WO2019239808A1 - Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover - Google Patents

Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover Download PDF

Info

Publication number
WO2019239808A1
WO2019239808A1 PCT/JP2019/019960 JP2019019960W WO2019239808A1 WO 2019239808 A1 WO2019239808 A1 WO 2019239808A1 JP 2019019960 W JP2019019960 W JP 2019019960W WO 2019239808 A1 WO2019239808 A1 WO 2019239808A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite material
photocatalyst
protective member
inorganic particle
Prior art date
Application number
PCT/JP2019/019960
Other languages
French (fr)
Japanese (ja)
Inventor
安永 正
英宏 望月
彰洋 朝倉
裕之 八重樫
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019239808A1 publication Critical patent/WO2019239808A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a photocatalyst composite material, a signage display protective member, a touch panel protective member, a solar cell protective member, a sensor cover protective member, a signage display, a touch panel, a solar cell, and a sensor cover.
  • Japanese Patent Application Laid-Open No. 9-262481 discloses a method for producing a photocatalyst comprising a catalyst supported on a substrate and using the photocatalyst and an amorphous titanium peroxide sol.
  • Japanese Patent Laid-Open No. 2002-88276 discloses that anatase-type titanium oxide fine particles are contained in an aqueous solution containing a peroxide group-containing amorphous titanium oxide in a range of 0.5 wt% to 2.0 wt% (in terms of titanium oxide) in an amount of 0.025 wt%.
  • an antifouling coating agent characterized in that it is contained in a range of 1.2 wt% or less and a silicone surfactant is contained in a range of 0.01 wt% or more and less than 0.8 wt%.
  • Japanese Patent Application Laid-Open No. 2003-55580 describes a water-based paint characterized by containing fine particles of a titania-based peroxo compound, peroxotitanic acid, and silica fine particles.
  • Japanese Unexamined Patent Application Publication No. 2013-104035 describes a titanium oxide coating solution containing at least the following components.
  • C) chelating agent as binder component D) Water (E) Alcohol
  • JP 2010-99651 A discloses a composite material manufacturing method in which a photocatalyst layer and a functional layer are formed on the surface of a base material, and after forming a photocatalyst layer containing a photocatalyst on the surface of the base material, Forming a functional layer containing an organic substance decomposable with a photocatalyst on the surface; activating the photocatalyst in the photocatalyst layer by irradiating the functional layer with light; and decomposing the organic substance in the functional layer; And a method for producing a composite material, wherein the functional layer has an organic content of 10 to 40% by mass.
  • a photocatalyst film is formed on the surface of a substrate, and a hydrophilic substance film is formed on the surface of the antifogging element.
  • An anti-fogging element using a coating agent obtained by allowing hydrogen peroxide to act on titanium oxide gel (ortho titanic acid) or dispersing photocatalyst particles in a titanium oxide solution is described.
  • Japanese Patent Application Laid-Open No. 2014-111717 discloses an aqueous composition in which an epoxy group-containing alkoxysilane, an epoxy group-free alkoxysilane, and a metal complex are mixed, and the epoxy group-containing alkoxysilane and the epoxy group-free
  • the proportion of the epoxy group-containing alkoxysilane is 20 to 85% by mass with respect to the total alkoxysilane composed of alkoxysilane, and the proportion of the metal complex to the epoxy group-containing alkoxysilane is 17 to 70 mol%.
  • the inventors added the function of the functional layer by forming the functional layer described above on the layer containing the photocatalytic material as described in JP 2010-99651 A or WO 2002/100654. In this case, it has been found that the photocatalytic activity may decrease.
  • a problem to be solved by an embodiment according to the present disclosure is a photocatalyst composite material that is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side and that is provided with a function of the inorganic particle-containing layer, and a signage including the photocatalyst composite material Display protective member, Touch panel protective member including the photocatalyst composite material, Solar cell protective member including the photocatalyst composite material, Sensor cover protective member including the photocatalyst composite material, Signage including the signage display protective member It is to provide a display, a touch panel including the touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
  • Means for solving the above problems include the following aspects. ⁇ 1> a photocatalyst layer containing titanium oxide particles and an amorphous titanium peroxide type inorganic binder; A siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles, The number average particle diameter of the inorganic particles is 5 nm to 100 nm, A photocatalyst composite material, wherein the inorganic particle-containing layer has a thickness of 50 nm to 250 nm. ⁇ 2> The photocatalyst composite material according to ⁇ 1>, wherein the titanium oxide particles are anatase-type titanium oxide particles.
  • ⁇ 3> The photocatalytic composite material according to ⁇ 1> or ⁇ 2>, wherein the organic structure in the siloxane resin containing the organic structure is a crosslinked structure.
  • ⁇ 4> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 3>, wherein the inorganic particle-containing layer is a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles.
  • the alkoxysilane compound includes an epoxy group-containing alkoxysilane compound and an epoxy group-free alkoxysilane compound.
  • ⁇ 6> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 5>, wherein the inorganic particles contain at least one kind of particles selected from the group consisting of silica, alumina, and zirconia.
  • ⁇ 7> The photocatalyst composite material according to any one of ⁇ 1> to ⁇ 6>, further including a base material layer on the opposite side of the photocatalyst layer from the inorganic particle-containing layer.
  • a signage display protection member comprising the photocatalyst composite material according to any one of the above items ⁇ 1> to ⁇ 7>.
  • a touch panel protective member comprising the photocatalyst composite material according to any one of the above items ⁇ 1> to ⁇ 7>.
  • a solar cell protective member comprising the photocatalyst composite material according to any one of the above items ⁇ 1> to ⁇ 7>.
  • a sensor cover protective member comprising the photocatalyst composite material according to any one of the above items ⁇ 1> to ⁇ 7>.
  • a signage display comprising the signage display protection member according to ⁇ 8>.
  • a touch panel comprising the touch panel protective member according to ⁇ 9>.
  • a solar cell comprising the solar cell protective member according to ⁇ 10>.
  • a touch panel including the protective member for a solar cell, a solar cell including the solar cell protective member, or a sensor cover including the sensor cover protective member can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • (meth) acryl is a term used in a concept including both acryl and methacryl
  • “(meth) acryloyl” is a term used as a concept including both acryloyl and methacryloyl. is there.
  • the term “process” is included in the term as long as the intended purpose of the process is achieved, even when the process is not clearly distinguished from other processes.
  • the amount of each component of the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when a plurality of substances corresponding to each component are present in the layer.
  • the molecular weight in the polymer component is a polystyrene-reduced weight average molecular weight (Mw) or number average molecular weight measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. (Mn).
  • Mw polystyrene-reduced weight average molecular weight
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the photocatalyst composite material according to the present disclosure includes a photocatalyst layer including titanium oxide particles and an amorphous titanium peroxide type inorganic binder, and a siloxane resin including an organic structure and an inorganic particle containing layer including inorganic particles, and
  • the number average particle diameter of the inorganic particles is 5 nm to 100 nm, and the film thickness of the inorganic particle-containing layer is 50 nm to 250 nm.
  • the photocatalyst composite material according to the present disclosure has excellent photocatalytic activity on the surface on the inorganic particle-containing layer side, and has a function added by the inorganic particle-containing layer.
  • the details of the estimation mechanism that can obtain the above effect are estimated as follows.
  • the photocatalyst layer according to the present disclosure includes titanium oxide particles and an amorphous titanium peroxide type inorganic binder.
  • the present inventors show that the photocatalytic layer containing an amorphous titanium peroxide type inorganic binder exhibits higher photocatalytic activity than the photocatalytic layer comprising titanium oxide particles and an organic binder type binder. It confirmed by the experiment which compares.
  • the photocatalyst layer concerning this indication takes the above-mentioned composition.
  • the photocatalyst layer according to the present disclosure is irradiated with, for example, ultraviolet rays, radicals (hydroxy radicals, superoxide anion radicals, etc.) are generated by the photocatalytic action of the titanium oxide particles. It is known that effects such as odor and mold prevention can be obtained.
  • the excellent effects of antifouling, antibacterial, antiviral, deodorant, antifungal and the like are also referred to as “excellent photocatalytic activity”.
  • the inorganic particle-containing layer according to the present disclosure is used as a functional layer.
  • the functional layer is used as an antireflection layer, a hard coat layer, etc.
  • the functional layer using the material used for the conventional antireflection layer, hard coat layer, etc. is simply laminated on the conventional photocatalyst layer, the functional layer surface of radicals probably generated in the photocatalyst layer
  • the photocatalytic activity on the surface on the functional layer side may be reduced due to a problem related to migration to the surface.
  • the degree of decrease in photocatalytic activity varies depending on the material, film structure, film thickness, etc. of the functional layer. The mechanism by which the decline occurs is probably not simple and involves multiple physical processes.
  • the photocatalyst layer is an inorganic binder-type photocatalyst layer
  • the functional layer is an inorganic particle-containing layer
  • the inorganic particle-containing layer It was found that the decrease in the photocatalytic activity can be solved by appropriately selecting the particle diameter of the inorganic particles contained in the film and the film thickness of the inorganic particle-containing layer.
  • the present inventors include a specific photocatalyst layer of an inorganic binder type, a siloxane resin containing an organic structure, and inorganic particles, the number average particle diameter of the inorganic particles being 5 nm to It has been found that it is effective to provide a photocatalyst composite material including an inorganic particle-containing layer having a thickness of 100 nm and a thickness of 50 nm to 250 nm. This is probably because the inorganic particle-containing layer has a porous structure so that radicals generated in the above-mentioned photocatalyst layer pass through the pores of the inorganic particle-containing layer and the inorganic particle-containing layer side of the photocatalyst composite material. It is assumed that this is because high photocatalytic activity can be maintained by reaching the surface.
  • the photocatalyst composite material according to the present disclosure includes titanium oxide particles and an amorphous titanium peroxide type inorganic binder.
  • titanium oxide particles are particles having photocatalytic activity.
  • the titanium oxide particles in the present disclosure may be any crystal form of rutile, anatase, and brookite, but are preferably anatase from the viewpoint of photocatalytic activity.
  • the shape of the titanium oxide particles in the present disclosure is not particularly limited, but is preferably substantially spherical.
  • the number average particle diameter of the titanium oxide particles in the present disclosure is preferably 2 nm to 200 nm, and more preferably 5 nm to 50 nm.
  • the number average particle size is SU-8030 FE-SEM manufactured by Hitachi High-Technologies Corporation (field emission scanning electron microscope, acceleration voltage 2 kV, acquisition of secondary electron image) ) To calculate. Specifically, the dispersed particles are observed by FE-SEM, the projected area of the particles is obtained from the obtained photograph, the equivalent circle diameter is obtained therefrom, and this is used as the primary particle size.
  • the number average particle diameter in the present disclosure can be calculated as an arithmetic average value of the equivalent circle diameter (primary particle diameter) obtained by measuring the projected area of 300 or more particles.
  • a number average particle diameter may be calculated from the commercially available products by the FE-SEM, and a material having a desired particle diameter may be selected and used.
  • the content of titanium oxide (TiO 2 ) in the titanium oxide particles in the present disclosure is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total mass of the titanium oxide particles, and 80 More preferably, it is more than 90 mass%, and it is especially preferable that it is 90 mass% or more.
  • the components other than TiO 2 contained in the titanium oxide particles include SO 4 and Na 2 O, but are not limited thereto, and may contain other components.
  • the content of the titanium oxide particles in the present disclosure is preferably 5% by mass to 95% by mass and more preferably 10% by mass to 90% by mass with respect to the total mass of the photocatalyst layer.
  • the photocatalyst layer in the present disclosure may contain one kind of titanium oxide particles or two or more kinds of titanium oxide particles.
  • the photocatalytic layer in the present disclosure includes an amorphous titanium peroxide type inorganic binder.
  • the amorphous titanium peroxide type inorganic binder is an amorphous binder containing a Ti—O bond.
  • the amorphous titanium peroxide type inorganic binder is preferably obtained by heating peroxotitanic acid. Specifically, it is considered that by heating peroxotitanic acid at 100 ° C. to 150 ° C. for several hours, oxygen atoms or hydroxyl groups are desorbed from peroxotitanic acid to obtain titanium oxide.
  • an anatase phase may be formed on at least part of amorphous titanium oxide by increasing the heating temperature of peroxotitanic acid, increasing the heating time, or the like.
  • the peroxotitanic acid is not particularly limited, but can be obtained by allowing hydrogen peroxide to act on titanium hydroxide (orthotitanic acid). Titanium hydroxide is obtained, for example, by reaction of titanium tetrachloride with a base.
  • the disclosure of JP-A-9-262481 can also be referred to.
  • the content of the amorphous titanium peroxide type inorganic binder is preferably 5% by mass to 95% by mass and more preferably 10% by mass to 90% by mass with respect to the total mass of the photocatalyst layer.
  • the photocatalyst layer in this indication may contain an amorphous titanium peroxide type inorganic binder individually by 1 type, and may use 2 or more types together.
  • the photocatalyst layer in the present disclosure may further include other components.
  • known additives such as surfactants are used without particular limitation.
  • the film thickness of a photocatalyst layer is not specifically limited, From a viewpoint of photocatalytic activity, it is preferable that it is 50 nm or more, It is more preferable that it is 100 nm or more, It is further more preferable that it is 200 nm or more.
  • the film thickness is preferably 2000 nm or less, and more preferably 1000 nm or less, from the viewpoint of suppressing the occurrence of cracks or poor adhesion due to an increase in shrinkage stress during coating film formation.
  • the photocatalyst layer in the present disclosure can be obtained by applying the composition for forming a photocatalyst layer to, for example, a substrate described later and heating.
  • the composition for forming a photocatalyst layer preferably contains the above-described titanium oxide particles and peroxotitanic acid.
  • the composition for forming a photocatalyst layer is prepared by adding and dispersing titanium oxide particles in a composition containing peroxotitanic acid and a solvent.
  • a commercially available product can be used as the composition containing peroxotitanic acid and a solvent.
  • Tio Sky Coat A liquid Tio Systems Co., Ltd.
  • Tio Sky Coat A liquid Tio Systems Co., Ltd.
  • the coating method of the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used. Examples thereof include slit coating, spin coating, curtain coating, and inkjet coating.
  • a method for heating the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used.
  • Examples thereof include a method using a heating means such as a heater, an oven, a hot plate, an infrared lamp, and an infrared laser. What is necessary is just to adjust a heating time and heating temperature suitably as a heating time and heating temperature in manufacture of the above-mentioned amorphous titanium peroxide type
  • a heating means such as a heater, an oven, a hot plate, an infrared lamp, and an infrared laser.
  • an easy adhesion layer described later may be provided between the inorganic particle-containing layer and the base material layer.
  • the inorganic particle-containing layer includes a siloxane resin having an organic structure and inorganic particles.
  • the inorganic particle-containing layer is preferably the outermost layer in the photocatalyst composite material according to the present disclosure.
  • an inorganic particle content layer is an antireflection layer mentioned later, you may have protective layers, such as a well-known hard-coat layer, on an inorganic particle content layer.
  • the inorganic particle-containing layer in the present disclosure includes inorganic particles.
  • the inorganic particles may be crosslinked with a siloxane resin having an organic structure in the inorganic particle-containing layer.
  • examples of the inorganic particles include metal oxide particles that are transparent to light having a wavelength of 350 nm from the viewpoint of photocatalytic activity.
  • a metal oxide that is transparent to light having a wavelength of 400 nm to 700 nm. Particles are preferred.
  • being transparent to light of wavelength A means that the transmittance of light of wavelength A is 50% or more.
  • the transmittance is preferably 70% or more, and more preferably 80% or more.
  • being transparent with respect to wavelengths A to B means that the arithmetic average value of all the transmittances is 50 when the transmittance of light having a wavelength between wavelengths A and B is measured in increments of 10 nm. It means that it is more than%.
  • the transmittance is preferably 70% or more, and more preferably 80% or more. The transmittance is measured using a spectrophotometer “V670” (manufactured by JASCO Corporation).
  • the metal oxide particles it is preferable to include at least one kind of particles selected from the group consisting of silica, alumina, and zirconia.
  • silica particles from the viewpoint of crosslinkability with an alkoxysilane compound described later, it is preferable to include silica particles.
  • silica particles In order to improve antireflection, it is preferable to contain silica particles, to improve chemical resistance or thermal conductivity, it is preferable to include alumina particles, and to improve chemical resistance. It is preferable that zirconia particles are included.
  • silica particles dry powdery silica produced by combustion of silicon tetrachloride can be used, but colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferably used.
  • colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferably used.
  • the number average particle size of the colloidal silica is preferably 3 nm to 50 nm, more preferably in the range of 4 nm to 50 nm, further preferably in the range of 4 nm to 40 nm, and in the range of 5 nm to 35 nm. Is particularly preferred.
  • the colloidal silica is more preferably adjusted to have a pH of 2 to 7 when added to the inorganic particle-containing layer forming composition described later.
  • the pH is 2 to 7
  • the stability of silanol, which is a hydrolyzate of the alkoxysilane compound is better than when the pH is less than 2 or greater than 7, and the silanol dehydration condensation reaction is faster.
  • An increase in the viscosity of the coating liquid due to the progress can be suppressed.
  • the number average particle diameter of the inorganic particles in the present disclosure is 5 nm to 100 nm, preferably 10 nm to 80 nm, and more preferably 20 nm to 40 nm.
  • a number average particle diameter may be calculated by using the above-mentioned FE-SEM from commercially available products, and a material having a desired particle diameter may be selected and used.
  • the shape of the inorganic particles in the present disclosure is not particularly limited, but is preferably substantially spherical from the viewpoint of dispersibility.
  • the content of the inorganic particles is preferably more than 0% by mass and 80% by mass or less, more preferably 1% by mass to 70% by mass with respect to the total mass of the inorganic particle-containing layer in the present disclosure. More preferably, the content is from mass% to 65 mass%.
  • the inorganic particle-containing layer in the present disclosure may contain one kind of inorganic particles or two or more kinds in combination.
  • the organic structure in the siloxane resin containing an organic structure is preferably a crosslinked structure.
  • the siloxane resins may be crosslinked with each other, or the siloxane resin and the inorganic particles may be crosslinked.
  • the organic structure included as the crosslinked structure is preferably a structure represented by any of the following formulas 1-1 to 1-3.
  • R 11 represents a single bond, an oxygen atom, an aryleneoxy group, an aryleneoxyalkylene group, or an alkylene group
  • R 12 to R 14 each independently represent a hydrogen atom or Represents an alkyl group, and at least two of R 12 to R 14 may be bonded to each other to form a ring structure
  • R 21 represents a single bond or an alkylene group
  • R 31 represents a single bond, alkyleneoxy
  • R 32 represents a hydrogen atom or an alkyl group, and ** and * each independently represent a bonding site with another structure.
  • the structure represented by Formula 1-1 is formed, for example, by using an alkoxysilane compound having an epoxy group as an alkoxysilane compound described later.
  • R 11 is preferably an oxygen atom or an alkyleneoxyalkylene group.
  • R 12 to R 14 are hydrogen atoms.
  • R 12 or R 13 and R 14 are bonded.
  • a hydrocarbon ring is preferable and a cyclohexane ring is more preferable.
  • the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
  • the target to which ** which is a bonding site is bonded is not particularly limited, but is preferably an atom contained in the siloxane resin or resin particle. As said atom, it is preferable that they are an oxygen atom or a nitrogen atom.
  • the structure represented by Formula 1-2 is formed, for example, by using an alkoxysilane compound having an isocyanate group as an alkoxysilane compound described later.
  • R 21 represents a single bond or an alkylene group, and is preferably an alkylene group having 2 to 10 carbon atoms.
  • the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
  • the target to which ** which is a binding site is bonded is not particularly limited, but is preferably an atom contained in a siloxane resin or resin particles.
  • atom it is preferable that they are an oxygen atom or a nitrogen atom.
  • they are an oxygen atom or a nitrogen atom.
  • 3-isocyanatopropyltriethoxysilane is used as the alkoxysilane compound
  • * is bonded to an Si atom and R 21 is a propylene group.
  • ** is bonded to an oxygen atom in the siloxane resin, an oxygen atom in the resin particle, a nitrogen atom in the resin particle, or the like.
  • R 31 preferably represents an alkyleneoxycarbonyl group, an alkyleneaminocarbonyl group, or an arylene group, an alkyleneoxycarbonyl group having 2 to 10 carbon atoms, an alkyleneaminocarbonyl group having 2 to 10 carbon atoms, or phenylene More preferred is an alkyleneoxycarbonyl group having 2 to 10 carbon atoms.
  • the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
  • the target to which the binding site ** binds is not particularly limited, but is preferably a structure represented by Formula 1-3.
  • 3-methacryloxypropylmethyldiethoxysilane is used as the alkoxysilane compound
  • * is bonded to the Si atom and R 31 is a propyleneoxycarbonyl group.
  • ** polymerizes with methacryloxy groups in other 3-methacryloxypropylmethyldiethoxysilanes.
  • the siloxane resin containing an organic structure used in the present disclosure may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group as the organic structure. .
  • the total content of the organic structure is preferably 90% by mass or less, and more preferably 75% by mass or less.
  • the inorganic particle-containing layer is preferably a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles (hereinafter also referred to as “inorganic particle-containing layer forming composition”).
  • the siloxane resin containing the organic structure is preferably a condensate of an alkoxysilane compound.
  • the alkoxysilane compound is preferably a water-soluble or water-dispersible material from the viewpoint of reducing environmental pollution caused by VOC (volatile organic compounds).
  • the inorganic particle-containing layer forming composition is preferably an aqueous composition containing water as a solvent.
  • the composition for forming an inorganic particle-containing layer contains water, so that the photocatalyst is formed after the formation of the photocatalyst layer. Even when the inorganic particle-containing layer forming composition is applied on the layer, mixing between layers is prevented. Moreover, it is preferable that the composition for inorganic particle content layer formation does not contain an organic solvent substantially. In the present disclosure, “substantially free” means that the content is less than 1% by mass, and preferably less than 0.1% by mass.
  • the alkoxysilane compound preferably includes a crosslinkable group-containing alkoxysilane compound and a crosslinkable group-free alkoxysilane compound, an epoxy group-containing alkoxysilane compound, an epoxy group-free alkoxysilane compound, It is preferable to contain.
  • Both the crosslinkable group-containing alkoxysilane compound and the crosslinkable group-free alkoxysilane compound have a hydrolyzable group.
  • This hydrolyzable group is hydrolyzed in, for example, an acidic aqueous solution to produce silanol, and the silanols are condensed to produce a siloxane resin.
  • a part of the crosslinkable group-containing alkoxysilane compound and the crosslinkable group-free alkoxysilane compound may be hydrolyzed.
  • crosslinkable group in the crosslinkable group-containing alkoxysilane compound examples include an epoxy group, an isocyanate group, and a radical polymerizable group.
  • examples of the crosslinkable group-containing alkoxysilane compound include an epoxy group-containing alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, a radical polymerizable group-containing alkoxysilane compound, and the like, and preferably includes an epoxy group-containing alkoxysilane compound.
  • the epoxy group-containing alkoxysilane compound is an alkoxysilane compound having an epoxy group.
  • the epoxy group-containing alkoxysilane compound only needs to have one or more epoxy groups in one molecule, and the number of epoxy groups is not particularly limited.
  • the epoxy group-containing alkoxysilane compound may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group.
  • Examples of the epoxy group-containing alkoxysilane compound used in the present disclosure include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, And 3-glycidoxypropyltriethoxysilane.
  • Examples of commercially available epoxy group-containing alkoxysilane compounds include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the isocyanate group-containing alkoxysilane compound is an alkoxysilane compound having an isocyanate group.
  • the isocyanate group-containing alkoxysilane compound only needs to have one or more isocyanate groups in one molecule, and the number of isocyanate groups is not particularly limited.
  • the isocyanate group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, and a carboxy group in addition to the isocyanate group.
  • Examples of the isocyanate group-containing alkoxysilane compound used in the present disclosure include 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, and the like.
  • Examples of commercially available isocyanate group-containing alkoxysilane compounds include KBE-9007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the radical polymerizable group-containing alkoxysilane compound is an alkoxysilane compound having a radical polymerizable group.
  • the radical polymerizable group-containing alkoxysilane compound may be any compound having one or more radical polymerizable groups in one molecule, and the number of radical polymerizable groups is not particularly limited. Although it does not specifically limit as a radically polymerizable group, (meth) acryloxy group, (meth) acrylamide group, vinylphenyl group, vinyl group, an allyl group, etc. are mentioned.
  • the radical polymerizable group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, and a carboxy group in addition to the radical polymerizable group.
  • Examples of the radically polymerizable group-containing alkoxysilane compound used in the present disclosure include vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. , 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like.
  • radical polymerizable group-containing alkoxysilane compounds include KBM-1003, KBE-1003, KBM-1403, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103 (Shin-Etsu Chemical ( Etc.).
  • the composition for inorganic particle content layer formation may further contain a well-known radical polymerization initiator.
  • the content of the crosslinkable group-containing alkoxysilane compound is preferably 20% by mass to 85% by mass.
  • the content of the crosslinkable group-containing alkoxysilane compound is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more.
  • content of a crosslinkable group containing alkoxysilane compound is 85 mass% or less, It is more preferable that it is 80 mass% or less, It is still more preferable that it is 75 mass% or less.
  • the crosslinkable group-free alkoxysilane compound is an alkoxysilane compound having no crosslinkable group.
  • the non-crosslinkable group-containing alkoxysilane compound may be an alkoxysilane compound having no crosslinkable group, and has a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group. You may do it.
  • the crosslinkable group-free alkoxysilane compound is preferably a tetraalkoxysilane compound, a trialkoxysilane compound, or a mixture thereof. More preferably, it is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound.
  • a tetraalkoxysilane compound and trialkoxysilane compound are mixed and contained, when the inorganic particle-containing layer is formed, sufficient hardness can be obtained while having appropriate flexibility.
  • the crosslinkable group-free alkoxysilane compound is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound
  • the molar ratio of the tetraalkoxysilane compound to the trialkoxysilane compound is 25:75 to 85:15. It is preferably 30:70 to 80:20, more preferably 30:70 to 65:35.
  • the tetraalkoxysilane compound is a tetrafunctional alkoxysilane compound, and preferably has 1 to 4 carbon atoms in each alkoxy group.
  • a tetramethoxysilane compound or a tetraethoxysilane compound is particularly preferably used.
  • the hydrolysis rate of the tetraalkoxysilane compound when mixed with acidic water does not become too slow, and the time required for dissolution until a uniform aqueous solution is reduced. Thereby, the manufacturing efficiency at the time of manufacturing an inorganic particle content layer can be improved.
  • Examples of commercially available tetraalkoxysilane compounds include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the trialkoxysilane compound is a trifunctional alkoxysilane compound represented by the following formula A.
  • R-Si (OR 1 ) 3 formula A In Formula A, R represents an organic group having 1 to 15 carbon atoms that does not contain an amino group, and R 1 represents an alkyl group having 4 or less carbon atoms.
  • the trifunctional alkoxysilane compound represented by Formula A preferably does not contain an amino group as a functional group. That is, the trifunctional alkoxysilane compound has an organic group R having no amino group. When R does not have an amino group, when it is mixed with a tetrafunctional alkoxysilane compound and hydrolyzed, dehydration condensation is hardly promoted between the produced silanols, and the stability of the composition for forming an inorganic particle-containing layer is improved. improves.
  • R may be an organic group having a molecular chain length such that the carbon number is in the range of 1 to 15.
  • the flexibility of the inorganic particle-containing layer does not become too large, and sufficient hardness can be obtained.
  • the inorganic particle content layer excellent in brittleness can be obtained by making the carbon number of R into the said range.
  • the adhesiveness of a photocatalyst layer and an inorganic particle content layer can be improved.
  • the organic group represented by R may have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom. Adhesion with a photocatalyst layer can be improved because an organic group has a hetero atom.
  • Trialkoxysilane compounds include 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, methyl Examples thereof include triethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane, and phenyltrimethoxysilane.
  • methyltriethoxysilane and methyltrimethoxysilane are particularly preferably used.
  • examples of commercially available trialkoxysilane compounds include KBE-13 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the composition for forming an inorganic particle-containing layer includes inorganic particles.
  • the inorganic particles in the composition for forming an inorganic particle-containing layer are the same as the inorganic particles in the above-described inorganic particle-containing layer, and the preferred embodiments are also the same.
  • the content of the inorganic particles in the composition for forming an inorganic particle-containing layer is the content of the inorganic particles relative to the total solid content of the composition for forming an inorganic particle-containing layer from the viewpoint of photocatalytic activity and alkali resistance of the inorganic particle-containing layer.
  • x mass% it is preferable that 0 mass% ⁇ x mass% ⁇ 80 mass%.
  • x mass% it is more preferable that it is 1 mass% or more, and it is still more preferable that it is 3 mass% or more. Further, x mass% is preferably 80 mass% or less, more preferably 70 mass% or less, and further preferably 65 mass% or less.
  • the content of the crosslinkable group-containing alkoxysilane compound with respect to the total mass of the alkoxysilane compound is y mass%.
  • y mass% ⁇ x mass% ⁇ 5 mass% is preferable, and y mass% ⁇ x mass% is more preferable.
  • the composition for forming an inorganic particle-containing layer preferably contains a metal complex (curing agent). Moreover, it is preferable that the inorganic particle content layer in this indication contains a metal complex.
  • a metal complex composed of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf and Zr is preferable, and these can be used in combination.
  • the metal complex in the present disclosure can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • chelating agents include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and ⁇ -keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • the metal complex include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetyl) Acetate) and other aluminum chelate compounds, ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkyl acetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate) and other magnesium chelate compounds, zirconium tetraacetylacetate Narate, zirconium tributoxyacetylacetonate, zirconium Chill acetonate bis (ethyl acetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium ace
  • aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate), which are aluminum chelate complexes are particularly preferable.
  • Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, aluminum chelate M (manufactured by Kawaken Fine Chemical Co., Ltd.), and the like.
  • the content of the metal complex is 17 mol% to 70 mol% with respect to the total molar amount of the crosslinkable group-containing alkoxysilane compound.
  • the content is more preferably 20 mol% or more.
  • the content is preferably 70 mol% or less, more preferably 65 mol% or less, and still more preferably 60 mol% or less.
  • a surfactant may be added to the inorganic particle-containing layer forming composition and the inorganic particle-containing layer used in the present disclosure for the purpose of improving the smoothness of the layer and reducing the friction of the coating film surface.
  • the surfactant include surfactants described in paragraphs 0039 to 0044 of JP-A No. 2014-117717.
  • the inorganic particle-containing layer may be colored by dispersing pigments, dyes, and other particles.
  • an antioxidant or the like may be added to the inorganic particle-containing layer forming composition and the inorganic particle-containing layer used in the present disclosure for the purpose of improving the weather resistance.
  • the film thickness of the inorganic particle-containing layer can be controlled by adjusting the coating amount of the inorganic particle-containing layer forming composition.
  • the thickness of the inorganic particle-containing layer may be designed according to the use, but is 50 nm to 250 nm, preferably 100 nm to 200 nm.
  • An inorganic particle content layer is formed by apply
  • the application method of the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used. Examples of the application method include slit coating, spin coating, curtain coating, and inkjet coating.
  • a method for heating the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used. For example, a method using a heating means such as a heater, an oven, a hot plate, an infrared lamp, or an infrared laser may be mentioned. It is done. An easy-adhesion layer described later may be included between the inorganic particle-containing layer and the photocatalyst layer.
  • the aspect with an inorganic particle content layer is a hard-coat layer.
  • the pencil hardness of the surface of an inorganic particle content layer is B or more, and it is more preferable that it is HB or more.
  • the pencil hardness means a value measured based on JIS K5600-5-4: 1999. A high uni from Mitsubishi Pencil Co., Ltd. is used as the pencil.
  • the hard coat layer can be provided with a plurality of functions such as a hard coat layer excellent in reflectance reduction, a hard coat layer excellent in thermal conductivity, and a hard coat layer excellent in chemical resistance.
  • the aspect with an inorganic particle content layer is an antireflection layer.
  • the refractive index of the inorganic particle-containing layer is preferably in the range of 1.3 to 1.7, more preferably 1.4 to 1.6. . Unless otherwise specified, the refractive index is a value measured at 25 ° C. by ellipsometry at a wavelength of 600 nm.
  • the photocatalyst composite material according to the present disclosure preferably includes a base material layer on the opposite side of the photocatalyst layer from the inorganic particle-containing layer.
  • a base material layer is a layer formed with a base material, and a resin base material, a glass base material, a metal base material etc. are mentioned as a base material in a base material layer.
  • the resin substrate is not particularly limited, but polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyarylates, polyethersulfone, polycarbonate, poly Ether ketone, polysulfone, polyphenylene sulfide, polyester liquid crystal polymer, triacetyl cellulose, cellulose derivatives, polypropylene, polyamides, polyimides, polycycloolefins, and the like are preferable. Among these, PET, PEN, or triacetyl cellulose is more preferable, and PET or PEN is still more preferable.
  • the resin base material may be stretched and is preferably biaxially stretched.
  • Biaxial stretching refers to stretching in both directions by regarding the width direction and longitudinal direction of the resin film as uniaxial.
  • the biaxially stretched polyester film has very good mechanical strength because the molecular orientation in the biaxial direction is sufficiently controlled.
  • the draw ratio is not particularly limited, but the draw ratio in one direction is preferably 1.5 to 7 times, more preferably 2 to 5 times.
  • a polyester film that has been biaxially stretched at a stretching ratio of 2 to 5 times per uniaxial direction has a very excellent mechanical strength because the molecular orientation is controlled more efficiently and effectively, Suitable as a polyester film.
  • mold glass plate, a netted glass plate, a wire-containing glass plate, a tempered glass plate, a heat ray reflective glass plate, a heat ray absorption glass plate, Low-E (Low Emissivity, A glass substrate such as a low reflection glass plate can be used.
  • limit especially as a metal base material An aluminum plate, a steel plate, a copper plate, other alloy plates, etc. are mentioned.
  • the base material used as the base material layer may be surface-treated, and is preferably subjected to corona treatment or glow treatment for the simplicity of the process.
  • corona treatment or glow treatment for the simplicity of the process.
  • the surface of the substrate is hydrophilized and the paintability can be improved, so that the adhesion with the photocatalyst layer or the adhesion with the easy adhesion layer can be increased.
  • the corona treatment at normal pressure has a simpler process than the glow treatment at reduced pressure, but the glow treatment has a higher effect of improving the adhesion.
  • the photocatalyst composite material according to the present disclosure may have an easy adhesion layer for the purpose of improving the adhesion between the base material layer and the photocatalyst layer, or the photocatalyst layer and the inorganic particle-containing layer.
  • the photocatalyst composite material according to the present disclosure may include an easy-adhesion layer between the base material layer and the photocatalyst layer and / or between the photocatalyst layer and the inorganic particle-containing layer.
  • the easy-adhesion layer is obtained by, for example, applying a coating liquid composed of a binder, a curing agent, and a surfactant to the surface on which the photocatalyst layer of the substrate is provided or the surface on which the inorganic particle-containing layer of the photocatalyst layer is formed. It is formed.
  • Organic or inorganic particles may be appropriately added to the easy adhesion layer. Although it does not specifically limit as a particle, For example, metal oxide particle is mentioned, Specifically, particles, such as a tin oxide, a zirconium oxide, a zinc oxide, a titanium oxide, a cerium oxide, niobium oxide, are preferable. These particles may be used alone or in combination of two or more.
  • Examples of commercially available particles include ET series such as ET-500W, FT-2000 and other FT series, SN series such as SN-100P, and FS series such as FS-10D (manufactured by Ishihara Sangyo Co., Ltd.). It is done.
  • the binder contained in an easily bonding layer is not specifically limited, From an adhesive viewpoint, it is preferable that at least 1 of polyester, a polyurethane, an acrylic resin, a styrene butadiene copolymer, and polyolefin is included. In addition, when not performing surface treatment on the surface of a base material, it is preferable that a binder contains at least 1 among polyester, a polyurethane, and polyolefin, and it is more preferable that it is polyolefin. In addition, a binder having water solubility or water dispersibility is particularly preferable from the viewpoint that the load on the environment is small.
  • binders include, for example, Carbodilite series such as Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.), Takelac WS series such as Takerak WS-5100 (manufactured by Mitsui Chemicals), Arrow Base SE1013N An arrow base series (made by Unitika Co., Ltd.) such as HARDREN series (made by Toyobo Co., Ltd.) such as HARDREN NZ1004.
  • Carbodilite series such as Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.)
  • Takelac WS series such as Takerak WS-5100 (manufactured by Mitsui Chemicals)
  • Arrow Base SE1013N An arrow base series (made by Unitika Co., Ltd.) such as HARDREN series (made by Toyobo Co., Ltd.) such as HARDREN NZ1004.
  • the thickness of the easy-adhesion layer can be adjusted as appropriate by adjusting the coating amount.
  • the thickness of the easy adhesion layer is more preferably in the range of 0.01 ⁇ m to 5 ⁇ m. If the thickness is 0.01 ⁇ m or more, the adhesion is likely to be sufficient, and if it is 5 ⁇ m or less, the thickness of the easy-adhesion layer tends to be uniform. A more preferable thickness range is 0.02 ⁇ m to 3 ⁇ m. Only one layer may be sufficient as an easily bonding layer, and the aspect which piled up this may be sufficient. When a plurality of easy-adhesion layers are stacked, the total thickness of all the easy-adhesion layers is regarded as the thickness of the easy-adhesion layer.
  • the photocatalyst composite material according to the present disclosure may have a shielding layer between the base material layer and the photocatalyst layer.
  • a shielding layer for example, radicals generated in the photocatalytic layer are considered to be trapped by the shielding layer, so that deterioration due to radicals such as a resin substrate in the substrate layer is suppressed.
  • the shielding layer for example, a layer similar to the inorganic particle-containing layer or a layer similar to the inorganic particle-containing layer can be used as the shielding layer except that the inorganic particle-containing layer is not included.
  • the photocatalyst composite material in the present disclosure is preferably a protective member, and is preferably a signage display protective member, a touch panel protective member, a solar cell protective member, or a sensor cover protective member.
  • the photocatalyst composite material in the present disclosure has one or a plurality of effects such as antifouling, antibacterial, antiviral, deodorant, and antifungal.
  • the photocatalyst composite material in the present disclosure has one or more of effects such as antireflection properties, scratch resistance, thermal conductivity, and chemical resistance, depending on the composition of the inorganic particle-containing layer. Therefore, the photocatalyst composite material according to the present disclosure can be used, for example, as a protective member having excellent antifouling properties and excellent scratch resistance and antireflection properties.
  • the signage display protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • the signage display according to the present disclosure includes the signage display protection member according to the present disclosure.
  • the signage display protective member according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side. For example, by using the inorganic particle-containing layer as the surface of the outermost layer in the signage display, the adhesion of dirt is prevented. can do.
  • a signage display protection member for example, a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a signage display may be used as a signage display protection member.
  • a photocatalyst composite material in which a resin film is used as a base material layer and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a signage display protection member. You may paste and use it for the signage display.
  • the signage display is not particularly limited, and a known image display device such as a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, or a PDP (plasma display panel) is used. It is done.
  • the protective member for a touch panel according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • the touch panel according to the present disclosure includes the touch panel protective member according to the present disclosure. Since the protective member for a touch panel according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, by using the inorganic particle-containing layer as a touch part (touch part) on the touch panel, dirt such as fingerprints Can be prevented, or the removal of dirt can be facilitated.
  • a protective member for a touch panel for example, a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member that becomes an outermost layer in a conventional touch panel is used as a protective member for a touch panel. Also good.
  • a photocatalyst composite material in which a resin film is used as a base material layer and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a touch panel protection member. You may affix and use on the member used as the outermost layer in a touch panel.
  • the touch panel a known touch panel is used without particular limitation, and for example, the description in JP-A-2002-48913 can be referred to.
  • the solar cell protective member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • the solar cell concerning this indication is provided with the protection member for solar cells concerning this indication. Since the protective member for solar cell according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, the inorganic particle-containing layer is used as the outermost layer in the solar cell front sheet to prevent adhesion of dirt. can do.
  • a solar cell protective member for example, a photocatalyst composite formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member (for example, a solar cell front sheet) that is the outermost layer in a conventional solar cell.
  • You may form and use a material as a protection member for solar cells.
  • a photocatalyst composite material in which a resin film is used as a base material layer, and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a solar cell protection member.
  • it may be used by being attached to a member that is the outermost layer in a conventional solar cell.
  • the description in JP-A-2011-62877 can be referred to.
  • the protective member for a sensor cover according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
  • the sensor cover according to the present disclosure includes the sensor cover protection member according to the present disclosure. Since the protective member for a sensor cover according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, by making the inorganic particle-containing layer the outermost layer in the sensor cover, it is possible to prevent adhesion of dirt. it can.
  • a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member that is an outermost layer in a conventional sensor cover is formed as a sensor cover protection member. May be used.
  • a photocatalyst composite material in which a resin film is used as a base material layer, and a photocatalyst layer and an inorganic particle-containing layer are laminated on the base material layer in this order is produced as a sensor cover protection member. You may affix and use on the member used as the outermost layer in the conventional sensor cover.
  • Examples of the sensor cover include a sensor cover in a camera module, and the description in JP-A-2016-130746 can be referred to.
  • Other protective members including the photocatalytic composite material according to the present disclosure include a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, a PDP (plasma display panel) electromagnetic wave shielding film, and the like. It is also suitably used as a protective member.
  • a composition was prepared by thickening Tiosky Coat A solution, which is an aqueous solution, by the following thickening method. After dropping the obtained composition onto a glass substrate, the composition was spread using a spin coater (MS-A100, manufactured by Mikasa Co., Ltd.) with the number of revolutions adjusted to the film thickness shown in Table 1. Next, the water was dried at a predetermined temperature with a hot plate (digital hot plate HP-2SA manufactured by ASONE) to form a photocatalyst layer (TiO 2 layer).
  • MS-A100 manufactured by Mikasa Co., Ltd.
  • Tio Sky Coat A Solution is an aqueous composition mainly composed of anatase type (crystalline) titanium oxide particles having a number average particle diameter of 5 nm to 20 nm and peroxotitanic acid.
  • the thickening of the Tio Sky Coat A solution was performed by adding a thickener to the Tio Sky Coat A solution and mixing.
  • a thickener a 10% aqueous solution of hydroxyalkyl (1 to 3 carbon atoms) cellulose was used.
  • the spin rotation speed is 800 rpm ⁇ 30 s.
  • the film thickness of the photocatalyst layer formed per time is 100 nm.
  • a photocatalyst layer having a film thickness of 500 nm is formed under the same formation conditions as described above. be able to.
  • the inorganic particle-containing layer forming composition was prepared according to the following procedure.
  • An epoxy group-containing alkoxysilane compound (KBE403) was added to 100 parts by mass of a 1% aqueous acetic acid solution and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE04) was added. Subsequently, an aluminum chelate complex was added in a necessary mass part with respect to the epoxy group-containing alkoxysilane compound, and inorganic particles described in Table 1 were added thereto.
  • the inorganic particle-containing layer forming composition prepared in each Example or Comparative Example was dropped, and a spin coater (MS-A100 manufactured by Mikasa Corporation) was used. The coating was spread by adjusting the number of revolutions so that the film thickness described was obtained. Next, moisture was dried at a predetermined temperature using a hot plate (Digital Hot Plate HP-2SA manufactured by ASONE Co., Ltd.) to form an inorganic particle-containing layer to obtain a photocatalyst composite material. The spin coating conditions and drying conditions were adjusted according to the film thickness of the inorganic particle-containing layer prepared in each example or comparative example.
  • the photocatalytic activity on the surface on the inorganic particle-containing layer side is determined by a method substantially in accordance with JIS R 1703-2: 2014. Evaluation was performed. Specifically, 35 mL of a 10 ⁇ mol / L methylene blue (MB) aqueous solution was brought into contact with a 50 mm square region of the photocatalyst composite, irradiated with ultraviolet light under the conditions described later, and the methylene blue concentration was measured by absorbance. did.
  • MB methylene blue
  • a halogen lamp MAX-302 manufactured by Asahi Spectroscopic Co., Ltd. was used, and a bandpass filter (transmission center wavelength 350 nm, FWHM (full width at half maximum) 10 nm) was used, and the exposure intensity was 1 mW / cm 2 .
  • a spectrometer HP 8453 manufactured by Agilent was used for the measurement of the decomposition activity of the photocatalytic reaction. The absorption spectrum of the aqueous MB solution was measured before and after UV exposure, and the number of MB-decomposed molecules was calculated from the absorbance at 664 nm.
  • the decomposition activity index (nmol / (L ⁇ min)) is a minimum of the decomposition MB concentration (nmol / L) with respect to the exposure time (min).
  • the slope was obtained by linear regression by multiplication. The linear regression was performed using the result of irradiation for 60 minutes under the exposure conditions described above. Linear regression was performed at intercept 0. The decomposed MB density was calculated as a difference from the density at exposure time 0.
  • the degradation activity index measured in this system is about 60% of the literature value according to the JIS standard (JIS R 1703-2: 2014), and the relative relationship between the literature value and the measured value is maintained. know.
  • 3 nmol / (L ⁇ min) or more is a sufficiently high decomposition activity.
  • “A” is greater than (L ⁇ min), less than “A”, less than 3 nmol / (L ⁇ min), and when “B” is less than 1 nmol / (L ⁇ min), less than 1 nmol / (L ⁇ min) Evaluated as “C”.
  • the evaluation results are shown in Table 1.
  • the reflectance of the surface on the side opposite to the glass substrate was measured.
  • the surface opposite to the glass substrate is the surface on the inorganic particle-containing layer side in the example where the inorganic particle-containing layer is formed, and in the example where the inorganic particle-containing layer is not formed, the photocatalyst layer The side surface.
  • the reflectance is measured using an ultraviolet-visible infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation), and the reflectance (%) in light having a wavelength of 400 to 800 nm is measured using an integrating sphere.
  • the average value at a wavelength of 400 to 800 nm was taken as the reflectance. Evaluation as “A” when the reflectance is low by 1% or more with respect to Comparative Example 1 having no inorganic particle-containing layer, and evaluation as “B” when the reflectance does not decrease or the decrease in reflectance is less than 1%. did.
  • the photocatalyst composite material according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side and has a function added by the inorganic particle-containing layer.
  • an evaluation result of “A” means that a function by the inorganic particle-containing layer is added.

Abstract

Provided is a photocatalyst composite material comprising: a photocatalyst layer containing titanium oxide particles and an amorphous titanium peroxide-type inorganic binder; and an inorganic particle-containing layer containing inorganic particles and a siloxane resin including an organic structure. The number average particle size of the inorganic particles is 5-100 nm and the film thickness of the inorganic particle-containing layer is 50-250 nm. Also provided are a display protection member for signage, a protective member for a touch panel, a protective member for a solar cell, a protective member for a sensor cover, a display for signage, a touch panel, a solar cell, and a sensor cover that contain the photocatalyst composite material.

Description

光触媒複合材、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、センサカバー用保護部材、サイネージ用ディスプレイ、タッチパネル、太陽電池、及び、センサカバーPhotocatalyst composite material, signage display protective member, touch panel protective member, solar cell protective member, sensor cover protective member, signage display, touch panel, solar cell, and sensor cover
 本開示は、光触媒複合材、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、センサカバー用保護部材、サイネージ用ディスプレイ、タッチパネル、太陽電池及びセンサカバーに関する。 The present disclosure relates to a photocatalyst composite material, a signage display protective member, a touch panel protective member, a solar cell protective member, a sensor cover protective member, a signage display, a touch panel, a solar cell, and a sensor cover.
 近年、防汚、抗菌、抗ウイルス、消臭、防カビ等の機能の付与を目的として、ガラス、樹脂等の表面に光触媒材料を含む層を形成することが検討され一部実用化されている。 In recent years, for the purpose of imparting functions such as antifouling, antibacterial, antiviral, deodorant, and antifungal, forming a layer containing a photocatalytic material on the surface of glass, resin, etc. has been studied and partially put into practical use. .
 特開平9-262481号公報には、触媒を基体に担持固定してなる光触媒体の製造法であって、光触媒とアモルファス型過酸化チタンゾルとを用いることを特徴とする光触媒体の製造法が記載されている。
 特開2002-88276号には、過酸化基含有アモルファス型酸化チタンを0.5wt%以上2.0wt%以下(酸化チタン換算)の範囲で含有する水溶液にアナターゼ型酸化チタン微粒子が0.025wt%以上1.2wt%以下の範囲で含有され、かつシリコーン系界面活性剤が0.01wt%以上0.8wt%未満の範囲で含有されていることを特徴とする防汚コーティング剤が記載されている。
 特開2003-55580号公報には、チタニア系ペルオキソ化合物の微粒子と、ペルオキソチタン酸と、シリカ微粒子とを含むことを特徴とする水性塗料が記載されている。
 特開2013-104035号公報には、下記成分を少なくとも含有する酸化チタン塗布液が記載されている。
(A)酸化チタン粒子
(B)バインダー成分としてのペルオキソチタン酸
(C)キレート化剤
(D)水
(E)アルコール
Japanese Patent Application Laid-Open No. 9-262481 discloses a method for producing a photocatalyst comprising a catalyst supported on a substrate and using the photocatalyst and an amorphous titanium peroxide sol. Has been.
Japanese Patent Laid-Open No. 2002-88276 discloses that anatase-type titanium oxide fine particles are contained in an aqueous solution containing a peroxide group-containing amorphous titanium oxide in a range of 0.5 wt% to 2.0 wt% (in terms of titanium oxide) in an amount of 0.025 wt%. There is described an antifouling coating agent characterized in that it is contained in a range of 1.2 wt% or less and a silicone surfactant is contained in a range of 0.01 wt% or more and less than 0.8 wt%. .
Japanese Patent Application Laid-Open No. 2003-55580 describes a water-based paint characterized by containing fine particles of a titania-based peroxo compound, peroxotitanic acid, and silica fine particles.
Japanese Unexamined Patent Application Publication No. 2013-104035 describes a titanium oxide coating solution containing at least the following components.
(A) Titanium oxide particles (B) Peroxotitanic acid (C) chelating agent as binder component (D) Water (E) Alcohol
 また、上記光触媒材料を含む層上に機能性層を形成することも検討されている。
 特開2010-99651号公報には、基材の表面に光触媒層と機能性層を形成して製造する複合材の製造方法において、基材の表面に光触媒を含有する光触媒層を形成した後、その表面に光触媒で分解可能な有機物を含有する機能性層を形成する工程と、機能性層に光を照射して光触媒層中の光触媒を活性化させ機能性層中の有機物を分解する工程とを有し、機能性層中の有機物の含有量が10~40質量%であることを特徴とする複合材の製造方法が記載されている。
 国際公開第2002/100634号には、基材表面に光触媒膜が成膜され、その上に親水性物質膜が多孔質に成膜されている防曇素子において、上記光触媒膜の材料として、水酸化チタンゲル(オルトチタン酸)に過酸化水素を作用させて得られるか酸化チタン溶液に光触媒粒子を分散させたコーティング剤を用いる防曇素子が記載されている。
In addition, formation of a functional layer on the layer containing the photocatalytic material has also been studied.
JP 2010-99651 A discloses a composite material manufacturing method in which a photocatalyst layer and a functional layer are formed on the surface of a base material, and after forming a photocatalyst layer containing a photocatalyst on the surface of the base material, Forming a functional layer containing an organic substance decomposable with a photocatalyst on the surface; activating the photocatalyst in the photocatalyst layer by irradiating the functional layer with light; and decomposing the organic substance in the functional layer; And a method for producing a composite material, wherein the functional layer has an organic content of 10 to 40% by mass.
In International Publication No. 2002/100494, a photocatalyst film is formed on the surface of a substrate, and a hydrophilic substance film is formed on the surface of the antifogging element. An anti-fogging element using a coating agent obtained by allowing hydrogen peroxide to act on titanium oxide gel (ortho titanic acid) or dispersing photocatalyst particles in a titanium oxide solution is described.
 また近年、ガラス、樹脂等の基材の表面に、反射防止機能、耐傷等のハードコート機能、親水化機能等の機能を付与するために、機能性層を形成することも検討されている。 In recent years, it has been studied to form a functional layer on the surface of a substrate such as glass or resin in order to impart functions such as an antireflection function, a hard coat function such as scratch resistance, and a hydrophilic function.
 特開2014-111717号公報には、エポキシ基含有アルコキシシランと、エポキシ基非含有アルコキシシランと、金属錯体とを混合した水性組成物であって、上記エポキシ基含有アルコキシシランと上記エポキシ基非含有アルコキシシランからなる全アルコキシシランに対して、上記エポキシ基含有アルコキシシランが占める割合が20~85質量%であり、上記エポキシ基含有アルコキシシランに対して上記金属錯体が占める割合が17~70モル%である水性組成物が記載されている。 Japanese Patent Application Laid-Open No. 2014-111717 discloses an aqueous composition in which an epoxy group-containing alkoxysilane, an epoxy group-free alkoxysilane, and a metal complex are mixed, and the epoxy group-containing alkoxysilane and the epoxy group-free The proportion of the epoxy group-containing alkoxysilane is 20 to 85% by mass with respect to the total alkoxysilane composed of alkoxysilane, and the proportion of the metal complex to the epoxy group-containing alkoxysilane is 17 to 70 mol%. An aqueous composition is described.
 本発明者らは、特開2010-99651号公報又は国際公開第2002/100634号に記載のように光触媒材料を含む層上に上述の機能性層を形成して、機能性層による機能を付加した場合には、光触媒活性が低下してしまう場合があることを発見した。 The inventors added the function of the functional layer by forming the functional layer described above on the layer containing the photocatalytic material as described in JP 2010-99651 A or WO 2002/100654. In this case, it has been found that the photocatalytic activity may decrease.
 本開示に係る実施形態が解決しようとする課題は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層による機能が付加された光触媒複合材、上記光触媒複合材を含むサイネージ用ディスプレイ保護部材、上記光触媒複合材を含むタッチパネル用保護部材、上記光触媒複合材を含む太陽電池用保護部材、上記光触媒複合材を含むセンサカバー用保護部材、上記サイネージ用ディスプレイ保護部材を含むサイネージ用ディスプレイ、上記タッチパネル用保護部材を含むタッチパネル、上記太陽電池用保護部材を含む太陽電池、又は、上記センサカバー用保護部材を含むセンサカバーを提供することである。 A problem to be solved by an embodiment according to the present disclosure is a photocatalyst composite material that is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side and that is provided with a function of the inorganic particle-containing layer, and a signage including the photocatalyst composite material Display protective member, Touch panel protective member including the photocatalyst composite material, Solar cell protective member including the photocatalyst composite material, Sensor cover protective member including the photocatalyst composite material, Signage including the signage display protective member It is to provide a display, a touch panel including the touch panel protection member, a solar cell including the solar cell protection member, or a sensor cover including the sensor cover protection member.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 酸化チタン粒子、及び、アモルファス過酸化チタン型無機バインダーを含む光触媒層と、
 有機構造を含むシロキサン樹脂、及び、無機粒子を含む無機粒子含有層と、を含み、
 上記無機粒子の数平均粒径が5nm~100nmであり、
 上記無機粒子含有層の膜厚が50nm~250nmである
 光触媒複合材。
<2> 上記酸化チタン粒子が、アナターゼ型酸化チタン粒子である、上記<1>に記載の光触媒複合材。
<3> 上記有機構造を含むシロキサン樹脂における有機構造が、架橋構造である、上記<1>又は<2>に記載の光触媒複合材。
<4> 上記無機粒子含有層が、アルコキシシラン化合物と無機粒子とを含む組成物を硬化してなる層である、上記<1>~<3>のいずれか1つに記載の光触媒複合材。
<5> 上記アルコキシシラン化合物が、エポキシ基含有アルコキシシラン化合物と、エポキシ基非含有アルコキシシラン化合物と、を含む、上記<4>に記載の光触媒複合材。
<6> 上記無機粒子が、シリカ、アルミナ及びジルコニアよりなる群から選ばれた少なくとも1種の粒子を含有する、上記<1>~<5>のいずれか1つに記載の光触媒複合材。
<7> 上記光触媒層の上記無機粒子含有層とは反対側に、基材層を更に含む、上記<1>~<6>のいずれか1つに記載の光触媒複合材。
<8> 上記<1>~<7>のいずれか1つに記載の光触媒複合材を備えるサイネージ用ディスプレイ保護部材。
<9> 上記<1>~<7>のいずれか1つに記載の光触媒複合材を備えるタッチパネル用保護部材。
<10> 上記<1>~<7>のいずれか1つに記載の光触媒複合材を備える太陽電池用保護部材。
<11> 上記<1>~<7>のいずれか1つに記載の光触媒複合材を備えるセンサカバー用保護部材。
<12> 上記<8>に記載のサイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ。
<13> 上記<9>に記載のタッチパネル用保護部材を備えるタッチパネル。
<14> 上記<10>に記載の太陽電池用保護部材を備える太陽電池。
<15> 上記<11>に記載のセンサカバー用保護部材を備えるセンサカバー。
Means for solving the above problems include the following aspects.
<1> a photocatalyst layer containing titanium oxide particles and an amorphous titanium peroxide type inorganic binder;
A siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles,
The number average particle diameter of the inorganic particles is 5 nm to 100 nm,
A photocatalyst composite material, wherein the inorganic particle-containing layer has a thickness of 50 nm to 250 nm.
<2> The photocatalyst composite material according to <1>, wherein the titanium oxide particles are anatase-type titanium oxide particles.
<3> The photocatalytic composite material according to <1> or <2>, wherein the organic structure in the siloxane resin containing the organic structure is a crosslinked structure.
<4> The photocatalyst composite material according to any one of <1> to <3>, wherein the inorganic particle-containing layer is a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles.
<5> The photocatalyst composite material according to <4>, wherein the alkoxysilane compound includes an epoxy group-containing alkoxysilane compound and an epoxy group-free alkoxysilane compound.
<6> The photocatalyst composite material according to any one of <1> to <5>, wherein the inorganic particles contain at least one kind of particles selected from the group consisting of silica, alumina, and zirconia.
<7> The photocatalyst composite material according to any one of <1> to <6>, further including a base material layer on the opposite side of the photocatalyst layer from the inorganic particle-containing layer.
<8> A signage display protection member comprising the photocatalyst composite material according to any one of the above items <1> to <7>.
<9> A touch panel protective member comprising the photocatalyst composite material according to any one of the above items <1> to <7>.
<10> A solar cell protective member comprising the photocatalyst composite material according to any one of the above items <1> to <7>.
<11> A sensor cover protective member comprising the photocatalyst composite material according to any one of the above items <1> to <7>.
<12> A signage display comprising the signage display protection member according to <8>.
<13> A touch panel comprising the touch panel protective member according to <9>.
<14> A solar cell comprising the solar cell protective member according to <10>.
<15> A sensor cover including the sensor cover protective member according to <11>.
 本開示に係る実施形態によれば、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層による機能が付加された光触媒複合材、上記光触媒複合材を含むサイネージ用ディスプレイ保護部材、上記光触媒複合材を含むタッチパネル用保護部材、上記光触媒複合材を含む太陽電池用保護部材、上記光触媒複合材を含むセンサカバー用保護部材、上記サイネージ用ディスプレイ保護部材を含むサイネージ用ディスプレイ、上記タッチパネル用保護部材を含むタッチパネル、上記太陽電池用保護部材を含む太陽電池、又は、上記センサカバー用保護部材を含むセンサカバーを提供することができる。 According to the embodiment according to the present disclosure, a photocatalyst composite material having excellent photocatalytic activity on the surface on the inorganic particle-containing layer side and having the function of the inorganic particle-containing layer added, and a signage display protection member including the photocatalyst composite material , A touch panel protective member including the photocatalyst composite material, a solar cell protective member including the photocatalyst composite material, a sensor cover protective member including the photocatalyst composite material, a signage display including the signage display protective member, and the touch panel A touch panel including the protective member for a solar cell, a solar cell including the solar cell protective member, or a sensor cover including the sensor cover protective member can be provided.
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、組成物の各成分の量は、各成分に該当する物質が層中に複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示において、特に断りのない限り、ポリマー成分における分子量は、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィ(GPC)で測定されるポリスチレン換算の重量平均分子量(Mw)又は数平均分子量(Mn)である。
 なお、本開示において、好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the contents of the present disclosure will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
In the present disclosure, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, “(meth) acryl” is a term used in a concept including both acryl and methacryl, and “(meth) acryloyl” is a term used as a concept including both acryloyl and methacryloyl. is there.
In the present disclosure, the term “process” is included in the term as long as the intended purpose of the process is achieved, even when the process is not clearly distinguished from other processes.
In the present disclosure, the amount of each component of the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when a plurality of substances corresponding to each component are present in the layer.
In the present disclosure, unless otherwise specified, the molecular weight in the polymer component is a polystyrene-reduced weight average molecular weight (Mw) or number average molecular weight measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. (Mn).
In the present disclosure, a combination of preferable embodiments is a more preferable embodiment.
(光触媒複合材)
 本開示に係る光触媒複合材は、酸化チタン粒子と、アモルファス過酸化チタン型無機バインダーと、を含む光触媒層と、有機構造を含むシロキサン樹脂及び無機粒子を含む無機粒子含有層と、を含み、上記無機粒子の数平均粒径が5nm~100nmであり、上記無機粒子含有層の膜厚が50nm~250nmである。
(Photocatalyst composite)
The photocatalyst composite material according to the present disclosure includes a photocatalyst layer including titanium oxide particles and an amorphous titanium peroxide type inorganic binder, and a siloxane resin including an organic structure and an inorganic particle containing layer including inorganic particles, and The number average particle diameter of the inorganic particles is 5 nm to 100 nm, and the film thickness of the inorganic particle-containing layer is 50 nm to 250 nm.
 本開示に係る光触媒複合材は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層による機能が付加されている。
 上記効果が得られる推定メカニズムの詳細は下記のように推測される。
 本開示に係る光触媒層は、酸化チタン粒子と、アモルファス過酸化チタン型無機バインダーと、を含む。
 本発明者らは、酸化チタン粒子、及び、有機バインダー型のバインダーからなる光触媒層よりも、アモルファス過酸化チタン型無機バインダーを含む光触媒層の方が高い光触媒活性を示すことを、それぞれの単層を比較する実験により確認した。このため、本開示に係る光触媒層は上記構成をとる。
 本開示に係る光触媒層に、例えば紫外線が照射された場合、酸化チタン粒子の光触媒作用によりラジカル(ヒドロキシラジカル、スーパーオキシドアニオンラジカル等)が発生すること等により、防汚、抗菌、抗ウイルス、消臭、防カビ等の効果が得られることが知られている。本開示において、上記の防汚、抗菌、抗ウイルス、消臭、防カビ等の効果に優れることを「光触媒活性に優れる」ともいう。
 また、本開示に係る無機粒子含有層は、機能性層として用いられる。機能性層は、その膜厚や組成に応じて、反射防止層、ハードコート層等として用いられ、反射防止性、耐傷性、熱伝導性、耐薬品性等の向上という機能を有している。
 ここで、従来の光触媒層上に、従来の反射防止層、ハードコート層等に用いられる材料を用いた機能性層を単に積層した場合には、おそらく光触媒層において発生するラジカルの機能性層表面への移動に係る問題のため、機能性層側の表面における光触媒活性が低下する場合があった。
 上記機能性層の材質、膜構造、膜厚などで光触媒活性の低下度合いは異なる。
 上記低下が起こるメカニズムはおそらく単純ではなく複数の物理プロセスが関わっているものと思われる。そのため、本発明者らは、材料毎に適するパラメータ、構成を実験的に確認したところ、光触媒層を無機バインダー型の光触媒層とし、機能性層を無機粒子含有層とし、かつ、無機粒子含有層に含まれる無機粒子の粒子径、無機粒子含有層の膜厚を適切に選択することで、光触媒活性の低下を解決しうることを見出した。
 すなわち、本発明者らは、本開示に係る構成である、無機バインダー型の特定の光触媒層と、有機構造を含むシロキサン樹脂、及び、無機粒子を含み、無機粒子の数平均粒径が5nm~100nmであり、膜厚が50nm~250nmである無機粒子含有層と、を含む光触媒複合材とすることが効果的であることを見出した。
 このことは、おそらくは、無機粒子含有層が多孔質状の構造となることにより、上述の光触媒層において発生するラジカルが無機粒子含有層の細孔を介して、光触媒複合材の無機粒子含有層側表面に達することにより、高い光触媒活性を維持できるためであると推測される。
The photocatalyst composite material according to the present disclosure has excellent photocatalytic activity on the surface on the inorganic particle-containing layer side, and has a function added by the inorganic particle-containing layer.
The details of the estimation mechanism that can obtain the above effect are estimated as follows.
The photocatalyst layer according to the present disclosure includes titanium oxide particles and an amorphous titanium peroxide type inorganic binder.
The present inventors show that the photocatalytic layer containing an amorphous titanium peroxide type inorganic binder exhibits higher photocatalytic activity than the photocatalytic layer comprising titanium oxide particles and an organic binder type binder. It confirmed by the experiment which compares. For this reason, the photocatalyst layer concerning this indication takes the above-mentioned composition.
When the photocatalyst layer according to the present disclosure is irradiated with, for example, ultraviolet rays, radicals (hydroxy radicals, superoxide anion radicals, etc.) are generated by the photocatalytic action of the titanium oxide particles. It is known that effects such as odor and mold prevention can be obtained. In the present disclosure, the excellent effects of antifouling, antibacterial, antiviral, deodorant, antifungal and the like are also referred to as “excellent photocatalytic activity”.
The inorganic particle-containing layer according to the present disclosure is used as a functional layer. The functional layer is used as an antireflection layer, a hard coat layer, etc. depending on the film thickness and composition, and has a function of improving antireflection properties, scratch resistance, thermal conductivity, chemical resistance, etc. .
Here, if the functional layer using the material used for the conventional antireflection layer, hard coat layer, etc. is simply laminated on the conventional photocatalyst layer, the functional layer surface of radicals probably generated in the photocatalyst layer In some cases, the photocatalytic activity on the surface on the functional layer side may be reduced due to a problem related to migration to the surface.
The degree of decrease in photocatalytic activity varies depending on the material, film structure, film thickness, etc. of the functional layer.
The mechanism by which the decline occurs is probably not simple and involves multiple physical processes. Therefore, the inventors have experimentally confirmed suitable parameters and configurations for each material, the photocatalyst layer is an inorganic binder-type photocatalyst layer, the functional layer is an inorganic particle-containing layer, and the inorganic particle-containing layer It was found that the decrease in the photocatalytic activity can be solved by appropriately selecting the particle diameter of the inorganic particles contained in the film and the film thickness of the inorganic particle-containing layer.
That is, the present inventors include a specific photocatalyst layer of an inorganic binder type, a siloxane resin containing an organic structure, and inorganic particles, the number average particle diameter of the inorganic particles being 5 nm to It has been found that it is effective to provide a photocatalyst composite material including an inorganic particle-containing layer having a thickness of 100 nm and a thickness of 50 nm to 250 nm.
This is probably because the inorganic particle-containing layer has a porous structure so that radicals generated in the above-mentioned photocatalyst layer pass through the pores of the inorganic particle-containing layer and the inorganic particle-containing layer side of the photocatalyst composite material. It is assumed that this is because high photocatalytic activity can be maintained by reaching the surface.
<光触媒層>
 本開示に係る光触媒複合材は、酸化チタン粒子、及び、アモルファス過酸化チタン型無機バインダーを含む。
<Photocatalyst layer>
The photocatalyst composite material according to the present disclosure includes titanium oxide particles and an amorphous titanium peroxide type inorganic binder.
〔酸化チタン粒子〕
 本開示において用いられる酸化チタン粒子は、光触媒活性を有する粒子である。
 本開示における酸化チタン粒子は、ルチル型、アナターゼ型、及びブルッカイト型のいずれの結晶型であってもよいが、光触媒活性の観点から、アナターゼ型であることが好ましい。
[Titanium oxide particles]
The titanium oxide particles used in the present disclosure are particles having photocatalytic activity.
The titanium oxide particles in the present disclosure may be any crystal form of rutile, anatase, and brookite, but are preferably anatase from the viewpoint of photocatalytic activity.
 本開示における酸化チタン粒子の形状は、特に限定されないが、略球状であることが好ましい。
 本開示における酸化チタン粒子の数平均粒径は、2nm~200nmであることが好ましく、5nm~50nmであることがより好ましい。
 本開示において、特別な記載がない限り、数平均粒径は、(株)日立ハイテクノロジーズ社製のSU-8030型FE-SEM(電界放出形走査電子顕微鏡、加速電圧2kV、二次電子像取得)を用いて算出する。
 具体的には、分散した粒子をFE-SEMにより観察し、得られた写真から粒子の投影面積を求め、そこから円相当径を求めて、これを一次粒径とする。本開示における数平均粒径は、300個以上の粒子について投影面積を測定して、求めた円相当径(一次粒径)の算術平均値として算出することができる。
 本開示における酸化チタン粒子としては、市販品の中から、上記FE-SEMにより数平均粒径を算出し、所望の粒径を含む材料を選別して用いてもよい。
The shape of the titanium oxide particles in the present disclosure is not particularly limited, but is preferably substantially spherical.
The number average particle diameter of the titanium oxide particles in the present disclosure is preferably 2 nm to 200 nm, and more preferably 5 nm to 50 nm.
In the present disclosure, unless otherwise specified, the number average particle size is SU-8030 FE-SEM manufactured by Hitachi High-Technologies Corporation (field emission scanning electron microscope, acceleration voltage 2 kV, acquisition of secondary electron image) ) To calculate.
Specifically, the dispersed particles are observed by FE-SEM, the projected area of the particles is obtained from the obtained photograph, the equivalent circle diameter is obtained therefrom, and this is used as the primary particle size. The number average particle diameter in the present disclosure can be calculated as an arithmetic average value of the equivalent circle diameter (primary particle diameter) obtained by measuring the projected area of 300 or more particles.
As the titanium oxide particles in the present disclosure, a number average particle diameter may be calculated from the commercially available products by the FE-SEM, and a material having a desired particle diameter may be selected and used.
 本開示における酸化チタン粒子における酸化チタン(TiO)の含有量は、酸化チタン粒子の全質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 酸化チタン粒子に含まれるTiO以外の成分としては、例えば、SO、NaO等が挙げられるが、これらに限定されず他の成分を含んでいてもよい。
The content of titanium oxide (TiO 2 ) in the titanium oxide particles in the present disclosure is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total mass of the titanium oxide particles, and 80 More preferably, it is more than 90 mass%, and it is especially preferable that it is 90 mass% or more.
Examples of the components other than TiO 2 contained in the titanium oxide particles include SO 4 and Na 2 O, but are not limited thereto, and may contain other components.
 本開示における酸化チタン粒子の含有量は、光触媒層の全質量に対し、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましい。
 また、本開示における光触媒層は、酸化チタン粒子を1種単独で含有してもよいし、2種以上の酸化チタン粒子を含んでもよい。
The content of the titanium oxide particles in the present disclosure is preferably 5% by mass to 95% by mass and more preferably 10% by mass to 90% by mass with respect to the total mass of the photocatalyst layer.
In addition, the photocatalyst layer in the present disclosure may contain one kind of titanium oxide particles or two or more kinds of titanium oxide particles.
〔アモルファス過酸化チタン型無機バインダー〕
 本開示における光触媒層は、アモルファス過酸化チタン型無機バインダーを含む。
 アモルファス過酸化チタン型無機バインダーは、Ti-O結合を含む非晶質のバインダーである。
 例えば、アモルファス過酸化チタン型無機バインダーは、ペルオキソチタン酸を加熱することにより得られることが好ましい。
 具体的には、ペルオキソチタン酸を100℃~150℃にて数時間加熱することにより、ペルオキソチタン酸から酸素原子又は水酸基が脱離してチタン酸化物が得られると考えられる。しかし、上記加熱温度が低いために、上記チタン酸化物は結晶化せず、非晶質の酸化チタン(アモルファス過酸化チタン)として存在すると考えられる。
 本開示において、このような非晶質の酸化チタンを、アモルファス過酸化チタン型無機バインダーという。
 また、本開示において、ペルオキソチタン酸の加熱温度を高くすること、加熱時間を長くすること等により、非晶質の酸化チタンの少なくとも一部にアナタース相を形成してもよい。
 また、ペルオキソチタン酸は、特に限定されないが、水酸化チタン(オルトチタン酸)に過酸化水素を作用させて得ることができる。
 水酸化チタンは、例えば、四塩化チタンと塩基との反応により得られる。
 ペルオキソチタン酸及び水酸化チタンを得る方法としては、特開平9-262481号公報の開示も参考にすることができる。
[Amorphous titanium peroxide type inorganic binder]
The photocatalytic layer in the present disclosure includes an amorphous titanium peroxide type inorganic binder.
The amorphous titanium peroxide type inorganic binder is an amorphous binder containing a Ti—O bond.
For example, the amorphous titanium peroxide type inorganic binder is preferably obtained by heating peroxotitanic acid.
Specifically, it is considered that by heating peroxotitanic acid at 100 ° C. to 150 ° C. for several hours, oxygen atoms or hydroxyl groups are desorbed from peroxotitanic acid to obtain titanium oxide. However, since the heating temperature is low, the titanium oxide does not crystallize and is considered to exist as amorphous titanium oxide (amorphous titanium peroxide).
In the present disclosure, such amorphous titanium oxide is referred to as an amorphous titanium peroxide type inorganic binder.
In the present disclosure, an anatase phase may be formed on at least part of amorphous titanium oxide by increasing the heating temperature of peroxotitanic acid, increasing the heating time, or the like.
The peroxotitanic acid is not particularly limited, but can be obtained by allowing hydrogen peroxide to act on titanium hydroxide (orthotitanic acid).
Titanium hydroxide is obtained, for example, by reaction of titanium tetrachloride with a base.
As a method for obtaining peroxotitanic acid and titanium hydroxide, the disclosure of JP-A-9-262481 can also be referred to.
 アモルファス過酸化チタン型無機バインダーの含有量は、光触媒層の全質量に対し、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましい。
 また、本開示における光触媒層は、アモルファス過酸化チタン型無機バインダーを1種単独で含有してもよいし、2種以上を併用してもよい。
The content of the amorphous titanium peroxide type inorganic binder is preferably 5% by mass to 95% by mass and more preferably 10% by mass to 90% by mass with respect to the total mass of the photocatalyst layer.
Moreover, the photocatalyst layer in this indication may contain an amorphous titanium peroxide type inorganic binder individually by 1 type, and may use 2 or more types together.
〔その他の成分〕
 本開示における光触媒層は、その他の成分を更に含んでもよい。
 その他の成分としては、界面活性剤等の公知の添加剤が、特に制限なく用いられる。
[Other ingredients]
The photocatalyst layer in the present disclosure may further include other components.
As other components, known additives such as surfactants are used without particular limitation.
〔膜厚〕
 光触媒層の膜厚は、特に限定されないが、光触媒活性の観点からは、50nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることが更に好ましい。
 また、上記膜厚は、塗膜形成時の収縮応力が大きくなることに伴うクラック又は密着不良の発生を抑制する観点からは、2000nm以下であることが好ましく、1000nm以下であることが更に好ましい。
[Film thickness]
Although the film thickness of a photocatalyst layer is not specifically limited, From a viewpoint of photocatalytic activity, it is preferable that it is 50 nm or more, It is more preferable that it is 100 nm or more, It is further more preferable that it is 200 nm or more.
The film thickness is preferably 2000 nm or less, and more preferably 1000 nm or less, from the viewpoint of suppressing the occurrence of cracks or poor adhesion due to an increase in shrinkage stress during coating film formation.
〔光触媒層の製造方法〕
 本開示における光触媒層は、光触媒層形成用組成物を、例えば後述する基材等に塗布し、加熱することにより得ることができる。
 光触媒層形成用組成物は、上述の酸化チタン粒子、及び、ペルオキソチタン酸を含むことが好ましい。
 一例として、光触媒層形成用組成物は、ペルオキソチタン酸及び溶剤を含む組成物に、酸化チタン粒子を添加し、分散することにより調製される。
 ペルオキソチタン酸及び溶剤を含む組成物としては、市販品を使用することもでき、例えば、ティオスカイコートA液((株)ティオシステムズ)を用いることができる。
 また、光触媒層の膜厚を上述の範囲とするため、光触媒層形成用組成物を増粘する、光触媒層形成用組成物の塗布及び加熱を複数回行う、等の方法を採用してもよい。
 光触媒層形成用組成物の塗布方法は、特に限定されず、公知の方法を用いればよいが、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布などの方法が挙げられる。
 光触媒層形成用組成物の加熱方法は、特に限定されず、公知の方法を用いればよいが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ、赤外線レーザー等の加熱手段を用いる方法が挙げられる。
 加熱時間及び加熱温度は、上述のアモルファス過酸化チタン型無機バインダーの製造における加熱時間及び加熱温度として、適宜調整すればよい。
[Method for producing photocatalyst layer]
The photocatalyst layer in the present disclosure can be obtained by applying the composition for forming a photocatalyst layer to, for example, a substrate described later and heating.
The composition for forming a photocatalyst layer preferably contains the above-described titanium oxide particles and peroxotitanic acid.
As an example, the composition for forming a photocatalyst layer is prepared by adding and dispersing titanium oxide particles in a composition containing peroxotitanic acid and a solvent.
As the composition containing peroxotitanic acid and a solvent, a commercially available product can be used. For example, Tio Sky Coat A liquid (Tio Systems Co., Ltd.) can be used.
Moreover, in order to make the film thickness of a photocatalyst layer into the above-mentioned range, you may employ | adopt methods, such as performing the application | coating and heating of the composition for photocatalyst layer formation several times, etc. to thicken the composition for photocatalyst layer formation. .
The coating method of the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used. Examples thereof include slit coating, spin coating, curtain coating, and inkjet coating.
A method for heating the composition for forming a photocatalyst layer is not particularly limited, and a known method may be used. Examples thereof include a method using a heating means such as a heater, an oven, a hot plate, an infrared lamp, and an infrared laser.
What is necessary is just to adjust a heating time and heating temperature suitably as a heating time and heating temperature in manufacture of the above-mentioned amorphous titanium peroxide type | mold inorganic binder.
 光触媒層と基材層との密着力を高めるため、無機粒子含有層と基材層の間に、後述する易接着層を設けてもよい。 In order to increase the adhesion between the photocatalyst layer and the base material layer, an easy adhesion layer described later may be provided between the inorganic particle-containing layer and the base material layer.
<無機粒子含有層>
 無機粒子含有層は、有機構造を含むシロキサン樹脂、及び、無機粒子を含む。
 無機粒子含有層が後述するハードコート層である場合、無機粒子含有層は本開示に係る光触媒複合材における最外層であることが好ましい。
 また、無機粒子含有層が後述する反射防止層である場合、無機粒子含有層上に更に公知のハードコート層等の保護層を有していてもよい。
<Inorganic particle content layer>
The inorganic particle-containing layer includes a siloxane resin having an organic structure and inorganic particles.
When the inorganic particle-containing layer is a hard coat layer described later, the inorganic particle-containing layer is preferably the outermost layer in the photocatalyst composite material according to the present disclosure.
Moreover, when an inorganic particle content layer is an antireflection layer mentioned later, you may have protective layers, such as a well-known hard-coat layer, on an inorganic particle content layer.
〔無機粒子〕
 本開示における無機粒子含有層は、無機粒子を含む。
 無機粒子は、無機粒子含有層において、有機構造を含むシロキサン樹脂と架橋されていてもよい。
 無機粒子としては、光触媒活性の観点から、波長350nmの光に対して透明な金属酸化物粒子等が挙げられる。
 また、本開示に係る光触媒複合材を、後述するショーウインドウ用、タッチパネル用、太陽電池用又はセンサカバー用等の用途に用いる場合においては、波長400nm~700nmの光に対して透明な金属酸化物粒子が好ましい。
 本開示において、波長Aの光に対して透明であるとは、波長Aの光の透過率が50%以上であることを意味する。上記透過率は70%以上であることが好ましく、80%以上であることがより好ましい。
 また、波長A~Bに対して透明であるとは、波長10nm刻みで波長Aと波長Bとの間の波長の光の透過率を測定した場合に、すべての透過率の算術平均値が50%以上であることを意味する。上記透過率は70%以上であることが好ましく、80%以上であることがより好ましい。
 また、透過率は、分光光度計「V670」(日本分光(株)製)を用いて測定される。
[Inorganic particles]
The inorganic particle-containing layer in the present disclosure includes inorganic particles.
The inorganic particles may be crosslinked with a siloxane resin having an organic structure in the inorganic particle-containing layer.
Examples of the inorganic particles include metal oxide particles that are transparent to light having a wavelength of 350 nm from the viewpoint of photocatalytic activity.
Further, when the photocatalyst composite material according to the present disclosure is used for applications such as a show window, a touch panel, a solar cell, or a sensor cover, which will be described later, a metal oxide that is transparent to light having a wavelength of 400 nm to 700 nm. Particles are preferred.
In the present disclosure, being transparent to light of wavelength A means that the transmittance of light of wavelength A is 50% or more. The transmittance is preferably 70% or more, and more preferably 80% or more.
Further, being transparent with respect to wavelengths A to B means that the arithmetic average value of all the transmittances is 50 when the transmittance of light having a wavelength between wavelengths A and B is measured in increments of 10 nm. It means that it is more than%. The transmittance is preferably 70% or more, and more preferably 80% or more.
The transmittance is measured using a spectrophotometer “V670” (manufactured by JASCO Corporation).
 金属酸化物粒子の具体例としては、シリカ、アルミナ及びジルコニアよりなる群から選ばれた少なくとも1種の粒子を含むことが好ましい。特に、後述するアルコキシシラン化合物との架橋性の観点からは、シリカ粒子含むことが好ましい。
 また、反射防止の向上のためには、シリカ粒子を含むことが好ましく、耐薬品性又は熱伝導性の向上のためには、アルミナ粒子を含むことが好ましく、耐薬品性の向上のためには、ジルコニア粒子を含むことが好ましい。
As a specific example of the metal oxide particles, it is preferable to include at least one kind of particles selected from the group consisting of silica, alumina, and zirconia. In particular, from the viewpoint of crosslinkability with an alkoxysilane compound described later, it is preferable to include silica particles.
In order to improve antireflection, it is preferable to contain silica particles, to improve chemical resistance or thermal conductivity, it is preferable to include alumina particles, and to improve chemical resistance. It is preferable that zirconia particles are included.
 シリカ粒子としては、四塩化ケイ素の燃焼によって製造される乾燥粉末状のシリカを用いることもできるが、二酸化ケイ素又はその水和物が水に分散したコロイダルシリカを用いることがより好ましい。シリカ粒子の市販品としては、特に限定されないが、具体的には、日産化学工業(株)製のスノーテックスシリーズ(例えば、スノーテックス033)などが挙げられる。
 コロイダルシリカの数平均粒径は、3nm~50nmであることが好ましく、4nm~50nmの範囲にあることがより好ましく、4nm~40nmの範囲にあることがさらに好ましく、5nm~35nmの範囲にあることが特に好ましい。
As the silica particles, dry powdery silica produced by combustion of silicon tetrachloride can be used, but colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferably used. Although it does not specifically limit as a commercial item of a silica particle, Specifically, Nissan Chemical Industries Ltd. Snowtex series (for example, Snowtex 033) etc. are mentioned.
The number average particle size of the colloidal silica is preferably 3 nm to 50 nm, more preferably in the range of 4 nm to 50 nm, further preferably in the range of 4 nm to 40 nm, and in the range of 5 nm to 35 nm. Is particularly preferred.
 なお、コロイダルシリカは、後述する無機粒子含有層形成用組成物中に添加される時点でのpHが2~7の範囲に調整されていることがより好ましい。このpHが2~7であると、2よりも小さいあるいは7よりも大きい場合に比べて、アルコキシシラン化合物の加水分解物であるシラノールの安定性がより良好で、このシラノールの脱水縮合反応が速く進行することによる塗布液の粘度上昇を抑制することができる。 The colloidal silica is more preferably adjusted to have a pH of 2 to 7 when added to the inorganic particle-containing layer forming composition described later. When the pH is 2 to 7, the stability of silanol, which is a hydrolyzate of the alkoxysilane compound, is better than when the pH is less than 2 or greater than 7, and the silanol dehydration condensation reaction is faster. An increase in the viscosity of the coating liquid due to the progress can be suppressed.
 本開示における無機粒子の数平均粒径は、5nm~100nmであり、10nm~80nmであることが好ましく、20nm~40nmであることがより好ましい。
 本開示における無機粒子としては、市販品の中から、上述のFE-SEMにより数平均粒径を算出し、所望の粒径を含む材料を選別して用いてもよい。
 また、本開示における無機粒子の形状は、特に限定されないが、分散性の観点から、略球形であることが好ましい。
The number average particle diameter of the inorganic particles in the present disclosure is 5 nm to 100 nm, preferably 10 nm to 80 nm, and more preferably 20 nm to 40 nm.
As the inorganic particles in the present disclosure, a number average particle diameter may be calculated by using the above-mentioned FE-SEM from commercially available products, and a material having a desired particle diameter may be selected and used.
The shape of the inorganic particles in the present disclosure is not particularly limited, but is preferably substantially spherical from the viewpoint of dispersibility.
 本開示における無機粒子含有層の全質量に対し、無機粒子の含有量は、0質量%を超え80質量%以下であることが好ましく、1質量%~70質量%であることがより好ましく、3質量%~65質量%であることが更に好ましい。
 本開示における無機粒子含有層は、無機粒子を1種単独で含有してもよいし、2種以上を併用してもよい。
The content of the inorganic particles is preferably more than 0% by mass and 80% by mass or less, more preferably 1% by mass to 70% by mass with respect to the total mass of the inorganic particle-containing layer in the present disclosure. More preferably, the content is from mass% to 65 mass%.
The inorganic particle-containing layer in the present disclosure may contain one kind of inorganic particles or two or more kinds in combination.
〔有機構造を含むシロキサン樹脂〕
 有機構造を含むシロキサン樹脂における有機構造は、架橋構造であることが好ましい。
 上記有機構造が架橋構造である場合、シロキサン樹脂同士が架橋されていてもよいし、シロキサン樹脂と無機粒子とが架橋されていてもよい。
 上記架橋構造として含まれる有機構造としては、下記の式1-1~式1-3のいずれかにより表される構造であることが好ましい。
[Siloxane resin containing organic structure]
The organic structure in the siloxane resin containing an organic structure is preferably a crosslinked structure.
When the organic structure is a crosslinked structure, the siloxane resins may be crosslinked with each other, or the siloxane resin and the inorganic particles may be crosslinked.
The organic structure included as the crosslinked structure is preferably a structure represented by any of the following formulas 1-1 to 1-3.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 式1-1~式1-3中、R11は、単結合、酸素原子、アリーレンオキシ基、アリーレンオキシアルキレン基、又はアルキレン基を表し、R12~R14は、それぞれ独立に、水素原子又はアルキル基を表し、R12~R14のうちの少なくとも2つが結合し、環構造を形成していてもよく、R21は、単結合又はアルキレン基を表し、R31は、単結合、アルキレンオキシカルボニル基、アルキレンアミノカルボニル基、アルキレンオキシ基、酸素原子又はアリーレン基を表し、R32は、水素原子又はアルキル基を表し、**及び*はそれぞれ独立に、他の構造との結合部位を表す。 In Formula 1-1 to Formula 1-3, R 11 represents a single bond, an oxygen atom, an aryleneoxy group, an aryleneoxyalkylene group, or an alkylene group, and R 12 to R 14 each independently represent a hydrogen atom or Represents an alkyl group, and at least two of R 12 to R 14 may be bonded to each other to form a ring structure; R 21 represents a single bond or an alkylene group; R 31 represents a single bond, alkyleneoxy; Represents a carbonyl group, an alkyleneaminocarbonyl group, an alkyleneoxy group, an oxygen atom or an arylene group, R 32 represents a hydrogen atom or an alkyl group, and ** and * each independently represent a bonding site with another structure. .
 式1-1により表される構造は、例えば、後述するアルコキシシラン化合物として、エポキシ基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-1中、R11は、酸素原子、又はアルキレンオキシアルキレン基が好ましい。
 式1-1中、R12~R14は、いずれも水素原子であることが好ましい。また、R12~R14の少なくとも2つが結合して環構造を形成する場合、R12又はR13とR14とが結合することが好ましい。また、上記環構造としては炭化水素環が好ましく、シクロヘキサン環がより好ましい。
 式1-1中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-1中、結合部位である**が結合する対象は、特に限定されないが、シロキサン樹脂又は樹脂粒子に含まれる原子であることが好ましい。上記原子としては、酸素原子又は窒素原子であることが好ましい。
 例えば、アルコキシシラン化合物として3-グリシドキシプロピルトリメトキシシランを用いた場合、*はSi原子に結合し、R11はプロピレンオキシ基となり、R12~R14は水素原子となる。その場合、例えば**は、シロキサン樹脂における酸素原子、樹脂粒子における酸素原子、又は、樹脂粒子における窒素原子等に結合する。
The structure represented by Formula 1-1 is formed, for example, by using an alkoxysilane compound having an epoxy group as an alkoxysilane compound described later.
In Formula 1-1, R 11 is preferably an oxygen atom or an alkyleneoxyalkylene group.
In formula 1-1, it is preferable that all of R 12 to R 14 are hydrogen atoms. Further, when at least two of R 12 to R 14 are bonded to form a ring structure, it is preferable that R 12 or R 13 and R 14 are bonded. Moreover, as said ring structure, a hydrocarbon ring is preferable and a cyclohexane ring is more preferable.
In Formula 1-1, the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
In Formula 1-1, the target to which ** which is a bonding site is bonded is not particularly limited, but is preferably an atom contained in the siloxane resin or resin particle. As said atom, it is preferable that they are an oxygen atom or a nitrogen atom.
For example, when 3-glycidoxypropyltrimethoxysilane is used as the alkoxysilane compound, * is bonded to a Si atom, R 11 is a propyleneoxy group, and R 12 to R 14 are hydrogen atoms. In that case, for example, ** is bonded to an oxygen atom in the siloxane resin, an oxygen atom in the resin particle, a nitrogen atom in the resin particle, or the like.
 式1-2により表される構造は、例えば、後述するアルコキシシラン化合物として、イソシアネート基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-2中、R21は単結合又はアルキレン基を表し、炭素数2~10のアルキレン基であることが好ましい。
 式1-2中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-2中、結合部位である**が結合する対象は、特に限定されないが、シロキサン樹脂又は樹脂粒子に含まれる原子であることが好ましい。上記原子としては、酸素原子又は窒素原子であることが好ましい。
 例えば、アルコキシシラン化合物として3-イソシアネートプロピルトリエトキシシランを用いた場合、*はSi原子に結合し、R21はプロピレン基となる。その場合、例えば**は、シロキサン樹脂における酸素原子、樹脂粒子における酸素原子、又は、樹脂粒子における窒素原子等に結合する。
The structure represented by Formula 1-2 is formed, for example, by using an alkoxysilane compound having an isocyanate group as an alkoxysilane compound described later.
In Formula 1-2, R 21 represents a single bond or an alkylene group, and is preferably an alkylene group having 2 to 10 carbon atoms.
In Formula 1-2, the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
In Formula 1-2, the target to which ** which is a binding site is bonded is not particularly limited, but is preferably an atom contained in a siloxane resin or resin particles. As said atom, it is preferable that they are an oxygen atom or a nitrogen atom.
For example, when 3-isocyanatopropyltriethoxysilane is used as the alkoxysilane compound, * is bonded to an Si atom and R 21 is a propylene group. In that case, for example, ** is bonded to an oxygen atom in the siloxane resin, an oxygen atom in the resin particle, a nitrogen atom in the resin particle, or the like.
 式1-3により表される構造は、例えば、後述するアルコキシシラン化合物として、エチレン性不飽和基を有するアルコキシシラン化合物を用いることにより形成される。
 式1-3中、R31はアルキレンオキシカルボニル基、アルキレンアミノカルボニル基又はアリーレン基を表すことが好ましく、炭素数2~10のアルキレンオキシカルボニル基、炭素数2~10のアルキレンアミノカルボニル基又はフェニレン基がより好ましく、炭素数2~10のアルキレンオキシカルボニル基が更に好ましい。
 式1-3中、結合部位である*が結合する対象は、特に限定されないが、シロキサン樹脂に含まれるSi原子又は有機基であることが好ましく、シロキサン樹脂に含まれるSi原子であることがより好ましい。
 式1-3中、結合部位である**が結合する対象は、特に限定されないが、他の式1-3により表される構造であることが好ましい。
 例えば、アルコキシシラン化合物として3-メタクリロキシプロピルメチルジエトキシシランを用いた場合、*はSi原子に結合し、R31はプロピレンオキシカルボニル基となる。その場合、例えば**は、他の3-メタクリロキシプロピルメチルジエトキシシランにおけるメタクリロキシ基と重合する。
The structure represented by Formula 1-3 is formed, for example, by using an alkoxysilane compound having an ethylenically unsaturated group as an alkoxysilane compound described later.
In Formula 1-3, R 31 preferably represents an alkyleneoxycarbonyl group, an alkyleneaminocarbonyl group, or an arylene group, an alkyleneoxycarbonyl group having 2 to 10 carbon atoms, an alkyleneaminocarbonyl group having 2 to 10 carbon atoms, or phenylene More preferred is an alkyleneoxycarbonyl group having 2 to 10 carbon atoms.
In Formula 1-3, the target to which * which is a bonding site is bonded is not particularly limited, but is preferably an Si atom or an organic group contained in the siloxane resin, and more preferably an Si atom contained in the siloxane resin. preferable.
In Formula 1-3, the target to which the binding site ** binds is not particularly limited, but is preferably a structure represented by Formula 1-3.
For example, when 3-methacryloxypropylmethyldiethoxysilane is used as the alkoxysilane compound, * is bonded to the Si atom and R 31 is a propyleneoxycarbonyl group. In that case, for example, ** polymerizes with methacryloxy groups in other 3-methacryloxypropylmethyldiethoxysilanes.
 また、本開示において用いられる有機構造を含むシロキサン樹脂は、有機構造として、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基等の基を更に有していてもよい。 Moreover, the siloxane resin containing an organic structure used in the present disclosure may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group as the organic structure. .
 有機構造の全含有量は、光触媒複合材の長期安定性の観点から、90質量%以下であることが好ましく、75質量%以下であることがより好ましい。 From the viewpoint of long-term stability of the photocatalyst composite material, the total content of the organic structure is preferably 90% by mass or less, and more preferably 75% by mass or less.
〔無機粒子含有層形成用組成物〕
 本開示において、無機粒子含有層は、アルコキシシラン化合物と、無機粒子とを含む組成物(以下、「無機粒子含有層形成用組成物」ともいう。)を硬化してなる層であることが好ましい。
 すなわち、上記有機構造を含むシロキサン樹脂は、アルコキシシラン化合物の縮合物であることが好ましい。
 上記アルコキシシラン化合物は、VOC(volatile organic compounds)による環境汚染を低減する観点から、水溶性又は水分散性の素材を使用することが好ましい。
 また、上記無機粒子含有層形成用組成物は、溶媒として水を含む水性組成物であることが好ましい。上述の光触媒層における酸化チタン粒子及びアモルファス過酸化チタン型無機バインダーは、いずれも水に対する溶解度が低いため、上記無機粒子含有層形成用組成物が水を含むことにより、光触媒層の形成後に、光触媒層上に無機粒子含有層形成用組成物を塗布した場合であっても層間の混合が防がれる。
 また、無機粒子含有層形成用組成物は、有機溶剤を実質的に含まないことが好ましい。本開示において、実質的に含まないとは、含有量が1質量%未満であることをいい、0.1質量%未満であることが好ましい。有機溶剤を実質的に含まないことにより、無機粒子含有層形成用組成物を塗布し乾燥させる際に蒸発するものは、主に水成分となる。このため、有機溶剤を含む場合と比較して、環境への負荷を大幅に低減することができる。
[Inorganic particle-containing layer forming composition]
In the present disclosure, the inorganic particle-containing layer is preferably a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles (hereinafter also referred to as “inorganic particle-containing layer forming composition”). .
That is, the siloxane resin containing the organic structure is preferably a condensate of an alkoxysilane compound.
The alkoxysilane compound is preferably a water-soluble or water-dispersible material from the viewpoint of reducing environmental pollution caused by VOC (volatile organic compounds).
The inorganic particle-containing layer forming composition is preferably an aqueous composition containing water as a solvent. Since both the titanium oxide particles and the amorphous titanium peroxide type inorganic binder in the photocatalyst layer have low solubility in water, the composition for forming an inorganic particle-containing layer contains water, so that the photocatalyst is formed after the formation of the photocatalyst layer. Even when the inorganic particle-containing layer forming composition is applied on the layer, mixing between layers is prevented.
Moreover, it is preferable that the composition for inorganic particle content layer formation does not contain an organic solvent substantially. In the present disclosure, “substantially free” means that the content is less than 1% by mass, and preferably less than 0.1% by mass. By substantially not containing an organic solvent, what is evaporated when the composition for forming an inorganic particle-containing layer is applied and dried is mainly a water component. For this reason, compared with the case where an organic solvent is included, the load to an environment can be reduced significantly.
 また、上記アルコキシシラン化合物は、架橋性基含有アルコキシシラン化合物と、架橋性基非含有アルコキシシラン化合物と、を含むことが好ましく、エポキシ基含有アルコキシシラン化合物と、エポキシ基非含有アルコキシシラン化合物と、を含むことが好ましい。 Further, the alkoxysilane compound preferably includes a crosslinkable group-containing alkoxysilane compound and a crosslinkable group-free alkoxysilane compound, an epoxy group-containing alkoxysilane compound, an epoxy group-free alkoxysilane compound, It is preferable to contain.
 架橋性基含有アルコキシシラン化合物及び架橋性基非含有アルコキシシラン化合物は、いずれも加水分解性基を有する。この加水分解性基が例えば酸性の水溶液中で加水分解されることによりシラノールが生成され、シラノール同士が縮合することによって、シロキサン樹脂が生成される。
 本開示における無機粒子含有層形成用組成物中においては、架橋性基含有アルコキシシラン化合物及び架橋性基非含有アルコキシシラン化合物の一部は加水分解されていてもよい。
Both the crosslinkable group-containing alkoxysilane compound and the crosslinkable group-free alkoxysilane compound have a hydrolyzable group. This hydrolyzable group is hydrolyzed in, for example, an acidic aqueous solution to produce silanol, and the silanols are condensed to produce a siloxane resin.
In the composition for forming an inorganic particle-containing layer in the present disclosure, a part of the crosslinkable group-containing alkoxysilane compound and the crosslinkable group-free alkoxysilane compound may be hydrolyzed.
-架橋性基含有アルコキシシラン化合物-
 架橋性基含有アルコキシシラン化合物における架橋性基としては、エポキシ基、イソシアネート基及びラジカル重合性基が挙げられる。
 架橋性基含有アルコキシシラン化合物としては、エポキシ基含有アルコキシシラン化合物、イソシアネート基含有アルコキシシラン化合物、ラジカル重合性基含有アルコキシシラン化合物等が挙げられ、エポキシ基含有アルコキシシラン化合物を含むことが好ましい。
-Crosslinkable group-containing alkoxysilane compound-
Examples of the crosslinkable group in the crosslinkable group-containing alkoxysilane compound include an epoxy group, an isocyanate group, and a radical polymerizable group.
Examples of the crosslinkable group-containing alkoxysilane compound include an epoxy group-containing alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, a radical polymerizable group-containing alkoxysilane compound, and the like, and preferably includes an epoxy group-containing alkoxysilane compound.
<<エポキシ基含有アルコキシシラン化合物>>
 エポキシ基含有アルコキシシラン化合物は、エポキシ基を有するアルコキシシラン化合物である。エポキシ基含有アルコキシシラン化合物としては、1分子中に1つ以上エポキシ基を有するものであればよく、エポキシ基の数は特に限定されない。エポキシ基含有アルコキシシラン化合物は、エポキシ基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
<< epoxy group-containing alkoxysilane compound >>
The epoxy group-containing alkoxysilane compound is an alkoxysilane compound having an epoxy group. The epoxy group-containing alkoxysilane compound only needs to have one or more epoxy groups in one molecule, and the number of epoxy groups is not particularly limited. In addition to the epoxy group, the epoxy group-containing alkoxysilane compound may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group.
 本開示において用いられるエポキシ基含有アルコキシシラン化合物としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等を挙げることができる。エポキシ基含有アルコキシシラン化合物の市販品としては、KBE-403(信越化学工業(株)製)などが挙げられる。 Examples of the epoxy group-containing alkoxysilane compound used in the present disclosure include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, And 3-glycidoxypropyltriethoxysilane. Examples of commercially available epoxy group-containing alkoxysilane compounds include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
<<イソシアネート基含有アルコキシシラン化合物>>
 イソシアネート基含有アルコキシシラン化合物は、イソシアネート基を有するアルコキシシラン化合物である。イソシアネート基含有アルコキシシラン化合物としては、1分子中に1つ以上イソシアネート基を有するものであればよく、イソシアネート基の数は特に限定されない。イソシアネート基含有アルコキシシラン化合物は、イソシアネート基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
<< Isocyanate group-containing alkoxysilane compound >>
The isocyanate group-containing alkoxysilane compound is an alkoxysilane compound having an isocyanate group. The isocyanate group-containing alkoxysilane compound only needs to have one or more isocyanate groups in one molecule, and the number of isocyanate groups is not particularly limited. The isocyanate group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, and a carboxy group in addition to the isocyanate group.
 本開示において用いられるイソシアネート基含有アルコキシシラン化合物としては、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。イソシアネート基含有アルコキシシラン化合物の市販品としては、KBE-9007(信越化学工業(株)製)などが挙げられる。 Examples of the isocyanate group-containing alkoxysilane compound used in the present disclosure include 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, and the like. Examples of commercially available isocyanate group-containing alkoxysilane compounds include KBE-9007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
<<ラジカル重合性基含有アルコキシシラン化合物>>
 ラジカル重合性基含有アルコキシシラン化合物は、ラジカル重合性基を有するアルコキシシラン化合物である。ラジカル重合性基含有アルコキシシラン化合物としては、1分子中に1つ以上ラジカル重合性基を有するものであればよく、ラジカル重合性基の数は特に限定されない。
 ラジカル重合性基としては、特に限定されないが、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニル基、ビニル基、アリル基等が挙げられる。
 ラジカル重合性基含有アルコキシシラン化合物は、ラジカル重合性基の他に、更に、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基など基を有していてもよい。
<< Radically polymerizable group-containing alkoxysilane compound >>
The radical polymerizable group-containing alkoxysilane compound is an alkoxysilane compound having a radical polymerizable group. The radical polymerizable group-containing alkoxysilane compound may be any compound having one or more radical polymerizable groups in one molecule, and the number of radical polymerizable groups is not particularly limited.
Although it does not specifically limit as a radically polymerizable group, (meth) acryloxy group, (meth) acrylamide group, vinylphenyl group, vinyl group, an allyl group, etc. are mentioned.
The radical polymerizable group-containing alkoxysilane compound may further have groups such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, and a carboxy group in addition to the radical polymerizable group.
 本開示において用いられるラジカル重合性基含有アルコキシシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。ラジカル重合性基含有アルコキシシラン化合物の市販品としては、KBM-1003、KBE-1003、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103(信越化学工業(株)製)などが挙げられる。
 また、無機粒子含有層形成用組成物がラジカル重合性基含有アルコキシシラン化合物を含む場合、無機粒子含有層形成用組成物は、公知のラジカル重合開始剤を更に含んでもよい。
Examples of the radically polymerizable group-containing alkoxysilane compound used in the present disclosure include vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. , 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and the like. Commercially available products of radical polymerizable group-containing alkoxysilane compounds include KBM-1003, KBE-1003, KBM-1403, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103 (Shin-Etsu Chemical ( Etc.).
Moreover, when the composition for inorganic particle content layer formation contains a radically polymerizable group containing alkoxysilane compound, the composition for inorganic particle content layer formation may further contain a well-known radical polymerization initiator.
<<含有量>>
 無機粒子含有層形成用組成物の安定性、及び、得られる無機粒子含有層のアルカリ耐性を向上する観点から、無機粒子含有層形成用組成物に含まれるアルコキシシラン化合物の全質量に対して、架橋性基含有アルコキシシラン化合物の含有量は20質量%~85質量%であることが好ましい。架橋性基含有アルコキシシラン化合物の含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。また、架橋性基含有アルコキシシラン化合物の含有量は、85質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。
<< Content >>
From the viewpoint of improving the stability of the inorganic particle-containing layer forming composition and the alkali resistance of the resulting inorganic particle-containing layer, relative to the total mass of the alkoxysilane compound contained in the inorganic particle-containing layer forming composition, The content of the crosslinkable group-containing alkoxysilane compound is preferably 20% by mass to 85% by mass. The content of the crosslinkable group-containing alkoxysilane compound is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. Moreover, it is preferable that content of a crosslinkable group containing alkoxysilane compound is 85 mass% or less, It is more preferable that it is 80 mass% or less, It is still more preferable that it is 75 mass% or less.
-架橋性基非含有アルコキシシラン化合物-
 架橋性基非含有アルコキシシラン化合物は、架橋性基を有さないアルコキシシラン化合物である。架橋性基非含有アルコキシシラン化合物は、架橋性基を有さないアルコキシシラン化合物であればよく、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシ基などの基を有していてもよい。
-Crosslinkable group-free alkoxysilane compound-
The crosslinkable group-free alkoxysilane compound is an alkoxysilane compound having no crosslinkable group. The non-crosslinkable group-containing alkoxysilane compound may be an alkoxysilane compound having no crosslinkable group, and has a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxy group. You may do it.
 架橋性基非含有アルコキシシラン化合物は、テトラアルコキシシラン化合物又はトリアルコキシシラン化合物であるか、これらの混合物であることが好ましい。テトラアルコキシシラン化合物及びトリアルコキシシラン化合物の混合物であることがより好ましい。テトラアルコキシシラン化合物とトリアルコキシシラン化合物とを混合して含有することにより、無機粒子含有層を形成した際に、適度な柔軟性を有しつつも、十分な硬度を得ることができる。 The crosslinkable group-free alkoxysilane compound is preferably a tetraalkoxysilane compound, a trialkoxysilane compound, or a mixture thereof. More preferably, it is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound. When the tetraalkoxysilane compound and trialkoxysilane compound are mixed and contained, when the inorganic particle-containing layer is formed, sufficient hardness can be obtained while having appropriate flexibility.
 架橋性基非含有アルコキシシラン化合物が、テトラアルコキシシラン化合物とトリアルコキシシラン化合物との混合物である場合、テトラアルコキシシラン化合物とトリアルコキシシラン化合物とのモル比は、25:75~85:15であることが好ましく、30:70~80:20であることがより好ましく、30:70~65:35であることが更に好ましい。モル比を上記範囲内とすることにより、アルコキシシラン化合物の重合度を所望の範囲内に制御すること又は加水分解速度及びアルミキレートの溶解性の制御が容易となる。 When the crosslinkable group-free alkoxysilane compound is a mixture of a tetraalkoxysilane compound and a trialkoxysilane compound, the molar ratio of the tetraalkoxysilane compound to the trialkoxysilane compound is 25:75 to 85:15. It is preferably 30:70 to 80:20, more preferably 30:70 to 65:35. By controlling the molar ratio within the above range, the degree of polymerization of the alkoxysilane compound can be controlled within a desired range, or the hydrolysis rate and the solubility of the aluminum chelate can be easily controlled.
 テトラアルコキシシラン化合物は、4官能のアルコキシシラン化合物であり、各アルコキシ基の炭素数が1~4のものがより好ましい。中でも、テトラメトキシシラン化合物又はテトラエトキシシラン化合物が特に好ましく用いられる。炭素数を4以下とすることにより、酸性水と混ぜたときのテトラアルコキシシラン化合物の加水分解速度が遅くなりすぎることがなく、均一な水溶液にするまでの溶解に要する時間がより短くなる。これにより、無機粒子含有層を製造する際の製造効率を高めることができる。テトラアルコキシシラン化合物の市販品としては、KBE-04(信越化学工業(株)製)などが挙げられる。 The tetraalkoxysilane compound is a tetrafunctional alkoxysilane compound, and preferably has 1 to 4 carbon atoms in each alkoxy group. Among these, a tetramethoxysilane compound or a tetraethoxysilane compound is particularly preferably used. By setting the number of carbon atoms to 4 or less, the hydrolysis rate of the tetraalkoxysilane compound when mixed with acidic water does not become too slow, and the time required for dissolution until a uniform aqueous solution is reduced. Thereby, the manufacturing efficiency at the time of manufacturing an inorganic particle content layer can be improved. Examples of commercially available tetraalkoxysilane compounds include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 トリアルコキシシラン化合物は、下記式Aで表される3官能のアルコキシシラン化合物である。
 R-Si(OR  式A
 式A中、Rはアミノ基を含まない炭素数が1~15の有機基を表し、Rは炭素数4以下のアルキル基を表す。
The trialkoxysilane compound is a trifunctional alkoxysilane compound represented by the following formula A.
R-Si (OR 1 ) 3 formula A
In Formula A, R represents an organic group having 1 to 15 carbon atoms that does not contain an amino group, and R 1 represents an alkyl group having 4 or less carbon atoms.
 式Aで表される3官能のアルコキシシラン化合物は、アミノ基を官能基として含まないことが好ましい。つまり、3官能のアルコキシシラン化合物は、アミノ基を持たない有機基Rを有している。Rがアミノ基を持たないことにより、4官能のアルコキシシラン化合物と混合して加水分解した場合に、生成するシラノール同士で脱水縮合が促進されにくく、無機粒子含有層形成用組成物の安定性が向上する。 The trifunctional alkoxysilane compound represented by Formula A preferably does not contain an amino group as a functional group. That is, the trifunctional alkoxysilane compound has an organic group R having no amino group. When R does not have an amino group, when it is mixed with a tetrafunctional alkoxysilane compound and hydrolyzed, dehydration condensation is hardly promoted between the produced silanols, and the stability of the composition for forming an inorganic particle-containing layer is improved. improves.
 式A中、Rは、炭素数が1~15の範囲であるような分子鎖長をもつ有機基であればよい。炭素数を15以下とすることにより、無機粒子含有層の柔軟性が大きくなりすぎず、十分な硬度を得ることができる。また、Rの炭素数を上記範囲内とすることにより、脆性に優れた無機粒子含有層を得ることができる。更に、光触媒層と無機粒子含有層との密着性を高めることができる。
 また、上記Rで示す有機基は、酸素原子、窒素原子、硫黄原子などのヘテロ原子を有してもよい。有機基がヘテロ原子をもつことにより、光触媒層との密着性を高めることができる。
In the formula A, R may be an organic group having a molecular chain length such that the carbon number is in the range of 1 to 15. By setting the number of carbon atoms to 15 or less, the flexibility of the inorganic particle-containing layer does not become too large, and sufficient hardness can be obtained. Moreover, the inorganic particle content layer excellent in brittleness can be obtained by making the carbon number of R into the said range. Furthermore, the adhesiveness of a photocatalyst layer and an inorganic particle content layer can be improved.
The organic group represented by R may have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom. Adhesion with a photocatalyst layer can be improved because an organic group has a hetero atom.
 トリアルコキシシラン化合物としては、3-クロロプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシランを挙げることができる。中でも、メチルトリエトキシシラン、及びメチルトリメトキシシランは、特に好ましく用いられる。トリアルコキシシラン化合物の市販品としては、KBE-13(信越化学工業(株)製)などが挙げられる。 Trialkoxysilane compounds include 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, methyl Examples thereof include triethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane, and phenyltrimethoxysilane. Of these, methyltriethoxysilane and methyltrimethoxysilane are particularly preferably used. Examples of commercially available trialkoxysilane compounds include KBE-13 (manufactured by Shin-Etsu Chemical Co., Ltd.).
-無機粒子-
 無機粒子含有層形成用組成物は無機粒子を含む。無機粒子含有層形成用組成物における無機粒子は、上述の無機粒子含有層における無機粒子と同様であり、好ましい態様も同様である。
 無機粒子含有層形成用組成物における無機粒子の含有量は、光触媒活性及び無機粒子含有層のアルカリ耐性の観点から、無機粒子含有層形成用組成物の全固形分に対する無機粒子がの含有量をx質量%とした場合に、0質量%<x質量%≦80質量%であることが好ましい。x質量%は1質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。また、x質量%は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。
-Inorganic particles-
The composition for forming an inorganic particle-containing layer includes inorganic particles. The inorganic particles in the composition for forming an inorganic particle-containing layer are the same as the inorganic particles in the above-described inorganic particle-containing layer, and the preferred embodiments are also the same.
The content of the inorganic particles in the composition for forming an inorganic particle-containing layer is the content of the inorganic particles relative to the total solid content of the composition for forming an inorganic particle-containing layer from the viewpoint of photocatalytic activity and alkali resistance of the inorganic particle-containing layer. When x mass%, it is preferable that 0 mass% <x mass% ≦ 80 mass%. As for x mass%, it is more preferable that it is 1 mass% or more, and it is still more preferable that it is 3 mass% or more. Further, x mass% is preferably 80 mass% or less, more preferably 70 mass% or less, and further preferably 65 mass% or less.
 また、無機粒子含有層形成用組成物の全固形分に対する無機粒子の含有量をx質量%とした場合に、アルコキシシラン化合物の全質量に対する架橋性基含有アルコキシシラン化合物の含有量をy質量%すると、y質量%≧x質量%-5質量%であることが好ましく、y質量%≧x質量%であることがより好ましい。y質量%とxの質量%関係を上記範囲とすることにより、無機粒子含有層のより高い耐アルカリ耐性を得ることができ、アルカリ溶液に浸漬させた際のヘイズ値の変化を抑えることができる。更に、無機粒子含有層形成用組成物の安定性を高めることができる。 Moreover, when content of the inorganic particle with respect to the total solid of the composition for forming an inorganic particle-containing layer is x mass%, the content of the crosslinkable group-containing alkoxysilane compound with respect to the total mass of the alkoxysilane compound is y mass%. Then, y mass% ≧ x mass% −5 mass% is preferable, and y mass% ≧ x mass% is more preferable. By setting the mass% relationship between y mass% and x in the above range, higher alkali resistance of the inorganic particle-containing layer can be obtained, and the change in haze value when immersed in an alkaline solution can be suppressed. . Furthermore, the stability of the inorganic particle-containing layer forming composition can be enhanced.
-金属錯体(硬化剤)-
 無機粒子含有層形成用組成物は、金属錯体(硬化剤)を含むことが好ましい。
 また、本開示における無機粒子含有層は、金属錯体を含むことが好ましい。
 金属錯体としては、Al、Mg、Mn、Ti、Cu、Co、Zn、Hf及びZrよりなる金属錯体が好ましく、これらを併用することもできる。
-Metal complex (curing agent)-
The composition for forming an inorganic particle-containing layer preferably contains a metal complex (curing agent).
Moreover, it is preferable that the inorganic particle content layer in this indication contains a metal complex.
As the metal complex, a metal complex composed of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf and Zr is preferable, and these can be used in combination.
 本開示における金属錯体は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン、アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを用いることができる。 The metal complex in the present disclosure can be easily obtained by reacting a metal alkoxide with a chelating agent. Examples of chelating agents include β-diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and β-keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
 金属錯体の好ましい具体的な例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート化合物、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、マンガンアセチルアセトナート、コバルトアセチルアセトナート、銅アセチルアセトナート、チタンアセチルアセトナート、チタンオキシアセチルアセトナートが挙げられる。これらのうち、好ましくは、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、マグネシウムビス(アセチルアセトネート)、マグネシウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナートであり、保存安定性、入手容易さを考慮すると、アルミニウムキレート錯体であるアルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)が特に好ましい。市販品としては、アルミキレートA(W)、アルミキレートD、アルミキレートM(川研ファインケミカル(株)製)などが挙げられる。 Preferable specific examples of the metal complex include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetyl) Acetate) and other aluminum chelate compounds, ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkyl acetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate) and other magnesium chelate compounds, zirconium tetraacetylacetate Narate, zirconium tributoxyacetylacetonate, zirconium Chill acetonate bis (ethyl acetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate and titanium oxy acetylacetonate. Of these, aluminum tris (acetylacetonate), aluminum tris (ethyl acetoacetate), magnesium bis (acetylacetonate), magnesium bis (ethylacetoacetate), zirconium tetraacetylacetonate, and storage stability Considering availability, aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate), which are aluminum chelate complexes, are particularly preferable. Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, aluminum chelate M (manufactured by Kawaken Fine Chemical Co., Ltd.), and the like.
 架橋性基含有アルコキシシラン化合物の全モル量に対し、金属錯体の含有量は、17モル%~70モル%であることが好ましい。上記含有量は、20モル%以上であることがより好ましい。上記含有量は、70モル%以下であることが好ましく、65モル%以下であることがより好ましく、60モル%以下であることが更に好ましい。
 金属錯体を上記下限値以上含むことにより、金属粒子含有層を形成した際に優れたアルカリ耐性を得ることができる。また、上記上限値以下とすることにより、無機粒子含有層形成用組成物中における金属錯体の分散性を良好とし、かつ、製造コストを抑えることができる。
It is preferable that the content of the metal complex is 17 mol% to 70 mol% with respect to the total molar amount of the crosslinkable group-containing alkoxysilane compound. The content is more preferably 20 mol% or more. The content is preferably 70 mol% or less, more preferably 65 mol% or less, and still more preferably 60 mol% or less.
By including the metal complex in the above lower limit or higher, excellent alkali resistance can be obtained when the metal particle-containing layer is formed. Moreover, by setting it as the said upper limit or less, the dispersibility of the metal complex in the composition for inorganic particle content layer formation can be made favorable, and manufacturing cost can be held down.
-その他の添加剤-
 本開示において用いられる無機粒子含有層形成用組成物、及び、無機粒子含有層には、層の平滑性を向上させて塗膜表面の摩擦を軽減する目的で界面活性剤を添加してもよい。界面活性剤としては、特開2014-111717号公報の段落0039~0044に記載の界面活性剤が挙げられる。
 また、顔料、染料、その他粒子等を分散させることによって無機粒子含有層を着色してもよい。更に、本開示において用いられる無機粒子含有層形成用組成物、及び、無機粒子含有層には、耐候性を向上させる目的で、酸化防止剤等を添加してもよい。
-Other additives-
A surfactant may be added to the inorganic particle-containing layer forming composition and the inorganic particle-containing layer used in the present disclosure for the purpose of improving the smoothness of the layer and reducing the friction of the coating film surface. . Examples of the surfactant include surfactants described in paragraphs 0039 to 0044 of JP-A No. 2014-117717.
Further, the inorganic particle-containing layer may be colored by dispersing pigments, dyes, and other particles. Furthermore, an antioxidant or the like may be added to the inorganic particle-containing layer forming composition and the inorganic particle-containing layer used in the present disclosure for the purpose of improving the weather resistance.
〔膜厚〕
 無機粒子含有層の膜厚は、無機粒子含有層形成用組成物の塗布量を調整することにより制御することができる。
 無機粒子含有層の膜厚は、用途に応じて設計すればよいが、50nm~250nmであり、100nm~200nmであることが好ましい。
[Film thickness]
The film thickness of the inorganic particle-containing layer can be controlled by adjusting the coating amount of the inorganic particle-containing layer forming composition.
The thickness of the inorganic particle-containing layer may be designed according to the use, but is 50 nm to 250 nm, preferably 100 nm to 200 nm.
〔無機粒子含有層の製造方法〕
 無機粒子含有層は、光触媒層上に、無機粒子含有層形成用組成物を塗布して乾燥することにより、形成される。
 無機粒子含有層形成用組成物の塗布方法は、特に限定されず、公知の方法を用いればよいが、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布などの塗布方法が挙げられる。
 無機粒子含有層形成用組成物の加熱方法は、特に限定されず、公知の方法を用いればよいが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ、赤外線レーザー等の加熱手段を用いる方法が挙げられる。
 無機粒子含有層と光触媒層との間には、後述する易接着性層を含んでもよい。
[Method for producing inorganic particle-containing layer]
An inorganic particle content layer is formed by apply | coating the composition for inorganic particle content layer formation on a photocatalyst layer, and drying.
The application method of the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used. Examples of the application method include slit coating, spin coating, curtain coating, and inkjet coating.
A method for heating the composition for forming an inorganic particle-containing layer is not particularly limited, and a known method may be used. For example, a method using a heating means such as a heater, an oven, a hot plate, an infrared lamp, or an infrared laser may be mentioned. It is done.
An easy-adhesion layer described later may be included between the inorganic particle-containing layer and the photocatalyst layer.
〔無機粒子含有層の特性〕
 無機粒子含有層のある態様は、ハードコート層であることが好ましい。
 無機粒子含有層をハードコート層として用いる場合、無機粒子含有層の表面の鉛筆硬度はB以上であることが好ましく、HB以上であることがより好ましい。
 上記鉛筆硬度は、JIS K5600-5-4:1999に基づいて測定された値を意味する。鉛筆としては、三菱鉛筆(株)製のハイユニを使用する。
 また、上記ハードコート層には、反射率の低減に優れるハードコート層、熱伝導性に優れるハードコート層、耐薬品性に優れるハードコート層など、複数の機能を付与することも可能である。
[Characteristics of inorganic particle-containing layer]
It is preferable that the aspect with an inorganic particle content layer is a hard-coat layer.
When using an inorganic particle content layer as a hard-coat layer, it is preferable that the pencil hardness of the surface of an inorganic particle content layer is B or more, and it is more preferable that it is HB or more.
The pencil hardness means a value measured based on JIS K5600-5-4: 1999. A high uni from Mitsubishi Pencil Co., Ltd. is used as the pencil.
The hard coat layer can be provided with a plurality of functions such as a hard coat layer excellent in reflectance reduction, a hard coat layer excellent in thermal conductivity, and a hard coat layer excellent in chemical resistance.
 また、無機粒子含有層のある態様は、反射防止層であることが好ましい。
 無機粒子含有層を反射防止層として用いる場合、無機粒子含有層の屈折率は、1.3~1.7の範囲内にすることが好ましく、1.4~1.6とすることがより好ましい。
 屈折率は、特に断りがない限り、波長600nmでエリプソメトリーによって25℃にて測定される値である。
Moreover, it is preferable that the aspect with an inorganic particle content layer is an antireflection layer.
When the inorganic particle-containing layer is used as an antireflection layer, the refractive index of the inorganic particle-containing layer is preferably in the range of 1.3 to 1.7, more preferably 1.4 to 1.6. .
Unless otherwise specified, the refractive index is a value measured at 25 ° C. by ellipsometry at a wavelength of 600 nm.
<基材層>
 本開示に係る光触媒複合材は、上記光触媒層の、上記無機粒子含有層とは反対側に、基材層を含むことが好ましい。
 基材層は、基材により形成される層であり、基材層における基材としては、樹脂基材、ガラス基材、金属基材等が挙げられる。
 樹脂基材としては、特に制限されないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)、ポリアリレート類、ポリエーテルスルフォン、ポリカーボネート、ポリエーテルケトン、ポリスルフォン、ポリフェニレンサルファイド、ポリエステル系液晶ポリマー、トリアセチルセルロース、セルロース誘導体、ポリプロピレン、ポリアミド類、ポリイミド、ポリシクロオレフィン類等が好ましい。この中でも、PET、PEN、又は、トリアセチルセルロースがより好ましく、PET又はPENが更に好ましい。
 樹脂基材は、延伸されたものであってもよく、2軸延伸されたものが好ましい。2軸延伸とは、樹脂フィルムの幅方向及び長手方向をそれぞれ1軸とみなして両方向に延伸させることである。このように2軸延伸されたポリエステルフィルムは、2軸での分子配向が十分に制御されているため非常に優れた機械強度を有する。延伸倍率は特に制限されるものではないが、一方向に対する延伸倍率が1.5倍~7倍であることが好ましく、より好ましくは2~5倍である。特に、1軸方向あたりの延伸倍率を2倍~5倍として2軸延伸させたポリエステルフィルムは、分子配向がより効率良くかつ効果的に制御されているので、非常に優れた機械強度を備え、ポリエステルフィルムとして好適である。
 ガラス基材としては、特に制限されないが、透明ガラス板、型ガラス板、網入りガラス板、線入りガラス板、強化ガラス板、熱線反射ガラス板、熱線吸収ガラス板、Low-E(Low Emissivity、低反射)ガラス板等のガラス基材が挙げられる。
 金属基材としては、特に制限されないが、アルミニウム板、鋼板、銅版、その他合金板等が挙げられる。
<Base material layer>
The photocatalyst composite material according to the present disclosure preferably includes a base material layer on the opposite side of the photocatalyst layer from the inorganic particle-containing layer.
A base material layer is a layer formed with a base material, and a resin base material, a glass base material, a metal base material etc. are mentioned as a base material in a base material layer.
The resin substrate is not particularly limited, but polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyarylates, polyethersulfone, polycarbonate, poly Ether ketone, polysulfone, polyphenylene sulfide, polyester liquid crystal polymer, triacetyl cellulose, cellulose derivatives, polypropylene, polyamides, polyimides, polycycloolefins, and the like are preferable. Among these, PET, PEN, or triacetyl cellulose is more preferable, and PET or PEN is still more preferable.
The resin base material may be stretched and is preferably biaxially stretched. Biaxial stretching refers to stretching in both directions by regarding the width direction and longitudinal direction of the resin film as uniaxial. Thus, the biaxially stretched polyester film has very good mechanical strength because the molecular orientation in the biaxial direction is sufficiently controlled. The draw ratio is not particularly limited, but the draw ratio in one direction is preferably 1.5 to 7 times, more preferably 2 to 5 times. In particular, a polyester film that has been biaxially stretched at a stretching ratio of 2 to 5 times per uniaxial direction has a very excellent mechanical strength because the molecular orientation is controlled more efficiently and effectively, Suitable as a polyester film.
Although it does not restrict | limit especially as a glass base material, A transparent glass plate, a type | mold glass plate, a netted glass plate, a wire-containing glass plate, a tempered glass plate, a heat ray reflective glass plate, a heat ray absorption glass plate, Low-E (Low Emissivity, A glass substrate such as a low reflection glass plate can be used.
Although it does not restrict | limit especially as a metal base material, An aluminum plate, a steel plate, a copper plate, other alloy plates, etc. are mentioned.
 基材層として用いられる基材は、表面処理されたものであってもよく、工程の簡便さからコロナ処理又はやグロー処理を施すことが好ましい。それらの処理により、基材の表面が親水化され、塗れ性を改善することができるので、光触媒層との密着力又は易接着層との密着力を高めることができる。常圧であるコロナ処理は減圧であるグロー処理より工程が更に簡便であるが、グロー処理の方が密着力向上の効果は高い。 The base material used as the base material layer may be surface-treated, and is preferably subjected to corona treatment or glow treatment for the simplicity of the process. By these treatments, the surface of the substrate is hydrophilized and the paintability can be improved, so that the adhesion with the photocatalyst layer or the adhesion with the easy adhesion layer can be increased. The corona treatment at normal pressure has a simpler process than the glow treatment at reduced pressure, but the glow treatment has a higher effect of improving the adhesion.
<易接着層>
 本開示に係る光触媒複合材は、基材層と光触媒層、又は、光触媒層と無機粒子含有層の接着性を向上させることを目的として易接着層を有してもよい。
 例えば、本開示に係る光触媒複合材は、基材層と光触媒層との間、及び/又は、光触媒層と無機粒子含有層との間に、易接着層を有してもよい。
 易接着層は、例えば、バインダーと硬化剤と界面活性剤とからなる塗布液を、基材の光触媒層が設けられる面、又は、光触媒層の無機粒子含有層が形成される面に塗布して形成される。易接着層には、有機又は無機の粒子を適宜添加してもよい。粒子としては、特に限定されないが、例えば金属酸化物粒子が挙げられ、具体的には、酸化スズ、酸化ジルコニウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ニオブなどの粒子が好ましい。これらの粒子は、単独で使用してもよいし、2種以上を併用してもよい。粒子の市販品としては、例えば、ET-500W等のETシリーズ、FT-2000ほかFTシリーズ、SN-100P等のSNシリーズ、FS-10D等のFSシリーズ(石原産業(株)製)などが挙げられる。
<Easily adhesive layer>
The photocatalyst composite material according to the present disclosure may have an easy adhesion layer for the purpose of improving the adhesion between the base material layer and the photocatalyst layer, or the photocatalyst layer and the inorganic particle-containing layer.
For example, the photocatalyst composite material according to the present disclosure may include an easy-adhesion layer between the base material layer and the photocatalyst layer and / or between the photocatalyst layer and the inorganic particle-containing layer.
The easy-adhesion layer is obtained by, for example, applying a coating liquid composed of a binder, a curing agent, and a surfactant to the surface on which the photocatalyst layer of the substrate is provided or the surface on which the inorganic particle-containing layer of the photocatalyst layer is formed. It is formed. Organic or inorganic particles may be appropriately added to the easy adhesion layer. Although it does not specifically limit as a particle, For example, metal oxide particle is mentioned, Specifically, particles, such as a tin oxide, a zirconium oxide, a zinc oxide, a titanium oxide, a cerium oxide, niobium oxide, are preferable. These particles may be used alone or in combination of two or more. Examples of commercially available particles include ET series such as ET-500W, FT-2000 and other FT series, SN series such as SN-100P, and FS series such as FS-10D (manufactured by Ishihara Sangyo Co., Ltd.). It is done.
 易接着層に含まれるバインダーは、特に限定されないが、接着性の観点からは、ポリエステル、ポリウレタン、アクリル樹脂、スチレンブタジエン共重合体及びポリオレフィンの少なくとも1つを含むことが好ましい。なお、基材の表面に表面処理を施さない場合は、バインダーは、ポリエステル、ポリウレタン及びポリオレフィンのうち少なくとも1つを含むことが好ましく、ポリオレフィンであることがより好ましい。
 また、バインダーは、水溶性又は水分散性を持つものが環境への負荷が少ない点で特に好ましい。バインダーの市販品としては、例えば、カルボジライトV-02-L2等のカルボジライトシリーズ(日清紡(株)製)、タケラックWS-5100等のタケラックWSシリーズ(三井化学(株)製)、アローベースSE1013N等のアローベースシリーズ(ユニチカ(株)製)、ハードレンNZ1004等のハードレンシリーズ(東洋紡(株)製)などが挙げられる。
Although the binder contained in an easily bonding layer is not specifically limited, From an adhesive viewpoint, it is preferable that at least 1 of polyester, a polyurethane, an acrylic resin, a styrene butadiene copolymer, and polyolefin is included. In addition, when not performing surface treatment on the surface of a base material, it is preferable that a binder contains at least 1 among polyester, a polyurethane, and polyolefin, and it is more preferable that it is polyolefin.
In addition, a binder having water solubility or water dispersibility is particularly preferable from the viewpoint that the load on the environment is small. Commercially available binders include, for example, Carbodilite series such as Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.), Takelac WS series such as Takerak WS-5100 (manufactured by Mitsui Chemicals), Arrow Base SE1013N An arrow base series (made by Unitika Co., Ltd.) such as HARDREN series (made by Toyobo Co., Ltd.) such as HARDREN NZ1004.
 易接着層の厚みは、その塗布量を調節することで適宜調整することができる。易接着層の厚みは、0.01μm~5μmの範囲であることがより好ましい。厚みが0.01μm以上であると接着性が十分となりやすく、5μm以下であれば易接着層の厚さが均一となりやすい。より好ましい厚みの範囲は、0.02μm~3μmである。易接着層は、1層のみでもよいし、これを複数重ねた態様であってもよい。複数の易接着層を重ねた場合には、すべての易接着層の厚みの合計を易接着層の厚みとみなす。 The thickness of the easy-adhesion layer can be adjusted as appropriate by adjusting the coating amount. The thickness of the easy adhesion layer is more preferably in the range of 0.01 μm to 5 μm. If the thickness is 0.01 μm or more, the adhesion is likely to be sufficient, and if it is 5 μm or less, the thickness of the easy-adhesion layer tends to be uniform. A more preferable thickness range is 0.02 μm to 3 μm. Only one layer may be sufficient as an easily bonding layer, and the aspect which piled up this may be sufficient. When a plurality of easy-adhesion layers are stacked, the total thickness of all the easy-adhesion layers is regarded as the thickness of the easy-adhesion layer.
<その他の層>
 本開示に係る光触媒複合材は、基材層と光触媒層との間に、遮蔽層を有していてもよい。
 遮蔽層を有する場合、例えば、光触媒層において発生したラジカルが、遮蔽層によりトラップされることにより、基材層における樹脂基材等のラジカルによる劣化が抑制されると考えられる。
 遮蔽層としては、例えば無機粒子含有層と同様の層、又は、無機粒子を含まない以外は、無機粒子含有層と同様の層を、遮蔽層として用いることが可能である。
<Other layers>
The photocatalyst composite material according to the present disclosure may have a shielding layer between the base material layer and the photocatalyst layer.
In the case of having a shielding layer, for example, radicals generated in the photocatalytic layer are considered to be trapped by the shielding layer, so that deterioration due to radicals such as a resin substrate in the substrate layer is suppressed.
As the shielding layer, for example, a layer similar to the inorganic particle-containing layer or a layer similar to the inorganic particle-containing layer can be used as the shielding layer except that the inorganic particle-containing layer is not included.
<用途>
 本開示における光触媒複合材は、保護部材であることが好ましく、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、又は、センサカバー用保護部材であることが好ましい。
 本開示における光触媒複合材は、光触媒層を含むことにより、防汚、抗菌、抗ウイルス、消臭、防カビ等の効果のうち1つ又は複数を有する。また、本開示における光触媒複合材は、無機粒子含有層の組成等に応じて、反射防止性、耐傷性、熱伝導性、耐薬品性等の効果のうち1つ又は複数を有する。
 従って、本開示における光触媒複合材は、例えば、防汚性に優れ、かつ、耐傷性及び反射防止性に優れた保護部材として用いることが可能である。
<Application>
The photocatalyst composite material in the present disclosure is preferably a protective member, and is preferably a signage display protective member, a touch panel protective member, a solar cell protective member, or a sensor cover protective member.
By including the photocatalyst layer, the photocatalyst composite material in the present disclosure has one or a plurality of effects such as antifouling, antibacterial, antiviral, deodorant, and antifungal. Moreover, the photocatalyst composite material in the present disclosure has one or more of effects such as antireflection properties, scratch resistance, thermal conductivity, and chemical resistance, depending on the composition of the inorganic particle-containing layer.
Therefore, the photocatalyst composite material according to the present disclosure can be used, for example, as a protective member having excellent antifouling properties and excellent scratch resistance and antireflection properties.
(サイネージ用ディスプレイ保護部材、サイネージ用ディスプレイ)
 本開示に係るサイネージ用ディスプレイ保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るサイネージ用ディスプレイは、本開示に係るサイネージ用ディスプレイ保護部材を備える。
 本開示に係るサイネージ用ディスプレイ保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をサイネージ用ディスプレイにおける最外層の表面とすることにより、汚れの付着を防止することができる。
 サイネージ用ディスプレイ保護部材としては、例えば、サイネージ用ディスプレイ上に、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をサイネージ用ディスプレイ保護部材として形成して用いてもよい。或いは、例えば、樹脂フィルムを基材層とし、上記基材層上に光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をサイネージ用ディスプレイ保護部材として作製し、このサイネージ用ディスプレイ保護部材をサイネージ用ディスプレイに貼り付けて使用してもよい。
 サイネージ用ディスプレイとしては、特に制限なく、液晶ディスプレイ、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、電子ペーパー、PDP(プラズマディスプレイパネル)等の公知の画像表示装置が用いられる。
(Signage display protection member, signage display)
The signage display protection member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
The signage display according to the present disclosure includes the signage display protection member according to the present disclosure.
The signage display protective member according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side. For example, by using the inorganic particle-containing layer as the surface of the outermost layer in the signage display, the adhesion of dirt is prevented. can do.
As a signage display protection member, for example, a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a signage display may be used as a signage display protection member. Alternatively, for example, a photocatalyst composite material in which a resin film is used as a base material layer and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a signage display protection member. You may paste and use it for the signage display.
The signage display is not particularly limited, and a known image display device such as a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, or a PDP (plasma display panel) is used. It is done.
(タッチパネル用保護部材、タッチパネル)
 本開示に係るタッチパネル用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るタッチパネルは、本開示に係るタッチパネル用保護部材を備える。
 本開示に係るタッチパネル用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をタッチパネルにおけるタッチ部分(手が触れる部分)とすることにより、指紋等の汚れの付着を防止すること、又は、汚れの除去を容易とすることができる。
 タッチパネル用保護部材としては、例えば、従来のタッチパネルにおける最外層となる部材上に、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をタッチパネル用保護部材として形成して用いてもよい。或いは、例えば、樹脂フィルムを基材層とし、上記基材層上に光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をタッチパネル用保護部材として作製し、このタッチパネル用保護部材を従来のタッチパネルにおける最外層となる部材に貼り付けて使用してもよい。
 タッチパネルについては、特に制限なく公知のタッチパネルが用いられ、例えば、特開2002-48913号公報等の記載を参酌できる。
(Protective material for touch panel, touch panel)
The protective member for a touch panel according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
The touch panel according to the present disclosure includes the touch panel protective member according to the present disclosure.
Since the protective member for a touch panel according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, by using the inorganic particle-containing layer as a touch part (touch part) on the touch panel, dirt such as fingerprints Can be prevented, or the removal of dirt can be facilitated.
As a protective member for a touch panel, for example, a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member that becomes an outermost layer in a conventional touch panel is used as a protective member for a touch panel. Also good. Alternatively, for example, a photocatalyst composite material in which a resin film is used as a base material layer and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a touch panel protection member. You may affix and use on the member used as the outermost layer in a touch panel.
As the touch panel, a known touch panel is used without particular limitation, and for example, the description in JP-A-2002-48913 can be referred to.
(太陽電池用保護部材、太陽電池)
 本開示に係る太陽電池用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係る太陽電池は、本開示に係る太陽電池用保護部材を備える。
 本開示に係る太陽電池用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層を太陽電池用フロントシートにおける最外層とすることにより、汚れの付着を防止することができる。
 太陽電池用保護部材としては、例えば、従来の太陽電池用における最外層となる部材(例えば、太陽電池用フロントシート)上に、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材を太陽電池用保護部材として形成して用いてもよい。或いは、例えば、樹脂フィルムを基材層とし、上記基材層上に光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材を太陽電池用保護部材として作製し、この太陽電池用保護部材を、従来の太陽電池用における最外層となる部材に貼り付けて使用してもよい。
 太陽電池用フロントシートについては、特開2011-62877号公報等の記載を参酌できる。
(Protective member for solar cell, solar cell)
The solar cell protective member according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
The solar cell concerning this indication is provided with the protection member for solar cells concerning this indication.
Since the protective member for solar cell according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, the inorganic particle-containing layer is used as the outermost layer in the solar cell front sheet to prevent adhesion of dirt. can do.
As a solar cell protective member, for example, a photocatalyst composite formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member (for example, a solar cell front sheet) that is the outermost layer in a conventional solar cell. You may form and use a material as a protection member for solar cells. Alternatively, for example, a photocatalyst composite material in which a resin film is used as a base material layer, and a photocatalyst layer and an inorganic particle-containing layer are laminated in this order on the base material layer is produced as a solar cell protection member. Alternatively, it may be used by being attached to a member that is the outermost layer in a conventional solar cell.
Regarding the solar cell front sheet, the description in JP-A-2011-62877 can be referred to.
(センサカバー用保護部材、センサカバー)
 本開示に係るセンサカバー用保護部材は、本開示に係る光触媒複合材を備える。
 本開示に係るセンサカバーは、本開示に係るセンサカバー用保護部材を備える。
 本開示に係るセンサカバー用保護部材は、無機粒子含有層側の表面における光触媒活性に優れるため、例えば、無機粒子含有層をセンサカバーにおける最外層とすることにより、汚れの付着を防止することができる。
 センサカバー用保護部材としては、例えば、従来のセンサカバーにおける最外層となる部材上に、光触媒層及び無機粒子含有層をこの順に積層して形成した光触媒複合材をセンサカバー用保護部材として形成して用いてもよい。或いは、例えば、樹脂フィルムを基材層とし、上記基材層上に光触媒層及び無機粒子含有層をこの順に積層した光触媒複合材をセンサカバー用保護部材として作製し、このセンサカバー用保護部材を従来のセンサカバーにおける最外層となる部材に貼り付けて使用してもよい。
 センサカバーについては、カメラモジュールにおけるセンサカバー等が挙げられ、特開2016-130746号公報等の記載を参酌できる。
(Protective member for sensor cover, sensor cover)
The protective member for a sensor cover according to the present disclosure includes the photocatalyst composite material according to the present disclosure.
The sensor cover according to the present disclosure includes the sensor cover protection member according to the present disclosure.
Since the protective member for a sensor cover according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side, for example, by making the inorganic particle-containing layer the outermost layer in the sensor cover, it is possible to prevent adhesion of dirt. it can.
As the sensor cover protection member, for example, a photocatalyst composite material formed by laminating a photocatalyst layer and an inorganic particle-containing layer in this order on a member that is an outermost layer in a conventional sensor cover is formed as a sensor cover protection member. May be used. Alternatively, for example, a photocatalyst composite material in which a resin film is used as a base material layer, and a photocatalyst layer and an inorganic particle-containing layer are laminated on the base material layer in this order is produced as a sensor cover protection member. You may affix and use on the member used as the outermost layer in the conventional sensor cover.
Examples of the sensor cover include a sensor cover in a camera module, and the description in JP-A-2016-130746 can be referred to.
(その他の用途)
 その他、本開示に係る光触媒複合材を備える保護部材は、液晶ディスプレイ、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、電子ペーパー、PDP(プラズマディスプレイパネル)電磁波シールドフィルム等の保護部材としても好適に用いられる。
(Other uses)
Other protective members including the photocatalytic composite material according to the present disclosure include a liquid crystal display, a plasma display, an organic EL (electroluminescence) display, a CRT (Cathode Ray Tube) display, electronic paper, a PDP (plasma display panel) electromagnetic wave shielding film, and the like. It is also suitably used as a protective member.
 以下、実施例により本開示を詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本開示の実施形態の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の実施形態の範囲は以下に示す具体例に限定されない。なお、本実施例において、「部」、「%」とは、特に断りのない限り、「質量部」、「質量%」を意味する。 Hereinafter, the present disclosure will be described in detail by way of examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the embodiment of the present disclosure. Therefore, the scope of the embodiment of the present disclosure is not limited to the specific examples shown below. In this example, “parts” and “%” mean “parts by mass” and “mass%” unless otherwise specified.
(実施例1~7及び比較例1~4)
<光触媒複合材の作製>
〔光触媒層の作製〕
 水溶液であるティオスカイコートA液を、下記の増粘方法により増粘した組成物を調製した。ガラス基板上に、得られた組成物を滴下後、スピンコータ(ミカサ株式会社製MS-A100)を用いて、表1に記載の膜厚になるように回転数を調節して塗り広げた。
 次いで、ホットプレート(アズワン社製デジタルホットプレートHP-2SA)にて所定の温度で水分を乾燥させ、光触媒層(TiO層)を形成した。
 例えば、500nmの光触媒層を形成する場合には、上記組成物をガラス上に滴下後、回転数800rpm×30sにてスピンコートし、ホットプレート上にて120℃で10minの乾燥を行った。
 ティオスカイコートA液((株)ティオシステムズ)は、数平均粒径が5nm~20nmのアナターゼ型(結晶性)酸化チタン粒子及びペルオキソチタン酸を主成分とした水性組成物である。
(Examples 1 to 7 and Comparative Examples 1 to 4)
<Production of photocatalytic composite material>
[Production of photocatalyst layer]
A composition was prepared by thickening Tiosky Coat A solution, which is an aqueous solution, by the following thickening method. After dropping the obtained composition onto a glass substrate, the composition was spread using a spin coater (MS-A100, manufactured by Mikasa Co., Ltd.) with the number of revolutions adjusted to the film thickness shown in Table 1.
Next, the water was dried at a predetermined temperature with a hot plate (digital hot plate HP-2SA manufactured by ASONE) to form a photocatalyst layer (TiO 2 layer).
For example, in the case of forming a 500 nm photocatalyst layer, the composition was dropped on glass, spin-coated at a rotation speed of 800 rpm × 30 s, and dried on a hot plate at 120 ° C. for 10 minutes.
Tio Sky Coat A Solution (Tio Systems Co., Ltd.) is an aqueous composition mainly composed of anatase type (crystalline) titanium oxide particles having a number average particle diameter of 5 nm to 20 nm and peroxotitanic acid.
<ティオスカイコートA液の増粘方法>
 ティオスカイコートA液の増粘は、ティオスカイコートA液に増粘剤を添加し、混合することにより行なった。
 増粘剤には、ヒドロキシアルキル(炭素数1~3)セルロース10%水溶液を使用した。
 例えば、ティオスカイコートA液に上記増粘剤を、ティオスカイコートA液と上記増粘剤の合計質量に対して13.1%添加した場合には、スピン回転数800rpm×30sの形成条件で1回当たりに形成される光触媒層の膜厚は100nmとなる。また、ティオスカイコートA液と上記増粘剤の合計質量に対して上記増粘剤を30.7%添加した場合には、上記と同じ形成条件で、膜厚が500nmの光触媒層を形成することができる。
<Thickening method of Tio Sky Coat A solution>
The thickening of the Tio Sky Coat A solution was performed by adding a thickener to the Tio Sky Coat A solution and mixing.
As the thickener, a 10% aqueous solution of hydroxyalkyl (1 to 3 carbon atoms) cellulose was used.
For example, when 13.1% of the above thickener is added to the Tiosky Coat A liquid and 13.1% of the total mass of the Tiosky Coat A liquid and the above thickener, the spin rotation speed is 800 rpm × 30 s. The film thickness of the photocatalyst layer formed per time is 100 nm. Further, when 30.7% of the thickener is added to the total mass of the Tiosky Coat A solution and the thickener, a photocatalyst layer having a film thickness of 500 nm is formed under the same formation conditions as described above. be able to.
〔無機粒子含有層の作製〕
-無機粒子含有層形成用組成物の調製-
 下記組成に記載の化合物を混合し、無機粒子含有層形成用組成物の調製を行った。
 比較例2においては、無機粒子の添加しなかった。
[Preparation of inorganic particle-containing layer]
-Preparation of inorganic particle-containing layer forming composition-
The compound as described in the following composition was mixed and the inorganic particle content layer forming composition was prepared.
In Comparative Example 2, no inorganic particles were added.
-組成-
・エポキシ基含有アルコキシシラン化合物(3-グリシドキシプロピルトリエトキシシラン)(信越化学工業(株)製、KBE-403):80質量部
・テトラアルコキシシラン(テトラエトキシシラン、信越化学工業(株)製、KBE-04):20質量部
・酢酸水溶液(ダイセル化学工業(株)製、工業用酢酸の1%水溶液):100質量部
・アルミニウムキレート錯体(川研ファインケミカル製、アルミキレートD):22.1質量部
・表1に記載の無機粒子:200質量部
・界面活性剤A(三洋化成工業(株)製、サンデッドBLの10%希釈液、アニオン性):0.2質量部
・界面活性剤B(三洋化成工業(株)、ナロアクティーCL-95の10%希釈液、ノニオン性):0.2質量部
-composition-
Epoxy group-containing alkoxysilane compound (3-glycidoxypropyltriethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-403): 80 parts by mass Tetraalkoxysilane (tetraethoxysilane, Shin-Etsu Chemical Co., Ltd.) Manufactured, KBE-04): 20 parts by mass / acetic acid aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous solution of industrial acetic acid): 100 parts by mass / aluminum chelate complex (produced by Kawaken Fine Chemicals, aluminum chelate D): 22 .1 part by mass Inorganic particles listed in Table 1: 200 parts by mass Surfactant A (manufactured by Sanyo Chemical Industries, Ltd., 10% diluted solution of sanded BL, anionic): 0.2 parts by mass Agent B (Sanyo Chemical Industries, Ltd., 10% diluted solution of NAROACTY CL-95, nonionic): 0.2 parts by mass
 無機粒子含有層形成用組成物の調製は、以下の手順で行った。
 100質量部の1%酢酸水溶液にエポキシ基含有アルコキシシラン化合物(KBE403)を添加して十分に加水分解した後、テトラアルコキシシラン(KBE04)を添加した。次いで、アルミニウムキレート錯体をエポキシ基含有アルコキシシラン化合物に対して必要な質量部添加し、ここに表1に記載の無機粒子を添加した。その後、界面活性剤A(サンデットBL)の10%希釈液と界面活性剤B(ナローアクティーCL-95)の10%希釈液を0.2質量部ずつ添加し、固形分濃度が15%になるように水を添加して無機粒子含有層形成用組成物とした。
The inorganic particle-containing layer forming composition was prepared according to the following procedure.
An epoxy group-containing alkoxysilane compound (KBE403) was added to 100 parts by mass of a 1% aqueous acetic acid solution and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE04) was added. Subsequently, an aluminum chelate complex was added in a necessary mass part with respect to the epoxy group-containing alkoxysilane compound, and inorganic particles described in Table 1 were added thereto. Thereafter, 0.2% by mass of a 10% diluted solution of surfactant A (Sandet BL) and a 10% diluted solution of surfactant B (Narrow Acty CL-95) are added to a solid content concentration of 15%. Thus, water was added to obtain a composition for forming an inorganic particle-containing layer.
-無機粒子含有層の作製-
 上述の方法により作製した光触媒層上に、各実施例又は比較例において調製した無機粒子含有層形成用組成物を滴下し、スピンコーター(ミカサ株式会社製MS-A100)を用いて、表1に記載の膜厚になるように回転数を調節して塗り広げた。次いで、ホットプレート(アズワン社製デジタルホットプレートHP-2SA)にて、所定の温度で水分を乾燥させ、無機粒子含有層を形成し、光触媒複合材とした。
 スピンコート条件及び乾燥の条件は、各実施例又は比較例において作製する無機粒子含有層の膜厚に応じて調整した。
 例えば、100nmの薄膜を形成する場合であれば、無機粒子含有層形成用組成物を滴下後、回転数4,000rpm×30sのスピンコートを行い、ホットプレート上で170℃で2minの乾燥を行い、光触媒複合材を得た。
 また、比較例1においては無機粒子含有層の作製を行わなかった。
-Preparation of inorganic particle-containing layer-
On the photocatalyst layer produced by the above-described method, the inorganic particle-containing layer forming composition prepared in each Example or Comparative Example was dropped, and a spin coater (MS-A100 manufactured by Mikasa Corporation) was used. The coating was spread by adjusting the number of revolutions so that the film thickness described was obtained. Next, moisture was dried at a predetermined temperature using a hot plate (Digital Hot Plate HP-2SA manufactured by ASONE Co., Ltd.) to form an inorganic particle-containing layer to obtain a photocatalyst composite material.
The spin coating conditions and drying conditions were adjusted according to the film thickness of the inorganic particle-containing layer prepared in each example or comparative example.
For example, in the case of forming a 100 nm thin film, after dropping the composition for forming an inorganic particle-containing layer, spin coating at a rotational speed of 4,000 rpm × 30 s is performed, and drying is performed at 170 ° C. for 2 minutes on a hot plate. A photocatalytic composite material was obtained.
In Comparative Example 1, the inorganic particle-containing layer was not prepared.
<光触媒活性の評価>
 得られた光触媒複合材に対し、JIS R 1703-2:2014に略準拠した方法により、無機粒子含有層側の表面(無機粒子含有層を有しない場合、光触媒層側の表面)における光触媒活性の評価を行った。
 具体的には、10μmol/Lのメチレンブルー(MB)水溶液35mLを、光触媒複合材の50mm角の正方形状の領域に接触させ、後述する条件により紫外光を照射したのちに、吸光度によりメチレンブルー濃度を測定した。
 露光には、朝日分光(株)製ハロゲンランプMAX-302を用い、バンドパスフィルタ(透過中心波長350nm、FWHM(半値全幅)10nm)を用いて、露光強度は1mW/cmとした。
 光触媒反応の分解活性の測定には、Agilent社製分光器HP 8453を用いた。
 UV露光前後でMB水溶液の吸収スペクトルを測定し、664nmの吸光度からMB分解分子数を算出した。
 光触媒表面でのMB分解反応は0次反応で進行するため、分解活性指数(nmol/(L×min))は、分解したMB濃度(nmol/L)を露光時間(min)に対して最小二乗法による直線回帰した傾きとして求めた。上記直線回帰は、上述の露光条件により60分間照射した結果を用いて行った。また、直線回帰は切片0で行った。分解したMB濃度は、露光時間0の濃度との差分として算出した。
 予備検討により、本系で測定した分解活性指数はJIS規格(JIS R 1703-2:2014)による文献値の約6割の値になること、文献値と測定値の相対関係は保たれるとわかっている。上記JIS規格においては3nmol/(L×min)以上を十分高い分解活性としており、本測定では5nmol/(L×min)以上である場合に「A+」、5nmol/(L×min)未満3nmol/(L×min)以上である場合に「A」、3nmol/(L×min)未満1nmol/(L×min)以上である場合に「B」、1nmol/(L×min)未満である場合に「C」として評価した。
 評価結果は、表1に記載した。
<Evaluation of photocatalytic activity>
For the obtained photocatalyst composite material, the photocatalytic activity on the surface on the inorganic particle-containing layer side (the surface on the photocatalyst layer side when no inorganic particle-containing layer is provided) is determined by a method substantially in accordance with JIS R 1703-2: 2014. Evaluation was performed.
Specifically, 35 mL of a 10 μmol / L methylene blue (MB) aqueous solution was brought into contact with a 50 mm square region of the photocatalyst composite, irradiated with ultraviolet light under the conditions described later, and the methylene blue concentration was measured by absorbance. did.
For the exposure, a halogen lamp MAX-302 manufactured by Asahi Spectroscopic Co., Ltd. was used, and a bandpass filter (transmission center wavelength 350 nm, FWHM (full width at half maximum) 10 nm) was used, and the exposure intensity was 1 mW / cm 2 .
For the measurement of the decomposition activity of the photocatalytic reaction, a spectrometer HP 8453 manufactured by Agilent was used.
The absorption spectrum of the aqueous MB solution was measured before and after UV exposure, and the number of MB-decomposed molecules was calculated from the absorbance at 664 nm.
Since the MB decomposition reaction on the surface of the photocatalyst proceeds as a zero-order reaction, the decomposition activity index (nmol / (L × min)) is a minimum of the decomposition MB concentration (nmol / L) with respect to the exposure time (min). The slope was obtained by linear regression by multiplication. The linear regression was performed using the result of irradiation for 60 minutes under the exposure conditions described above. Linear regression was performed at intercept 0. The decomposed MB density was calculated as a difference from the density at exposure time 0.
According to preliminary studies, the degradation activity index measured in this system is about 60% of the literature value according to the JIS standard (JIS R 1703-2: 2014), and the relative relationship between the literature value and the measured value is maintained. know. In the above JIS standard, 3 nmol / (L × min) or more is a sufficiently high decomposition activity. In this measurement, when it is 5 nmol / (L × min) or more, “A +”, less than 5 nmol / (L × min), 3 nmol / When “A” is greater than (L × min), less than “A”, less than 3 nmol / (L × min), and when “B” is less than 1 nmol / (L × min), less than 1 nmol / (L × min) Evaluated as “C”.
The evaluation results are shown in Table 1.
<耐傷性の評価>
 各実施例又は比較例において得られた光触媒複合材の無機粒子含有層側の表面(無機粒子含有層を有しない場合、光触媒層側の表面)に対し、新東科学(株)製 摩擦摩耗試験機HYDON Type18を用い、r=0.03mmのサファイア針で0-100gの連続荷重にて移動速度600mm/minで10回のスクラッチ試験を行った。
 上記スクラッチ試験後、光触媒複合材の無機粒子含有層側の表面に目視で傷が認められない場合を「A」、傷が認められる場合を「B」として評価した。上記評価結果がAであれば耐傷性に優れるといえる。
<Evaluation of scratch resistance>
Friction and wear test made by Shinto Kagaku Co., Ltd. against the surface of the photocatalyst composite material obtained in each example or comparative example on the inorganic particle-containing layer side (the surface on the photocatalyst layer side when there is no inorganic particle-containing layer) Using a machine HYDON Type 18, a scratch test was performed 10 times with a continuous load of 0-100 g with a sapphire needle of r = 0.03 mm at a moving speed of 600 mm / min.
After the scratch test, the case where no scratches were visually observed on the surface of the photocatalyst composite material on the inorganic particle-containing layer side was evaluated as “A”, and the case where scratches were observed was evaluated as “B”. If the evaluation result is A, it can be said that the scratch resistance is excellent.
<反射防止性の評価>
 各実施例又は比較例における光触媒複合材に対し、ガラス基材とは反対の側の表面の反射率を測定した。
 ガラス基材とは反対の側の表面は、無機粒子含有層が形成されている例においては、無機粒子含有層側の表面であり、無機粒子含有層が形成されていない例においては、光触媒層側の表面である。
 反射率の測定は、紫外可視赤外分光光度計(型番:UV3100PC、(株)島津製作所製)を用い、波長400~800nmの光における反射率(%)を、積分球を用いて測定し、波長400~800nmの平均値を反射率とした。
 無機粒子含有層を有しない比較例1に対し、1%以上反射率が低い場合に「A」、反射率が低下しないか、反射率の低下が1%未満である場合に「B」として評価した。
<Evaluation of antireflection properties>
With respect to the photocatalyst composite material in each Example or Comparative Example, the reflectance of the surface on the side opposite to the glass substrate was measured.
The surface opposite to the glass substrate is the surface on the inorganic particle-containing layer side in the example where the inorganic particle-containing layer is formed, and in the example where the inorganic particle-containing layer is not formed, the photocatalyst layer The side surface.
The reflectance is measured using an ultraviolet-visible infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation), and the reflectance (%) in light having a wavelength of 400 to 800 nm is measured using an integrating sphere. The average value at a wavelength of 400 to 800 nm was taken as the reflectance.
Evaluation as “A” when the reflectance is low by 1% or more with respect to Comparative Example 1 having no inorganic particle-containing layer, and evaluation as “B” when the reflectance does not decrease or the decrease in reflectance is less than 1%. did.
<耐薬品性の評価>
 各実施例又は比較例における光触媒複合材を、5%水酸化ナトリウム水溶液に30℃で24時間浸漬した。
 上記浸漬後、光触媒複合材の無機粒子含有層側の表面を目視にて確認した。変色等の
変化が認められない場合を「A」、変化が認められる場合を「B」として評価した。上記評価結果がAであれば耐薬品性に優れるといえる。
<Evaluation of chemical resistance>
The photocatalyst composite material in each example or comparative example was immersed in a 5% aqueous sodium hydroxide solution at 30 ° C. for 24 hours.
After the immersion, the surface of the photocatalyst composite on the inorganic particle-containing layer side was visually confirmed. The case where change such as discoloration was not recognized was evaluated as “A”, and the case where change was recognized was evaluated as “B”. If the evaluation result is A, it can be said that the chemical resistance is excellent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中、「-」の記載は該当する項目についての評価を行っていないことを意味している。
 表1中に記載した無機粒子の詳細は下記の通りである。
・S1:シリカ粒子、スノーテックスOXS、日産化学工業(株)製
・S2:シリカ粒子、スノーテックスOZL、日産化学工業(株)製
・A1:アルミナ粒子、AS-520-A、日産化学工業(株)製
・Z1:ジルコニア粒子、ZR40-BL、日産化学工業(株)製
・S3:シリカ粒子、スノーテックスO、日産化学工業(株)製
・S4:シリカ粒子、スノーテックスMP-4540M、日産化学工業(株)製
In Table 1, “-” means that the corresponding item has not been evaluated.
The details of the inorganic particles described in Table 1 are as follows.
S1: Silica particles, Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd. S2: Silica particles, Snowtex OZL, manufactured by Nissan Chemical Industries, Ltd. A1: Alumina particles, AS-520-A, Nissan Chemical Industries (・ Z1: Zirconia particles, ZR40-BL, manufactured by Nissan Chemical Industries, Ltd. ・ S3: Silica particles, Snowtex O, Nissan Chemical Industries, Ltd. ・ S4: Silica particles, Snowtex MP-4540M, Nissan Made by Chemical Industry Co., Ltd.
 表1に記載の結果から、本開示に係る光触媒複合材は、無機粒子含有層側の表面における光触媒活性に優れ、かつ、無機粒子含有層による機能が付加されていることがわかる。
 なお、耐傷性、反射防止性、及び/又は、耐薬品性の評価において、評価結果が「A」であることは、無機粒子含有層による機能が付加されていることを意味している。
From the results described in Table 1, it can be seen that the photocatalyst composite material according to the present disclosure is excellent in photocatalytic activity on the surface on the inorganic particle-containing layer side and has a function added by the inorganic particle-containing layer.
In the evaluation of scratch resistance, antireflection property and / or chemical resistance, an evaluation result of “A” means that a function by the inorganic particle-containing layer is added.
 2018年6月11日に出願された日本国特許出願2018-111457の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 
The disclosure of Japanese Patent Application No. 2018-111457 filed on June 11, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  酸化チタン粒子、及び、アモルファス過酸化チタン型無機バインダーを含む光触媒層と、
     有機構造を含むシロキサン樹脂、及び、無機粒子を含む無機粒子含有層と、を含み、
     前記無機粒子の数平均粒径が5nm~100nmであり、
     前記無機粒子含有層の膜厚が50nm~250nmである
     光触媒複合材。
    A photocatalyst layer containing titanium oxide particles and an amorphous titanium peroxide type inorganic binder;
    A siloxane resin containing an organic structure, and an inorganic particle-containing layer containing inorganic particles,
    The number average particle diameter of the inorganic particles is 5 nm to 100 nm,
    A photocatalyst composite material, wherein the inorganic particle-containing layer has a thickness of 50 nm to 250 nm.
  2.  前記酸化チタン粒子が、アナターゼ型酸化チタン粒子である、請求項1に記載の光触媒複合材。 The photocatalyst composite material according to claim 1, wherein the titanium oxide particles are anatase type titanium oxide particles.
  3.  前記有機構造を含むシロキサン樹脂における有機構造が、架橋構造である、請求項1又は請求項2に記載の光触媒複合材。 The photocatalyst composite material according to claim 1 or 2, wherein an organic structure in the siloxane resin containing the organic structure is a crosslinked structure.
  4.  前記無機粒子含有層が、アルコキシシラン化合物と無機粒子とを含む組成物を硬化してなる層である、請求項1~請求項3のいずれか1項に記載の光触媒複合材。 The photocatalyst composite material according to any one of claims 1 to 3, wherein the inorganic particle-containing layer is a layer formed by curing a composition containing an alkoxysilane compound and inorganic particles.
  5.  前記アルコキシシラン化合物が、エポキシ基含有アルコキシシラン化合物と、エポキシ基非含有アルコキシシラン化合物と、を含む、請求項4に記載の光触媒複合材。 The photocatalyst composite material according to claim 4, wherein the alkoxysilane compound includes an epoxy group-containing alkoxysilane compound and an epoxy group-free alkoxysilane compound.
  6.  前記無機粒子が、シリカ、アルミナ及びジルコニアよりなる群から選ばれた少なくとも1種の粒子を含有する、請求項1~請求項5のいずれか1項に記載の光触媒複合材。 The photocatalyst composite material according to any one of claims 1 to 5, wherein the inorganic particles contain at least one kind of particles selected from the group consisting of silica, alumina, and zirconia.
  7.  前記光触媒層の前記無機粒子含有層とは反対側に、基材層を更に含む、請求項1~請求項6のいずれか1項に記載の光触媒複合材。 The photocatalyst composite material according to any one of claims 1 to 6, further comprising a base material layer on a side of the photocatalyst layer opposite to the inorganic particle-containing layer.
  8.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるサイネージ用ディスプレイ保護部材。 A signage display protective member comprising the photocatalyst composite material according to any one of claims 1 to 7.
  9.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるタッチパネル用保護部材。 A touch panel protective member comprising the photocatalyst composite material according to any one of claims 1 to 7.
  10.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備える太陽電池用保護部材。 A solar cell protective member comprising the photocatalyst composite material according to any one of claims 1 to 7.
  11.  請求項1~請求項7のいずれか1項に記載の光触媒複合材を備えるセンサカバー用保護部材。 A sensor cover protective member comprising the photocatalyst composite material according to any one of claims 1 to 7.
  12.  請求項8に記載のサイネージ用ディスプレイ保護部材を備えるサイネージ用ディスプレイ。 A signage display comprising the signage display protection member according to claim 8.
  13.  請求項9に記載のタッチパネル用保護部材を備えるタッチパネル。 A touch panel comprising the touch panel protective member according to claim 9.
  14.  請求項10に記載の太陽電池用保護部材を備える太陽電池。 A solar cell comprising the solar cell protective member according to claim 10.
  15.  請求項11に記載のセンサカバー用保護部材を備えるセンサカバー。 A sensor cover comprising the sensor cover protective member according to claim 11.
PCT/JP2019/019960 2018-06-11 2019-05-20 Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover WO2019239808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-111457 2018-06-11
JP2018111457 2018-06-11

Publications (1)

Publication Number Publication Date
WO2019239808A1 true WO2019239808A1 (en) 2019-12-19

Family

ID=68842985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019960 WO2019239808A1 (en) 2018-06-11 2019-05-20 Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover

Country Status (1)

Country Link
WO (1) WO2019239808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202874A1 (en) * 2019-03-29 2020-10-08 日本電産株式会社 Optical member and method for manufacturing same
JP2021145035A (en) * 2020-03-11 2021-09-24 株式会社豊田中央研究所 Solar cell panel and method for manufacturing solar cell panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280397A (en) * 1999-01-28 2000-10-10 Asahi Chem Ind Co Ltd Multilayer having titanium peroxide-containing titanium oxide film
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body
JP2002346393A (en) * 2001-05-22 2002-12-03 Kawasaki Steel Corp Photocatalyst and method for manufacturing the same
WO2002100634A1 (en) * 2001-06-11 2002-12-19 Murakami Corporation Antifogging element and method for forming the same
JP2003181299A (en) * 2001-12-21 2003-07-02 Jfe Steel Kk Production method of photocatalyst material
JP2005138059A (en) * 2003-11-07 2005-06-02 Teio Techno:Kk Quick hardening photocatalyst body
JP2007536137A (en) * 2004-05-10 2007-12-13 サン−ゴバン グラス フランス Substrate with photocatalytic coating
JP2018502975A (en) * 2014-11-04 2018-02-01 アライド バイオサイエンス, インコーポレイテッド Compositions and methods for forming a self-contaminating surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280397A (en) * 1999-01-28 2000-10-10 Asahi Chem Ind Co Ltd Multilayer having titanium peroxide-containing titanium oxide film
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body
JP2002346393A (en) * 2001-05-22 2002-12-03 Kawasaki Steel Corp Photocatalyst and method for manufacturing the same
WO2002100634A1 (en) * 2001-06-11 2002-12-19 Murakami Corporation Antifogging element and method for forming the same
JP2003181299A (en) * 2001-12-21 2003-07-02 Jfe Steel Kk Production method of photocatalyst material
JP2005138059A (en) * 2003-11-07 2005-06-02 Teio Techno:Kk Quick hardening photocatalyst body
JP2007536137A (en) * 2004-05-10 2007-12-13 サン−ゴバン グラス フランス Substrate with photocatalytic coating
JP2018502975A (en) * 2014-11-04 2018-02-01 アライド バイオサイエンス, インコーポレイテッド Compositions and methods for forming a self-contaminating surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202874A1 (en) * 2019-03-29 2020-10-08 日本電産株式会社 Optical member and method for manufacturing same
JP2021145035A (en) * 2020-03-11 2021-09-24 株式会社豊田中央研究所 Solar cell panel and method for manufacturing solar cell panel

Similar Documents

Publication Publication Date Title
EP2512696B1 (en) Sulfonate-functional coatings and methods
KR101758934B1 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP3398829B2 (en) Method for producing zinc oxide-based fine particles
JP4225402B2 (en) Zinc oxide fine particles and their uses
JP2010202731A (en) Uv-shielding silicone coating composition and coated article
JP4292634B2 (en) Method for manufacturing antireflection laminate
JP6579274B2 (en) Photocatalyst laminate
JP2012077267A (en) Ultraviolet shielding silicone coating composition and coated article
WO2019239808A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
WO2019239810A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
JP2010168508A (en) Low refractive index composition, antireflection material, and display
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
WO2019239809A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
JP6112975B2 (en) Precoated metal plate with excellent contamination resistance
JP5434778B2 (en) Cage-type silsesquioxane-peroxotitanium composite photocatalyst aqueous coating liquid and coating film for hydrophilic film formation
WO2020129456A1 (en) Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover
WO2020110523A1 (en) Photocatalyst composite material, protective member for sensors, protective member for building materials, protective member for vehicles, protective member for cooling containers, protective member for security cameras, sensor, building materials, vehicle, cooling container and security camera
JP5942140B2 (en) Covering member
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
JP5192187B2 (en) Composition for forming adhesive layer for photocatalyst film, adhesive layer for photocatalyst film, method for forming adhesive layer for photocatalyst film, and photocatalyst structure
JP5330881B2 (en) Curable composition, cured product and laminate
CN117413029A (en) Transparent film-forming composition for preparing near infrared shielding coating and preparation method thereof
JP2022115605A (en) Particle containing antibacterial metal component and having cavity inside silicon-containing outer shell, and substrate with transparent film containing the particle
TW202132490A (en) Anti-glare layer-provided substrate, image display apparatus, and manufacturing method for anti-glare layer-provided substrate which has excellent anti-glare performance and does not cause sparkling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP