the method of applying the composition for forming an antireflection layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the heating method for drying the antireflection layer-forming composition is not particularly limited and may be a known method, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared laser, or the like. Are listed.
  • the heating time and the heating temperature at the time of heating may be appropriately adjusted with reference to the description of the heating time and the heating temperature in the production of the above-mentioned amorphous titanium peroxide type inorganic binder.
  • the inorganic particle-containing layer has a thickness of 80 nm to 100 nm
  • the antireflection layer has a thickness of 60 nm to 90 nm
  • the inorganic particle-containing layer has a thickness of 80 nm to 100 nm
  • the antireflection layer has a thickness of 70 nm to 80 nm
  • a refractive index of 1.70 to 1.85 More preferably.
  • the photocatalyst composite material according to the present disclosure preferably further includes a base material layer on the side of the antireflection layer opposite to the side having the photocatalyst layer (that is, the photocatalyst layer side).
  • the base material layer is a layer formed of a base material, and examples of the base material in the base material layer include a resin base material, a glass base material, and a metal base material.
  • the resin substrate is not particularly limited, but polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyarylates, polyether sulfone, polycarbonate, poly Ether ketone, polysulfone, polyphenylene sulfide, polyester type liquid crystal polymer, triacetyl cellulose, cellulose derivative, polypropylene, polyamides, polyimide, polycycloolefins and the like are preferable.
  • PET, PEN, or triacetyl cellulose is more preferable, and PET or PEN is further preferable.
  • the resin substrate may be stretched and is preferably biaxially stretched.
  • Biaxial stretching means stretching in both directions by regarding the width direction and the longitudinal direction of the resin film as uniaxial.
  • the biaxially stretched polyester film has extremely excellent mechanical strength because the biaxial molecular orientation is sufficiently controlled.
  • the draw ratio is not particularly limited, but the draw ratio per one axial direction is preferably 1.5 times to 7 times, and more preferably 2 times to 5 times.
  • a polyester film biaxially stretched with a draw ratio of 2 to 5 times per uniaxial direction has very excellent mechanical strength because its molecular orientation is controlled more efficiently and effectively. It is suitable as a polyester film.
  • the glass substrate is not particularly limited, but it is a transparent glass plate, a shaped glass plate, a netted glass plate, a wire glass plate, a tempered glass plate, a heat ray reflective glass plate, a heat ray absorbing glass plate, Low-E (Low Emissivity, A glass substrate such as a (low reflection) glass plate may be used.
  • the metal base material is not particularly limited, and examples thereof include an aluminum plate, a steel plate, a copper plate, and other alloy plates.
  • the base material used as the base material layer may be surface-treated, and is preferably subjected to corona treatment or glow treatment in view of the simplicity of the process.
  • corona treatment or glow treatment in view of the simplicity of the process.
  • the surface of the substrate is hydrophilized and the wettability can be improved, so that the adhesion with the antireflection layer or the adhesion with the easy adhesion layer can be increased.
  • the corona treatment performed under normal pressure has a simpler process than the glow treatment performed under reduced pressure, but the glow treatment has a higher effect of improving the adhesion.
  • the photocatalyst composite material according to the present disclosure has a base material and an antireflection layer, an antireflection layer and a photocatalyst layer, or an easy adhesion layer for the purpose of improving the adhesiveness between the photocatalyst layer and the inorganic particle-containing layer.
  • the easy-adhesion layer is formed, for example, by applying a coating liquid containing a binder, a curing agent, and a surfactant to the surface of the substrate on which the antireflection layer is provided, the surface on which the photocatalytic layer of the antireflection layer is provided, or the inorganic material of the photocatalytic layer.
  • Organic or inorganic particles may be appropriately added to the easy-adhesion layer.
  • the particles are not particularly limited, but examples thereof include metal oxides, and specifically, tin oxide, zirconium oxide, zinc oxide, titanium oxide, cerium oxide, niobium oxide and the like are preferable, and these are used alone or in two kinds. You may use together the above. Examples of commercially available products include ET-500W and other ET series, FT-2000 and other FT series, SN-100P and other SN series, FS-10D and other FS series (manufactured by Ishihara Sangyo Co., Ltd.) and the like.
  • the binder contained in the easy-adhesion layer is not particularly limited, but preferably contains at least one of polyester, polyurethane, acrylic resin, styrene-butadiene copolymer and polyolefin from the viewpoint of adhesiveness.
  • the binder preferably contains at least one of polyester, polyurethane and polyolefin, more preferably polyolefin.
  • a water-soluble or water-dispersible binder is particularly preferable in that the load on the environment is small.
  • Examples of commercially available products include Carbodilite series such as Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.), Takerak WS series such as Takerak WS-5100 (manufactured by Mitsui Chemicals Inc.), Arrowbase SE1013N, Examples include Arrow Base series (manufactured by Unitika Ltd.) and Hardren series (manufactured by Toyobo Co., Ltd.) such as Hardlen NZ1004.
  • the binder used for the easy-adhesion layer does not include the above-mentioned amorphous titanium peroxide type inorganic binder.
  • the thickness of the easy-adhesion layer can be appropriately adjusted by adjusting the coating amount.
  • the thickness of the easily adhesive layer is more preferably in the range of 0.01 ⁇ m to 5 ⁇ m. If the thickness is 0.01 ⁇ m or more, the adhesiveness tends to be sufficient, and if it is 5 ⁇ m or less, the thickness of the easy-adhesion layer tends to be uniform. A more preferable thickness range is 0.02 ⁇ m to 3 ⁇ m.
  • the easy-adhesion layer may be a single layer or a plurality of layers. When a plurality of easy-adhesion layers are stacked, the above thickness indicates the total thickness of all the easy-adhesion layers.
  • the photocatalyst composite material according to the present disclosure may have a shielding layer between the base material layer and the antireflection layer.
  • a shielding layer for example, it is considered that radicals generated in the photocatalyst layer or the antireflection layer are trapped by the shielding layer, so that deterioration of the base material layer due to radicals such as the resin base material is suppressed.
  • the shielding layer for example, a layer similar to the inorganic particle-containing layer or a layer similar to the inorganic particle-containing layer except that it does not contain inorganic particles can be used as the shielding layer.
  • the photocatalyst composite material in the present disclosure is preferably a protective member, and more preferably a signage display protective member, a touch panel protective member, a solar cell protective member, or a sensor cover protective member.
  • the photocatalyst composite material according to the present disclosure has one or more of effects such as antifouling, antibacterial, antivirus, deodorant, and antifungal by including the photocatalyst layer.
  • the photocatalyst composite material according to the present disclosure has one or more of effects such as antireflection property and scratch resistance depending on the composition of the inorganic particle-containing layer and the like. Therefore, the photocatalyst composite material according to the present disclosure can be used as, for example, a protective member having excellent antifouling properties, scratch resistance, and antireflection properties.
  • the display protection member for signage according to the present disclosure includes the photocatalytic composite material according to the present disclosure.
  • the signage display according to the present disclosure includes a signage display protection member according to the present disclosure.
  • the signage display protection member according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and thus, for example, contains inorganic particles. By making the layer the surface of the outermost layer in the display for signage, it is possible to prevent the attachment of dirt. Further, the photocatalyst composite material according to the present disclosure is excellent in antireflection property, and thus by being used as a signage display protection member, it is possible to suppress reflection of light on the signage display and improve the visibility of the display image. It will be possible.
  • the signage display protection member for example, on a signage display, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer in this order is used as a signage display protection member.
  • a resin film as a base material layer, a photocatalyst composite material in which an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is attached to a signage display as a signage display protection member. You may use it.
  • the signage in the present disclosure is preferably a digital signage.
  • the signage display is not particularly limited, and a known image display device such as a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, or a PDP (plasma display panel) is used.
  • a known image display device such as a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, or a PDP (plasma display panel) is used.
  • a touch panel protection member according to the present disclosure includes the photocatalytic composite material according to the present disclosure.
  • a touch panel according to the present disclosure includes the touch panel protection member according to the present disclosure.
  • the protective member for a touch panel according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and therefore, for example, by using the inorganic particle-containing layer as a touch portion (that is, a portion that the hand touches) in the touch panel, fingerprints and the like It is possible to prevent the adhesion of dirt or facilitate the removal of dirt.
  • the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it is used as a touch panel protection member in a touch panel display device, for example, to suppress reflection of light on the touch panel display device and to improve visibility of a display image or the like. It becomes possible to improve.
  • a touch panel protection member for example, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer in this order on the outermost member of a conventional touch panel is formed as the touch panel protection member.
  • the touch panel a known touch panel is used without particular limitation, and for example, the description in JP-A-2002-48913 can be referred to.
  • the solar cell protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • a solar cell according to the present disclosure includes the solar cell protection member according to the present disclosure. Since the protective member for a solar cell according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, for example, by forming the inorganic particle-containing layer as the outermost layer in the solar cell front sheet, the adhesion of dirt is prevented. can do. Moreover, since the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it is possible to suppress reflection of light on the solar cell panel and improve the power generation efficiency of the solar cell by using it as a solar cell protection member.
  • the solar cell protective member for example, an antireflection layer, a photocatalyst layer, and an inorganic particle-containing layer are laminated in this order on a member (for example, a solar cell front sheet) that is an outermost layer in a conventional solar cell protective member.
  • a member for example, a solar cell front sheet
  • the photocatalyst composite material formed as described above may be formed and used as a protective member for a solar cell, for example, a resin film as a base material layer, and an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer on the base material layer
  • the photocatalyst composite material laminated in order may be used as a protective member for a solar cell by being attached to a member which is the outermost layer in a conventional solar cell.
  • the description in JP 2011-62877 A or the like can be referred to.
  • the sensor cover protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • the sensor cover according to the present disclosure includes the sensor cover protection member according to the present disclosure.
  • the protective member for a sensor cover according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and therefore, for example, by forming the inorganic particle-containing layer as the outermost layer in the sensor cover, it is possible to prevent adhesion of dirt. it can. Further, since the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it can be used as a protective member for a sensor cover, for example, to suppress reflection of light on the sensor cover and improve sensor sensitivity.
  • the sensor examples include LiDAR (Light Detection and Ranging) using infrared rays.
  • LiDAR Light Detection and Ranging
  • the sensor cover protection member for example, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer, and an inorganic particle-containing layer in this order on the outermost member of a conventional sensor cover is used as a sensor cover protection member.
  • It may be formed as a member and used, for example, a photocatalyst composite material in which a resin film is used as a base material layer, an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer, and a protective member for a sensor cover.
  • a photocatalyst composite material in which a resin film is used as a base material layer, an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer, and a protective member for a sensor cover.
  • the sensor cover include a sensor cover in a camera module, and the description in JP-A-2016-130746 and the like can be referred to.
  • the protective member including the photocatalyst composite material according to the present disclosure includes a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, a PDP (plasma display panel) electromagnetic wave shield film, and the like. It is also suitably used as a protective member of.
  • composition for forming a photocatalyst layer was prepared by thickening Tyo Sky Coat A solution which is an aqueous solution by the following method.
  • Tio Sky Coat A liquid manufactured by Tio Systems
  • Tio Sky Coat A liquid is an aqueous composition containing anatase type (crystalline) titanium oxide particles having a number average particle diameter of 5 nm to 20 nm and peroxotitanic acid as main components.
  • a 10% aqueous solution of hydroxyalkyl (1 to 3 carbon atoms) cellulose was used as the thickener.
  • the above-mentioned thickener was added to the above-mentioned Tiosky coat A liquid in an amount of 30.7% based on the total mass of the above-mentioned Tiosky coat A liquid and the above-mentioned thickener to increase the viscosity.
  • the compounds described in the composition below were mixed in the following procedure to prepare a composition for an inorganic particle-containing layer.
  • the epoxy group-containing alkoxysilane compound (KBE403) was added to 100 parts by mass of a 1% acetic acid aqueous solution and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE04) was added.
  • An aluminum chelate complex was added to an epoxy group-containing alkoxysilane compound, and inorganic particles S1 (silica particles, Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 4 nm) were added thereto.
  • composition for forming antireflection layer The compounds described in the following composition were mixed according to the following procedure to prepare a composition for forming an antireflection layer.
  • Epoxy group-containing alkoxysilane compound (3-glycidoxypropyltriethoxysilane) in 100 parts by mass of 1% acetic acid aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous acetic acid solution) (Shin-Etsu Chemical Co., Ltd.) (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd., manufactured by Shin-Etsu Chemical Co., Ltd., KBE-04) was added to the mixture, and 80 parts by mass of KBE-403) was added to sufficiently hydrolyze.
  • 1% acetic acid aqueous solution manufactured by Daicel Chemical Industries, Ltd., 1% aqueous acetic acid solution
  • Shin-Etsu Chemical Co., Ltd. Shin-Etsu Chemical Co., Ltd.,
  • the formed antireflection layer contains an amorphous titanium peroxide type inorganic binder, it is necessary to confirm the structure identification by the analysis peak and the confirmation that the crystal peak does not appear by X-ray diffraction measurement or Raman spectroscopy measurement. Confirmed by.
  • the fact that the antireflection layer has a crosslinked structure (organic structure) was confirmed by immersing the antireflection layer formed above in toluene and the siloxane resin was not dissolved.
  • the thickness of the antireflection layer was measured using Dektak150 manufactured by Bruker. Further, in Table 2, the antireflection layer was not formed for the examples or comparative examples described as "-" in the column of the antireflection layer of each example or comparative example.
  • the thickness of the inorganic particle-containing layer was measured using Dektak150 manufactured by Bruker. The fact that the inorganic particle-containing layer has a crosslinked structure (organic structure) was confirmed by immersing the inorganic particle-containing layer formed above in toluene and dissolving the siloxane resin. Further, in Table 2, in the column of the inorganic particle-containing layer of each Example or Comparative Example, the inorganic particle-containing layer was not formed for the Examples or Comparative Examples described as "-".
  • a 1:1 (mass ratio) mixed solution of the Tiosky coat A liquid and the Tiosky coat A liquid in Table 2, simply “A liquid+C liquid”.
  • a photocatalyst composite material was obtained by the same method as in Example 1 except that the photocatalyst composite material was changed to.
  • UV irradiation and evaluation of water contact angle After applying the oleic acid, an ultraviolet irradiator equipped with a low-pressure mercury lamp was used to irradiate the surface of the photocatalyst composite material on the inorganic particle-containing layer side with ultraviolet light at an irradiation intensity of 2 mW/cm 2 .
  • the wavelength of the ultraviolet rays to be irradiated was 365 nm.
  • the above UVGL-25 manufactured by UVP was used as the UV irradiator.
  • the water contact angle is measured every 1 hour from the start of ultraviolet irradiation, and the time from the time when the water contact angle reaches the peak to the time when the water contact angle becomes less than 10° is measured and evaluated according to the following evaluation criteria. , And in the column of “ ⁇ 10° arrival time (h)” in Table 2. It can be said that the shorter the “time when the water contact angle is less than 10°”, the more excellent the photocatalytic activity on the surface of the inorganic particle-containing layer side.
  • the contact angle of water was measured using DM-501 manufactured by Kyowa Interface Science Co., Ltd., and the contact angle of water droplets (pure water, 2.0 ⁇ L) on the surface of the inorganic particle-containing layer side at 25° C. (after 0.2 seconds).
  • the reflectance of the surface on the inorganic particle-containing layer side was measured with respect to the photocatalyst composite material in each Example or Comparative Example.
  • the reflectance was measured using an ultraviolet-visible infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation), and the reflectance (%) in light having a wavelength of 400 nm to 800 nm was measured using an integrating sphere.
  • the average value in the wavelength range of 400 nm to 800 nm was defined as the reflectance.
  • the numerical values of the measured reflectance are shown in Table 2. It can be said that the lower the value of the reflectance is, the more excellent the antireflection property is.
  • the content of the amorphous titanium peroxide type inorganic binder and the siloxane resin is the content with respect to the total mass of the amorphous titanium peroxide type inorganic binder and the siloxane resin.
  • Examples 1 to 10 were excellent in photocatalytic activity and antireflection property.
  • Example 1 in which the thickness of the antireflection layer was 50 nm to 100 nm was more excellent in antireflection property than Example 7 in which the thickness was 20 nm and Example 8 in which the thickness was 140 nm.
  • Example 1 in which the refractive index of the antireflection layer is 1.55 to 1.86 is Example 5 in which the refractive index is 1.51 and Example 6 in which the refractive index is 1.90.
  • the antireflection property was excellent as compared with Example 10.
  • Comparative Examples 3 and 5 in which the thickness of the antireflection layer is less than 20, Comparative Example 1 in which the thickness is more than 140, Comparative Examples 5 and 6 in which the refractive index of the antireflection layer is less than 1.5, and Comparative Example 2 having a refractive index of more than 1.90, Comparative Examples 7 to 10 in which no antireflection layer was provided, and Comparative Examples 15 and 17 were inferior in antireflection property.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention provides: a photocatalyst composite material including, in order, an inorganic-particle-containing layer that includes inorganic particles and a siloxane resin including an organic structure, a photocatalyst layer that includes titanium oxide, and a reflection-preventing layer that includes an amorphous titanium peroxide binder and a siloxane resin including an organic structure, the inorganic-particle-containing layer having a thickness of 80-115 nm and a reflectivity of less than 1.5, and the reflection-preventing layer having a thickness of 20-140 nm and a reflectivity of 1.50-1.90; and a practical application for the photocatalyst composite material.

Description

光触媒複合材、並びに、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、センサカバー用保護部材、サイネージ用ディスプレイ、タッチパネル、太陽電池、及び、センサカバーPhotocatalyst composite material, display protection member for signage, protection member for touch panel, protection member for solar cell, protection member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
 本開示は、光触媒複合材、並びに、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、センサカバー用保護部材、サイネージ用ディスプレイ、タッチパネル、太陽電池及びセンサカバーに関する。 The present disclosure relates to a photocatalyst composite material, a display protection member for signage, a protection member for touch panel, a protection member for solar cell, a protection member for sensor cover, a display for signage, a touch panel, a solar cell and a sensor cover.
 近年、防汚、抗菌、抗ウイルス、消臭、防カビ等の機能の付与を目的として、ガラス、樹脂等の表面に光触媒材料を含む層を形成することが検討され一部実用化されている。 In recent years, for the purpose of imparting functions such as antifouling, antibacterial, antivirus, deodorant, and antifungal, formation of a layer containing a photocatalytic material on the surface of glass, resin, etc. has been studied and partially put into practical use. ..
 特開平9-262481号公報には、触媒を基体に担持固定してなる光触媒体の製造法であって、光触媒とアモルファス型過酸化チタンゾルとを用いる光触媒体の製造法が記載されている。
 特開2002-88276号公報には、過酸化基含有アモルファス型酸化チタンを0.5wt%以上2.0wt%以下(酸化チタン換算)の範囲で含有する水溶液にアナターゼ型酸化チタン微粒子が0.025wt%以上1.2wt%以下の範囲で含有させ、かつシリコーン系界面活性剤が0.01wt%以上0.8wt%未満の範囲で含有させた防汚コーティング剤が記載されている。
 特開2003-55580号公報には、チタニア系ペルオキソ化合物の微粒子と、ペルオキソチタン酸と、シリカ微粒子とを含む水性塗料が記載されている。
 特開2013-104035号公報には、下記成分を少なくとも含有する酸化チタン塗布液が記載されている。
(A)酸化チタン粒子
(B)バインダー成分としてのペルオキソチタン酸
(C)キレート化剤
(D)水
(E)アルコール
Japanese Unexamined Patent Publication (Kokai) No. 9-262481 discloses a method for producing a photocatalyst body in which a catalyst is carried and fixed on a substrate, and which uses a photocatalyst and an amorphous titanium peroxide sol.
In JP-A-2002-88276, an aqueous solution containing a peroxide group-containing amorphous titanium oxide in a range of 0.5 wt% or more and 2.0 wt% or less (as titanium oxide) contains 0.025 wt of anatase-type titanium oxide fine particles. The antifouling coating agent is contained in the range of 0.1% to 1.2% by weight, and the silicone-based surfactant is contained in the range of 0.01% to less than 0.8% by weight.
Japanese Unexamined Patent Publication No. 2003-55580 describes an aqueous coating material containing fine particles of a titania-based peroxo compound, peroxotitanic acid, and fine particles of silica.
Japanese Patent Laid-Open No. 2013-104035 describes a titanium oxide coating solution containing at least the following components.
(A) Titanium oxide particles (B) Peroxotitanic acid (C) Chelating agent (D) Water (E) Alcohol as binder component
 また、上記光触媒材料を含む層上に機能性層を形成することも検討されている。
 特開2010-99651号公報には、基材の表面に光触媒層と機能性層を形成する複合材の製造方法において、基材の表面に光触媒を含有する光触媒層を形成した後、その表面に光触媒で分解可能な有機物を含有する機能性層を形成する工程と、機能性層に光を照射して光触媒層中の光触媒を活性化させ機能性層中の有機物を分解する工程とを有し、機能性層中の有機物の含有量が10~40質量%である複合材の製造方法が記載されている。
 国際公開第2002/100634号には、基材表面に光触媒膜が成膜され、その上に親水性物質膜が多孔質となるように成膜されている防曇素子において、上記光触媒膜の材料として、水酸化チタンゲル(オルトチタン酸)に過酸化水素を作用させて得られる過酸化チタン溶液に光触媒粒子を分散させたコーティング剤を用いる防曇素子が記載されている。
Further, formation of a functional layer on the layer containing the photocatalytic material is also under study.
Japanese Patent Laid-Open No. 2010-99651 discloses a method for producing a composite material in which a photocatalyst layer and a functional layer are formed on the surface of a base material, after forming a photocatalyst layer containing a photocatalyst on the surface of the base material, It has a step of forming a functional layer containing an organic substance that can be decomposed by a photocatalyst, and a step of irradiating the functional layer with light to activate the photocatalyst in the photocatalyst layer to decompose the organic substance in the functional layer. , A method for producing a composite material in which the content of organic substances in the functional layer is 10 to 40% by mass.
In WO 2002/100634, a photocatalyst film is formed on a surface of a base material, and a hydrophilic substance film is formed on the photocatalyst film so as to be porous. As an example, an antifogging element using a coating agent in which photocatalyst particles are dispersed in a titanium peroxide solution obtained by allowing hydrogen peroxide to act on titanium hydroxide gel (orthotitanic acid) is described.
 また近年、ガラス、樹脂等の基材の表面に、反射防止機能、耐傷等のハードコート機能、親水化機能等の機能を付与するために、機能性層を形成することも検討されている。 Also, in recent years, it has been considered to form a functional layer on the surface of a substrate such as glass or resin in order to impart functions such as an antireflection function, a hard coat function such as scratch resistance, and a hydrophilicizing function.
 特開2014-111717号公報には、エポキシ基含有アルコキシシランと、エポキシ基非含有アルコキシシランと、金属錯体とを混合した水性組成物であって、上記エポキシ基含有アルコキシシランと上記エポキシ基非含有アルコキシシランからなる全アルコキシシランに対して、上記エポキシ基含有アルコキシシランが占める割合が20~85質量%であり、上記エポキシ基含有アルコキシシランに対して上記金属錯体が占める割合が17~70モル%である水性組成物が記載されている。 JP-A-2014-111717 discloses an aqueous composition obtained by mixing an epoxy group-containing alkoxysilane, an epoxy group-free alkoxysilane, and a metal complex, wherein the epoxy group-containing alkoxysilane and the epoxy group-free The ratio of the epoxy group-containing alkoxysilane to the total alkoxysilane composed of alkoxysilane is 20 to 85% by mass, and the ratio of the metal complex to the epoxy group-containing alkoxysilane is 17 to 70 mol %. An aqueous composition is described.
 上記特開2010-99651号公報及び国際公開第2002/100634号に記載のように、光触媒材料を含む層上に上述の機能性層を形成した場合、機能性層によって、例えば、反射防止性を付加することができると推測される。しかし、光触媒材料を含む層及び機能性層の2層の構成から得られる反射防止性では不足する場合があり、より良好な反射防止性能が求められている。 When the above-mentioned functional layer is formed on the layer containing the photocatalytic material as described in JP-A-2010-99651 and WO 2002/100634, the functional layer may improve antireflection property, for example. It is speculated that it can be added. However, the antireflection property obtained from the two-layer structure of the layer containing the photocatalyst material and the functional layer may be insufficient, and a better antireflection property is required.
 本開示の実施形態は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層側から光が入射した場合の反射防止性に優れる光触媒複合材を提供することに関する。
 本開示の他の実施形態は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層側から光が入射した場合の反射防止性に優れる光触媒複合材を備えるサイネージ用ディスプレイ保護部材、上記光触媒複合材を備えるタッチパネル用保護部材、上記光触媒複合材を備える太陽電池用保護部材、上記光触媒複合材を備えるセンサカバー用保護部材、上記サイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ、上記タッチパネル用保護部材を備えるタッチパネル、上記太陽電池用保護部材を備える太陽電池、又は、上記センサカバー用保護部材を備えるセンサカバーを提供することに関する。
The embodiment of the present disclosure relates to providing a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and excellent antireflection property when light enters from the inorganic particle-containing layer side.
Another embodiment of the present disclosure is excellent in photocatalytic activity on the surface of the inorganic particle-containing layer side, and a signage display protection provided with a photocatalyst composite material having excellent antireflection properties when light enters from the inorganic particle-containing layer side. Member, touch panel protection member including the photocatalyst composite material, solar cell protection member including the photocatalyst composite material, sensor cover protection member including the photocatalyst composite material, signage display including the signage display protection member, the above The present invention relates to providing a touch panel including a touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
 本開示には、以下の態様が含まれる。
  <1> 有機構造を含むシロキサン樹脂、及び、無機粒子を含む無機粒子含有層と、 酸化チタンを含む光触媒層と、アモルファス過酸化チタン型無機バインダー、及び、有機構造を含むシロキサン樹脂を含む反射防止層と、をこの順に含み、上記無機粒子含有層は、厚みが80nm~115nmであり、かつ、屈折率が1.50未満であり、上記反射防止層は、厚みが20nm~140nmであり、かつ、屈折率が1.50~1.90である光触媒複合材。
  <2>
 上記光触媒層に含まれる酸化チタンが、アナターゼ型酸化チタンである<1>に記載の光触媒複合材。
  <3>
 上記光触媒層の屈折率が1.5以上2.5以下である<1>又は<2>に記載の光触媒複合材。
  <4>
 上記反射防止層の厚みが、60nm~90nmである<1>~<3>のいずれか1つに記載の光触媒複合材。
  <5>
 上記反射防止層の屈折率が、1.55~1.86である<1>~<4>のいずれか1つに記載の光触媒複合材。
  <6> 上記無機粒子含有層は、厚みが80nm~100nmであり、上記反射防止層は、厚みが70nm~80nmであり、かつ、屈折率が1.70~1.85である<1>~<5>のいずれか1つに記載の光触媒複合材。
  <7> 上記反射防止層の上記光触媒層側とは反対側に、基材層を更に含む、<1>~<6>のいずれか1つに記載の光触媒複合材。
  <8> <1>~<7>のいずれか1つに記載の光触媒複合材を備えるサイネージ用ディスプレイ保護部材。
  <9> <1>~<7>のいずれか1つに記載の光触媒複合材を備えるタッチパネル用保護部材。
  <10> <1>~<7>のいずれか1つに記載の光触媒複合材を備える太陽電池用保護部材。
  <11> <1>~<7>のいずれか1つに記載の光触媒複合材を備えるセンサカバー用保護部材。
  <12> <8>に記載のサイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ。
  <13> <9>に記載のタッチパネル用保護部材を備えるタッチパネル。
  <14> <10>に記載の太陽電池用保護部材を備える太陽電池。
  <15> <11>に記載のセンサカバー用保護部材を備えるセンサカバー。
The present disclosure includes the following aspects.
<1> A siloxane resin containing an organic structure, an inorganic particle-containing layer containing inorganic particles, a photocatalyst layer containing titanium oxide, an amorphous titanium peroxide type inorganic binder, and an antireflection containing a siloxane resin containing an organic structure A layer in this order, the inorganic particle-containing layer has a thickness of 80 nm to 115 nm and a refractive index of less than 1.50, and the antireflection layer has a thickness of 20 nm to 140 nm, and , A photocatalytic composite material having a refractive index of 1.50 to 1.90.
<2>
The photocatalyst composite material according to <1>, wherein the titanium oxide contained in the photocatalyst layer is anatase type titanium oxide.
<3>
The photocatalyst composite material according to <1> or <2>, wherein the photocatalyst layer has a refractive index of 1.5 or more and 2.5 or less.
<4>
The photocatalyst composite material according to any one of <1> to <3>, wherein the antireflection layer has a thickness of 60 nm to 90 nm.
<5>
The photocatalyst composite material according to any one of <1> to <4>, wherein the antireflection layer has a refractive index of 1.55 to 1.86.
<6> The inorganic particle-containing layer has a thickness of 80 nm to 100 nm, and the antireflection layer has a thickness of 70 nm to 80 nm and a refractive index of 1.70 to 1.85. <5> The photocatalyst composite material according to any one of <5>.
<7> The photocatalyst composite material according to any one of <1> to <6>, further including a base material layer on a side of the antireflection layer opposite to the photocatalyst layer side.
<8> A display protection member for signage, comprising the photocatalyst composite material according to any one of <1> to <7>.
<9> A touch panel protection member including the photocatalytic composite material according to any one of <1> to <7>.
<10> A protective member for a solar cell, comprising the photocatalytic composite material according to any one of <1> to <7>.
<11> A sensor cover protective member including the photocatalyst composite material according to any one of <1> to <7>.
<12> A signage display including the signage display protection member according to <8>.
<13> A touch panel comprising the touch panel protection member according to <9>.
<14> A solar cell including the solar cell protection member according to <10>.
<15> A sensor cover including the sensor cover protective member according to <11>.
 本開示の実施形態によれば、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層側から光が入射した場合の反射防止性に優れる光触媒複合材を提供することができる。
 また、本開示の他の実施形態によれば、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層側から光が入射した場合の反射防止性に優れる光触媒複合材を備えるサイネージ用ディスプレイ保護部材、上記光触媒複合材を備えるタッチパネル用保護部材、上記光触媒複合材を備える太陽電池用保護部材、上記光触媒複合材を備えるセンサカバー用保護部材、上記サイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ、上記タッチパネル用保護部材を備えるタッチパネル、上記太陽電池用保護部材を備える太陽電池、又は、上記センサカバー用保護部材を備えるセンサカバーを提供することができる。
According to the embodiment of the present disclosure, it is possible to provide a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and excellent antireflection properties when light is incident from the inorganic particle-containing layer side. ..
Further, according to another embodiment of the present disclosure, a photocatalyst composite material having excellent photocatalytic activity on the surface of the inorganic particle-containing layer side and having excellent antireflection property when light is incident from the inorganic particle-containing layer side is provided. Signage display protection member, touch panel protection member including the photocatalyst composite material, solar cell protection member including the photocatalyst composite material, sensor cover protection member including the photocatalyst composite material, signage including the signage display protection member. Display, a touch panel including the touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
 以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロキシ」は、アクリロキシ及びメタクリロキシの両方を包含する概念として用いられる語である。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、組成物の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。 なお、本開示において、好ましい態様の組み合わせは、より好ましい態様である。
The description of the constituent elements described below may be made based on a representative embodiment of the present disclosure, but the present disclosure is not limited to such an embodiment.
In the present disclosure, the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
In the numerical ranges described stepwise in the present disclosure, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, “(meth)acryl” is a term used as a concept including both acryl and methacryl, and “(meth)acryloxy” is a term used as a concept including both acryloxy and methacryloxy. is there.
In the present disclosure, the term “process” is included in this term as long as the intended purpose of the process is achieved, not only when it is an independent process but also when it cannot be clearly distinguished from other processes.
In the present disclosure, the amount of each component of the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. ..
Unless otherwise specified, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present disclosure are gels using columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both manufactured by Tosoh Corporation). It is a molecular weight detected by a solvent THF (tetrahydrofuran) and a differential refractometer by a permeation chromatography (GPC) analyzer and converted by using polystyrene as a standard substance. In addition, in the present disclosure, a combination of preferable modes is a more preferable mode.
≪光触媒複合材≫
 本開示に係る光触媒複合材は、(i)有機構造を含むシロキサン樹脂、及び、無機粒子を含む無機粒子含有層と、(ii)酸化チタンを含む光触媒層と、(iii)アモルファス過酸化チタン型無機バインダー、及び、有機構造を含むシロキサン樹脂を含む反射防止層と、をこの順に含み、上記無機粒子含有層は、厚みが80nm~115nmであり、かつ、屈折率が1.50未満であり、上記反射防止層は、厚みが20nm~140nmであり、かつ、屈折率が1.50~1.90である。
<<Photocatalyst composite>>
A photocatalyst composite material according to the present disclosure includes (i) a siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles, (ii) a photocatalyst layer containing titanium oxide, and (iii) an amorphous titanium peroxide type. An inorganic binder and an antireflection layer containing a siloxane resin having an organic structure are included in this order, and the inorganic particle-containing layer has a thickness of 80 nm to 115 nm and a refractive index of less than 1.50. The antireflection layer has a thickness of 20 nm to 140 nm and a refractive index of 1.50 to 1.90.
 本開示に係る無機粒子含有層は、光触媒複合材に光が無機粒子含有層側から入射した場合の反射防止性の向上という機能を有している。
 ここで、従来の光触媒層上に、従来の反射防止機能を有する層に用いられる材料を用いて作製された機能性層を単に積層した場合には、おそらく光触媒層において発生するラジカルの機能性層表面への移動に係る問題のため、光触媒複合材における無機粒子含有層側の表面における光触媒活性が低下する場合があった。
The inorganic particle-containing layer according to the present disclosure has a function of improving antireflection property when light is incident on the photocatalyst composite material from the inorganic particle-containing layer side.
Here, when a functional layer made of a material used for a layer having a conventional antireflection function is simply laminated on a conventional photocatalyst layer, the functional layer of radicals generated in the photocatalyst layer is probably used. Due to the problem of migration to the surface, the photocatalytic activity on the surface of the photocatalyst composite material on the inorganic particle-containing layer side may decrease.
 上記低下が起こる理由はおそらく単純ではなく複数の物理プロセスが関わっていると思われる。本願発明者らは、光触媒層を用い、機能性層を、(a)有機構造を含むシロキサン樹脂及び(b)無機粒子を含有する無機粒子含有層とし、かつ、上記無機粒子含有層の厚みを適切に選択することで、光触媒層上に機能性層を積層した場合における光触媒活性の低下を抑制しうることを見出した。
 本開示の光触媒複合材は、無機粒子含有層及び光触媒層の構成を上記の通りとすることで、無機粒子含有層が多孔質状の構造を形成することができる。これによって、光触媒層において発生するラジカルが無機粒子含有層の細孔を介して無機粒子含有層の表面に達することができる結果、本開示の光触媒複合材は高い光触媒活性を維持できると推測される。
 また、本開示に係る光触媒複合材は、無機粒子含有層側から光が入射した場合の反射防止性に優れる。
 上記効果は、アモルファス過酸化チタン型無機バインダー及びシロキサン樹脂を含む反射防止層、光触媒層、及び、光触媒層の反射防止層側とは反対側に配置された無機粒子含有層を設けること、さらに、反射防止層の屈折率を無機粒子含有層の屈折率よりも大きくすること、及び反射防止層の厚みを特定の範囲とすることが相俟って発現すると推測される。
 以上により、本開示の光触媒複合材は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層側から光が入射した場合の反射防止性に優れる。
The reason why the above drop occurs is probably not simple and involves multiple physical processes. The inventors of the present application have used a photocatalyst layer, have a functional layer as (a) a siloxane resin containing an organic structure and (b) an inorganic particle-containing layer containing inorganic particles, and have a thickness of the inorganic particle-containing layer. It has been found that a proper selection can suppress a decrease in photocatalytic activity when a functional layer is laminated on the photocatalytic layer.
In the photocatalyst composite material of the present disclosure, the inorganic particle-containing layer and the photocatalyst layer are configured as described above, whereby the inorganic particle-containing layer can form a porous structure. Thereby, the radicals generated in the photocatalyst layer can reach the surface of the inorganic particle-containing layer through the pores of the inorganic particle-containing layer, and as a result, the photocatalyst composite material of the present disclosure is presumed to be able to maintain high photocatalytic activity. ..
Further, the photocatalyst composite material according to the present disclosure has excellent antireflection properties when light enters from the inorganic particle-containing layer side.
The above effect is to provide an antireflection layer containing an amorphous titanium peroxide type inorganic binder and a siloxane resin, a photocatalyst layer, and an inorganic particle-containing layer arranged on the side opposite to the antireflection layer side of the photocatalyst layer, It is presumed that a combination of making the refractive index of the antireflection layer larger than that of the inorganic particle-containing layer and setting the thickness of the antireflection layer within a specific range are manifested together.
As described above, the photocatalyst composite material of the present disclosure is excellent in photocatalytic activity on the surface of the inorganic particle-containing layer side and is also excellent in antireflection property when light is incident from the inorganic particle-containing layer side.
<光触媒層>
 本開示における光触媒層は、酸化チタンを含有し、必要に応じて他の成分を含有してもよい。
<Photocatalyst layer>
The photocatalyst layer in the present disclosure contains titanium oxide, and may contain other components as necessary.
(酸化チタン)
 本開示において用いられる酸化チタンは、光触媒活性を有する。
 本開示における光触媒層に、例えば紫外線が照射された場合、酸化チタンの光触媒作用によりラジカル(例えば、ヒドロキシラジカル、スーパーオキシドアニオンラジカル等)が発生する等により、防汚、抗菌、抗ウイルス、消臭、防カビ等の効果が得られる。本開示において、上記防汚、抗菌、抗ウイルス、消臭、防カビ等の効果に優れることを「光触媒活性に優れる」ともいう。
(Titanium oxide)
The titanium oxide used in the present disclosure has photocatalytic activity.
When the photocatalyst layer in the present disclosure is irradiated with, for example, ultraviolet rays, radicals (for example, hydroxy radicals, superoxide anion radicals, etc.) are generated by the photocatalytic action of titanium oxide, and thus, antifouling, antibacterial, antiviral, deodorant The effects such as mold prevention can be obtained. In the present disclosure, the excellent effects of the above-mentioned antifouling, antibacterial, antiviral, deodorant, antifungal, etc. are also referred to as “excellent photocatalytic activity”.
 本開示に用いることができる酸化チタンとしては、特に制限はなく、アナターゼ型、ルチル型及びブルッカイト型を挙げることができる。中でも、光触媒活性の点から、アナターゼ型が好ましい。
 また、本開示における光触媒層は、酸化チタンを1種単独で含有してもよいし、2種以上の酸化チタン粒子を含んでもよい。本開示に係る光触媒層は、アナターゼ型酸化チタンを含むことが好ましい。
 光触媒層に含有される酸化チタンが、アナターゼ型酸化チタンであることの確認は、X線回折測定又はラマン分光測定により行うことができる。
The titanium oxide that can be used in the present disclosure is not particularly limited, and examples thereof include anatase type, rutile type, and brookite type. Among them, the anatase type is preferable from the viewpoint of photocatalytic activity.
The photocatalyst layer in the present disclosure may contain titanium oxide alone, or may contain two or more kinds of titanium oxide particles. The photocatalyst layer according to the present disclosure preferably contains anatase type titanium oxide.
Confirmation that the titanium oxide contained in the photocatalyst layer is anatase type titanium oxide can be performed by X-ray diffraction measurement or Raman spectroscopy measurement.
 酸化チタンの存在形態は、特に限定されないが、酸化チタン粒子が光触媒層に含まれた態様(以下、第一の態様とも称する)であってもよいし、蒸着等により形成された酸化チタンの皮膜を光触媒層とする態様(以下、第二の態様とも称する)であってもよい。 The existing form of titanium oxide is not particularly limited, but may be a mode in which titanium oxide particles are contained in the photocatalyst layer (hereinafter, also referred to as the first mode), or a titanium oxide film formed by vapor deposition or the like. May be used as the photocatalyst layer (hereinafter, also referred to as a second mode).
〔第一の態様〕
 以下、まずは第一の態様として、光触媒層が酸化チタン粒子を含む態様について説明する。
[First embodiment]
Hereinafter, first, as a first aspect, an aspect in which the photocatalyst layer contains titanium oxide particles will be described.
 本開示における酸化チタン粒子の形状は、特に限定されないが、略球状であることが好ましい。
 本開示における酸化チタン粒子の数平均粒径は、2nm~200nmであることが好ましく、5nm~50nmであることがより好ましい。
 本開示において、特別な記載がない限り、数平均粒径は日立ハイテクノロジーズ社製SU-8030型FE-SEM(電界放出形走査電子顕微鏡、加速電圧2kV、二次電子像取得)を用いて算出する。
 具体的には、分散した粒子をFE-SEMにより観察し、得られた写真から求めることができる。各粒子の投影面積を求め、そこから各粒子の円相当径を求め各粒子の粒径(即ち一次粒径)とする。本開示における数平均粒径は、300個以上の粒子について投影面積を測定して各粒子の円相当径を求め、求めた円相当径の算術平均値として算出することができる。
 本開示における酸化チタン粒子としては、市販品の酸化チタン粒子の数平均粒径を、上記FE-SEMにより算出し、所望の粒径を含む製品を選別して用いてもよい。
The shape of the titanium oxide particles in the present disclosure is not particularly limited, but it is preferably substantially spherical.
The number average particle diameter of the titanium oxide particles in the present disclosure is preferably 2 nm to 200 nm, more preferably 5 nm to 50 nm.
In the present disclosure, unless otherwise specified, the number average particle size is calculated using a SU-8030 type FE-SEM (field emission scanning electron microscope, accelerating voltage 2 kV, secondary electron image acquisition) manufactured by Hitachi High-Technologies Corporation. To do.
Specifically, it can be determined from the photograph obtained by observing the dispersed particles by FE-SEM. The projected area of each particle is determined, and the equivalent circle diameter of each particle is determined from the projected area, which is used as the particle diameter (that is, the primary particle diameter) of each particle. The number average particle diameter in the present disclosure can be calculated as the arithmetic mean value of the calculated equivalent circle diameters by measuring the projected area of 300 or more particles to determine the equivalent circle diameter of each particle.
As the titanium oxide particles in the present disclosure, the number average particle diameter of commercially available titanium oxide particles may be calculated by the FE-SEM, and products having a desired particle diameter may be selected and used.
 本開示における酸化チタン粒子における酸化チタン(TiO)の含有量は、酸化チタン粒子の全質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 酸化チタン粒子に含まれるTiO以外の成分としては、例えば、SO 2-、NaO等が挙げられるが、これに限定されず他の成分を含んでいてもよい。
 酸化チタン粒子の具体例として、アナターゼ型酸化チタン粒子を含むティオスカイコートA液((株)ティオシステムズ製)を用いることができる。
The content of titanium oxide (TiO 2 ) in the titanium oxide particles in the present disclosure is preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass with respect to the total mass of the titanium oxide particles. It is more preferably at least mass%, particularly preferably at least 90 mass%.
Components other than TiO 2 contained in the titanium oxide particles include, for example, SO 4 2− , Na 2 O, etc., but are not limited thereto and may contain other components.
As a specific example of titanium oxide particles, Tio Sky Coat A liquid (manufactured by Tio Systems Co., Ltd.) containing anatase type titanium oxide particles can be used.
 本開示における酸化チタン粒子の含有量は、反射防止層の全質量に対し、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましい。
 また、本開示における光触媒層は、酸化チタン粒子を1種単独で含有してもよいし、2種以上の酸化チタン粒子を含んでもよい。
The content of the titanium oxide particles in the present disclosure is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, based on the total mass of the antireflection layer.
Further, the photocatalyst layer in the present disclosure may contain titanium oxide particles alone, or may contain two or more kinds of titanium oxide particles.
(アモルファス過酸化チタン型無機バインダー)
 本開示における光触媒層は、上記酸化チタンとしてアナターゼ型酸化チタン粒子、及び、アモルファス過酸化チタン型無機バインダーを含む層であることが好ましい。
 アモルファス過酸化チタン型無機バインダーは、Ti-O結合を含む非晶質のバインダーである。
 例えば、アモルファス過酸化チタン型無機バインダーは、ペルオキソチタン酸を加熱することにより得られることが好ましい。具体的には、ペルオキソチタン酸を100℃~150℃にて数時間加熱することにより、ペルオキソチタン酸から酸素原子又はヒドロキシ基が脱離してチタン酸化物が得られると考えられる。しかし、上記加熱温度が低いために、上記チタン酸化物は結晶化せず、非晶質の酸化チタン(即ちアモルファス過酸化チタン)として存在すると考えられる。
 本開示において、このような非晶質の酸化チタンを、アモルファス過酸化チタン型無機バインダーという。
 また、本開示において、ペルオキソチタン酸の加熱温度を高くする、加熱時間を長くする等により、非晶質の酸化チタンの少なくとも一部にアナタース相を形成してもよい。
 また、ペルオキソチタン酸の製造方法は、特に限定されないが、水酸化チタン(例えばオルトチタン酸)に過酸化水素を作用させて得ることができる。
 水酸化チタンは、例えば、四塩化チタンと塩基との反応により得られる。
 ペルオキソチタン酸及び水酸化チタンを得る方法としては、特開平9-262481号公報も参考にすることができる。
(Amorphous titanium peroxide type inorganic binder)
The photocatalyst layer in the present disclosure is preferably a layer containing anatase type titanium oxide particles as the above titanium oxide and an amorphous titanium peroxide type inorganic binder.
The amorphous titanium peroxide type inorganic binder is an amorphous binder containing a Ti—O bond.
For example, the amorphous titanium peroxide type inorganic binder is preferably obtained by heating peroxotitanic acid. Specifically, it is considered that by heating peroxotitanic acid at 100° C. to 150° C. for several hours, an oxygen atom or a hydroxy group is eliminated from peroxotitanic acid to obtain a titanium oxide. However, since the heating temperature is low, it is considered that the titanium oxide does not crystallize and exists as amorphous titanium oxide (that is, amorphous titanium peroxide).
In the present disclosure, such amorphous titanium oxide is referred to as an amorphous titanium peroxide type inorganic binder.
Further, in the present disclosure, an anatase phase may be formed in at least a part of amorphous titanium oxide by increasing the heating temperature of peroxotitanic acid, lengthening the heating time, or the like.
The method for producing peroxotitanic acid is not particularly limited, but it can be obtained by allowing hydrogen peroxide to act on titanium hydroxide (eg orthotitanic acid).
Titanium hydroxide is obtained, for example, by reacting titanium tetrachloride with a base.
As a method for obtaining peroxotitanic acid and titanium hydroxide, JP-A-9-262481 can be referred to.
 アモルファス過酸化チタン型無機バインダーの含有量は、光触媒層の全質量に対し、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましい。
 また、本開示における光触媒層は、アモルファス過酸化チタン型無機バインダーを1種単独で含有してもよいし、2種以上を併用してもよい。
The content of the amorphous titanium peroxide type inorganic binder is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, based on the total mass of the photocatalyst layer.
Further, the photocatalyst layer in the present disclosure may contain one kind of amorphous titanium peroxide type inorganic binder alone, or may use two or more kinds in combination.
 光触媒層にアモルファス過酸化チタン型無機バインダーが含有されていることは、X線回折測定又はラマン分光測定により解析ピークによる構造特定と結晶ピークが出現しないことの確認とを行うことにより判断することができる。 The fact that the amorphous titanium peroxide type inorganic binder is contained in the photocatalyst layer can be judged by carrying out the structure identification by the analysis peak and the confirmation that the crystal peak does not appear by X-ray diffraction measurement or Raman spectroscopy measurement. it can.
(その他の成分)
 本開示における光触媒層は、その他の成分を更に含んでもよい。
 その他の成分としては、界面活性剤等の公知の添加剤が特に制限なく用いられる。
(Other ingredients)
The photocatalyst layer in the present disclosure may further contain other components.
As other components, known additives such as surfactants can be used without particular limitation.
〔光触媒層の形成方法〕
 本開示における光触媒層は、光触媒層形成用組成物を例えば後述する反射防止層上に塗布し、加熱することにより得ることができる。
 光触媒層形成用組成物は、上述の酸化チタン粒子、及び、ペルオキソチタン酸を含むことが好ましい。
 一例として、光触媒層形成用組成物は、ペルオキソチタン酸及び溶剤を含む組成物に、酸化チタン粒子を添加し、分散することにより調製される。
 ペルオキソチタン酸及び溶剤を含む組成物としては、市販品を使用することもでき、例えば、ティオスカイコートA液((株)ティオシステムズ製)を用いることができる。
 また、光触媒層の厚みを上述の範囲とするため、光触媒層形成用組成物を増粘することが好ましい。増粘には増粘剤を用いることができる。増粘剤の例としては、ヒドロキシアルキル(炭素数1~3)セルロース等が挙げられる。
[Method of forming photocatalyst layer]
The photocatalyst layer in the present disclosure can be obtained, for example, by applying the composition for forming a photocatalyst layer on the antireflection layer described below and heating.
The composition for forming a photocatalyst layer preferably contains the above-mentioned titanium oxide particles and peroxotitanic acid.
As an example, the composition for forming a photocatalyst layer is prepared by adding and dispersing titanium oxide particles to a composition containing peroxotitanic acid and a solvent.
As the composition containing peroxotitanic acid and a solvent, a commercially available product may be used, and for example, TIO SKYCOAT A liquid (manufactured by Tio Systems Co., Ltd.) may be used.
Further, in order to make the thickness of the photocatalyst layer within the above range, it is preferable to thicken the composition for forming the photocatalyst layer. A thickener can be used for thickening. Examples of the thickener include hydroxyalkyl (C1 to C3) cellulose and the like.
 光触媒層の形成にあたっては光触媒層形成用組成物の塗布及び加熱(即ち乾燥)を複数回行う等の方法を採用してもよい。
 光触媒層形成用組成物の塗布方法は、特に限定されず、公知の方法を用いればよいが、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布など等が挙げられる。
 塗布後の光触媒層形成用組成物(即ち塗膜)を乾燥させる際の加熱方法は、特に限定されず、公知の方法を用いればよいが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ、赤外線レーザーを用いた方法等が挙げられる。
 加熱する際の加熱時間及び加熱温度は、上述のアモルファス過酸化チタン型無機バインダーの製造における加熱時間及び加熱温度を考慮して、適宜調整すればよい。
In forming the photocatalyst layer, a method of applying the photocatalyst layer forming composition and heating (that is, drying) a plurality of times may be adopted.
The method of applying the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
The heating method for drying the photocatalyst layer-forming composition after coating (that is, the coating film) is not particularly limited and may be a known method, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared ray. Examples include a method using a laser.
The heating time and the heating temperature at the time of heating may be appropriately adjusted in consideration of the heating time and the heating temperature in the production of the above-mentioned amorphous titanium peroxide type inorganic binder.
〔第二の態様〕
 光触媒層の第二の態様として、蒸着法等により形成したアナターゼ型酸化チタンの被膜を光触媒層とする態様について説明する。蒸着法等による被膜形成方法以外の詳細は、第一の態様と同様であり、好ましい態様も同一である。
[Second mode]
As a second aspect of the photocatalyst layer, an aspect in which an anatase type titanium oxide film formed by a vapor deposition method or the like is used as the photocatalyst layer will be described. The details other than the method of forming a film by the vapor deposition method and the like are the same as those in the first aspect, and the preferable aspects are also the same.
 アナターゼ型酸化チタンの被膜を形成する方法としては、特に限定されず、公知の方法により被膜形成すればよいが、例えば、反射防止層上に、公知の蒸着法等により酸化チタンの被膜を形成した後に、例えば400℃以上700℃以下の加熱を行い、酸化チタンの結晶構造をアナターゼ型とする方法等が挙げられる。
 ここで、光触媒層の屈折率を上述の範囲内に調整するため、光触媒層をポーラス化(即ち多孔質化)して形成することも好ましい。
 ポーラス化の方法としては、特に限定されず公知の方法を用いることが可能である。
The method for forming the anatase-type titanium oxide film is not particularly limited and may be formed by a known method. For example, a titanium oxide film is formed on the antireflection layer by a known vapor deposition method or the like. After that, for example, a method of heating at 400° C. or higher and 700° C. or lower to change the crystal structure of titanium oxide to anatase type can be mentioned.
Here, in order to adjust the refractive index of the photocatalyst layer within the above range, it is also preferable that the photocatalyst layer is made porous (that is, made porous).
The method for making the porous is not particularly limited, and a known method can be used.
-厚み-
 光触媒層の厚みは、特に限定されないが、光触媒活性の観点からは、50nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることが更に好ましい。
 また、上記厚みは、塗膜形成時の収縮応力が大きくなることに伴うクラック及び密着不良の発生を抑制する観点からは、2,000nm以下であることが好ましく、1,000nm以下であることがより好ましい。
 光触媒層の厚みは、接触式膜厚測定計(例えば、アンリツ株式会社製の接触式膜厚測定計)を用いて測定される値である。
-Thickness-
The thickness of the photocatalyst layer is not particularly limited, but from the viewpoint of photocatalytic activity, it is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more.
Further, the thickness is preferably 2,000 nm or less, and preferably 1,000 nm or less from the viewpoint of suppressing the occurrence of cracks and poor adhesion due to an increase in shrinkage stress during coating film formation. More preferable.
The thickness of the photocatalyst layer is a value measured with a contact-type film thickness meter (for example, contact-type film thickness meter manufactured by Anritsu Corporation).
-屈折率-
 本開示において、光触媒層の屈折率は、1.5以上2.5以下であることが好ましく、1.6~2.4であることがより好ましく、1.7~2.3であることが更に好ましい。
 本開示において、屈折率は、特に断りがない限り、波長600nmでエリプソメトリー(例えば、高速分光エリプソメーターM-2000U、ジェー・エー・ウーラム・ジャパン株式会社)によって25℃にて測定される値である。
-Refractive index-
In the present disclosure, the refractive index of the photocatalyst layer is preferably 1.5 or more and 2.5 or less, more preferably 1.6 to 2.4, and further preferably 1.7 to 2.3. More preferable.
In the present disclosure, the refractive index is a value measured at 25° C. by ellipsometry (for example, high speed spectroscopic ellipsometer M-2000U, JA Woollam Japan Co., Ltd.) at a wavelength of 600 nm, unless otherwise specified. is there.
<無機粒子含有層>
 無機粒子含有層は、有機構造を含むシロキサン樹脂、及び、無機粒子を含み、厚みが80nm~115nmであり、かつ、屈折率が1.5未満である。
 無機粒子含有層が、有機構造を含むシロキサン樹脂、及び、無機粒子を含み、厚みが80nm~115nmであることで、光触媒複合材の無機粒子含有層側の表面における光触媒活性を良好にすることができる。また、無機粒子含有層の屈折率を1.5未満とし、後述する反射防止層の屈折率を1.50~1.90とすることで、優れた反射防止性を実現できる。
 無機粒子含有層が保護機能を有するハードコート層である場合、無機粒子含有層は本開示に係る光触媒複合材における最外層であることが好ましい。
 また、無機粒子含有層が反射防止機能を有する層である場合、無機粒子含有層上に更に公知のハードコート層等の保護層を有していてもよい。
<Inorganic particle-containing layer>
The inorganic particle-containing layer contains a siloxane resin having an organic structure and inorganic particles, and has a thickness of 80 nm to 115 nm and a refractive index of less than 1.5.
When the inorganic particle-containing layer contains a siloxane resin having an organic structure and inorganic particles and has a thickness of 80 nm to 115 nm, the photocatalytic activity on the surface of the photocatalyst composite on the inorganic particle-containing layer side can be improved. it can. Further, by setting the refractive index of the inorganic particle-containing layer to less than 1.5 and setting the refractive index of the antireflection layer described later to 1.50 to 1.90, excellent antireflection property can be realized.
When the inorganic particle-containing layer is a hard coat layer having a protective function, the inorganic particle-containing layer is preferably the outermost layer in the photocatalyst composite material according to the present disclosure.
In addition, when the inorganic particle-containing layer is a layer having an antireflection function, a protective layer such as a known hard coat layer may be further provided on the inorganic particle-containing layer.
-厚み-
 本開示における無機粒子含有層の厚みは、80nm~115nmである。
 無機粒子含有層の厚みが80nm以上であることで、反射率を低く抑えることができ、反射防止性が向上する。
 無機粒子含有層の厚みが115nm以下であることで、反射を低く抑えることができ、更には、光触媒複合材は光触媒活性に優れたものとなる。
 無機粒子含有層の厚みは、後述する無機粒子含有層形成用組成物の塗布量を調整することにより制御することができる。
 無機粒子含有層の厚みは、用途に応じて設計すればよいが、上記の観点から、80nm~100nmであることが好ましい。
 無機粒子含有層の厚みは、bruker社製のDektak150を用いて測定される値である。
-Thickness-
The thickness of the inorganic particle-containing layer in the present disclosure is 80 nm to 115 nm.
When the thickness of the inorganic particle-containing layer is 80 nm or more, the reflectance can be suppressed and the antireflection property is improved.
When the thickness of the inorganic particle-containing layer is 115 nm or less, reflection can be suppressed low, and the photocatalytic composite material has excellent photocatalytic activity.
The thickness of the inorganic particle-containing layer can be controlled by adjusting the coating amount of the composition for forming an inorganic particle-containing layer described below.
The thickness of the inorganic particle-containing layer may be designed according to the application, but from the above viewpoint, it is preferably 80 nm to 100 nm.
The thickness of the inorganic particle-containing layer is a value measured by using Dektak150 manufactured by Bruker.
-屈折率-
 本開示において、無機粒子含有層の屈折率は、1.5未満である。これによって反射防止性を向上させることができる。上記の観点から、無機粒子含有層の屈折率は1.3以上1.5未満であることが好ましく、1.4以上1.5未満であることがより好ましい。
 無機粒子含有層の屈折率は、有機構造を有するシロキサン樹脂の種類、含有される無機粒子の材質、無機粒子の含有量、無機粒子含有層の構造(例えば多孔質構造等)、無機粒子含有層の厚み等により調製することが可能である。
 無機粒子含有層の屈折率は、上述の光触媒層における屈折率の測定方法と同様の方法で測定できる。
-Refractive index-
In the present disclosure, the refractive index of the inorganic particle-containing layer is less than 1.5. This can improve the antireflection property. From the above viewpoint, the refractive index of the inorganic particle-containing layer is preferably 1.3 or more and less than 1.5, and more preferably 1.4 or more and less than 1.5.
The refractive index of the inorganic particle-containing layer includes the type of siloxane resin having an organic structure, the material of the inorganic particles contained, the content of the inorganic particles, the structure of the inorganic particle-containing layer (for example, a porous structure, etc.), the inorganic particle-containing layer. Can be adjusted according to the thickness of the.
The refractive index of the inorganic particle-containing layer can be measured by the same method as the method for measuring the refractive index of the photocatalyst layer described above.
(無機粒子)
 本開示における無機粒子含有層は、無機粒子を含む。
 無機粒子は、無機粒子含有層において、有機構造を含むシロキサン樹脂と架橋されていてもよい。
 無機粒子としては、光触媒層の光触媒活性の観点から、波長350nmの光に対して透明な金属酸化物粒子等が挙げられる。
 また、後述するサイネージ用、タッチパネル用、太陽電池用又はセンサカバー用等の用途においては、波長400nm~700nmの光に対して透明な金属酸化物粒子が好ましい。
 本開示において、波長Aの光に対して透明であるとは、波長Aの光の透過率が50%以上であることを意味する。上記透過率は70%以上であることが好ましく、80%以上であることがより好ましい。換言すれば、反射率は、波長Aの光に対して50%未満が好ましく、20%未満がより好ましく、10%未満が更に好ましい。
 また、波長A~Bに対して透明であるとは、波長10nm刻みで波長Aと波長Bとの間の波長の光の透過率を測定した場合に、すべての透過率の算術平均値が50%以上であることを意味する。上記透過率は70%以上であることが好ましく、80%以上であることがより好ましい。
 また、透過率は、分光光度計V670(日本分光社製)を用いて測定される。
(Inorganic particles)
The inorganic particle-containing layer in the present disclosure contains inorganic particles.
The inorganic particles may be crosslinked with a siloxane resin having an organic structure in the inorganic particle-containing layer.
From the viewpoint of photocatalytic activity of the photocatalyst layer, examples of the inorganic particles include metal oxide particles that are transparent to light having a wavelength of 350 nm.
In addition, metal oxide particles that are transparent to light having a wavelength of 400 nm to 700 nm are preferable in applications such as signage, touch panels, solar cells, and sensor covers described below.
In the present disclosure, being transparent to the light of the wavelength A means that the transmittance of the light of the wavelength A is 50% or more. The transmittance is preferably 70% or more, more preferably 80% or more. In other words, the reflectance is preferably less than 50%, more preferably less than 20%, and even more preferably less than 10% with respect to the light of wavelength A.
Further, “transparent to wavelengths A to B” means that when the transmittance of light having a wavelength between wavelength A and wavelength B is measured in steps of 10 nm, the arithmetic average value of all transmittances is 50. % Or more. The transmittance is preferably 70% or more, more preferably 80% or more.
Further, the transmittance is measured using a spectrophotometer V670 (manufactured by JASCO Corporation).
 金属酸化物粒子の具体例としては、二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)等を挙げることができ、後述するアルコキシシラン化合物との架橋性の観点からシリカ粒子を含むことが好ましい。
 また、反射防止性をより向上する観点からも、本開示における無機粒子が、シリカ粒子を含むことが好ましく、シリカ粒子としては、コロイダルシリカが好ましい。
 シリカ粒子としては、上市されている市販品を用いてもよく、市販品の例としては、日産化学工業(株)製のスノーテックスシリーズ(コロイダルシリカ;例:スノーテックスOXS、スノーテックスOZL、スノーテックスAK-A等)などを挙げることができる。
Specific examples of the metal oxide particles include silicon dioxide (silica), aluminum oxide (alumina), zirconium oxide (zirconia), and the like, and include silica particles from the viewpoint of crosslinkability with an alkoxysilane compound described later. It is preferable.
Also, from the viewpoint of further improving the antireflection property, the inorganic particles in the present disclosure preferably include silica particles, and the silica particles are preferably colloidal silica.
Commercially available products may be used as the silica particles, and examples of the commercially available products include Snowtex series (colloidal silica; manufactured by Nissan Chemical Industries, Ltd.; eg: Snowtex OXS, Snowtex OZL, Snow). Tex AK-A) and the like.
 シリカ粒子としては、四塩化ケイ素の燃焼によって製造される乾燥粉末状のシリカを用いることもでき、二酸化ケイ素又はその水和物が水に分散したコロイダルシリカを用いることがより好ましい。特に限定されないが、具体的にはスノーテックス033などの日産化学工業(株)製のスノーテックスシリーズなどが挙げられる。
 コロイダルシリカの数平均粒径は、3nm~100nmであることが好ましく、3nm~50nmであることがより好ましく、4nm~50nmであることが更に好ましく、4nm~40nmであることが更に好ましく、5nm~35nmであることが特に好ましい。
As the silica particles, dry powdery silica produced by combustion of silicon tetrachloride can be used, and colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable. Specific examples thereof include, but are not limited to, Snowtex series manufactured by Nissan Chemical Industries, Ltd. such as Snowtex 033.
The number average particle diameter of the colloidal silica is preferably 3 nm to 100 nm, more preferably 3 nm to 50 nm, further preferably 4 nm to 50 nm, further preferably 4 nm to 40 nm, further preferably 5 nm to 35 nm is particularly preferable.
 なお、コロイダルシリカは、後述する無機粒子含有層形成用組成物中に添加される時点でのpHが2~7の範囲に調整されていることがより好ましい。このpHが2~7であると、アルコキシシラン化合物の加水分解物であるシラノールの安定性がより良好で、このシラノールの脱水縮合反応が速く進行することによる塗布液の粘度上昇を抑制することができる。 The colloidal silica is more preferably adjusted to have a pH in the range of 2 to 7 when added to the composition for forming an inorganic particle-containing layer described below. When the pH is 2 to 7, the stability of silanol, which is a hydrolyzate of an alkoxysilane compound, is better, and the increase in viscosity of the coating solution due to the rapid progress of the dehydration condensation reaction of this silanol can be suppressed. it can.
 本開示における無機粒子の数平均粒径は、3nm~100nmであることが好ましく、4nm~50nmであることがより好ましく、4nm~40nmであることが更に好ましく、5nm~35nmであることが特に好ましい。
 本開示における無機粒子としては、市販品の無機粒子の数平均粒径を、上記FE-SEMにより算出し、所望の粒径を含む製品を選別して用いてもよい。
 また、本開示における無機粒子の形状は、特に限定されないが、分散性の観点から、略球形であることが好ましい。
The number average particle diameter of the inorganic particles in the present disclosure is preferably 3 nm to 100 nm, more preferably 4 nm to 50 nm, further preferably 4 nm to 40 nm, and particularly preferably 5 nm to 35 nm. ..
As the inorganic particles in the present disclosure, the number average particle diameter of commercially available inorganic particles may be calculated by the FE-SEM, and a product containing a desired particle diameter may be selected and used.
The shape of the inorganic particles in the present disclosure is not particularly limited, but from the viewpoint of dispersibility, it is preferably substantially spherical.
 本開示における無機粒子含有層の全質量に対し、無機粒子の含有量は、0質量%を超え80質量%以下であることが好ましく、1質量%~70質量%であることがより好ましく、3質量%~65質量%であることが更に好ましい。
 本開示における無機粒子含有層は、無機粒子を1種単独で含有してもよいし、2種以上を併用してもよい。
With respect to the total mass of the inorganic particle-containing layer in the present disclosure, the content of the inorganic particles is preferably more than 0 mass% and 80 mass% or less, more preferably 1 mass% to 70 mass%, 3 It is more preferable that the amount is from 65% by mass to 65% by mass.
The inorganic particle-containing layer in the present disclosure may contain one type of inorganic particles alone, or may use two or more types in combination.
(有機構造を含むシロキサン樹脂)
 無機粒子含有層は、有機構造を含むシロキサン樹脂を含む。
 ここで、「有機構造」とは、炭素原子を含み、シロキサン樹脂を構成する-SiO-と結合している部分構造をいう。
 無機粒子含有層における有機構造を含むシロキサン樹脂における上記有機構造は、架橋構造であることが好ましい。「架橋構造」とは、-SiO-骨格同士の間を連結して二次元もしくは三次元の網目状構造を形成している部分構造を指す。
 また、無機粒子含有層に含まれるシロキサン樹脂における有機構造、及び、上述の反射防止層に含まれるシロキサン樹脂における有機構造の少なくとも一方が、架橋構造であることが好ましく、無機粒子含有層に含まれるシロキサン樹脂における有機構造、及び、上述の反射防止層に含まれるシロキサン樹脂の両方における有機構造が、架橋構造であることがより好ましい。
 上記有機構造が架橋構造である場合、シロキサン樹脂同士が架橋されていてもよいし、シロキサン樹脂と無機粒子とが架橋されていてもよい。
 上記有機構造は、核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。また、架橋構造は、シロキサン樹脂を有機溶剤(例えばトルエン)に溶解させた場合に溶解しないことで確認することができる。
(Siloxane resin containing organic structure)
The inorganic particle-containing layer contains a siloxane resin having an organic structure.
Here, the “organic structure” refers to a partial structure containing a carbon atom and bonded to —SiO— constituting the siloxane resin.
The organic structure in the siloxane resin containing the organic structure in the inorganic particle-containing layer is preferably a crosslinked structure. The “crosslinked structure” refers to a partial structure in which —SiO— skeletons are connected to each other to form a two-dimensional or three-dimensional network structure.
Further, at least one of the organic structure in the siloxane resin contained in the inorganic particle-containing layer and the organic structure in the siloxane resin contained in the antireflection layer is preferably a crosslinked structure, and contained in the inorganic particle-containing layer. It is more preferable that both the organic structure in the siloxane resin and the organic structure in the siloxane resin contained in the antireflection layer are crosslinked structures.
When the organic structure is a crosslinked structure, the siloxane resins may be crosslinked, or the siloxane resin and the inorganic particles may be crosslinked.
The above organic structure can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from nuclear magnetic resonance spectrum (NMR) measurement. Further, the crosslinked structure can be confirmed by not dissolving when the siloxane resin is dissolved in an organic solvent (for example, toluene).
 上記架橋構造として含まれる有機構造としては、下記式1-1~式1-3のいずれかにより表される構造であることが好ましい。 The organic structure contained as the above-mentioned crosslinked structure is preferably a structure represented by any of the following formulas 1-1 to 1-3.
Figure JPOXMLDOC01-appb-C000001

 
 
Figure JPOXMLDOC01-appb-C000001

 
 
 式1-1~式1-3中、R11は単結合、酸素原子、アリーレンオキシ基、アリーレンオキシアルキレン基、又はアルキレン基を表し、R12~R14はそれぞれ独立に、水素原子又はアルキル基を表し、R12~R14のうちの少なくとも2つが結合し、環構造を形成していてもよく、R21は単結合又はアルキレン基を表し、R31は単結合、アルキレンオキシカルボニル基、アルキレンアミノカルボニル基、アルキレンオキシ基、酸素原子又はアリーレン基を表し、R32は水素原子又はアルキル基を表し、●及び*はそれぞれ独立に、他の構造との結合部位を表す。 In Formula 1-1 to Formula 1-3, R 11 represents a single bond, an oxygen atom, an aryleneoxy group, an aryleneoxyalkylene group, or an alkylene group, and R 12 to R 14 are each independently a hydrogen atom or an alkyl group. At least two of R 12 to R 14 may be bonded to each other to form a ring structure, R 21 represents a single bond or an alkylene group, and R 31 represents a single bond, an alkyleneoxycarbonyl group, an alkylene group. It represents an aminocarbonyl group, an alkyleneoxy group, an oxygen atom or an arylene group, R 32 represents a hydrogen atom or an alkyl group, and ● and * each independently represent a bonding site with another structure.
 式1-1により表される構造は、例えば、後述するアルコキシシラン化合物として、エポキシ基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-1中、R11は酸素原子、又はアルキレンオキシアルキレン基が好ましい。
 式1-1中、R12~R14はいずれも水素原子であることが好ましい。また、R12~R14の少なくとも2つが結合して環構造を形成する場合、R12又はR13とR14とが結合することが好ましい。また、上記環構造としては炭化水素環が好ましく、シクロヘキサン環がより好ましい。
 式1-1中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-1中、結合部位である●が結合する対象は、特に限定されないが、シロキサン樹脂に含まれる原子であることが好ましい。上記原子としては、酸素原子であることが好ましい。
 例えば、アルコキシシラン化合物として3-グリシドキシプロピルトリメトキシシランを用いた場合、*はSi原子に結合し、R11はプロピレンオキシ基となり、R12~R14は水素原子となる。その場合、例えば●はシロキサン樹脂における酸素原子等に結合する。
The structure represented by Formula 1-1 is formed, for example, by using an alkoxysilane compound having an epoxy group as the alkoxysilane compound described below.
In Formula 1-1, R 11 is preferably an oxygen atom or an alkyleneoxyalkylene group.
In formula 1-1, it is preferable that all of R 12 to R 14 are hydrogen atoms. When at least two members out of R 12 to R 14 combine to form a ring structure, it is preferable that R 12 or R 13 and R 14 bond together. Further, the above-mentioned ring structure is preferably a hydrocarbon ring, more preferably a cyclohexane ring.
In Formula 1-1, the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
In formula 1-1, the target to which the binding site, ●, is bound is not particularly limited, but is preferably an atom contained in the siloxane resin. The atom is preferably an oxygen atom.
For example, when 3-glycidoxypropyltrimethoxysilane is used as the alkoxysilane compound, * is bonded to the Si atom, R 11 is a propyleneoxy group, and R 12 to R 14 are hydrogen atoms. In that case, for example, ● bonds to an oxygen atom or the like in the siloxane resin.
 式1-2により表される構造は、例えば、後述するアルコキシシラン化合物として、イソシアネート基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-2中、R21は単結合又はアルキレン基を表し、炭素数2~10のアルキレン基であることが好ましい。
 式1-2中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-2中、結合部位である●が結合する対象は、特に限定されないが、シロキサン樹脂に含まれる原子であることが好ましい。上記原子としては、酸素原子であることが好ましい。
 例えば、アルコキシシラン化合物として3-イソシアネートプロピルトリエトキシシランを用いた場合、*はSi原子に結合し、R21はプロピレン基となる。その場合、例えば●はシロキサン樹脂における酸素原子等に結合する。
The structure represented by Formula 1-2 is formed, for example, by using an alkoxysilane compound having an isocyanate group as the alkoxysilane compound described later.
In Formula 1-2, R 21 represents a single bond or an alkylene group, and is preferably an alkylene group having 2 to 10 carbon atoms.
In Formula 1-2, the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
In Formula 1-2, the target to which the binding site, ●, is bound is not particularly limited, but is preferably an atom contained in the siloxane resin. The atom is preferably an oxygen atom.
For example, when 3-isocyanatopropyltriethoxysilane is used as the alkoxysilane compound, * is bonded to the Si atom and R 21 is a propylene group. In that case, for example, ● bonds to an oxygen atom or the like in the siloxane resin.
 式1-3により表される構造は、例えば、後述するアルコキシシラン化合物として、エチレン性不飽和基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-3中、R31はアルキレンオキシカルボニル基、アルキレンアミノカルボニル基又はアリーレン基を表すことが好ましく、炭素数2~10のアルキレンオキシカルボニル基、炭素数2~10のアルキレンアミノカルボニル基又はフェニレン基がより好ましく、炭素数2~10のアルキレンオキシカルボニル基が更に好ましい。
 式1-3中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-3中、結合部位である●が結合する対象は、特に限定されないが、他の式1-3により表される構造であることが好ましい。
 例えば、アルコキシシラン化合物として3-メタクリロキシプロピルメチルジエトキシシランを用いた場合、*はSi原子に結合し、R31はプロピレンオキシカルボニル基となる。その場合、例えば●は、他の3-メタクリロキシプロピルメチルジエトキシシランにおけるメタクリロキシ基と重合する。
The structure represented by Formula 1-3 is formed, for example, by using an alkoxysilane compound having an ethylenically unsaturated group as the alkoxysilane compound described later.
In Formula 1-3, R 31 preferably represents an alkyleneoxycarbonyl group, an alkyleneaminocarbonyl group or an arylene group, and has an alkyleneoxycarbonyl group having 2 to 10 carbon atoms, an alkyleneaminocarbonyl group having 2 to 10 carbon atoms or phenylene. A group is more preferable, and an alkyleneoxycarbonyl group having 2 to 10 carbon atoms is further preferable.
In formula 1-3, the target to which *, which is the binding site, is bound is not particularly limited, but is preferably a Si atom or an organic group contained in the siloxane resin, and more preferably a Si atom contained in the siloxane resin. preferable.
In Formula 1-3, the target to which the binding site, ●, binds is not particularly limited, but it is preferably a structure represented by another Formula 1-3.
For example, when 3-methacryloxypropylmethyldiethoxysilane is used as the alkoxysilane compound, * is bonded to the Si atom and R 31 is a propyleneoxycarbonyl group. In that case, for example, ● will polymerize with the methacryloxy group in the other 3-methacryloxypropylmethyldiethoxysilane.
 また、本開示において用いられる有機構造を含むシロキサン樹脂は、有機構造としてアルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基等の基を更に有していてもよい。 Further, the siloxane resin containing an organic structure used in the present disclosure may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, a carboxy group or the like as an organic structure.
 有機構造の全含有量は、光触媒複合材の長期安定性の観点から、シロキサン樹脂の全質量に対して、90質量%以下であることが好ましく、75質量%以下であることがより好ましい。
 また、有機構造の全含有量の下限値は、膜強度を向上させる点で、シロキサン樹脂の全質量に対して、5質量%以上とすることができる。
From the viewpoint of long-term stability of the photocatalyst composite material, the total content of the organic structure is preferably 90% by mass or less, and more preferably 75% by mass or less, based on the total mass of the siloxane resin.
The lower limit of the total content of the organic structure can be 5% by mass or more with respect to the total mass of the siloxane resin in terms of improving the film strength.
 無機粒子含有層は、有機構造を含むシロキサン樹脂を1種単独で含有してもよいし、2種以上を含んでいてもよい。
 有機構造を含むシロキサン樹脂の無機粒子含有層中における含有量は、無機粒子含有層の全質量に対して、20質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましい。また、有機構造を含むシロキサン樹脂の無機粒子含有層中における含有量は、99質量%以下が好ましく、97質量%以下がより好ましく、90質量%以下が更に好ましい。
The inorganic particle-containing layer may contain one kind of siloxane resin containing an organic structure, or may contain two or more kinds thereof.
The content of the siloxane resin containing an organic structure in the inorganic particle-containing layer is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 35% by mass or more, based on the total mass of the inorganic particle-containing layer. .. The content of the siloxane resin containing an organic structure in the inorganic particle-containing layer is preferably 99% by mass or less, more preferably 97% by mass or less, and further preferably 90% by mass or less.
〔無機粒子含有層形成用組成物〕
 本開示において、無機粒子含有層は、アルコキシシラン化合物と、無機粒子とを含む組成物(以下、「無機粒子含有層形成用組成物」ともいう。)を硬化してなる層であることが好ましい。
 すなわち、上記有機構造を含むシロキサン樹脂は、アルコキシシラン化合物の縮合物であることが好ましい。
 上記アルコキシシラン化合物は、VOC(volatile organic compounds)による環境汚染を低減する観点から、水溶性又は水分散性の素材であることが好ましい。
 また、上記無機粒子含有層形成用組成物は、溶媒として水を含む水性組成物であることが好ましい。上述の光触媒層における酸化チタン粒子、及び、アモルファス過酸化チタン型無機バインダーは水に対する溶解度が低いため、上記無機粒子含有層形成用組成物が溶媒として水を含むことにより、光触媒層の形成後に、光触媒層上に無機粒子含有層形成用組成物を塗布した場合であっても層間の混合が抑えられる。
 また、無機粒子含有層形成用組成物は、有機溶剤を実質的に含まないことが好ましい。本開示において、実質的に含まないとは、含有量が1質量%未満であることをいい、0.1質量%未満であることが好ましい。有機溶剤を実質的に含まないことにより、無機粒子含有層形成用組成物を塗布し乾燥させる際に蒸発するものは、主に水成分となる。このため、有機溶剤を含む場合と比較して、環境への負荷を大幅に低減することができる。
[Inorganic particle-containing layer forming composition]
In the present disclosure, the inorganic particle-containing layer is preferably a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles (hereinafter, also referred to as “inorganic particle-containing layer forming composition”). ..
That is, the siloxane resin containing the organic structure is preferably a condensate of an alkoxysilane compound.
The above-mentioned alkoxysilane compound is preferably a water-soluble or water-dispersible material from the viewpoint of reducing environmental pollution due to VOCs (volatile organic compounds).
The composition for forming an inorganic particle-containing layer is preferably an aqueous composition containing water as a solvent. Titanium oxide particles in the above-mentioned photocatalyst layer, and, since the amorphous titanium peroxide type inorganic binder has low solubility in water, the composition for forming an inorganic particle-containing layer contains water as a solvent, after the formation of the photocatalyst layer, Even when the composition for forming an inorganic particle-containing layer is applied onto the photocatalyst layer, mixing between layers can be suppressed.
Further, the composition for forming a layer containing inorganic particles preferably contains substantially no organic solvent. In the present disclosure, “not substantially containing” means that the content is less than 1% by mass, and preferably less than 0.1% by mass. When the composition for forming an inorganic particle-containing layer is applied and dried by substantially not containing an organic solvent, a component that evaporates mainly becomes a water component. Therefore, the load on the environment can be significantly reduced as compared with the case where the organic solvent is included.
 上記アルコキシシラン化合物は、架橋性基含有アルコキシシラン化合物と、架橋性基非含有アルコキシシラン化合物と、を含むことが好ましく、エポキシ基含有アルコキシシラン化合物と、エポキシ基非含有アルコキシシラン化合物と、を含むことがより好ましい。 The alkoxysilane compound preferably contains a crosslinkable group-containing alkoxysilane compound and a crosslinkable group-free alkoxysilane compound, and contains an epoxy group-containing alkoxysilane compound and an epoxy group-free alkoxysilane compound. Is more preferable.
 架橋性基含有アルコキシシラン化合物と架橋性基非含有アルコキシシラン化合物は、いずれも加水分解性基を有することができる。この加水分解性基が例えば酸性の水溶液中で加水分解されることによりシラノールが生成され、シラノール同士が縮合することによって、シロキサン樹脂が生成される。
 本開示における無機粒子含有層形成用組成物中においては、架橋性基含有アルコキシシラン化合物及び架橋性基非含有アルコキシシラン化合物の一部は加水分解されていてもよい。
Both the crosslinkable group-containing alkoxysilane compound and the non-crosslinkable group-containing alkoxysilane compound can have a hydrolyzable group. The hydrolyzable group is hydrolyzed in, for example, an acidic aqueous solution to produce silanol, and the silanols are condensed with each other to produce a siloxane resin.
In the composition for forming an inorganic particle-containing layer according to the present disclosure, a part of the crosslinkable group-containing alkoxysilane compound and the non-crosslinkable group-containing alkoxysilane compound may be hydrolyzed.
(架橋性基含有アルコキシシラン化合物)
 架橋性基含有アルコキシシラン化合物における架橋性基としては、エポキシ基、イソシアネート基及びラジカル重合性基が挙げられる。
 架橋性基含有アルコキシシラン化合物としては、エポキシ基含有アルコキシシラン化合物、イソシアネート基含有アルコキシシラン化合物、ラジカル重合性基含有アルコキシシラン化合物等が挙げられ、エポキシ基含有アルコキシシラン化合物を含むことが好ましい。
(Crosslinkable group-containing alkoxysilane compound)
Examples of the crosslinkable group in the crosslinkable group-containing alkoxysilane compound include an epoxy group, an isocyanate group and a radical polymerizable group.
Examples of the crosslinkable group-containing alkoxysilane compound include an epoxy group-containing alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, and a radically polymerizable group-containing alkoxysilane compound, and preferably include an epoxy group-containing alkoxysilane compound.
~エポキシ基含有アルコキシシラン化合物~
 エポキシ基含有アルコキシシラン化合物は、エポキシ基を有するアルコキシシラン化合物である。エポキシ基含有アルコキシシラン化合物としては、1分子中に1つ以上エポキシ基を有するものであればよく、エポキシ基の数は特に限定されない。エポキシ基含有アルコキシシラン化合物は、エポキシ基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
-Epoxy group-containing alkoxysilane compound-
The epoxy group-containing alkoxysilane compound is an alkoxysilane compound having an epoxy group. The epoxy group-containing alkoxysilane compound may be one having at least one epoxy group in one molecule, and the number of epoxy groups is not particularly limited. The epoxy group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group in addition to the epoxy group.
 本開示において用いられるエポキシ基含有アルコキシシラン化合物としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等を挙げることができる。市販品としては、KBE-403(信越化学工業(株)製)などが挙げられる。 Examples of the epoxy group-containing alkoxysilane compound used in the present disclosure include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, and 2-(3,4 -Epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, Examples thereof include 3-glycidoxypropyltriethoxysilane. Examples of commercially available products include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
~イソシアネート基含有アルコキシシラン化合物~
 イソシアネート基含有アルコキシシラン化合物は、イソシアネート基を有するアルコキシシラン化合物である。イソシアネート基含有アルコキシシラン化合物としては、1分子中に1つ以上イソシアネート基を有するアルコキシシラン化合物であればよく、イソシアネート基の数は特に限定されない。イソシアネート基含有アルコキシシラン化合物は、イソシアネート基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
~ Isocyanate group-containing alkoxysilane compounds ~
The isocyanate group-containing alkoxysilane compound is an alkoxysilane compound having an isocyanate group. The isocyanate group-containing alkoxysilane compound may be any alkoxysilane compound having one or more isocyanate groups in one molecule, and the number of isocyanate groups is not particularly limited. The isocyanate group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group, in addition to the isocyanate group.
 本開示において用いられるイソシアネート基含有アルコキシシラン化合物としては、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。市販品としては、KBE-9007(信越化学工業(株)製)などが挙げられる。 Examples of the isocyanate group-containing alkoxysilane compound used in the present disclosure include 3-isocyanatepropyltriethoxysilane and 3-isocyanatepropyltrimethoxysilane. Examples of commercially available products include KBE-9007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
~ラジカル重合性基含有アルコキシシラン化合物~
 ラジカル重合性基含有アルコキシシラン化合物は、ラジカル重合性基を有するアルコキシシラン化合物である。ラジカル重合性基含有アルコキシシラン化合物としては、1分子中に1つ以上ラジカル重合性基を有するアルコキシシラン化合物であればよく、ラジカル重合性基の数は特に限定されない。
 ラジカル重合性基としては、特に限定されないが、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニル基、ビニル基、アリル基等が挙げられる。
 ラジカル重合性基含有アルコキシシラン化合物は、ラジカル重合性基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基など基を有していてもよい。
~ Alkoxysilane compounds containing radically polymerizable groups ~
The radical-polymerizable group-containing alkoxysilane compound is an alkoxysilane compound having a radical-polymerizable group. The radical polymerizable group-containing alkoxysilane compound may be any alkoxysilane compound having one or more radical polymerizable groups in one molecule, and the number of radical polymerizable groups is not particularly limited.
The radically polymerizable group is not particularly limited, and examples thereof include (meth)acryloxy group, (meth)acrylamide group, vinylphenyl group, vinyl group, and allyl group.
The radical polymerizable group-containing alkoxysilane compound may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group and a carboxy group in addition to the radical polymerizable group.
 本開示において用いられるラジカル重合性基含有アルコキシシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。市販品としては、KBM-1003、KBE-1003、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103(信越化学工業(株)製)などが挙げられる。
 また、無機粒子含有層形成用組成物がラジカル重合性基含有アルコキシシラン化合物を含む場合、無機粒子含有層形成用組成物は、公知のラジカル重合開始剤を更に含んでもよい。
Examples of the radical polymerizable group-containing alkoxysilane compound used in the present disclosure include vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. , 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like. Examples of commercially available products include KBM-1003, KBE-1003, KBM-1403, KBM-502, KBM-503, KBE-502, KBE-503, and KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.).
When the composition for forming an inorganic particle-containing layer contains a radically polymerizable group-containing alkoxysilane compound, the composition for forming an inorganic particle-containing layer may further contain a known radical polymerization initiator.
 架橋性基含有アルコキシシラン化合物の含有量は、無機粒子含有層形成用組成物の安定性、及び、得られる無機粒子含有層のアルカリ耐性を向上する観点から、無機粒子含有層形成用組成物に含まれるアルコキシシラン化合物の全質量に対して、20質量%~85質量%であることが好ましい。架橋性基含有アルコキシシラン化合物の含有量は、無機粒子含有層形成用組成物に含まれるアルコキシシラン化合物の全質量に対して、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。また、架橋性基含有アルコキシシラン化合物の含有量は、80質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。 The content of the crosslinkable group-containing alkoxysilane compound, the stability of the inorganic particle-containing layer forming composition, and from the viewpoint of improving the alkali resistance of the resulting inorganic particle-containing layer, to the inorganic particle-containing layer forming composition. It is preferably 20% by mass to 85% by mass with respect to the total mass of the alkoxysilane compound contained. The content of the crosslinkable group-containing alkoxysilane compound is more preferably 25% by mass or more and 30% by mass or more based on the total mass of the alkoxysilane compound contained in the composition for forming an inorganic particle-containing layer. Is more preferable. Further, the content of the crosslinkable group-containing alkoxysilane compound is more preferably 80% by mass or less, and further preferably 75% by mass or less.
(架橋性基非含有アルコキシシラン化合物)
 架橋性基非含有アルコキシシラン化合物は、架橋性基を有さないアルコキシシラン化合物である。架橋性基非含有アルコキシシラン化合物は、架橋性基を有さないアルコキシシラン化合物であればよく、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
(Crosslinkable group-free alkoxysilane compound)
The crosslinkable group-free alkoxysilane compound is an alkoxysilane compound having no crosslinkable group. The crosslinkable group-free alkoxysilane compound may be any alkoxysilane compound having no crosslinkable group, and has a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group or a carboxy group. You may have.
 架橋性基非含有アルコキシシラン化合物は、テトラアルコキシシラン化合物もしくはトリアルコキシシラン化合物、又は、テトラアルコキシシラン化合物とトリアルコキシシラン化合物との混合物であることが好ましい。架橋性基非含有アルコキシシラン化合物は、テトラアルコキシシラン化合物及びトリアルコキシシラン化合物の混合物であることが好ましく、テトラアルコキシシラン化合物とトリアルコキシシラン化合物を混合して含有することにより、無機粒子含有層を形成した際に、適度な柔軟性を有しつつも、十分な硬度を得ることができる。 The crosslinkable group-free alkoxysilane compound is preferably a tetraalkoxysilane compound or a trialkoxysilane compound, or a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound. The crosslinkable group-free alkoxysilane compound is preferably a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound, and by mixing and containing a tetraalkoxysilane compound and a trialkoxysilane compound, the inorganic particle-containing layer is formed. When formed, sufficient hardness can be obtained while having appropriate flexibility.
 架橋性基非含有アルコキシシラン化合物が、テトラアルコキシシラン化合物とトリアルコキシシラン化合物との混合物である場合、テトラアルコキシシラン化合物とトリアルコキシシラン化合物とのモル比は、25:75~85:15であることが好ましく、30:70~80:20であることがより好ましく、30:70~65:35であることが更に好ましい。モル比を上記範囲内とすることにより、アルコキシシラン化合物の重合度を所望の範囲内に制御することや加水分解速度及びアルミキレートの溶解性を制御することが容易となる。 When the crosslinkable group-free alkoxysilane compound is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound, the molar ratio of the tetraalkoxysilane compound and the trialkoxysilane compound is 25:75 to 85:15. The ratio is preferably 30:70 to 80:20, more preferably 30:70 to 65:35. By setting the molar ratio within the above range, it becomes easy to control the degree of polymerization of the alkoxysilane compound within a desired range and control the hydrolysis rate and the solubility of the aluminum chelate.
 テトラアルコキシシラン化合物は、4官能のアルコキシシラン化合物であり、各アルコキシ基の炭素数が1~4のものがより好ましい。中でも、テトラメトキシシラン化合物又はテトラエトキシシラン化合物が特に好ましく用いられる。各アルコキシ基の炭素数を4以下とすることにより、酸性水と混ぜた際のテトラアルコキシシラン化合物の加水分解速度が低くなりすぎることがなく、均一な水溶液にするまでの溶解に要する時間がより短くなる。これにより、無機粒子含有層を形成する際の形成効率を高めることができる。市販品としては、KBE-04(信越化学工業(株)製)などが挙げられる。 The tetraalkoxysilane compound is a tetrafunctional alkoxysilane compound, and it is more preferable that each alkoxy group has 1 to 4 carbon atoms. Among them, a tetramethoxysilane compound or a tetraethoxysilane compound is particularly preferably used. By setting the number of carbon atoms of each alkoxy group to 4 or less, the hydrolysis rate of the tetraalkoxysilane compound when mixed with acidic water does not become too low, and the time required for dissolution to form a uniform aqueous solution is further improved. It gets shorter. Thereby, the formation efficiency at the time of forming an inorganic particle content layer can be raised. Examples of commercially available products include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 トリアルコキシシラン化合物は、下記式Aで表される3官能のアルコキシシラン化合物である。
 R-Si(OR 式A
 式A中、Rはアミノ基を含まない炭素数が1~15の有機基、Rは炭素数4以下のアルキル基である。
The trialkoxysilane compound is a trifunctional alkoxysilane compound represented by the following formula A.
R-Si(OR 1 ) 3 formula A
In the formula A, R is an organic group containing no amino group and having 1 to 15 carbon atoms, and R 1 is an alkyl group having 4 or less carbon atoms.
 式Aで表される3官能のアルコキシシラン化合物は、アミノ基を官能基として含まないことが好ましい。つまり、3官能のアルコキシシラン化合物は、アミノ基を有さない有機基Rを有している。Rがアミノ基を有さないことにより、3官能のアルコキシシラン化合物を4官能のアルコキシシラン化合物と混合して加水分解した場合に、生成するシラノール同士で脱水縮合が促進されにくく、無機粒子含有層形成用組成物の安定性が向上する。 The trifunctional alkoxysilane compound represented by the formula A preferably does not contain an amino group as a functional group. That is, the trifunctional alkoxysilane compound has the organic group R having no amino group. Since R does not have an amino group, when a trifunctional alkoxysilane compound is mixed with a tetrafunctional alkoxysilane compound and hydrolyzed, it is difficult for dehydration condensation to be promoted between silanols produced, and thus the inorganic particle-containing layer The stability of the forming composition is improved.
 式A中、Rは、炭素数が1~15の範囲である分子鎖長を有する有機基であればよい。炭素数を15以下とすることにより、無機粒子含有層の柔軟性が大きくなりすぎず、十分な硬度を得ることができる。また、Rの炭素数を上記範囲内とすることにより、脆性に優れた無機粒子含有層を得ることができる。更に、光触媒層と無機粒子含有層との密着性を高めることができる。
 また、上記Rは、式A中のSi原子と、R中の炭素原子とが直接結合する基であることが好ましい。
 また、上記Rで示す有機基は、酸素、窒素、硫黄などのヘテロ原子を有してもよい。有機基がヘテロ原子を有することにより、光触媒層との密着性を高めることができる。
In the formula A, R may be any organic group having a molecular chain length of 1 to 15 carbon atoms. By setting the carbon number to 15 or less, the flexibility of the inorganic particle-containing layer does not become too large, and sufficient hardness can be obtained. Further, by setting the carbon number of R within the above range, an inorganic particle-containing layer having excellent brittleness can be obtained. Furthermore, the adhesion between the photocatalyst layer and the inorganic particle-containing layer can be improved.
Further, R is preferably a group in which the Si atom in formula A and the carbon atom in R are directly bonded.
Further, the organic group represented by R may have a hetero atom such as oxygen, nitrogen or sulfur. When the organic group has a hetero atom, the adhesion with the photocatalyst layer can be improved.
 トリアルコキシシラン化合物としては、3-クロロプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシランを挙げることができる。中でも、メチルトリエトキシシラン及びメチルトリメトキシシランは特に好ましく用いられる。市販品としては、KBE-13(信越化学工業(株)製)などが挙げられる。 Examples of trialkoxysilane compounds include 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and methyl. Examples thereof include triethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane and phenyltrimethoxysilane. Among them, methyltriethoxysilane and methyltrimethoxysilane are particularly preferably used. Examples of commercially available products include KBE-13 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 架橋性基非含有アルコキシシラン化合物の含有量は、無機粒子含有層形成用組成物の安定性を向上する観点、及び、得られる無機粒子含有層のアルカリ耐性を向上する観点から、無機粒子含有層形成用組成物に含まれるアルコキシシラン化合物の全質量に対して、15質量%~80質量%であることが好ましい。架橋性基非含有アルコキシシラン化合物の含有量は、無機粒子含有層形成用組成物に含まれるアルコキシシラン化合物の全質量に対して、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。
 また、架橋性基非含有アルコキシシラン化合物の含有量は、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
The content of the crosslinkable group-free alkoxysilane compound is an inorganic particle-containing layer from the viewpoint of improving the stability of the composition for forming an inorganic particle-containing layer, and from the viewpoint of improving the alkali resistance of the obtained inorganic particle-containing layer. It is preferably 15% by mass to 80% by mass based on the total mass of the alkoxysilane compound contained in the composition for forming. The content of the crosslinkable group-free alkoxysilane compound is more preferably 20% by mass or more and 30% by mass or more based on the total mass of the alkoxysilane compound contained in the composition for forming an inorganic particle-containing layer. More preferably,
The content of the crosslinkable group-free alkoxysilane compound is more preferably 75% by mass or less, further preferably 70% by mass or less.
(無機粒子)
 無機粒子含有層形成用組成物は無機粒子を含む。無機粒子含有層形成用組成物における無機粒子は、上述の無機粒子含有層における無機粒子と同様であり、好ましい態様も同様である。
 無機粒子含有層形成用組成物における無機粒子の含有量は、光触媒活性及び無機粒子含有層のアルカリ耐性の観点から、無機粒子含有層形成用組成物の全固形分に対する無機粒子の含有量をx質量%とした場合に、0質量%<x質量%≦80質量%であることが好ましい。x質量%は1質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。また、x質量%は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。
(Inorganic particles)
The inorganic particle-containing layer forming composition contains inorganic particles. The inorganic particles in the composition for forming an inorganic particle-containing layer are the same as the inorganic particles in the above-mentioned inorganic particle-containing layer, and the preferred embodiments are also the same.
The content of the inorganic particles in the composition for forming an inorganic particle-containing layer is, from the viewpoint of photocatalytic activity and alkali resistance of the inorganic particle-containing layer, the content of the inorganic particles based on the total solid content of the composition for forming an inorganic particle-containing layer is x. When it is defined as mass %, it is preferable that 0 mass %<x mass %≦80 mass %. The x mass% is more preferably 1 mass% or more, further preferably 3 mass% or more. Further, x mass% is preferably 80 mass% or less, more preferably 70 mass% or less, and further preferably 65 mass% or less.
 また、無機粒子含有層形成用組成物の全固形分に対する無機粒子の含有量をx質量%とした場合に、アルコキシシラン化合物の全質量に対する架橋性基含有アルコキシシラン化合物の含有量をy質量%すると、y質量%≧x質量%-5質量%であることが好ましく、y質量%≧x質量%であることがより好ましい。y質量%とxの質量%との間の関係を上記範囲とすることにより、無機粒子含有層のより高い耐アルカリ耐性を得ることができ、アルカリ溶液に浸漬させた際のヘイズ値の変化を抑えることができる。更に、無機粒子含有層形成用組成物の安定性を高めることができる。 Further, when the content of the inorganic particles with respect to the total solid content of the composition for forming an inorganic particle-containing layer is x mass %, the content of the crosslinkable group-containing alkoxysilane compound with respect to the total mass of the alkoxysilane compound is y mass %. Then, y mass%≧x mass%−5 mass% is preferable, and y mass%≧x mass% is more preferable. By setting the relationship between y mass% and mass% of x to be in the above range, it is possible to obtain higher alkali resistance of the inorganic particle-containing layer, and to change the haze value when immersed in an alkaline solution. Can be suppressed. Furthermore, the stability of the inorganic particle-containing layer forming composition can be enhanced.
(金属錯体(硬化剤))
 無機粒子含有層形成用組成物は、金属錯体(硬化剤)を含むことが好ましい。即ち、本開示における無機粒子含有層は、金属錯体を含むことが好ましい。
 金属錯体としては、Al、Mg、Mn、Ti、Cu、Co、Zn、Hf及びZrよりなる群から選ばれた少なくとも1種の金属を有する金属錯体が好ましく、これらを併用することもできる。
(Metal complex (hardener))
The inorganic particle-containing layer forming composition preferably contains a metal complex (curing agent). That is, the inorganic particle-containing layer in the present disclosure preferably contains a metal complex.
As the metal complex, a metal complex having at least one metal selected from the group consisting of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf, and Zr is preferable, and these can be used in combination.
 本開示における金属錯体は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン、アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを用いることができる。 The metal complex in the present disclosure can be easily obtained by reacting a metal alkoxide with a chelating agent. Examples of chelating agents include β-diketones such as acetylacetone, benzoylacetone and dibenzoylmethane, β-keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
 金属錯体の好ましい具体的な例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート化合物、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、マンガンアセチルアセトナート、コバルトアセチルアセトナート、銅アセチルアセトナート、チタンアセチルアセトナート、チタンオキシアセチルアセトナートが挙げられる。これらのうち、好ましくは、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、マグネシウムビス(アセチルアセトネート)、マグネシウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナートが挙げられ、保存安定性、入手容易さを考慮すると、アルミニウムキレート錯体であるアルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)が特に好ましい。市販品としては、アルミキレートA(W)、アルミキレートD、アルミキレートM(川研ファインケミカル(株)製)などが挙げられる。 Preferable specific examples of the metal complex include ethyl acetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), alkylacetoacetate aluminum diisopropylate, aluminum monoacetylacetate bis(ethylacetoacetate), aluminum tris(acetyl). Acetonate) and other aluminum chelate compounds, ethyl acetoacetate magnesium monoisopropylate, magnesium bis(ethylacetoacetate), alkylacetoacetate magnesium monoisopropylate, magnesium bis(acetylacetonate) and other magnesium chelate compounds, zirconium tetraacetylacetate Examples include nato, zirconium tributoxyacetylacetonate, zirconium acetylacetonate bis(ethylacetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate, and titanium oxyacetylacetonate. Of these, preferred are aluminum tris(acetylacetonate), aluminum tris(ethylacetoacetate), magnesium bis(acetylacetonate), magnesium bis(ethylacetoacetate), and zirconium tetraacetylacetonate, which are storage stable. Considering the properties and availability, aluminum tris(acetylacetonate) and aluminum tris(ethylacetoacetate), which are aluminum chelate complexes, are particularly preferable. Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, and aluminum chelate M (manufactured by Kawaken Fine Chemicals Co., Ltd.).
 金属錯体の含有量は、架橋性基含有アルコキシシラン化合物の全モル量に対し、17モル%~70モル%であることが好ましい。上記含有量は、20モル%以上であることがより好ましい。上記含有量は、65モル%以下であることがより好ましく、60モル%以下であることが更に好ましい。
 金属錯体の含有量が17モル%以上であると、無機粒子含有層を形成した際に優れたアルカリ耐性を得ることができる。また、金属錯体の含有量が70モル%以下であると、無機粒子含有層形成用組成物中における金属錯体の分散性を良好とし、かつ、製造コストを抑えることができる。
The content of the metal complex is preferably 17 mol% to 70 mol% with respect to the total molar amount of the crosslinkable group-containing alkoxysilane compound. The content is more preferably 20 mol% or more. The content is more preferably 65 mol% or less, further preferably 60 mol% or less.
When the content of the metal complex is 17 mol% or more, excellent alkali resistance can be obtained when the inorganic particle-containing layer is formed. Further, when the content of the metal complex is 70 mol% or less, the dispersibility of the metal complex in the composition for forming an inorganic particle-containing layer can be improved, and the manufacturing cost can be suppressed.
(その他の添加剤)
 本開示において用いられる無機粒子含有層形成用組成物、及び、無機粒子含有層には、層の平滑性を向上させて塗膜表面の摩擦を軽減する目的で界面活性剤を添加してもよい。界面活性剤としては、特開2014-111717号公報の段落0039~0044に記載の界面活性剤が挙げられる。
 また、顔料や染料、その他粒子等を分散させることによって無機粒子含有層を着色してもよい。更に、本開示において用いられる無機粒子含有層形成用組成物、及び、無機粒子含有層には、耐候性を向上させる目的で酸化防止剤等を添加してもよい。
(Other additives)
The inorganic particle-containing layer forming composition used in the present disclosure, and the inorganic particle-containing layer may contain a surfactant for the purpose of improving the smoothness of the layer and reducing the friction on the surface of the coating film. .. Examples of the surfactant include the surfactants described in paragraphs 0039 to 0044 of JP-A-2014-111717.
The inorganic particle-containing layer may be colored by dispersing a pigment, a dye, or other particles. Furthermore, an antioxidant and the like may be added to the composition for forming an inorganic particle-containing layer and the inorganic particle-containing layer used in the present disclosure for the purpose of improving weather resistance.
〔無機粒子含有層の形成方法〕
 無機粒子含有層は、光触媒層上に組成物を塗布して加熱(即ち乾燥)することにより、形成される。
 無機粒子含有層形成用組成物の塗布方法は、特に限定されず、公知の方法を用いればよいが、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布など等が挙げられる。
 無機粒子含有層形成用組成物(即ち塗膜)を乾燥させる際の加熱方法は、特に限定されず、公知の方法を用いればよいが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ、赤外線レーザー等を用いた方法が挙げられる。
 無機粒子含有層と光触媒層との間には、後述する易接着性層を設けてもよい。
[Method of forming inorganic particle-containing layer]
The inorganic particle-containing layer is formed by applying the composition on the photocatalyst layer and heating (that is, drying).
The method of applying the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
The heating method for drying the composition for forming an inorganic particle-containing layer (that is, the coating film) is not particularly limited, and a known method may be used, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared laser. And the like.
An easily-adhesive layer described below may be provided between the inorganic particle-containing layer and the photocatalyst layer.
〔無機粒子含有層の特性〕
 無機粒子含有層は、反射防止機能を有する層である。また、上記無機粒子含有層には、耐傷性に優れる等、複数の機能を付与することも可能である。
 なお、屈折率は、特に断りがない限り、波長600nmでエリプソメトリーによって25℃にて測定される値である。
[Characteristics of layer containing inorganic particles]
The inorganic particle-containing layer is a layer having an antireflection function. In addition, the inorganic particle-containing layer can be provided with a plurality of functions such as excellent scratch resistance.
The refractive index is a value measured at 25° C. by ellipsometry at a wavelength of 600 nm unless otherwise specified.
<反射防止層>
 本開示における反射防止層は、アモルファス過酸化チタン型無機バインダー、及び、有機構造を含むシロキサン樹脂を含み、厚みが20nm~140nmであり、かつ、屈折率が1.50~1.90である。
 本開示の光触媒複合材は、反射防止性の点から、反射防止層を基材と光触媒層の間に設けること、及び、上記反射防止層の厚み及び屈折率を上記の通りに特定することが重要である。さらに、本開示における反射防止層は、例えば光触媒層に含まれ得る成分であるアモルファス過酸化チタン型無機バインダー、及び、無機粒子含有層に含まれる成分であるシロキサン樹脂を用いることができる点において、作業効率を向上させることができる。
<Antireflection layer>
The antireflection layer in the present disclosure contains an amorphous titanium peroxide type inorganic binder and a siloxane resin having an organic structure, has a thickness of 20 nm to 140 nm and a refractive index of 1.50 to 1.90.
In the photocatalyst composite material of the present disclosure, from the viewpoint of antireflection property, an antireflection layer may be provided between the substrate and the photocatalyst layer, and the thickness and refractive index of the antireflection layer may be specified as described above. is important. Furthermore, in the antireflection layer in the present disclosure, for example, an amorphous titanium peroxide type inorganic binder that is a component that can be included in the photocatalyst layer, and a siloxane resin that is a component included in the inorganic particle-containing layer can be used. Work efficiency can be improved.
-厚み-
 反射防止層の厚みは、20nm~140nmである。これによって、反射率が低く抑えられ、反射防止性を向上させることができる。
 上記と同様の観点から、反射防止層の厚みは、40nm~110nmが好ましく、50nm~100nmがより好ましく、60nm~90nmが更に好ましく、70nm~80nmが特に好ましい。
 反射防止層の厚みは、上述の無機粒子含有層の厚みの測定方法と同様の方法で測定できる。
-Thickness-
The thickness of the antireflection layer is 20 nm to 140 nm. As a result, the reflectance can be suppressed low and the antireflection property can be improved.
From the same viewpoint as above, the thickness of the antireflection layer is preferably 40 nm to 110 nm, more preferably 50 nm to 100 nm, further preferably 60 nm to 90 nm, and particularly preferably 70 nm to 80 nm.
The thickness of the antireflection layer can be measured by the same method as the method for measuring the thickness of the inorganic particle-containing layer described above.
-屈折率-
 本開示の光触媒複合材は、反射防止層の屈折率が1.50~1.90である。これによって、反射防止性をより向上させることができる。
 上記同様の観点から、反射防止層の屈折率が1.55~1.86であることが好ましく、1.70~1.85であることがより好ましい。
 反射防止層の屈折率は、上述の方法と同様の方法で測定できる。
 反射防止層の屈折率は、有機構造を有するシロキサン樹脂及びアモルファス過酸化チタン型無機バインダーの種類及び含有量、反射防止層の構造(例えば多孔質構造等)、反射防止層の厚み等により調整することが可能である。
 例えば、有機構造を有するシロキサン樹脂の含有量に対するアモルファス過酸化チタン型無機バインダーの含有量の比率を変更することで、反射防止層の屈折率を調整することができる。
-Refractive index-
In the photocatalyst composite material of the present disclosure, the refractive index of the antireflection layer is 1.50 to 1.90. Thereby, the antireflection property can be further improved.
From the same viewpoint as above, the refractive index of the antireflection layer is preferably 1.55 to 1.86, more preferably 1.70 to 1.85.
The refractive index of the antireflection layer can be measured by the same method as described above.
The refractive index of the antireflection layer is adjusted by the type and content of the siloxane resin having an organic structure and the amorphous titanium peroxide type inorganic binder, the structure of the antireflection layer (for example, a porous structure), the thickness of the antireflection layer, and the like. It is possible.
For example, the refractive index of the antireflection layer can be adjusted by changing the ratio of the content of the amorphous titanium peroxide type inorganic binder to the content of the siloxane resin having an organic structure.
(アモルファス過酸化チタン型無機バインダー)
 本開示における反射防止層は、アモルファス過酸化チタン型無機バインダーを含む。
 反射防止層におけるアモルファス過酸化チタン型無機バインダーは、上述の光触媒層におけるアモルファス過酸化チタン型無機バインダーの説明で挙げた具体例と同様の具体例を用いることができ、好ましい態様も同様である。
(Amorphous titanium peroxide type inorganic binder)
The antireflection layer in the present disclosure includes an amorphous titanium peroxide type inorganic binder.
As the amorphous titanium peroxide type inorganic binder in the antireflection layer, the same specific examples as the specific examples given in the description of the amorphous titanium peroxide type inorganic binder in the photocatalyst layer can be used, and the preferred embodiments are also the same.
 アモルファス過酸化チタン型無機バインダーの含有量は、反射防止層における、後述する有機構造を含むシロキサン樹脂及びアモルファス過酸化チタン型無機バインダーの総質量に対し、5質量%~95質量%であることが好ましく、18質量%~93質量%であることがより好ましい。
 また、本開示における反射防止層は、アモルファス過酸化チタン型無機バインダーを1種単独で含有してもよいし、2種以上を併用してもよい。
 反射防止層にアモルファス過酸化チタン型無機バインダーが含有されていることは、光触媒層にアモルファス過酸化チタン型無機バインダーが含有されていることの確認方法と同様の方法で確認できる。
The content of the amorphous titanium peroxide type inorganic binder is 5% by mass to 95% by mass based on the total mass of the siloxane resin containing an organic structure described below and the amorphous titanium peroxide type inorganic binder in the antireflection layer. It is more preferably from 18% by mass to 93% by mass.
Further, the antireflection layer in the present disclosure may contain one type of amorphous titanium peroxide type inorganic binder alone, or may use two or more types in combination.
The fact that the amorphous titanium peroxide type inorganic binder is contained in the antireflection layer can be confirmed by the same method as the method for confirming that the photocatalyst layer contains the amorphous titanium peroxide type inorganic binder.
(有機構造を含むシロキサン樹脂)
 本開示における反射防止層は、有機構造を含むシロキサン樹脂を含む。
 反射防止層における有機構造を含むシロキサン樹脂は、上述の無機粒子含有層における有機構造を含むシロキサン樹脂と同様のものを用いることができ、好ましい態様も同様である。
(Siloxane resin containing organic structure)
The antireflection layer in the present disclosure includes a siloxane resin having an organic structure.
As the siloxane resin containing an organic structure in the antireflection layer, the same siloxane resin containing an organic structure in the above-mentioned inorganic particle-containing layer can be used, and the preferred embodiments are also the same.
 有機構造を含むシロキサン樹脂の含有量は、反射防止層における有機構造を含むシロキサン樹脂及びアモルファス過酸化チタン型無機バインダーの総質量に対し、20質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましい。 The content of the siloxane resin containing an organic structure is preferably 20% by mass to 80% by mass, and 30% by mass with respect to the total mass of the siloxane resin containing an organic structure and the amorphous titanium peroxide type inorganic binder in the antireflection layer. % To 70% by mass is more preferable.
 反射防止層において、アモルファス過酸化チタン型無機バインダーの含有量に対する有機構造を含むシロキサン樹脂の含有量の比率は、反射防止性の観点から、20/80~80/20が好ましく、30/70~70/30がより好ましい。 In the antireflection layer, the ratio of the content of the siloxane resin containing an organic structure to the content of the amorphous titanium peroxide type inorganic binder is preferably 20/80 to 80/20, and 30/70 to 70/30 is more preferable.
(酸化チタン)
 本開示における反射防止層は、酸化チタンを含んでいてもよい。
 本開示における反射防止層が含んでもよい酸化チタンとしては、上述の酸化チタンの説明において挙げた具体例と同様の具体例が挙げられ、好ましい態様も同様である。
(Titanium oxide)
The antireflection layer in the present disclosure may include titanium oxide.
Specific examples of the titanium oxide that may be contained in the antireflection layer in the present disclosure are the same as the specific examples given in the description of the titanium oxide, and the preferred embodiments are also the same.
(その他の成分)
 本開示における反射防止層は、その他の成分を更に含んでもよい。
 その他の成分としては、界面活性剤等の公知の添加剤が特に制限なく用いられる。
(Other ingredients)
The antireflection layer in the present disclosure may further contain other components.
As other components, known additives such as surfactants can be used without particular limitation.
〔反射防止層の形成方法〕
 本開示における反射防止層は、反射防止層形成用組成物を例えば後述する基材等に塗布し、加熱(即ち乾燥)することにより得ることができる。
 反射防止層形成用組成物は、上述の無機粒子含有層におけるアルコキシシラン化合物、及び、ペルオキソチタン酸を含むことが好ましい。
 一例として、反射防止層形成用組成物は、ペルオキソチタン酸及び溶剤を含む組成物に、アルコキシシラン化合物を混合し、分散することにより調製される。
 ペルオキソチタン酸及び溶剤を含む組成物としては、市販品を使用することもでき、例えば、ティオスカイコートC液((株)ティオシステムズ製)を用いることができる。
 また、反射防止層の厚みを上述の範囲とするため、反射防止層形成用組成物を増粘する、反射防止層形成用組成物の塗布及び加熱(即ち乾燥)を複数回行う、等の方法を採用してもよい。
[Method of forming antireflection layer]
The antireflection layer in the present disclosure can be obtained by applying the composition for forming an antireflection layer to, for example, a base material described later and heating (that is, drying).
The antireflection layer-forming composition preferably contains the alkoxysilane compound in the inorganic particle-containing layer described above and peroxotitanic acid.
As an example, the antireflection layer-forming composition is prepared by mixing and dispersing an alkoxysilane compound in a composition containing peroxotitanic acid and a solvent.
As the composition containing peroxotitanic acid and a solvent, a commercially available product can be used, and for example, TIO SKYCOAT C liquid (manufactured by Tio Systems Co., Ltd.) can be used.
Further, in order to set the thickness of the antireflection layer in the above range, the composition for thickening the antireflection layer is thickened, and the coating and heating (that is, drying) of the composition for antireflection layer formation are performed a plurality of times. May be adopted.
 反射防止層形成用組成物の塗布方法は、特に限定されず、公知の方法を用いればよいが、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布など等が挙げられる。
 反射防止層形成用組成物(即ち塗膜)を乾燥させる際の加熱方法は、特に限定されず、公知の方法を用いればよいが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ、赤外線レーザー等が挙げられる。
 加熱する際の加熱時間及び加熱温度は、上述のアモルファス過酸化チタン型無機バインダーの製造における加熱時間及び加熱温度の記載を参照して、適宜調整すればよい。
The method of applying the composition for forming an antireflection layer is not particularly limited, and a known method may be used, and examples thereof include slit coating, spin coating, curtain coating, inkjet coating and the like.
The heating method for drying the antireflection layer-forming composition (that is, the coating film) is not particularly limited and may be a known method, for example, a heater, an oven, a hot plate, an infrared lamp, an infrared laser, or the like. Are listed.
The heating time and the heating temperature at the time of heating may be appropriately adjusted with reference to the description of the heating time and the heating temperature in the production of the above-mentioned amorphous titanium peroxide type inorganic binder.
 以上より、本開示の光触媒複合材において、上記無機粒子含有層は、厚みが80nm~100nmであり、上記反射防止層は、厚みが60nm~90nmであり、かつ、屈折率が1.55~1.86であることが好ましく、上記無機粒子含有層は、厚みが80nm~100nmであり、上記反射防止層は、厚みが70nm~80nmであり、かつ、屈折率が1.70~1.85であることがより好ましい。 As described above, in the photocatalyst composite material of the present disclosure, the inorganic particle-containing layer has a thickness of 80 nm to 100 nm, the antireflection layer has a thickness of 60 nm to 90 nm, and the refractive index of 1.55 to 1 Preferably, the inorganic particle-containing layer has a thickness of 80 nm to 100 nm, the antireflection layer has a thickness of 70 nm to 80 nm, and a refractive index of 1.70 to 1.85. More preferably.
<基材層>
 本開示に係る光触媒複合材は、反射防止層の光触媒層を有する側(即ち光触媒層側)とは反対側に、基材層を更に含むことが好ましい。
 基材層は、基材により形成される層であり、基材層における基材としては、樹脂基材、ガラス基材、金属基材等が挙げられる。
 樹脂基材としては、特に制限されないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)、ポリアリレート類、ポリエーテルスルフォン、ポリカーボネート、ポリエーテルケトン、ポリスルフォン、ポリフェニレンサルファイド、ポリエステル系液晶ポリマー、トリアセチルセルロース、セルロース誘導体、ポリプロピレン、ポリアミド類、ポリイミド、ポリシクロオレフィン類等が好ましい。上記の中でも、PET、PEN、又は、トリアセチルセルロースがより好ましく、PET又はPENが更に好ましい。
 樹脂基材は、延伸されたものであってもよく、2軸延伸されたものが好ましい。2軸延伸とは、樹脂フィルムの幅方向及び長手方向をそれぞれ1軸とみなして両方向に延伸させることである。このように2軸延伸されたポリエステルフィルムは、2軸での分子配向が十分に制御されているため非常に優れた機械強度を有する。延伸倍率は特に制限されるものではないが、1軸方向あたりの延伸倍率が1.5倍~7倍であることが好ましく、より好ましくは2倍~5倍である。特に、1軸方向あたりの延伸倍率を2倍~5倍として2軸延伸させたポリエステルフィルムは、分子配向がより効率良くかつ効果的に制御されているので、非常に優れた機械強度を備え、ポリエステルフィルムとして好適である。
 ガラス基材としては、特に制限されないが、透明ガラス板、型ガラス板、網入りガラス板、線入りガラス板、強化ガラス板、熱線反射ガラス板、熱線吸収ガラス板、Low-E(Low Emissivity、低反射)ガラス板等のガラス基材が挙げられる。
 金属基材としては、特に制限されないが、アルミニウム板、鋼板、銅版、その他合金板等が挙げられる。
<Base material layer>
The photocatalyst composite material according to the present disclosure preferably further includes a base material layer on the side of the antireflection layer opposite to the side having the photocatalyst layer (that is, the photocatalyst layer side).
The base material layer is a layer formed of a base material, and examples of the base material in the base material layer include a resin base material, a glass base material, and a metal base material.
The resin substrate is not particularly limited, but polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyarylates, polyether sulfone, polycarbonate, poly Ether ketone, polysulfone, polyphenylene sulfide, polyester type liquid crystal polymer, triacetyl cellulose, cellulose derivative, polypropylene, polyamides, polyimide, polycycloolefins and the like are preferable. Among the above, PET, PEN, or triacetyl cellulose is more preferable, and PET or PEN is further preferable.
The resin substrate may be stretched and is preferably biaxially stretched. Biaxial stretching means stretching in both directions by regarding the width direction and the longitudinal direction of the resin film as uniaxial. The biaxially stretched polyester film has extremely excellent mechanical strength because the biaxial molecular orientation is sufficiently controlled. The draw ratio is not particularly limited, but the draw ratio per one axial direction is preferably 1.5 times to 7 times, and more preferably 2 times to 5 times. In particular, a polyester film biaxially stretched with a draw ratio of 2 to 5 times per uniaxial direction has very excellent mechanical strength because its molecular orientation is controlled more efficiently and effectively. It is suitable as a polyester film.
The glass substrate is not particularly limited, but it is a transparent glass plate, a shaped glass plate, a netted glass plate, a wire glass plate, a tempered glass plate, a heat ray reflective glass plate, a heat ray absorbing glass plate, Low-E (Low Emissivity, A glass substrate such as a (low reflection) glass plate may be used.
The metal base material is not particularly limited, and examples thereof include an aluminum plate, a steel plate, a copper plate, and other alloy plates.
 基材層として用いられる基材は、表面処理されたものであってもよく、工程の簡便さからコロナ処理やグロー処理を施すことが好ましい。それらの処理により、基材の表面が親水化され、塗れ性を改善することができるので、反射防止層との密着力又は易接着層との密着力を高めることができる。常圧で行われるコロナ処理は減圧で行われるグロー処理より工程が更に簡便であるが、グロー処理の方が密着力向上の効果は高い。 The base material used as the base material layer may be surface-treated, and is preferably subjected to corona treatment or glow treatment in view of the simplicity of the process. By these treatments, the surface of the substrate is hydrophilized and the wettability can be improved, so that the adhesion with the antireflection layer or the adhesion with the easy adhesion layer can be increased. The corona treatment performed under normal pressure has a simpler process than the glow treatment performed under reduced pressure, but the glow treatment has a higher effect of improving the adhesion.
<易接着層>
 本開示に係る光触媒複合材は、基材と反射防止層、反射防止層と光触媒層、又は、光触媒層と無機粒子含有層との接着性を向上させることを目的として易接着層を有してもよい。
 易接着層は、例えば、バインダーと硬化剤と界面活性剤とからなる塗布液を、基材の反射防止層が設けられる面、反射防止層の光触媒層が設けられる面、又は、光触媒層の無機粒子含有層が形成される面に塗布して形成される。易接着層には、有機又は無機の粒子を適宜添加してもよい。粒子としては、特に限定されないが例えば金属酸化物が挙げられ、具体的には酸化スズ、酸化ジルコニウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ニオブなどが好ましく、これらを単独で使用、もしくは2種以上を併用してもよい。市販品としては、例えば、ET-500WほかETシリーズ、FT-2000ほかFTシリーズ、SN-100PほかSNシリーズ、FS-10DほかFSシリーズ(石原産業(株)製)などが挙げられる。
<Easy adhesion layer>
The photocatalyst composite material according to the present disclosure has a base material and an antireflection layer, an antireflection layer and a photocatalyst layer, or an easy adhesion layer for the purpose of improving the adhesiveness between the photocatalyst layer and the inorganic particle-containing layer. Good.
The easy-adhesion layer is formed, for example, by applying a coating liquid containing a binder, a curing agent, and a surfactant to the surface of the substrate on which the antireflection layer is provided, the surface on which the photocatalytic layer of the antireflection layer is provided, or the inorganic material of the photocatalytic layer. It is formed by coating on the surface on which the particle-containing layer is formed. Organic or inorganic particles may be appropriately added to the easy-adhesion layer. The particles are not particularly limited, but examples thereof include metal oxides, and specifically, tin oxide, zirconium oxide, zinc oxide, titanium oxide, cerium oxide, niobium oxide and the like are preferable, and these are used alone or in two kinds. You may use together the above. Examples of commercially available products include ET-500W and other ET series, FT-2000 and other FT series, SN-100P and other SN series, FS-10D and other FS series (manufactured by Ishihara Sangyo Co., Ltd.) and the like.
 易接着層に含まれるバインダーは、特に限定されないが、接着性の観点からは、ポリエステル、ポリウレタン、アクリル樹脂、スチレンブタジエン共重合体及びポリオレフィンの少なくとも1つを含むことが好ましい。なお、基材の表面に表面処理を施さない場合は、バインダーは、ポリエステル、ポリウレタン及びポリオレフィンのうち少なくとも1つを含むことが好ましく、ポリオレフィンであることがより好ましい。
 また、バインダーは、水溶性又は水分散性を有するバインダーが環境への負荷が少ない点で特に好ましい。市販品としては、例えば、カルボジライトV-02-L2等のカルボジライトシリーズ(日清紡(株)製)、タケラックWS-5100等のタケラックWSシリーズ(三井化学(株)製)、アローベースSE1013N等のアローベースシリーズ(ユニチカ(株)製)、ハードレンNZ1004等のハードレンシリーズ(東洋紡(株)製)などが挙げられる。
 但し、易接着層に用いられるバインダーには、既述のアモルファス過酸化チタン型無機バインダーは含まれない。
The binder contained in the easy-adhesion layer is not particularly limited, but preferably contains at least one of polyester, polyurethane, acrylic resin, styrene-butadiene copolymer and polyolefin from the viewpoint of adhesiveness. When the surface of the substrate is not surface-treated, the binder preferably contains at least one of polyester, polyurethane and polyolefin, more preferably polyolefin.
Further, as the binder, a water-soluble or water-dispersible binder is particularly preferable in that the load on the environment is small. Examples of commercially available products include Carbodilite series such as Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.), Takerak WS series such as Takerak WS-5100 (manufactured by Mitsui Chemicals Inc.), Arrowbase SE1013N, Examples include Arrow Base series (manufactured by Unitika Ltd.) and Hardren series (manufactured by Toyobo Co., Ltd.) such as Hardlen NZ1004.
However, the binder used for the easy-adhesion layer does not include the above-mentioned amorphous titanium peroxide type inorganic binder.
 易接着層の厚みは、その塗布量を調節することで適宜調整することができる。易接着層の厚みは、0.01μm~5μmの範囲であることがより好ましい。厚みが0.01μm以上であると接着性が十分となりやすく、5μm以下であれば易接着層の厚さが均一となりやすい。より好ましい厚みの範囲は、0.02μm~3μmである。易接着層は、1層のみでもよいし、これを複数重ねた態様であってもよい。複数の易接着層を重ねた場合には、上記の厚みはすべての易接着層の厚みの合計を指す。 The thickness of the easy-adhesion layer can be appropriately adjusted by adjusting the coating amount. The thickness of the easily adhesive layer is more preferably in the range of 0.01 μm to 5 μm. If the thickness is 0.01 μm or more, the adhesiveness tends to be sufficient, and if it is 5 μm or less, the thickness of the easy-adhesion layer tends to be uniform. A more preferable thickness range is 0.02 μm to 3 μm. The easy-adhesion layer may be a single layer or a plurality of layers. When a plurality of easy-adhesion layers are stacked, the above thickness indicates the total thickness of all the easy-adhesion layers.
<その他の層>
 本開示に係る光触媒複合材は、基材層と反射防止層との間に、遮蔽層を有していてもよい。
 例えば光触媒層又は反射防止層において発生したラジカルが、遮蔽層によりトラップされることにより、基材層における樹脂基材等のラジカルによる劣化が抑制されると考えられる。
 遮蔽層としては、例えば無機粒子含有層と同様の層、又は、無機粒子を含まない以外は、無機粒子含有層と同様の層を遮蔽層として用いることが可能である。
<Other layers>
The photocatalyst composite material according to the present disclosure may have a shielding layer between the base material layer and the antireflection layer.
For example, it is considered that radicals generated in the photocatalyst layer or the antireflection layer are trapped by the shielding layer, so that deterioration of the base material layer due to radicals such as the resin base material is suppressed.
As the shielding layer, for example, a layer similar to the inorganic particle-containing layer or a layer similar to the inorganic particle-containing layer except that it does not contain inorganic particles can be used as the shielding layer.
<用途>
 本開示における光触媒複合材は、保護部材であることが好ましく、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、又は、センサカバー用保護部材であることがより好ましい。
 本開示における光触媒複合材は、光触媒層を含むことにより、防汚、抗菌、抗ウイルス、消臭、防カビ等の効果のうち1つ又は複数を有する。また、本開示における光触媒複合材は、無機粒子含有層の組成等に応じて、反射防止性、耐傷性等の効果のうち1つ又は複数を有する。
 従って、本開示における光触媒複合材は、例えば、防汚性に優れ、かつ、耐傷性及び反射防止性に優れた保護部材として用いることが可能である。
<Use>
The photocatalyst composite material in the present disclosure is preferably a protective member, and more preferably a signage display protective member, a touch panel protective member, a solar cell protective member, or a sensor cover protective member.
The photocatalyst composite material according to the present disclosure has one or more of effects such as antifouling, antibacterial, antivirus, deodorant, and antifungal by including the photocatalyst layer. Further, the photocatalyst composite material according to the present disclosure has one or more of effects such as antireflection property and scratch resistance depending on the composition of the inorganic particle-containing layer and the like.
Therefore, the photocatalyst composite material according to the present disclosure can be used as, for example, a protective member having excellent antifouling properties, scratch resistance, and antireflection properties.
(サイネージ用ディスプレイ保護部材、サイネージ用ディスプレイ)
 本開示に係るサイネージ用ディスプレイ保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るサイネージ用ディスプレイは、本開示に係るサイネージ用ディスプレイ保護部材を備える
 本開示に係るサイネージ用ディスプレイ保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をサイネージ用ディスプレイにおける最外層の表面とすることにより、汚れの付着を防止することができる。
 また、本開示に係る光触媒複合材は、反射防止性に優れるため、サイネージ用ディスプレイ保護部材として用いることにより、サイネージ用ディスプレイ上の光の反射を抑制し、表示画像の視認性を向上することが可能となる。
 サイネージ用ディスプレイ保護部材としては、例えば、サイネージ用ディスプレイ上に、反射防止層、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をサイネージ用ディスプレイ保護部材として形成して用いてもよいし、例えば樹脂フィルムを基材層として、基材層上に反射防止層、光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をサイネージ用ディスプレイ保護部材としてサイネージ用ディスプレイに貼り付けて使用してもよい。
 また、本開示におけるサイネージは、デジタルサイネージであることが好ましい。
 サイネージ用ディスプレイとしては、特に制限なく、液晶ディスプレイ、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、電子ペーパー、PDP(プラズマディスプレイパネル)等の公知の画像表示装置が用いられる。
(Display protection member for signage, display for signage)
The display protection member for signage according to the present disclosure includes the photocatalytic composite material according to the present disclosure.
The signage display according to the present disclosure includes a signage display protection member according to the present disclosure.The signage display protection member according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and thus, for example, contains inorganic particles. By making the layer the surface of the outermost layer in the display for signage, it is possible to prevent the attachment of dirt.
Further, the photocatalyst composite material according to the present disclosure is excellent in antireflection property, and thus by being used as a signage display protection member, it is possible to suppress reflection of light on the signage display and improve the visibility of the display image. It will be possible.
As the signage display protection member, for example, on a signage display, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer in this order is used as a signage display protection member. Alternatively, for example, a resin film as a base material layer, a photocatalyst composite material in which an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is attached to a signage display as a signage display protection member. You may use it.
Further, the signage in the present disclosure is preferably a digital signage.
The signage display is not particularly limited, and a known image display device such as a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, or a PDP (plasma display panel) is used. To be
(タッチパネル用保護部材、タッチパネル)
 本開示に係るタッチパネル用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るタッチパネルは、本開示に係るタッチパネル用保護部材を備える。
 本開示に係るタッチパネル用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をタッチパネルにおけるタッチ部分(即ち手が触れる部分)とすることにより、指紋等の汚れの付着を防止する、又は、汚れの除去を容易とすることができる。
 また、本開示に係る光触媒複合材は、反射防止性に優れるため、例えばタッチパネル表示装置におけるタッチパネル用保護部材として用いることにより、タッチパネル表示装置上の光の反射を抑制し、表示画像等の視認性を向上することが可能となる。
 タッチパネル用保護部材としては、例えば、従来のタッチパネルにおける最外層となる部材上に、反射防止層、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をタッチパネル用保護部材として形成して用いてもよいし、例えば樹脂フィルムを基材層として、基材層上に反射防止層、光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をタッチパネル用保護部材として従来のタッチパネルにおける最外層となる部材に貼り付けて使用してもよい。
 タッチパネルについては、特に制限なく公知のタッチパネルが用いられ、例えば特開2002-48913号公報等の記載を参酌できる。
(Protective member for touch panel, touch panel)
A touch panel protection member according to the present disclosure includes the photocatalytic composite material according to the present disclosure.
A touch panel according to the present disclosure includes the touch panel protection member according to the present disclosure.
The protective member for a touch panel according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and therefore, for example, by using the inorganic particle-containing layer as a touch portion (that is, a portion that the hand touches) in the touch panel, fingerprints and the like It is possible to prevent the adhesion of dirt or facilitate the removal of dirt.
Further, since the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it is used as a touch panel protection member in a touch panel display device, for example, to suppress reflection of light on the touch panel display device and to improve visibility of a display image or the like. It becomes possible to improve.
As the touch panel protection member, for example, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer in this order on the outermost member of a conventional touch panel is formed as the touch panel protection member. Or a resin film as a base material layer, and a photocatalyst composite material in which an antireflection layer, a photocatalyst layer, and an inorganic particle-containing layer are laminated in this order on the base material layer as a protective member for a touch panel in the conventional touch panel. You may stick and use it for the member used as the outermost layer.
As the touch panel, a known touch panel is used without particular limitation, and for example, the description in JP-A-2002-48913 can be referred to.
(太陽電池用保護部材、太陽電池)
 本開示に係る太陽電池用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係る太陽電池は、本開示に係る太陽電池用保護部材を備える。
 本開示に係る太陽電池用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層を太陽電池用フロントシートにおける最外層とすることにより、汚れの付着を防止することができる。
 また、本開示に係る光触媒複合材は、反射防止性に優れるため、太陽電池保護部材として用いることにより、太陽電池パネル上の光の反射を抑制し、太陽電池による発電効率を向上することが可能となる。
 太陽電池用保護部材としては、例えば、従来の太陽電池用保護部材における最外層となる部材(例えば、太陽電池用フロントシート)上に、反射防止層、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材を太陽電池用保護部材として形成して用いてもよいし、例えば樹脂フィルムを基材層として、基材層上に反射防止層、光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材を太陽電池用保護部材として従来の太陽電池用における最外層となる部材に貼り付けて使用してもよい。
 太陽電池用フロントシートについては、特開2011-62877号公報等の記載を参酌できる。
(Protective members for solar cells, solar cells)
The solar cell protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
A solar cell according to the present disclosure includes the solar cell protection member according to the present disclosure.
Since the protective member for a solar cell according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, for example, by forming the inorganic particle-containing layer as the outermost layer in the solar cell front sheet, the adhesion of dirt is prevented. can do.
Moreover, since the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it is possible to suppress reflection of light on the solar cell panel and improve the power generation efficiency of the solar cell by using it as a solar cell protection member. Becomes
As the solar cell protective member, for example, an antireflection layer, a photocatalyst layer, and an inorganic particle-containing layer are laminated in this order on a member (for example, a solar cell front sheet) that is an outermost layer in a conventional solar cell protective member. The photocatalyst composite material formed as described above may be formed and used as a protective member for a solar cell, for example, a resin film as a base material layer, and an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer on the base material layer The photocatalyst composite material laminated in order may be used as a protective member for a solar cell by being attached to a member which is the outermost layer in a conventional solar cell.
Regarding the front sheet for solar cells, the description in JP 2011-62877 A or the like can be referred to.
(センサカバー用保護部材、センサカバー)
 本開示に係るセンサカバー用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るセンサカバーは、本開示に係るセンサカバー用保護部材を備える。
 本開示に係るセンサカバー用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をセンサカバーにおける最外層とすることにより、汚れの付着を防止することができる。
 また、本開示に係る光触媒複合材は、反射防止性に優れるため、例えばセンサカバー用保護部材として用いることにより、センサカバーにおける光の反射を抑制し、センサ感度を向上することが可能となる。
 センサーの例としては、赤外線を用いたLiDAR(Light Detection and Ranging)等が挙げられる。
 LiDARの場合、例えばパルス状に発したレーザー照射に対する散乱孔を測定する場合の測定精度を向上させることができる。
 センサカバー用保護部材としては、例えば、従来のセンサカバーにおける最外層となる部材上に、反射防止層、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をセンサカバー用保護部材として形成して用いてもよいし、例えば樹脂フィルムを基材層として、基材層上に反射防止層、光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をセンサカバー用保護部材として従来のセンサカバーにおける最外層となる部材に貼り付けて使用してもよい。
 センサカバーについては、カメラモジュールにおけるセンサカバー等が挙げられ、特開2016-130746号公報等の記載を参酌できる。
(Protective member for sensor cover, sensor cover)
The sensor cover protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
The sensor cover according to the present disclosure includes the sensor cover protection member according to the present disclosure.
The protective member for a sensor cover according to the present disclosure has excellent photocatalytic activity on the surface of the inorganic particle-containing layer side, and therefore, for example, by forming the inorganic particle-containing layer as the outermost layer in the sensor cover, it is possible to prevent adhesion of dirt. it can.
Further, since the photocatalyst composite material according to the present disclosure has excellent antireflection properties, it can be used as a protective member for a sensor cover, for example, to suppress reflection of light on the sensor cover and improve sensor sensitivity.
Examples of the sensor include LiDAR (Light Detection and Ranging) using infrared rays.
In the case of LiDAR, it is possible to improve the measurement accuracy when, for example, measuring a scattering hole for laser irradiation emitted in a pulse shape.
As the sensor cover protection member, for example, a photocatalyst composite material formed by laminating an antireflection layer, a photocatalyst layer, and an inorganic particle-containing layer in this order on the outermost member of a conventional sensor cover is used as a sensor cover protection member. It may be formed as a member and used, for example, a photocatalyst composite material in which a resin film is used as a base material layer, an antireflection layer, a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer, and a protective member for a sensor cover. Alternatively, it may be attached to the outermost member of the conventional sensor cover and used.
Examples of the sensor cover include a sensor cover in a camera module, and the description in JP-A-2016-130746 and the like can be referred to.
(その他の用途)
 その他、本開示に係る光触媒複合材を備える保護部材は、液晶ディスプレイ、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、電子ペーパー、PDP(プラズマディスプレイパネル)電磁波シールドフィルム等の保護部材としても好適に用いられる。
(Other uses)
In addition, the protective member including the photocatalyst composite material according to the present disclosure includes a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, a PDP (plasma display panel) electromagnetic wave shield film, and the like. It is also suitably used as a protective member of.
 以下、実施例により本開示を詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本開示の実施形態の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の実施形態の範囲は以下に示す具体例に限定されない。なお、本実施例において、「部」、「%」とは、特に断りのない限り、「質量部」、「質量%」を意味する。
 なお、本実施例において、厚み及び屈折率は、既述の方法により測定した。
Hereinafter, the present disclosure will be described in detail with reference to Examples. The materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the embodiments of the present disclosure. Therefore, the scope of the embodiments of the present disclosure is not limited to the specific examples shown below. In the examples, “parts” and “%” mean “parts by mass” and “mass %” unless otherwise specified.
In this example, the thickness and the refractive index were measured by the method described above.
≪実施例1~実施例5、実施例7~実施例10、及び、比較例1~比較例17≫
<光触媒複合材の作製>
(光触媒層形成用組成物の調製)
 水溶液であるティオスカイコートA液を下記方法により増粘した光触媒層形成用組成物を用意した。
 ティオスカイコートA液(ティオシステムズ社製)は、数平均粒径が5nm~20nmのアナターゼ型(結晶性)酸化チタン粒子及びペルオキソチタン酸を主成分とした水性組成物である。
<<Example 1 to Example 5, Example 7 to Example 10, and Comparative Example 1 to Comparative Example 17>>
<Preparation of photocatalytic composite material>
(Preparation of composition for forming photocatalyst layer)
A composition for forming a photocatalyst layer was prepared by thickening Tyo Sky Coat A solution which is an aqueous solution by the following method.
Tio Sky Coat A liquid (manufactured by Tio Systems) is an aqueous composition containing anatase type (crystalline) titanium oxide particles having a number average particle diameter of 5 nm to 20 nm and peroxotitanic acid as main components.
<ティオスカイコートA液の増粘方法>
 増粘剤としては、ヒドロキシアルキル(炭素数1~3)セルロース10%水溶液を使用した。
 上記ティオスカイコートA液に上記増粘剤を、上記ティオスカイコートA液と上記増粘剤の合計質量に対して30.7%添加して増粘した。
<Thickening method of Tio Sky Coat A liquid>
As the thickener, a 10% aqueous solution of hydroxyalkyl (1 to 3 carbon atoms) cellulose was used.
The above-mentioned thickener was added to the above-mentioned Tiosky coat A liquid in an amount of 30.7% based on the total mass of the above-mentioned Tiosky coat A liquid and the above-mentioned thickener to increase the viscosity.
(無機粒子含有層形成用組成物の調製)
 下記組成に記載の化合物を以下の手順で混合し、無機粒子含有層用組成物の調製を行った。
 100質量部の1%酢酸水溶液にエポキシ基含有アルコキシシラン化合物(KBE403)を添加して十分に加水分解した後、テトラアルコキシシラン(KBE04)を添加した。アルミニウムキレート錯体をエポキシ基含有アルコキシシラン化合物に対して添加し、ここに無機粒子S1(シリカ粒子、スノーテックスOXS、日産化学工業(株)製、数平均粒径4nm)を添加した。その後、界面活性剤A(サンデットBLの10%希釈液)と界面活性剤B(ナローアクティーCL-95の10%希釈液)を0.2質量部ずつ添加し、固形分濃度が15%になるように水を添加して無機粒子含有層形成用組成物とした。
-組成-
・エポキシ基含有アルコキシシラン化合物(3-グリシドキシプロピルトリエトキシシラン(架橋性基含有アルコキシシラン化合物)、信越化学工業(株)製、KBE-403):80質量部
・テトラアルコキシシラン(テトラエトキシシラン(架橋性基非含有アルコキシシラン化合物)、信越化学工業(株)製、KBE-04):20質量部
・酢酸水溶液(ダイセル化学工業(株)製、工業用酢酸の1%水溶液):100質量部
・アルミニウムキレート錯体(川研ファインケミカル(株)製、アルミキレートD):22.1質量部
・無機粒子S1:200質量部
・界面活性剤A(三洋化成工業(株)製、サンデッドBLの10%希釈液、アニオン性):0.2質量部
・界面活性剤B(三洋化成工業(株)製、ナロアクティーCL-95の10%希釈液、ノニオン性):0.2質量部
(Preparation of Inorganic Particle-Containing Layer Forming Composition)
The compounds described in the composition below were mixed in the following procedure to prepare a composition for an inorganic particle-containing layer.
The epoxy group-containing alkoxysilane compound (KBE403) was added to 100 parts by mass of a 1% acetic acid aqueous solution and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE04) was added. An aluminum chelate complex was added to an epoxy group-containing alkoxysilane compound, and inorganic particles S1 (silica particles, Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 4 nm) were added thereto. After that, 0.2 part by mass of each of surfactant A (10% diluted solution of Sandet BL) and surfactant B (10% diluted solution of Narrow Acty CL-95) is added to give a solid content concentration of 15%. Thus, water was added to obtain a composition for forming an inorganic particle-containing layer.
-composition-
-Epoxy group-containing alkoxysilane compound (3-glycidoxypropyltriethoxysilane (crosslinkable group-containing alkoxysilane compound), Shin-Etsu Chemical Co., Ltd., KBE-403): 80 parts by mass-Tetraalkoxysilane (tetraethoxy) Silane (alkoxysilane compound containing no crosslinkable group), Shin-Etsu Chemical Co., Ltd., KBE-04): 20 parts by mass acetic acid aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous acetic acid solution): 100 Parts by mass, aluminum chelate complex (Kawaken Fine Chemicals Co., Ltd., aluminum chelate D): 22.1 parts by mass, inorganic particles S1: 200 parts by mass, surfactant A (manufactured by Sanyo Kasei Co., Ltd., Sanded BL) 10% diluted solution, anionic): 0.2 parts by mass Surfactant B (manufactured by Sanyo Kasei Co., Ltd., 10% diluted solution of Naloacty CL-95, nonionic): 0.2 parts by mass
(反射防止層形成用組成物の調製)
 下記組成に記載の化合物を以下の手順で混合し、反射防止層形成用組成物の調製を行った。
 100質量部の1%酢酸水溶液(ダイセル化学工業(株)製、工業用酢酸の1%水溶液)にエポキシ基含有アルコキシシラン化合物(3-グリシドキシプロピルトリエトキシシラン)(信越化学工業(株)製、KBE-403)80質量部を添加して十分に加水分解した後、テトラアルコキシシラン(テトラエトキシシラン、信越化学工業(株)製、KBE-04)20質量部を添加してシロキサン樹脂含有組成物を得た。
 その後、上記シロキサン樹脂含有組成物に対し、ティオスカイコートC液を添加し、固形分濃度が15%になるように水を添加して、各実施例又は比較例で用いる反射防止層形成用組成物とした。
-組成-
・エポキシ基含有アルコキシシラン化合物(3-グリシドキシプロピルトリエトキシシラン(架橋性基含有アルコキシシラン化合物)、信越化学工業(株)製、KBE-403):80質量部
・テトラアルコキシシラン(テトラエトキシシラン(架橋性基非含有アルコキシシラン化合物)、信越化学工業(株)製、KBE-04):20質量部
・酢酸水溶液(ダイセル化学工業(株)製、工業用酢酸の1%水溶液):100質量部
・ティオスカイコートC液(ペルオキソチタン酸を含有した水性組成物(酸化チタン粒子は含まない)、ティオシステムズ社製):反射防止層形成用組成物中のペルオキソチタン酸(過酸化チタン)が表1に記載の量となる量
・シロキサン樹脂含有組成物:シロキサン樹脂が表1に記載の量となる量
(Preparation of composition for forming antireflection layer)
The compounds described in the following composition were mixed according to the following procedure to prepare a composition for forming an antireflection layer.
Epoxy group-containing alkoxysilane compound (3-glycidoxypropyltriethoxysilane) in 100 parts by mass of 1% acetic acid aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous acetic acid solution) (Shin-Etsu Chemical Co., Ltd.) (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd., manufactured by Shin-Etsu Chemical Co., Ltd., KBE-04) was added to the mixture, and 80 parts by mass of KBE-403) was added to sufficiently hydrolyze. A composition was obtained.
Then, Tiosky Coat C liquid was added to the above siloxane resin-containing composition, and water was added so that the solid content concentration became 15%, and the composition for forming an antireflection layer used in each Example or Comparative Example. I made it a thing.
-composition-
・Epoxy group-containing alkoxysilane compound (3-glycidoxypropyltriethoxysilane (crosslinkable group-containing alkoxysilane compound), Shin-Etsu Chemical Co., Ltd., KBE-403): 80 parts by mass ・Tetraalkoxysilane (tetraethoxy) Silane (alkoxysilane compound containing no crosslinkable group), Shin-Etsu Chemical Co., Ltd., KBE-04): 20 parts by mass acetic acid aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous acetic acid solution): 100 Parts by mass Tiosky Coat C liquid (aqueous composition containing peroxotitanic acid (titanium oxide particles are not included), manufactured by Tio Systems): Peroxotitanic acid (titanium peroxide) in the composition for forming antireflection layer Is the amount described in Table 1-Siloxane resin-containing composition: Amount that the siloxane resin is the amount described in Table 1.
〔反射防止層の形成〕
 ガラス基板(屈折率1.50)上に、上記で得られた反射防止層形成用組成物を滴下後、スピンコータ(ミカサ株式会社製MS-A100)を用いて、乾燥後の厚みが表2に記載の厚みになるように回転数を調節して塗り広げた。
 次いでホットプレート(アズワン社製デジタルホットプレートHP-2SA)を用いて、170℃、2分の条件で水分を乾燥させ、反射防止層を形成した。
 また、形成した反射防止層にアモルファス過酸化チタン型無機バインダーが含有されていることは、X線回折測定又はラマン分光測定により解析ピークによる構造特定と結晶ピークが出現しないことの確認とを行うことにより確認した。反射防止層が架橋構造(有機構造)を有していることは、上記で形成した反射防止層をトルエンに浸漬して、シロキサン樹脂が溶解しないことで確認した。
 なお、反射防止層の厚みは、bruker社製のDektak150を用いて測定した。
 また、表2中、各実施例又は比較例の反射防止層の欄において、「-」と記載された実施例又は比較例については、反射防止層の形成を行わなかった。
[Formation of antireflection layer]
After the composition for forming an antireflection layer obtained above was dropped on a glass substrate (refractive index 1.50), a spin coater (MS-A100 manufactured by Mikasa Co., Ltd.) was used. The number of rotations was adjusted so that the thickness was as described, and the coating was spread.
Then, using a hot plate (Digital Hot Plate HP-2SA manufactured by As One Co., Ltd.), water was dried under the conditions of 170° C. for 2 minutes to form an antireflection layer.
Further, that the formed antireflection layer contains an amorphous titanium peroxide type inorganic binder, it is necessary to confirm the structure identification by the analysis peak and the confirmation that the crystal peak does not appear by X-ray diffraction measurement or Raman spectroscopy measurement. Confirmed by. The fact that the antireflection layer has a crosslinked structure (organic structure) was confirmed by immersing the antireflection layer formed above in toluene and the siloxane resin was not dissolved.
The thickness of the antireflection layer was measured using Dektak150 manufactured by Bruker.
Further, in Table 2, the antireflection layer was not formed for the examples or comparative examples described as "-" in the column of the antireflection layer of each example or comparative example.
〔光触媒層の形成〕
 上述の方法により作製した反射防止層上に、上記光触媒層形成用組成物を滴下後、スピンコータ(ミカサ株式会社製MS-A100)を用いて、回転数800rpm(revolutions per minute)×30秒にてスピンコートして塗り広げた。
 次いでホットプレート(アズワン社製デジタルホットプレートHP-2SA)にて120℃で10minの条件下、塗布された光触媒層形成用組成物中の水分を乾燥させ、乾燥後の厚み500nmの光触媒層(TiO層、屈折率1.94)を形成した。
 なお、光触媒層の厚みは、アンリツ株式会社製の接触式膜厚測定計を用いて測定した。
[Formation of photocatalyst layer]
After dropping the composition for forming a photocatalyst layer on the antireflection layer produced by the above method, a spin coater (MS-A100 manufactured by Mikasa Co., Ltd.) was used to rotate at a rotation speed of 800 rpm (revolutions per minute)×30 seconds. Spin coated and spread.
Then, the water in the applied composition for forming a photocatalyst layer was dried on a hot plate (Digital Hot Plate HP-2SA manufactured by As One Co., Ltd.) at 120° C. for 10 minutes, and the photocatalyst layer (TiO 2) having a thickness of 500 nm after drying was dried. Two layers with a refractive index of 1.94) were formed.
The thickness of the photocatalyst layer was measured using a contact type film thickness meter manufactured by Anritsu Corporation.
〔無機粒子含有層の形成〕
 上述の方法により作製した光触媒層上に、無機粒子含有層形成用組成物を滴下し、スピンコータ(ミカサ株式会社製MS-A100)を用いて、乾燥後の厚みが表2に記載の厚みになるように回転数を調節して塗り広げた。次いでホットプレート(アズワン社製デジタルホットプレートHP-2SA)にて所定の温度、乾燥時間にて、塗布された無機粒子含有層形成用組成物中の水分を乾燥させ、無機粒子含有層を形成し、光触媒複合材とした。
 なお、無機粒子含有層の厚みは、bruker社製のDektak150を用いて測定した。
 なお、無機粒子含有層が架橋構造(有機構造)を有していることは、上記で形成した無機粒子含有層をトルエンに浸漬して、シロキサン樹脂が溶解しないことで確認した。
 また、表2中、各実施例又は比較例の無機粒子含有層の欄において、「-」と記載された実施例又は比較例については、無機粒子含有層の形成を行わなかった。
[Formation of layer containing inorganic particles]
The composition for forming an inorganic particle-containing layer was dropped on the photocatalyst layer produced by the above method, and the thickness after drying was set to the thickness shown in Table 2 using a spin coater (MS-A100 manufactured by Mikasa Co., Ltd.). The number of rotations was adjusted so that it was spread. Then, the water in the applied composition for forming an inorganic particle-containing layer is dried on a hot plate (Digital Hot Plate HP-2SA manufactured by As One Co., Ltd.) at a predetermined temperature for a drying time to form an inorganic particle-containing layer. , A photocatalyst composite material.
The thickness of the inorganic particle-containing layer was measured using Dektak150 manufactured by Bruker.
The fact that the inorganic particle-containing layer has a crosslinked structure (organic structure) was confirmed by immersing the inorganic particle-containing layer formed above in toluene and dissolving the siloxane resin.
Further, in Table 2, in the column of the inorganic particle-containing layer of each Example or Comparative Example, the inorganic particle-containing layer was not formed for the Examples or Comparative Examples described as "-".
≪実施例6≫
 実施例1の光触媒層の形成において、ティオスカイコートA液を、ティオスカイコートA液及びティオスカイコートC液の1:1(質量比)混合液(表2中では単に「A液+C液」と表記する。)に変更したこと以外は、実施例1と同様の方法により光触媒複合材を得た。
<<Example 6>>
In the formation of the photocatalyst layer of Example 1, a 1:1 (mass ratio) mixed solution of the Tiosky coat A liquid and the Tiosky coat A liquid (in Table 2, simply “A liquid+C liquid”) was used. A photocatalyst composite material was obtained by the same method as in Example 1 except that the photocatalyst composite material was changed to.
<水接触角の測定>
〔光触媒複合材の表面における有機物の除去〕
 低圧水銀ランプを備える紫外線照射機を使用し、光触媒複合材の無機粒子含有層側の表面に対し、照射強度を20mW/cmとして紫外線を5分間照射した。照射する紫外線の波長は365nmとした。
 紫外線照射機としては、UVP社製UVGL-25等を使用した。
<Measurement of water contact angle>
[Removal of organic substances on the surface of photocatalyst composite material]
An ultraviolet irradiator equipped with a low-pressure mercury lamp was used to irradiate the surface of the photocatalyst composite material on the inorganic particle-containing layer side with ultraviolet light for 5 minutes at an irradiation intensity of 20 mW/cm 2 . The wavelength of the ultraviolet rays to be irradiated was 365 nm.
UVGL-25 manufactured by UVP Co., Ltd. was used as the ultraviolet irradiator.
〔オレイン酸の塗布〕
 光触媒複合材の無機粒子含有層側の表面に、200μlのオレイン酸を滴下後、不織布にて均一に塗り広げ、オレイン酸の塗布量が100cmあたり2.0±0.2mgになるように拭き取りで調整した。
 オレイン酸としては、東京化成工業(株)製のものを使用した。
[Application of oleic acid]
200 μl of oleic acid was dropped on the surface of the photocatalyst composite material on the side of the inorganic particle-containing layer, and then spread evenly with a non-woven fabric, and wiped off so that the applied amount of oleic acid was 2.0±0.2 mg per 100 cm 2. I adjusted it with.
As the oleic acid, one manufactured by Tokyo Chemical Industry Co., Ltd. was used.
〔紫外線の照射と水接触角の評価〕
 上記オレイン酸を塗布した後、低圧水銀ランプを備える紫外線照射機を使用し、光触媒複合材の無機粒子含有層側の表面に対し、照射強度を2mW/cmとして紫外線を照射した。照射する紫外線の波長は365nmとした。
 紫外線照射機としては、上述のUVP社製UVGL-25等を使用した。
 紫外線の照射開始から1時間おきに水接触角を測定し、水接触角がピークに達した時間から、水接触角が10°未満となるまでの時間を測定し、下記評価基準に従って評価して、表2中の「<10°到達時間(h)」の欄に記載した。
 上記「水接触角が10°未満となる時間」が短いほど、無機粒子含有層側の表面における光触媒活性に優れるといえる。
 水接触角の測定は、協和界面化学(株)製DM-501を用い、25℃における無機粒子含有層側の表面上の水滴(純水、2.0μL)の接触角(0.2秒後)として測定した。
 純水としては、富士フイルム和光純薬(株)製のものを使用した。
-評価基準-
 A:水接触角が10°未満となるまでの時間が10時間以内である。
 B:水接触角が10°未満となるまでの時間が10時間を超え100時間以内である。
 C:水接触角が10°未満となるまでの時間が100時間を超える。
[UV irradiation and evaluation of water contact angle]
After applying the oleic acid, an ultraviolet irradiator equipped with a low-pressure mercury lamp was used to irradiate the surface of the photocatalyst composite material on the inorganic particle-containing layer side with ultraviolet light at an irradiation intensity of 2 mW/cm 2 . The wavelength of the ultraviolet rays to be irradiated was 365 nm.
As the UV irradiator, the above UVGL-25 manufactured by UVP was used.
The water contact angle is measured every 1 hour from the start of ultraviolet irradiation, and the time from the time when the water contact angle reaches the peak to the time when the water contact angle becomes less than 10° is measured and evaluated according to the following evaluation criteria. , And in the column of “<10° arrival time (h)” in Table 2.
It can be said that the shorter the “time when the water contact angle is less than 10°”, the more excellent the photocatalytic activity on the surface of the inorganic particle-containing layer side.
The contact angle of water was measured using DM-501 manufactured by Kyowa Interface Science Co., Ltd., and the contact angle of water droplets (pure water, 2.0 μL) on the surface of the inorganic particle-containing layer side at 25° C. (after 0.2 seconds). ) Was measured.
As the pure water, one manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was used.
-Evaluation criteria-
A: The time until the water contact angle becomes less than 10° is within 10 hours.
B: The time until the water contact angle becomes less than 10° is more than 10 hours and 100 hours or less.
C: The time until the water contact angle becomes less than 10° exceeds 100 hours.
<反射防止性の評価>
 各実施例又は比較例における光触媒複合材に対し、無機粒子含有層側の表面の反射率を測定した。
 反射率の測定は、紫外可視赤外分光光度計(型番:UV3100PC、(株)島津製作所製)を用い、波長400nm~800nmの光における反射率(%)を、積分球を用いて測定し、波長400nm~800nmの平均値を反射率とした。
 測定した反射率の数値を表2に記載した。上記反射率の数値が低いほど反射防止性に優れるといえる。
<Evaluation of antireflection property>
The reflectance of the surface on the inorganic particle-containing layer side was measured with respect to the photocatalyst composite material in each Example or Comparative Example.
The reflectance was measured using an ultraviolet-visible infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation), and the reflectance (%) in light having a wavelength of 400 nm to 800 nm was measured using an integrating sphere. The average value in the wavelength range of 400 nm to 800 nm was defined as the reflectance.
The numerical values of the measured reflectance are shown in Table 2. It can be said that the lower the value of the reflectance is, the more excellent the antireflection property is.
<耐傷性の評価>
 各実施例又は比較例において得られた光触媒複合材の無機粒子含有層側の表面に対し、新東科学(株)製 摩擦摩耗試験機HYDON Type18を用い、r=0.03mmのサファイア針で0g~100gの連続荷重にて移動速度600mm/minで10回のスクラッチ試験を行った。
 上記スクラッチ試験後、光触媒複合材の無機粒子含有層側の表面に目視で傷が認められない場合を「A」、傷が認められる場合を「B」として評価した。上記評価結果がAであれば耐傷性に優れるといえる。
<Evaluation of scratch resistance>
On the surface of the photocatalyst composite material obtained in each Example or Comparative Example on the side of the inorganic particle-containing layer, a friction wear tester HYDON Type 18 manufactured by Shinto Kagaku Co., Ltd. was used, and 0 g was obtained with a sapphire needle of r=0.03 mm. A scratch test was performed 10 times at a moving speed of 600 mm/min under a continuous load of up to 100 g.
After the scratch test, the case where no scratch was visually observed on the surface of the photocatalyst composite material on the side of the inorganic particle-containing layer was evaluated as "A", and the case where a scratch was observed was evaluated as "B". If the evaluation result is A, it can be said that the scratch resistance is excellent.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表1中、「-」との記載は、各項目に該当する成分が含まれていないことを意味する。
 表1中、過酸化チタン及びシロキサン樹脂の含有量は、過酸化チタン及びシロキサン樹脂の総質量に対する含有量である。
In Table 1, "-" means that the component corresponding to each item is not included.
In Table 1, the content of titanium peroxide and siloxane resin is the content with respect to the total mass of titanium peroxide and siloxane resin.
Figure JPOXMLDOC01-appb-T000003

 
 
Figure JPOXMLDOC01-appb-T000003

 
 
 表2中、「-」との記載は、各項目に該当する成分が含まれていないことを意味する。
 表2中、アモルファス過酸化チタン型無機バインダー及びシロキサン樹脂の含有量は、アモルファス過酸化チタン型無機バインダー及びシロキサン樹脂の総質量に対する含有量である。
In Table 2, "-" means that the component corresponding to each item is not included.
In Table 2, the content of the amorphous titanium peroxide type inorganic binder and the siloxane resin is the content with respect to the total mass of the amorphous titanium peroxide type inorganic binder and the siloxane resin.
 表2に記載の結果から、実施例1~実施例10は、光触媒活性及び反射防止性に優れていた。中でも、反射防止層の厚みが50nm~100nmである実施例1は、上記厚みが20nmである実施例7及び上記厚みが140nmである実施例8と比較して反射防止性により優れていた。また、反射防止層の屈折率が1.55~1.86である実施例1は、上記屈折率が1.51である実施例5、並びに、上記屈折率が1.90である実施例6及び実施例10と比較して反射防止性に優れていた。
 一方、反射防止層の厚みが20未満の比較例3及び比較例5、上記厚みが140超の比較例1、反射防止層の屈折率が1.5未満の比較例5及び比較例6、及び、上記屈折率が1.90超の比較例2、及び反射防止層を設けなかった比較例7~比較例10、並びに、比較例15及び比較例17は反射防止性に劣っていた。
From the results shown in Table 2, Examples 1 to 10 were excellent in photocatalytic activity and antireflection property. Among them, Example 1 in which the thickness of the antireflection layer was 50 nm to 100 nm was more excellent in antireflection property than Example 7 in which the thickness was 20 nm and Example 8 in which the thickness was 140 nm. In addition, Example 1 in which the refractive index of the antireflection layer is 1.55 to 1.86 is Example 5 in which the refractive index is 1.51 and Example 6 in which the refractive index is 1.90. And the antireflection property was excellent as compared with Example 10.
On the other hand, Comparative Examples 3 and 5 in which the thickness of the antireflection layer is less than 20, Comparative Example 1 in which the thickness is more than 140, Comparative Examples 5 and 6 in which the refractive index of the antireflection layer is less than 1.5, and Comparative Example 2 having a refractive index of more than 1.90, Comparative Examples 7 to 10 in which no antireflection layer was provided, and Comparative Examples 15 and 17 were inferior in antireflection property.
 2018年12月19日に出願された日本国特許出願2018-237716号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-237716 filed on Dec. 19, 2018 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  有機構造を含むシロキサン樹脂、及び、無機粒子を含む無機粒子含有層と、
     酸化チタンを含む光触媒層と、
     アモルファス過酸化チタン型無機バインダー、及び、有機構造を含むシロキサン樹脂を含む反射防止層と、をこの順に含み、
     前記無機粒子含有層は、厚みが80nm~115nmであり、かつ、屈折率が1.50未満であり、
     前記反射防止層は、厚みが20nm~140nmであり、かつ、屈折率が1.50~1.90である光触媒複合材。
    A siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles,
    A photocatalyst layer containing titanium oxide,
    An amorphous titanium peroxide type inorganic binder, and an antireflection layer containing a siloxane resin containing an organic structure, in this order,
    The inorganic particle-containing layer has a thickness of 80 nm to 115 nm and a refractive index of less than 1.50,
    The photocatalytic composite material, wherein the antireflection layer has a thickness of 20 nm to 140 nm and a refractive index of 1.50 to 1.90.
  2.  前記光触媒層に含まれる酸化チタンが、アナターゼ型酸化チタンである請求項1に記載の光触媒複合材。 The photocatalyst composite material according to claim 1, wherein the titanium oxide contained in the photocatalyst layer is anatase-type titanium oxide.
  3.  前記光触媒層の屈折率が1.5以上2.5以下である請求項1又は請求項2に記載の光触媒複合材。 The photocatalyst composite material according to claim 1 or 2, wherein the refractive index of the photocatalyst layer is 1.5 or more and 2.5 or less.
  4.  前記反射防止層の厚みが、60nm~90nmである請求項1~請求項3のいずれか1項に記載の光触媒複合材。 The photocatalyst composite material according to any one of claims 1 to 3, wherein the antireflection layer has a thickness of 60 nm to 90 nm.
  5.  前記反射防止層の屈折率が、1.55~1.86である請求項1~請求項4のいずれか1項に記載の光触媒複合材。 The photocatalytic composite material according to any one of claims 1 to 4, wherein the antireflection layer has a refractive index of 1.55 to 1.86.
  6.  前記無機粒子含有層は、厚みが80nm~100nmであり、
     前記反射防止層は、厚みが70nm~80nmであり、かつ、屈折率が1.70~1.85である請求項1~請求項5のいずれか1項に記載の光触媒複合材。
    The inorganic particle-containing layer has a thickness of 80 nm to 100 nm,
    The photocatalyst composite material according to claim 1, wherein the antireflection layer has a thickness of 70 nm to 80 nm and a refractive index of 1.70 to 1.85.
  7.  前記反射防止層の前記光触媒層側とは反対側に、基材層を更に含む、請求項1~請求項6のいずれか1項に記載の光触媒複合材。 The photocatalyst composite material according to any one of claims 1 to 6, further comprising a base material layer on a side of the antireflection layer opposite to the photocatalyst layer side.
  8.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるサイネージ用ディスプレイ保護部材。 A display protection member for signage, comprising the photocatalytic composite material according to any one of claims 1 to 7.
  9.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるタッチパネル用保護部材。 A protective member for a touch panel, which comprises the photocatalytic composite material according to any one of claims 1 to 7.
  10.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備える太陽電池用保護部材。 A solar cell protective member comprising the photocatalytic composite material according to any one of claims 1 to 7.
  11.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるセンサカバー用保護部材。 A sensor cover protective member comprising the photocatalytic composite material according to any one of claims 1 to 7.
  12.  請求項8に記載のサイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ。 A signage display comprising the signage display protection member according to claim 8.
  13.  請求項9に記載のタッチパネル用保護部材を備えるタッチパネル。 A touch panel comprising the touch panel protection member according to claim 9.
  14.  請求項10に記載の太陽電池用保護部材を備える太陽電池。 A solar cell comprising the solar cell protective member according to claim 10.
  15.  請求項11に記載のセンサカバー用保護部材を備えるセンサカバー。 A sensor cover comprising the sensor cover protection member according to claim 11.
PCT/JP2019/043868 2018-12-19 2019-11-08 Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover WO2020129456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237716 2018-12-19
JP2018237716 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020129456A1 true WO2020129456A1 (en) 2020-06-25

Family

ID=71101218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043868 WO2020129456A1 (en) 2018-12-19 2019-11-08 Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover

Country Status (1)

Country Link
WO (1) WO2020129456A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001668A (en) * 1998-04-13 2000-01-07 Tao:Kk Base with hydrophilic surface
JP2000233462A (en) * 1998-12-17 2000-08-29 Tao:Kk Surface porous hydrophilic substrate
JP2000271532A (en) * 1999-03-24 2000-10-03 Dainippon Ink & Chem Inc Method for forming hydrophilic film and coated article
JP2001253006A (en) * 2000-03-13 2001-09-18 Asahi Kasei Corp Base material with antistatic film
JP2005502076A (en) * 2001-08-30 2005-01-20 フオン・アルデンネ・アンラーゲンテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Optical thin films and related methods
JP2005199155A (en) * 2004-01-14 2005-07-28 Hakko Kirokushi Kougyo Kk Photocatalyst structure
WO2005090067A1 (en) * 2004-03-24 2005-09-29 Sustainable Titania Technology Inc. Laminate and method for production thereof
JP2007185616A (en) * 2006-01-13 2007-07-26 Sundecor:Kk Photocatalyst layer and photocatalyst layer forming method
JP2007298733A (en) * 2006-04-28 2007-11-15 Sundecor:Kk Reflection preventing base material and its manufacturing method
JP2012037667A (en) * 2010-08-05 2012-02-23 Stanley Electric Co Ltd Transparent body and manufacturing method of the same
JP2012135739A (en) * 2010-12-27 2012-07-19 Shibaura Mechatronics Corp Photocatalyst, method of manufacturing photocatalyst and apparatus for manufacturing photocatalyst
WO2014119710A1 (en) * 2013-02-04 2014-08-07 株式会社アサカ理研 Coating solution and antireflective film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001668A (en) * 1998-04-13 2000-01-07 Tao:Kk Base with hydrophilic surface
JP2000233462A (en) * 1998-12-17 2000-08-29 Tao:Kk Surface porous hydrophilic substrate
JP2000271532A (en) * 1999-03-24 2000-10-03 Dainippon Ink & Chem Inc Method for forming hydrophilic film and coated article
JP2001253006A (en) * 2000-03-13 2001-09-18 Asahi Kasei Corp Base material with antistatic film
JP2005502076A (en) * 2001-08-30 2005-01-20 フオン・アルデンネ・アンラーゲンテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Optical thin films and related methods
JP2005199155A (en) * 2004-01-14 2005-07-28 Hakko Kirokushi Kougyo Kk Photocatalyst structure
WO2005090067A1 (en) * 2004-03-24 2005-09-29 Sustainable Titania Technology Inc. Laminate and method for production thereof
JP2007185616A (en) * 2006-01-13 2007-07-26 Sundecor:Kk Photocatalyst layer and photocatalyst layer forming method
JP2007298733A (en) * 2006-04-28 2007-11-15 Sundecor:Kk Reflection preventing base material and its manufacturing method
JP2012037667A (en) * 2010-08-05 2012-02-23 Stanley Electric Co Ltd Transparent body and manufacturing method of the same
JP2012135739A (en) * 2010-12-27 2012-07-19 Shibaura Mechatronics Corp Photocatalyst, method of manufacturing photocatalyst and apparatus for manufacturing photocatalyst
WO2014119710A1 (en) * 2013-02-04 2014-08-07 株式会社アサカ理研 Coating solution and antireflective film

Similar Documents

Publication Publication Date Title
KR102011152B1 (en) Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article
JP5851836B2 (en) Room temperature curable near-infrared shielding coating agent, near-infrared shielding film using the same, and method for producing the same
KR102406819B1 (en) photocatalyst laminate
JP2010202731A (en) Uv-shielding silicone coating composition and coated article
JP6986339B2 (en) Antireflection film forming composition, antireflection film and its forming method
EP1591804A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
EP2512696A2 (en) Sulfonate-functional coatings and methods
WO2010007956A1 (en) Water-repellent substrate and process for production thereof
JP2005290369A (en) Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP2008094956A (en) Silicone coating composition, method for producing the same, and coated article
JP2012077267A (en) Ultraviolet shielding silicone coating composition and coated article
JP2004123766A (en) Composition for coating
JP5448301B2 (en) Coating composition and resin laminate
JP6491934B2 (en) Antireflection article manufacturing method and antireflection article
TW202132490A (en) Anti-glare layer-provided substrate, image display apparatus, and manufacturing method for anti-glare layer-provided substrate which has excellent anti-glare performance and does not cause sparkling
WO2019239808A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
JP2010168508A (en) Low refractive index composition, antireflection material, and display
JP7376239B2 (en) Hydrophilic members, lenses using the same, in-vehicle cameras, resin films, and windows
WO2019239810A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
WO2020129456A1 (en) Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover
JP6910774B2 (en) An optical film, a base material provided with the optical film, and an optical device having the base material.
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
WO2019239809A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
WO2020110523A1 (en) Photocatalyst composite material, protective member for sensors, protective member for building materials, protective member for vehicles, protective member for cooling containers, protective member for security cameras, sensor, building materials, vehicle, cooling container and security camera
JP2010275544A (en) Cage silsesquioxane-peroxotitanium composite photocatalyst coating liquid for forming hydrophilic film, and coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP