WO2020129373A1 - Unsaturated polyester resin composition and cured product of said composition - Google Patents

Unsaturated polyester resin composition and cured product of said composition Download PDF

Info

Publication number
WO2020129373A1
WO2020129373A1 PCT/JP2019/040114 JP2019040114W WO2020129373A1 WO 2020129373 A1 WO2020129373 A1 WO 2020129373A1 JP 2019040114 W JP2019040114 W JP 2019040114W WO 2020129373 A1 WO2020129373 A1 WO 2020129373A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
unsaturated polyester
resin composition
mass
cobalt
Prior art date
Application number
PCT/JP2019/040114
Other languages
French (fr)
Japanese (ja)
Inventor
彬 宇佐美
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020561176A priority Critical patent/JPWO2020129373A1/en
Priority to CN201980064857.0A priority patent/CN112789303A/en
Publication of WO2020129373A1 publication Critical patent/WO2020129373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters

Definitions

  • the present disclosure relates to an unsaturated polyester resin composition and a cured product of the composition.
  • Patent Document 1 an aromatic tertiary amine or a ⁇ -diketone compound as an accelerator for curing in an unsaturated polyester resin, and to cure it at room temperature or a temperature close thereto to shorten the curing time.
  • Patent Document 2 an aromatic tertiary amine or a ⁇ -diketone compound
  • quinone compounds have been used as polymerization inhibitors to improve storage stability, but there was a problem that gel time drift occurs when used in large amounts.
  • the present disclosure aims to provide an unsaturated polyester resin composition capable of preventing gelation during long-term storage at high temperature and maintaining curing performance even when stored for a long time. To do.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by adding a cobalt soap, an inorganic tin compound and an amine-based antioxidant to an unsaturated polyester resin, storage stability at a higher temperature than before can be achieved. It has been found that it has excellent properties and maintains an appropriate gelation time even when stored for a long period of time, and can maintain the curing performance.
  • the present disclosure includes the following aspects [1] to [11].
  • the content of the cobalt soap (C) is 0.001 to 10 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [1].
  • the content of the cobalt coordinating compound (D) is 0.001 to 5 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [ [1] or the unsaturated polyester resin composition according to [2].
  • the content of the inorganic tin compound (E) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [1].
  • The unsaturated polyester resin composition according to any one of [3].
  • the content of the amine antioxidant (F) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [ The unsaturated polyester resin composition according to any one of 1] to [4]. [6] The unsaturated polyester resin composition according to any one of [1] to [5], wherein the cobalt soap (C) contains at least one selected from the group consisting of cobalt octylate and cobalt naphthenate.
  • a composite material comprising the unsaturated polyester resin composition according to any one of [1] to [9] and at least one selected from the group consisting of a fiber reinforcing material, a filler and an aggregate.
  • an unsaturated polyester resin composition having excellent storage stability at high temperature and capable of maintaining curing performance even when stored for a long period of time as compared with a conventional unsaturated polyester resin composition is provided. be able to.
  • (meth)acrylic is a generic term for acrylic and methacrylic
  • (meth)acrylate is a generic term for acrylate and methacrylate.
  • the “ethylenically unsaturated bond” and the “ethylenically unsaturated group” have a double bond formed between carbon atoms other than carbon atoms forming an aromatic ring and a double bond such as such.
  • Each means a group
  • the "ethylenically unsaturated monomer” means a monomer having an ethylenically unsaturated bond.
  • the unsaturated polyester resin composition of one embodiment includes an unsaturated polyester resin (A), an ethylenically unsaturated monomer (B), a cobalt soap (C), a cobalt coordinating compound (D), and an inorganic tin compound ( E) and an amine-based antioxidant (F).
  • the unsaturated polyester resin (A) is obtained by polycondensing a polyhydric alcohol, an unsaturated polybasic acid, and, if necessary, at least one selected from a saturated polybasic acid and a monobasic acid, It is not particularly limited.
  • the unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond
  • the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond. Only one unsaturated polyester resin may be used, or two or more unsaturated polyester resins may be used in combination.
  • the polyhydric alcohol (a) is not particularly limited as long as it is a compound having two or more hydroxyl groups.
  • glycols More preferred are glycols, diethylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A, bisphenol A ethylene oxide adducts, and bisphenol A propylene oxide adducts.
  • the polyhydric alcohol may be used alone or in combination of two or more kinds.
  • the unsaturated polybasic acid (b) is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and having two or more carboxy groups or an acid anhydride thereof.
  • Examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, chloromaleic acid, endomethylenetetrahydrophthalic anhydride, and tetrahydrophthalic anhydride.
  • maleic anhydride, fumaric acid, citraconic acid, itaconic acid and chloromaleic acid are preferable, and maleic anhydride and fumaric acid are more preferable, from the viewpoints of heat resistance and mechanical strength of the cured product.
  • the unsaturated polybasic acids may be used alone or in combination of two or more.
  • the saturated polybasic acid (c) is not particularly limited as long as it is a compound having no ethylenically unsaturated bond and having two or more carboxy groups or its acid anhydride.
  • Examples of the saturated polybasic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, nitrophthalic acid, halogenated phthalic anhydride. , Oxalic acid, malonic acid, azelaic acid, glutaric acid, and hexahydrophthalic anhydride.
  • phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, and adipic acid are preferable from the viewpoints of heat resistance and mechanical strength of the cured product, and phthalic anhydride, isophthalic acid, and terephthalic acid are preferable. Is more preferable.
  • Dicyclopentadiene maleate can be synthesized from maleic anhydride and dicyclopentadiene by a known method. By using the monobasic acid (d), the viscosity of the unsaturated polyester resin (A) can be reduced and the amount of styrene used can be reduced.
  • the unsaturated polyester resin can be synthesized by a known method using the raw materials (a) to (d) above.
  • Various conditions in the synthesis of the unsaturated polyester resin can be appropriately set depending on the raw material used and the amount thereof.
  • an esterification reaction can be used at a temperature of 140 to 230° C. in an inert gas stream such as nitrogen gas under normal pressure, increased pressure or reduced pressure.
  • an esterification catalyst can be used if necessary.
  • esterification catalysts include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate.
  • the esterification catalyst may be used alone or in combination of two or more kinds.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin is not particularly limited.
  • the weight average molecular weight of the unsaturated polyester resin is preferably 3,000 to 25,000, more preferably 5,000 to 20,000, and further preferably 7,000 to 18,000.
  • the weight average molecular weight of the unsaturated polyester resin is preferably 1,000 to 25,000, more preferably 2,000 to 20,000, and further preferably 3,000 to 18, It is 000.
  • the “weight average molecular weight” is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
  • the unsaturated degree of the unsaturated polyester resin is preferably 50 to 100 mol %, more preferably 60 to 100 mol %, and further preferably 70 to 100 mol %. In another embodiment, the unsaturated degree of the unsaturated polyester resin is preferably 30 to 100 mol %, more preferably 40 to 100 mol %, and further preferably 50 to 100 mol %. When the degree of unsaturation is in the above range, the moldability of the unsaturated polyester resin composition is better.
  • the degree of unsaturation of the unsaturated polyester resin can be calculated by the following formula using the unsaturated polybasic acid used as a raw material and the number of moles of the saturated polybasic acid.
  • Unsaturation degree (mol %) ⁇ (mol number of unsaturated polybasic acid ⁇ number of ethylenically unsaturated groups in unsaturated polybasic acid)/(mol number of unsaturated polybasic acid+saturated polybasic acid Number of moles) ⁇ 100
  • the unsaturated polyester resin composition contains an ethylenically unsaturated monomer (B).
  • the ethylenically unsaturated monomer (B) is not particularly limited as long as it is a monomer compound having an ethylenically unsaturated group. There may be one or more ethylenically unsaturated groups.
  • ethylenically unsaturated monomer (B) examples include ⁇ -, schreib-, m-, p-alkyl of styrene such as styrene, vinyltoluene, and tert-butylstyrene, nitro, cyano, amide, or Ester derivatives, vinyl compounds such as methoxystyrene, divinylbenzene, vinylnaphthalene and acenaphthylene; diene compounds such as butadiene, 2,3-dimethylbutadiene, isoprene and chloroprene; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth) ) Acrylate, n-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl
  • the content of the ethylenically unsaturated monomer (B) is 10 to 95% by mass, more preferably 30 to 95% by mass based on the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). It is 90% by mass, more preferably 50 to 80% by mass. If the content of the ethylenically unsaturated monomer (B) is 10 to 95% by mass based on the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), the cured product is The mechanical strength can be further improved.
  • Cobalt soap (C) has a high effect of suppressing the deactivation of radicals as compared with the curing accelerators of other metal soaps, and therefore has good air-drying property. Further, among the metal soaps, cobalt has the highest activity as a central metal, and is therefore suitable as a curing accelerator. As the cobalt soap (C), commercially available products can be used. Examples of the cobalt soap (C) include cobalt octylate, cobalt naphthenate, and cobalt neodecanoate. Of these, cobalt octylate and cobalt naphthenate are preferable. The cobalt soap (C) may be dissolved in a commonly used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
  • the content of the cobalt soap (C) is preferably 0.001 to 10 parts by mass, more preferably 100 parts by mass with respect to the total of 100 parts by mass of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B).
  • the amount is 0.01 to 5 parts by mass, more preferably 0.1 to 1 part by mass.
  • Unsaturated polyester resin composition if the content of the cobalt soap (C) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B)
  • the gelling time can be further shortened, the surface curability can be improved, and if it is 10 parts by mass or less, the unsaturated polyester resin composition can be cured with an appropriate gelling time. is there.
  • the cobalt coordinating compound (D) has a coordinative bondability with the divalent or trivalent cation of cobalt.
  • the cobalt soap (C) is activated as a curing accelerator and the radical polymerization initiator (G) It is thought to accelerate decomposition.
  • Examples of the cobalt coordinating compound (D) include aromatic tertiary amines, ⁇ -diketones, carboxylic acids, thiols, pyridine analogs, trivalent organic phosphorus compounds, and inorganic halides.
  • aromatic tertiary amines include N,N-dimethylaniline, N,N-diethylaniline, N,N-dipropylaniline, N,N-dibutylaniline, N,N-dimethylaminonaphthalene, N,N -Diethylaminonaphthalene, N,N-dipropylaminonaphthalene, N,N-dibutylaminonaphthalene, N,N-dimethylaminoanthracene, N,N-diethylaminoanthracene, N,N-dipropylaminoanthracene, N,N-dibutyl Aminoanthracene, and derivatives thereof.
  • ⁇ -diketones include acetylacetone, ⁇ -acetyl- ⁇ -butyl lactone, N,N-dimethylacetoacetamide, N-pyrrolidinoacetoacetamide, 2-acetylcyclopentanone, 2-acetylcyclohexanone, 1,3- Bis(4-methoxyphenyl)-1,3-propanedione, 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione, 1-(4-bromophenyl) -1,3-butanedione, 3-chloroacetylacetone, 1-(4-chlorophenyl)-4,4,4-trifluoro-1,3-butanedione, dipivaloylmethane, 2,2-dimethyl-6,6 , 7,7,8,8,8-heptafluoro-3,5-octanedione, and
  • Carboxylic acids include aliphatic carboxylic acids such as formic acid, acetic acid and propionic acid, and aromatic carboxylic acids such as benzoic acid and cinnamic acid.
  • Thiols include methanethiol, ethanethiol, aliphatic thiols such as propanethiol, and aromatic thiols such as benzenethiol.
  • Examples of the pyridine analog include pyridine, chloropyridine, bromopyridine and the like.
  • Examples of the trivalent organic phosphorus compound include triphenylphosphine and tricyclohexylphosphine.
  • the inorganic halide include calcium chloride, magnesium chloride, calcium bromide, magnesium bromide and the like.
  • aromatic tertiary amines and ⁇ -diketones are preferable, and N,N-dimethylaniline, N,N-dimethylacetoacetamide, and N-pyrrolidinoacetoacetamide are more preferable.
  • the cobalt coordinating compound (D) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
  • the content of the cobalt coordinating compound (D) is preferably 0.001 to 5 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), The amount is more preferably 0.01 to 1 part by mass, further preferably 0.05 to 0.5 part by mass.
  • the content of the cobalt coordinating compound (D) is 0.001 part by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B)
  • the unsaturated The gelling time of the polyester resin composition can be shortened, and the amount of residual monomers in the resin cured product can be reduced. If it is 5 parts by mass or less, the unsaturated polyester resin composition is cured with an appropriate gelling time. It is possible to
  • Inorganic tin compound (E) A commercially available compound can be used as the inorganic tin compound (E).
  • the inorganic tin compound (E) include a divalent inorganic tin compound such as tin (II) chloride (SnCl 2 ), and a tetravalent inorganic tin compound such as tin (IV) chloride (SnCl 4 ).
  • a divalent inorganic tin compound such as tin (II) chloride (SnCl 2 )
  • tetravalent inorganic tin compound such as tin (IV) chloride (SnCl 4 .
  • divalent inorganic tin compound examples include tin (II) fluoride (SnF 2 ), tin (II) chloride (SnCl 2 ), tin (II) bromide (SnBr 2 ), tin (II) iodide ( SnI 2), tin oxide (II) (SnO), and the like tin sulfide (II) (SnS) is.
  • tin (II) chloride, tin (II) bromide, and tin (II) fluoride are preferable, and tin (II) chloride and tin (II) bromide are more preferable.
  • the inorganic tin compound (E) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
  • the content of the inorganic tin compound (E) is preferably 0.001 to 1 part by mass, more preferably 100 parts by mass with respect to the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Is 0.005 to 0.5 parts by mass, more preferably 0.01 to 0.3 parts by mass.
  • the content of the inorganic tin compound (E) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), the unsaturated polyester resin If the storage stability of the composition can be increased and the content is 5 parts by mass or less, a cured resin product having excellent water resistance can be obtained.
  • amine-based antioxidant (F) As the amine-based antioxidant (F), commercially available products can be used.
  • the amine-based antioxidant (F) include primary aliphatic amines such as ethylamine, propylamine and butylamine, secondary aliphatic amines such as diethylamine, dipropylamine and dibutylamine, aniline and its derivatives.
  • primary aromatic amines and secondary aromatic amines such as phenothiazine. Among these, it is preferable to use a secondary aromatic amine.
  • Examples of the secondary aromatic amine include 3-methoxydiphenylamine, phenothiazine, N,N′-diphenyl-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N-phenyl-1-naphthylamine. , Dioctyldiphenylamine, p-(p-toluenesulfonylamido)diphenylamine, and N,N′-dinaphthyl-p-phenylenediamine.
  • 3-methoxydiphenylamine, phenothiazine, N,N'-diphenyl-p-phenylenediamine, and N-isopropyl-N'-phenyl-p-phenylenediamine are preferable, and 3-methoxydiphenylamine and phenothiazine are more preferable.
  • the amine-based antioxidant (F) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
  • the content of the amine-based antioxidant (F) is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), The amount is more preferably 0.003 to 0.1 part by mass, further preferably 0.004 to 0.05 part by mass. If the content of the amine-based antioxidant (F) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), it is unsaturated.
  • the storage stability of the polyester resin composition can be increased, and if it is 1 part by mass or less, the unsaturated polyester resin composition can be cured in an appropriate curing time.
  • the unsaturated polyester resin composition may contain a radical polymerization initiator (G) as a curing agent in order to accelerate curing.
  • a radical polymerization initiator (G) as a curing agent in order to accelerate curing.
  • the unsaturated polyester resin composition is added with the radical polymerization initiator (G)
  • the unsaturated polyester resin composition starts to be cured.
  • the radical polymerization initiator is used. It is desirable to add (G) to the composition immediately before curing the unsaturated polyester resin composition.
  • the radical polymerization initiator (G) may be appropriately selected according to the application, curing conditions, etc., and is not particularly limited.
  • the radical polymerization initiator for example, a known thermal radical initiator or photo radical initiator can be used. Of these, thermal radical initiators are preferable.
  • thermal radical initiator examples include diacyl peroxides such as benzoyl peroxide; peroxyesters such as tert-butylperoxybenzoate; hydroperoxides such as cumene hydroperoxide; dialkyl peroxides such as dicumyl peroxide; Examples thereof include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide; peroxyketals; alkylperesters; organic peroxides such as percarbonates.
  • diacyl peroxides such as benzoyl peroxide
  • peroxyesters such as tert-butylperoxybenzoate
  • hydroperoxides such as cumene hydroperoxide
  • dialkyl peroxides such as dicumyl peroxide
  • ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide
  • peroxyketals alkylperesters
  • the content of the radical polymerization initiator (G) is 0.1 to 10.0 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Is more preferable, 0.2 to 6.0 parts by mass is more preferable, and 0.3 to 3.5 parts by mass is particularly preferable. Within such a range, the radical polymerization reaction of the unsaturated polyester resin composition is promoted, so that a cured product having high hardness can be obtained.
  • the unsaturated polyester resin composition may include a solvent (H).
  • the solvent (H) may be derived from the solvent used in the synthesis of the unsaturated polyester resin (A).
  • the solvent include organic solvents such as esters such as n-butyl acetate and n-propyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene.
  • the above-mentioned ethylenically unsaturated monomer (B) such as styrene may be used.
  • the content of the solvent (H) is preferably 5 to 60 parts by mass, more preferably 10 to 10 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B).
  • the amount is 50 parts by mass, more preferably 20 to 40 parts by mass.
  • the content of the solvent (H) does not include the ethylenically unsaturated monomer (B).
  • additives can be appropriately added to the unsaturated polyester resin composition within the range that does not affect the effects of the present invention or within the range that does not reduce the mechanical strength of the cured product.
  • the additives include thixotropic agents, thixotropic agents, thickeners, colorants, plasticizers, waxes, polymerization inhibitors, and the like.
  • thixotropic agent examples include inorganic powders such as silica and clay.
  • thixotropic agent examples include polyethylene glycol, glycerin, polyhydroxycarboxylic acid amide, organic quaternary ammonium salt and the like.
  • polyhydroxycarboxylic acid amide is BYK-R-605 (manufactured by BYK Japan KK).
  • thickener examples include metal oxides such as magnesium oxide, calcium oxide and zinc oxide, and metal hydroxides such as magnesium hydroxide and calcium hydroxide.
  • colorant examples include organic pigments, inorganic pigments, dyes and the like.
  • plasticizer examples include chlorinated paraffin, phosphoric acid ester, phthalic acid ester and the like.
  • Wax can be added for the purpose of improving the surface dryness due to the air blocking effect on the surface of the cured product.
  • waxes include petroleum wax, olefin wax, polar wax, and special wax.
  • Known polymerization inhibitors such as hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, tert-butylhydroquinone, catechol, p-tert-butylcatechol, and 2,6-di-tert-butyl-4-methylphenol. Can be used.
  • the composite material can be obtained by combining the unsaturated polyester resin composition with at least one selected from the group consisting of a fiber reinforcing material, a filler and an aggregate.
  • fiber reinforcing material examples include organic or inorganic synthetic or natural fiber reinforcing materials such as glass fiber, carbon fiber, polyester fiber, aramid fiber, vinylon fiber and cellulose nanofiber.
  • the fiber reinforcing material examples include short fibers, long fibers, twisted yarns, chops, chopped strand mats, continuous strand mats, rovings, nonwoven fabrics such as spunbonded nonwoven fabrics or meltblown nonwoven fabrics, roving cloths, plain weaves, satin weaves, or twill weaves.
  • the shape of the woven fabric, the braid, the three-dimensional woven fabric, or the three-dimensional braid can be used.
  • the content of the fiber reinforcing material can be appropriately specified according to the intended use of the composite material, required performance, etc., and is not particularly limited. For example, it can be 0.1 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
  • filler examples include calcium carbonate, aluminum hydroxide, fly ash, barium sulfate, talc, clay, glass powder, wood powder, and the like, glass microballoons, microballoons of saran resin, microballoons of acrylonitrile, and shirasu. Hollow fillers such as balloons can also be used.
  • the content of the filler can be appropriately specified according to the intended use of the composite material, required performance, etc., and is not particularly limited. For example, it can be 10 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
  • aggregates examples include general aggregates such as silica sand, crushed stone, and gravel, synthetic aggregates synthesized from incinerated ash, lightweight aggregates, and the like.
  • the content of the aggregate can be appropriately specified according to the intended use of the composite material and the required performance, and is not particularly limited. For example, it can be 10 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
  • the cured product is obtained by curing the unsaturated polyester resin composition or the composite material.
  • the unsaturated polyester resin composition is produced, for example, by a method of kneading the respective components (A) to (F) and, if necessary, one or more of the respective components (G) to (I). be able to.
  • the kneading method is not particularly limited, and for example, a double-arm kneader, a pressure kneader, a planetary mixer or the like can be used.
  • the kneading temperature is preferably -10°C to 80°C, more preferably 0°C to 60°C, and most preferably 20°C to 60°C.
  • the kneading temperature is -10°C or higher, the kneading property is further improved.
  • the kneading temperature is 80° C. or lower, the curing reaction during the kneading of the unsaturated polyester resin composition can be further suppressed.
  • the kneading time can be appropriately selected according to each component and its ratio.
  • the order of kneading each component when manufacturing the unsaturated polyester resin composition is no particular limitation on the order of kneading each component when manufacturing the unsaturated polyester resin composition.
  • the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) are mixed and then other components are mixed, a uniformly mixed unsaturated polyester resin composition is obtained. It is preferable because it is easily damaged.
  • the manufacturing method of the composite material may be appropriately selected according to the purpose and is not particularly limited.
  • the composite material is, for example, a method of kneading an unsaturated polyester resin composition and at least one selected from a fiber reinforcing material, a filler and an aggregate, or selected from a filler and an aggregate as necessary. It can be produced by a method of impregnating a fiber reinforcement with an unsaturated polyester resin composition containing at least one kind.
  • the kneading method is not particularly limited, and for example, a double-arm kneader, a pressure kneader, a planetary mixer or the like can be used.
  • the kneading temperature is preferably ⁇ 10° C. to 80° C., more preferably 0° C. to 60° C. When the kneading temperature is -10°C or higher, the kneading property is further improved. When the kneading temperature is 80° C. or lower, the curing reaction during the kneading of the unsaturated polyester resin composition can be further suppressed.
  • the kneading time can be appropriately selected according to each component and its ratio.
  • the unsaturated polyester resin composition and the composite material can be cured by a known method.
  • Examples of the method for curing the unsaturated polyester resin composition or the composite material include a method in which a radical polymerization initiator (G) is added to the unsaturated polyester resin composition or the composite material, and the mixture is cured at room temperature or by heating, radical polymerization initiation.
  • G radical polymerization initiator
  • Method of curing a composite material prepared by using an unsaturated polyester resin composition containing an agent (G) at room temperature or by heating, and containing a component other than the cobalt soap (C) of the unsaturated polyester resin composition or the composite material A method in which cobalt soap (C) is added to and mixed with an unsaturated polyester resin precursor composition or a composite precursor, and then a radical polymerization initiator (G) is further added and cured at room temperature or by heating, or the above-mentioned unsaturated A composite material prepared by using an unsaturated polyester resin composition obtained by adding a cobalt soap (C) to a polyester resin precursor composition and mixing and then further adding a radical polymerization initiator (G) is cured at room temperature or by heating. And the like.
  • the specific temperature range of room temperature and heating may be, for example, a temperature range of 15°C to 200°C.
  • the method of using the unsaturated polyester resin composition and the composite material is not particularly limited.
  • it can be used as a raw material of general fiber reinforced plastic (hereinafter referred to as “FRP”) applied to pipes of chemical plants, chemical storage tanks, concrete repair materials and the like.
  • FRP general fiber reinforced plastic
  • the unsaturated polyester resin composition and the composite material have a short curing time and can exhibit an action of reducing or preventing gel time drift, and therefore, in particular, applications requiring fast curing property, such as a decorative plate, a corrugated plate, and various substrates. It is preferably used as a material such as a primer for a material.
  • the FRP manufacturing method may be appropriately selected according to the purpose and is not particularly limited. For example, a method of applying or mechanically molding and curing while impregnating a fiber reinforcement with an unsaturated polyester resin composition, or a method of applying or mechanically molding and curing a composite material can be used.
  • Examples of methods for coating or mechanically molding the unsaturated polyester resin composition while impregnating the fiber reinforcing material and curing the resin include a hand layup molding method, a resin transfer molding method, and a vacuum assist resin transfer molding method.
  • the unsaturated polyester resin composition can be applied using a known application means such as a brush, roll, trowel, spatula, or syringe.
  • Examples of the method of coating or mechanically molding the composite material and curing it include a spray-up molding method, a filament winding molding method, a sheet winding molding method, a pultrusion molding method, and an injection molding method.
  • Example 1 The components shown in Table 1 were added to and mixed with 100 parts by mass of the obtained mixture AB-1 using a planetary mixer to obtain an unsaturated polyester resin composition. The storage stability and curing performance of the obtained unsaturated polyester resin composition were evaluated. The results are shown in Table 1.
  • Example 1 Comparative Examples 1 to 5 Evaluation was performed by the same method as in Example 1 except that the formulation shown in Table 1 was changed. The results are shown in Table 1.
  • the unsaturated polyester resin compositions of Examples 1 to 7 could be stably stored for 30 days or longer.
  • Comparative Examples 1 to 5 gelation occurred early and storage stability was low.
  • Examples 1 to 7 using the divalent inorganic tin compound had better storage stability than Comparative Examples 4 and 5 using the organic tin compound, and the curing performance was hard to change with the storage time.
  • the storage stability at high temperature is excellent, and the curing performance can be maintained even when stored for a long period of time.
  • the unsaturated polyester resin composition described above can be suitably used in the field of applications such as decorative boards, resin concrete, and primers that require fast curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is an unsaturated polyester resin composition in which gelation during long-term storage at high temperatures can be prevented, and in which curability can be maintained even when stored for a long period of time. An unsaturated polyester resin composition according to one embodiment comprises an unsaturated polyester resin (A), an ethylenically unsaturated monomer (B), a cobalt soap (C), a cobalt-coordinating compound (D), an inorganic tin compound (E), and an amine-based antioxidant (F).

Description

不飽和ポリエステル樹脂組成物、及び該組成物の硬化物Unsaturated polyester resin composition and cured product of the composition
 本開示は、不飽和ポリエステル樹脂組成物、及び該組成物の硬化物に関する。 The present disclosure relates to an unsaturated polyester resin composition and a cured product of the composition.
 従来、不飽和ポリエステル樹脂を常温又はこれに近い温度で硬化させるためには、硬化促進剤の使用が不可欠である。硬化促進剤としては、金属石鹸が主に使用されている。しかし、この金属石鹸をベース樹脂に内添し、長期間保存した場合、金属石鹸が失活し一般にゲルタイムドリフトと呼ばれる、ゲル化時間及び硬化時間が遅延するという現象が発生する。 Conventionally, in order to cure unsaturated polyester resin at room temperature or a temperature close to it, it is essential to use a curing accelerator. Metal soap is mainly used as a curing accelerator. However, when this metal soap is internally added to the base resin and stored for a long period of time, the metal soap is deactivated and a phenomenon called gel time drift, which is a delay in gelation time and curing time, occurs.
 そこで、不飽和ポリエステル樹脂に硬化促進助剤として芳香族3級アミンあるいはβ-ジケトン化合物を使用し、常温ないしそれに近い温度で硬化させ、硬化時間を短くすることが提案されている(特許文献1及び特許文献2参照)。 Therefore, it has been proposed to use an aromatic tertiary amine or a β-diketone compound as an accelerator for curing in an unsaturated polyester resin, and to cure it at room temperature or a temperature close thereto to shorten the curing time (Patent Document 1). And Patent Document 2).
特開2005-154626号公報JP, 2005-154626, A 特開2007-091998号公報JP, 2007-091998, A
 しかし、これらの技術では、使用に際し硬化時間は短くなるが、常温での長期保存中や高温保存時にゲル化が生じるという問題があった。 However, these techniques have a problem that gelation occurs during long-term storage at room temperature or during high-temperature storage, although the curing time during use becomes short.
 また従来から重合禁止剤としてキノン化合物を使用し貯蔵安定性を向上させることが行われてきたが、多量に使用した場合にゲルタイムドリフトが生じるという問題があった。 Also, quinone compounds have been used as polymerization inhibitors to improve storage stability, but there was a problem that gel time drift occurs when used in large amounts.
 以上に鑑みて、本開示は、高温での長期間保存時におけるゲル化を防止し、長期間保存した場合でも硬化性能を維持することのできる不飽和ポリエステル樹脂組成物を提供することを目的とする。 In view of the above, the present disclosure aims to provide an unsaturated polyester resin composition capable of preventing gelation during long-term storage at high temperature and maintaining curing performance even when stored for a long time. To do.
 本発明者らは、上記の課題を解決するために鋭意検討した結果、不飽和ポリエステル樹脂にコバルト石鹸、無機スズ化合物及びアミン系酸化防止剤を添加することで、従来よりも高温での貯蔵安定性に優れ、長期間保存した場合でも適正なゲル化時間を保持し、硬化性能を維持できることを見出した。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by adding a cobalt soap, an inorganic tin compound and an amine-based antioxidant to an unsaturated polyester resin, storage stability at a higher temperature than before can be achieved. It has been found that it has excellent properties and maintains an appropriate gelation time even when stored for a long period of time, and can maintain the curing performance.
 すなわち本開示は、以下の態様[1]~[11]を含む。
[1]
 不飽和ポリエステル樹脂(A)、エチレン性不飽和単量体(B)、コバルト石鹸(C)、コバルト配位性化合物(D)、無機スズ化合物(E)、アミン系酸化防止剤(F)を含む不飽和ポリエステル樹脂組成物。
[2]
 前記コバルト石鹸(C)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~10質量部である[1]に記載の不飽和ポリエステル樹脂組成物。
[3]
 前記コバルト配位性化合物(D)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~5質量部である[1]又は[2]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[4]
 前記無機スズ化合物(E)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~1質量部である[1]~[3]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[5]
 前記アミン系酸化防止剤(F)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~1質量部である[1]~[4]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[6]
 前記コバルト石鹸(C)が、オクチル酸コバルト及びナフテン酸コバルトからなる群より選択される少なくとも1種を含む[1]~[5]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[7]
 前記コバルト配位性化合物(D)が、芳香族3級アミン及びβ-ジケトンからなる群より選択される少なくとも1種を含む[1]~[6]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[8]
 前記無機スズ化合物(E)が、二価の無機スズ化合物である[1]~[7]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[9]
 ラジカル重合開始剤(G)を更に含む、[1]~[8]のいずれかに記載の不飽和ポリエステル樹脂組成物。
[10]
 [1]~[9]のいずれかに記載の不飽和ポリエステル樹脂組成物と、繊維補強材、充填材及び骨材からなる群より選択される少なくとも1種とを含む複合材料。
[11]
 [1]~[9]のいずれかに記載の不飽和ポリエステル樹脂組成物の硬化物。
[12]
 [10]に記載の複合材料の硬化物。
That is, the present disclosure includes the following aspects [1] to [11].
[1]
Unsaturated polyester resin (A), ethylenically unsaturated monomer (B), cobalt soap (C), cobalt coordinating compound (D), inorganic tin compound (E), amine-based antioxidant (F) An unsaturated polyester resin composition containing.
[2]
The content of the cobalt soap (C) is 0.001 to 10 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [1]. The unsaturated polyester resin composition described.
[3]
The content of the cobalt coordinating compound (D) is 0.001 to 5 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [ [1] or the unsaturated polyester resin composition according to [2].
[4]
The content of the inorganic tin compound (E) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [1]. ~ The unsaturated polyester resin composition according to any one of [3].
[5]
The content of the amine antioxidant (F) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) [ The unsaturated polyester resin composition according to any one of 1] to [4].
[6]
The unsaturated polyester resin composition according to any one of [1] to [5], wherein the cobalt soap (C) contains at least one selected from the group consisting of cobalt octylate and cobalt naphthenate.
[7]
The unsaturated polyester resin composition according to any one of [1] to [6], wherein the cobalt coordinating compound (D) contains at least one selected from the group consisting of aromatic tertiary amines and β-diketones. Stuff.
[8]
The unsaturated polyester resin composition according to any one of [1] to [7], wherein the inorganic tin compound (E) is a divalent inorganic tin compound.
[9]
The unsaturated polyester resin composition according to any one of [1] to [8], which further contains a radical polymerization initiator (G).
[10]
A composite material comprising the unsaturated polyester resin composition according to any one of [1] to [9] and at least one selected from the group consisting of a fiber reinforcing material, a filler and an aggregate.
[11]
A cured product of the unsaturated polyester resin composition according to any one of [1] to [9].
[12]
A cured product of the composite material according to [10].
 本開示によれば、従来の不飽和ポリエステル樹脂組成物に比べて、高温での貯蔵安定性に優れ、長期間保存した場合でも硬化性能を維持することができる不飽和ポリエステル樹脂組成物を提供することができる。 According to the present disclosure, an unsaturated polyester resin composition having excellent storage stability at high temperature and capable of maintaining curing performance even when stored for a long period of time as compared with a conventional unsaturated polyester resin composition is provided. be able to.
 以下、本発明をさらに詳細に説明する。 The present invention will be described in more detail below.
 本開示における「~」は、「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。 "-" in the present disclosure means a value that is greater than or equal to the value before the description "-" and less than or equal to the value after the description "-".
 本開示において「(メタ)アクリル」とは、アクリルとメタクリルの総称であり、「(メタ)アクリレート」とは、アクリレートとメタクリレートの総称である。 In the present disclosure, “(meth)acrylic” is a generic term for acrylic and methacrylic, and “(meth)acrylate” is a generic term for acrylate and methacrylate.
 本開示において、「エチレン性不飽和結合」及び「エチレン性不飽和基」とは、芳香環を形成する炭素原子を除く炭素原子間で形成される二重結合及びそのような二重結合を有する基をそれぞれ意味し、「エチレン性不飽和単量体」とは、エチレン性不飽和結合を有する単量体を意味する。 In the present disclosure, the “ethylenically unsaturated bond” and the “ethylenically unsaturated group” have a double bond formed between carbon atoms other than carbon atoms forming an aromatic ring and a double bond such as such. Each means a group, and the "ethylenically unsaturated monomer" means a monomer having an ethylenically unsaturated bond.
(不飽和ポリエステル樹脂組成物)
 一実施態様の不飽和ポリエステル樹脂組成物は、不飽和ポリエステル樹脂(A)、エチレン性不飽和単量体(B)、コバルト石鹸(C)、コバルト配位性化合物(D)、無機スズ化合物(E)、及びアミン系酸化防止剤(F)を含む。
(Unsaturated polyester resin composition)
The unsaturated polyester resin composition of one embodiment includes an unsaturated polyester resin (A), an ethylenically unsaturated monomer (B), a cobalt soap (C), a cobalt coordinating compound (D), and an inorganic tin compound ( E) and an amine-based antioxidant (F).
[不飽和ポリエステル樹脂(A)]
 不飽和ポリエステル樹脂(A)は、多価アルコールと不飽和多塩基酸と、必要に応じて飽和多塩基酸及び一塩基酸から選択される少なくとも1つとを重縮合させて得られるものであり、特に限定されない。不飽和多塩基酸とは、エチレン性不飽和結合を有する多塩基酸であり、飽和多塩基酸とは、エチレン性不飽和結合を有さない多塩基酸である。不飽和ポリエステル樹脂は、1種のみであってもよいし、2種以上を併用してもよい。
[Unsaturated polyester resin (A)]
The unsaturated polyester resin (A) is obtained by polycondensing a polyhydric alcohol, an unsaturated polybasic acid, and, if necessary, at least one selected from a saturated polybasic acid and a monobasic acid, It is not particularly limited. The unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond, and the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond. Only one unsaturated polyester resin may be used, or two or more unsaturated polyester resins may be used in combination.
 <多価アルコール(a)>
 多価アルコール(a)は、2個以上の水酸基を有する化合物であれば特に制限はない。中でも、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、テトラエチレングリコール、ポリエチレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、水素化ビスフェノールA、ビスフェノールA、グリセリン、ビスフェノールAのエチレンオキサイド付加物、及びビスフェノールAのプロピレンオキサイド付加物が好ましく、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、水素化ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、及びビスフェノールAのプロピレンオキサイド付加物がより好ましい。多価アルコールは、単独で使用してもよいし、2種以上を併用してもよい。
<Polyhydric alcohol (a)>
The polyhydric alcohol (a) is not particularly limited as long as it is a compound having two or more hydroxyl groups. Among them, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, tetraethylene glycol, polyethylene glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl Preferred are 1,3-propanediol, cyclohexane-1,4-dimethanol, hydrogenated bisphenol A, bisphenol A, glycerin, ethylene oxide adduct of bisphenol A, and propylene oxide adduct of bisphenol A, and ethylene glycol, propylene. More preferred are glycols, diethylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A, bisphenol A ethylene oxide adducts, and bisphenol A propylene oxide adducts. The polyhydric alcohol may be used alone or in combination of two or more kinds.
 <不飽和多塩基酸(b)>
 不飽和多塩基酸(b)は、エチレン性不飽和結合を有し、かつ2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に制限はない。不飽和多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロロマレイン酸、エンドメチレンテトラヒドロ無水フタル酸、及びテトラヒドロ無水フタル酸等が挙げられる。これらの中でも、硬化物の耐熱性、及び機械的強度等の観点から、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸及びクロロマレイン酸が好ましく、無水マレイン酸及びフマル酸がより好ましい。不飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
<Unsaturated polybasic acid (b)>
The unsaturated polybasic acid (b) is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and having two or more carboxy groups or an acid anhydride thereof. Examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, chloromaleic acid, endomethylenetetrahydrophthalic anhydride, and tetrahydrophthalic anhydride. Among these, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and chloromaleic acid are preferable, and maleic anhydride and fumaric acid are more preferable, from the viewpoints of heat resistance and mechanical strength of the cured product. The unsaturated polybasic acids may be used alone or in combination of two or more.
 <飽和多塩基酸(c)>
 飽和多塩基酸(c)は、エチレン性不飽和結合を有さず、かつ2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に制限はない。飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、ニトロフタル酸、ハロゲン化無水フタル酸、シュウ酸、マロン酸、アゼライン酸、グルタル酸、及びヘキサヒドロ無水フタル酸等が挙げられる。これらの中でも硬化物の耐熱性、及び機械的強度等の観点から、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、及びアジピン酸が好ましく、無水フタル酸、イソフタル酸、及びテレフタル酸がより好ましい。
<Saturated polybasic acid (c)>
The saturated polybasic acid (c) is not particularly limited as long as it is a compound having no ethylenically unsaturated bond and having two or more carboxy groups or its acid anhydride. Examples of the saturated polybasic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, nitrophthalic acid, halogenated phthalic anhydride. , Oxalic acid, malonic acid, azelaic acid, glutaric acid, and hexahydrophthalic anhydride. Among these, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, and adipic acid are preferable from the viewpoints of heat resistance and mechanical strength of the cured product, and phthalic anhydride, isophthalic acid, and terephthalic acid are preferable. Is more preferable.
 <一塩基酸(d)>
 一塩基酸(d)としては、例えば、ジシクロペンタジエンマレート、安息香酸とその誘導体、及び桂皮酸とその誘導体が挙げられ、ジシクロペンタジエンマレートが好ましい。ジシクロペンタジエンマレートは、無水マレイン酸とジシクロペンタジエンから公知の方法によって合成可能である。一塩基酸(d)を用いることで、不飽和ポリエステル樹脂(A)の粘度を低下させることができ、スチレンの使用量を削減することができる。
<Monobasic acid (d)>
Examples of the monobasic acid (d) include dicyclopentadiene maleate, benzoic acid and its derivative, and cinnamic acid and its derivative, with dicyclopentadiene maleate being preferred. Dicyclopentadiene maleate can be synthesized from maleic anhydride and dicyclopentadiene by a known method. By using the monobasic acid (d), the viscosity of the unsaturated polyester resin (A) can be reduced and the amount of styrene used can be reduced.
 不飽和ポリエステル樹脂は、上記(a)~(d)のような原料を用いて公知の方法で合成することができる。不飽和ポリエステル樹脂の合成における各種条件は、使用する原料及びその量に応じて適宜設定することができる。一般的に、窒素ガス等の不活性ガス気流中、140~230℃の温度にて常圧、加圧又は減圧下でのエステル化反応を用いることができる。エステル化反応では、必要に応じてエステル化触媒を使用することができる。エステル化触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、及び酢酸コバルト等の公知の触媒が挙げられる。エステル化触媒は、単独で使用してもよいし、2種以上を併用してもよい。 The unsaturated polyester resin can be synthesized by a known method using the raw materials (a) to (d) above. Various conditions in the synthesis of the unsaturated polyester resin can be appropriately set depending on the raw material used and the amount thereof. In general, an esterification reaction can be used at a temperature of 140 to 230° C. in an inert gas stream such as nitrogen gas under normal pressure, increased pressure or reduced pressure. In the esterification reaction, an esterification catalyst can be used if necessary. Examples of esterification catalysts include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. The esterification catalyst may be used alone or in combination of two or more kinds.
 不飽和ポリエステル樹脂の重量平均分子量(Mw)は、特に限定されない。不飽和ポリエステル樹脂の重量平均分子量は、好ましくは3,000~25,000であり、より好ましくは5,000~20,000であり、さらに好ましくは7,000~18,000である。別の実施態様では、不飽和ポリエステル樹脂の重量平均分子量は、好ましくは1,000~25,000であり、より好ましくは2,000~20,000であり、さらに好ましくは3,000~18,000である。重量平均分子量が3,000~25,000であれば、不飽和ポリエステル樹脂組成物の成形性がより一層良好となる。なお、本開示において「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。 The weight average molecular weight (Mw) of the unsaturated polyester resin is not particularly limited. The weight average molecular weight of the unsaturated polyester resin is preferably 3,000 to 25,000, more preferably 5,000 to 20,000, and further preferably 7,000 to 18,000. In another embodiment, the weight average molecular weight of the unsaturated polyester resin is preferably 1,000 to 25,000, more preferably 2,000 to 20,000, and further preferably 3,000 to 18, It is 000. When the weight average molecular weight is 3,000 to 25,000, the moldability of the unsaturated polyester resin composition is further improved. In the present disclosure, the “weight average molecular weight” is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
 不飽和ポリエステル樹脂の不飽和度は50~100モル%であることが好ましく、より好ましくは60~100モル%であり、さらに好ましくは70~100モル%である。別の実施態様では、不飽和ポリエステル樹脂の不飽和度は30~100モル%であることが好ましく、より好ましくは40~100モル%であり、さらに好ましくは50~100モル%である。不飽和度が上記範囲であると、不飽和ポリエステル樹脂組成物の成形性がより良好である。不飽和ポリエステル樹脂の不飽和度は、原料として用いた不飽和多塩基酸及び飽和多塩基酸のモル数を用いて、以下の式により算出可能である。
 不飽和度(モル%)={(不飽和多塩基酸のモル数×不飽和多塩基酸中のエチレン性不飽和基の数)/(不飽和多塩基酸のモル数+飽和多塩基酸のモル数)}×100
The unsaturated degree of the unsaturated polyester resin is preferably 50 to 100 mol %, more preferably 60 to 100 mol %, and further preferably 70 to 100 mol %. In another embodiment, the unsaturated degree of the unsaturated polyester resin is preferably 30 to 100 mol %, more preferably 40 to 100 mol %, and further preferably 50 to 100 mol %. When the degree of unsaturation is in the above range, the moldability of the unsaturated polyester resin composition is better. The degree of unsaturation of the unsaturated polyester resin can be calculated by the following formula using the unsaturated polybasic acid used as a raw material and the number of moles of the saturated polybasic acid.
Unsaturation degree (mol %)={(mol number of unsaturated polybasic acid×number of ethylenically unsaturated groups in unsaturated polybasic acid)/(mol number of unsaturated polybasic acid+saturated polybasic acid Number of moles)}×100
[エチレン性不飽和単量体(B)]
 不飽和ポリエステル樹脂組成物は、エチレン性不飽和単量体(B)を含む。エチレン性不飽和単量体(B)は、エチレン性不飽和基を有するモノマー化合物であれば特に制限はない。エチレン性不飽和基は1つでも複数でもよい。エチレン性不飽和単量体(B)として、具体的には、スチレン、ビニルトルエン、tert-ブチルスチレン等のスチレンのα-、о-、m-、p-アルキル、ニトロ、シアノ、アミド、又はエステル誘導体、メトキシスチレン、ジビニルベンゼン、ビニルナフタレン、アセナフチレン等のビニル化合物;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレン等のジエン化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;シトラコン酸ジエチル等の不飽和ジカルボン酸ジエステル;N-フェニルマレイミド等のモノマレイミド化合物;N-(メタ)アクリロイルフタルイミド等が挙げられる。
[Ethylenically unsaturated monomer (B)]
The unsaturated polyester resin composition contains an ethylenically unsaturated monomer (B). The ethylenically unsaturated monomer (B) is not particularly limited as long as it is a monomer compound having an ethylenically unsaturated group. There may be one or more ethylenically unsaturated groups. Specific examples of the ethylenically unsaturated monomer (B) include α-, о-, m-, p-alkyl of styrene such as styrene, vinyltoluene, and tert-butylstyrene, nitro, cyano, amide, or Ester derivatives, vinyl compounds such as methoxystyrene, divinylbenzene, vinylnaphthalene and acenaphthylene; diene compounds such as butadiene, 2,3-dimethylbutadiene, isoprene and chloroprene; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth) ) Acrylate, n-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate , Cyclohexyl (meth)acrylate, furfuryl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclo Pentenyloxyethyl (meth)acrylate, allyl (meth)acrylate, isobornyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth) (Meth)acrylates such as acrylate, tricyclodecanol di(meth)acrylate, trimethylolpropane tri(meth)acrylate; (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diisopropyl(meth) Examples thereof include (meth)acrylamide compounds such as acrylamide; unsaturated dicarboxylic acid diesters such as diethyl citraconic acid; monomaleimide compounds such as N-phenylmaleimide; N-(meth)acryloylphthalimide.
 エチレン性不飽和単量体(B)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計に対し10~95質量%であり、より好ましくは30~90質量%であり、さらに好ましくは50~80質量%である。エチレン性不飽和単量体(B)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計に対し10~95質量%であれば、硬化物の機械的強度をより向上させることができる。 The content of the ethylenically unsaturated monomer (B) is 10 to 95% by mass, more preferably 30 to 95% by mass based on the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). It is 90% by mass, more preferably 50 to 80% by mass. If the content of the ethylenically unsaturated monomer (B) is 10 to 95% by mass based on the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), the cured product is The mechanical strength can be further improved.
[コバルト石鹸(C)]
 コバルト石鹸(C)は、他の金属石鹸の硬化促進剤と比べてラジカルの失活を抑制する効果が高いため、空気乾燥性が良好である。また、金属石鹸の中でも中心金属としての活性はコバルトが最も高いため、硬化促進剤として好適である。コバルト石鹸(C)として、市販のものを使用することができる。コバルト石鹸(C)としては、例えば、オクチル酸コバルト、ナフテン酸コバルト、及びネオデカン酸コバルトが挙げられる。中でも、オクチル酸コバルト及びナフテン酸コバルトが好ましい。コバルト石鹸(C)は、一般に利用される有機溶剤に溶解させて添加してもよく、エチレン性不飽和単量体(B)に溶解させて添加してもよい。
[Cobalt soap (C)]
Cobalt soap (C) has a high effect of suppressing the deactivation of radicals as compared with the curing accelerators of other metal soaps, and therefore has good air-drying property. Further, among the metal soaps, cobalt has the highest activity as a central metal, and is therefore suitable as a curing accelerator. As the cobalt soap (C), commercially available products can be used. Examples of the cobalt soap (C) include cobalt octylate, cobalt naphthenate, and cobalt neodecanoate. Of these, cobalt octylate and cobalt naphthenate are preferable. The cobalt soap (C) may be dissolved in a commonly used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
 コバルト石鹸(C)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~5質量部、さらに好ましくは0.1~1質量部である。コバルト石鹸(C)の含有量が不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001質量部以上であれば不飽和ポリエステル樹脂組成物のゲル化時間をより短くすることができ、かつ表面硬化性を向上させることができ、10質量部以下であれば、適切なゲル化時間で不飽和ポリエステル樹脂組成物を硬化させることが可能である。 The content of the cobalt soap (C) is preferably 0.001 to 10 parts by mass, more preferably 100 parts by mass with respect to the total of 100 parts by mass of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). The amount is 0.01 to 5 parts by mass, more preferably 0.1 to 1 part by mass. Unsaturated polyester resin composition if the content of the cobalt soap (C) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) The gelling time can be further shortened, the surface curability can be improved, and if it is 10 parts by mass or less, the unsaturated polyester resin composition can be cured with an appropriate gelling time. is there.
[コバルト配位性化合物(D)]
 コバルト配位性化合物(D)は、コバルトの2価又は3価陽イオンに対して配位結合性を有するものである。コバルト配位性化合物(D)がコバルト石鹸(C)に含まれるコバルトの陽イオンに配位することで、コバルト石鹸(C)が硬化促進剤として活性化され、ラジカル重合開始剤(G)の分解を早めると考えられる。
[Cobalt Coordinating Compound (D)]
The cobalt coordinating compound (D) has a coordinative bondability with the divalent or trivalent cation of cobalt. When the cobalt coordinating compound (D) is coordinated with the cation of cobalt contained in the cobalt soap (C), the cobalt soap (C) is activated as a curing accelerator and the radical polymerization initiator (G) It is thought to accelerate decomposition.
 コバルト配位性化合物(D)としては、例えば、芳香族3級アミン、β-ジケトン、カルボン酸、チオール、ピリジン類縁体、3価有機リン化合物、無機ハロゲン化物等が挙げられる。 Examples of the cobalt coordinating compound (D) include aromatic tertiary amines, β-diketones, carboxylic acids, thiols, pyridine analogs, trivalent organic phosphorus compounds, and inorganic halides.
 芳香族3級アミンとしては、例えば、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジプロピルアニリン、N,N-ジブチルアニリン、N,N-ジメチルアミノナフタレン、N,N-ジエチルアミノナフタレン、N,N-ジプロピルアミノナフタレン、N,N-ジブチルアミノナフタレン、N,N-ジメチルアミノアントラセン、N,N-ジエチルアミノアントラセン、N,N-ジプロピルアミノアントラセン、N,N-ジブチルアミノアントラセン、及びこれらの誘導体が挙げられる。 Examples of aromatic tertiary amines include N,N-dimethylaniline, N,N-diethylaniline, N,N-dipropylaniline, N,N-dibutylaniline, N,N-dimethylaminonaphthalene, N,N -Diethylaminonaphthalene, N,N-dipropylaminonaphthalene, N,N-dibutylaminonaphthalene, N,N-dimethylaminoanthracene, N,N-diethylaminoanthracene, N,N-dipropylaminoanthracene, N,N-dibutyl Aminoanthracene, and derivatives thereof.
 β-ジケトンとしては、例えば、アセチルアセトン、α-アセチル-γ-ブチルラクトン、N,N-ジメチルアセトアセトアミド、N-ピロリジノアセトアセトアミド、2-アセチルシクロペンタノン、2-アセチルシクロヘキサノン、1,3-ビス(4-メトキシフェニル)-1,3-プロパンジオン、1-(4-tert-ブチルフェニル)-3-(4-メトキシフェニル)-1,3-プロパンジオン、1-(4-ブロモフェニル)-1,3-ブタンジオン、3-クロロアセチルアセトン、1-(4-クロロフェニル)-4,4,4-トリフルオロ-1,3-ブタンジオン、ジピバロイルメタン、2,2-ジメチル-6,6,7,7,8,8,8-ヘプタフルオロ-3,5-オクタンジオン、及び2,6-ジメチル-3,5-ヘプタンジオンが挙げられる。本開示において「β-ジケトン」は、ケトラクトン、ケトアミドなどのβ-ジケトン構造を有する化合物を包含する。 Examples of β-diketones include acetylacetone, α-acetyl-γ-butyl lactone, N,N-dimethylacetoacetamide, N-pyrrolidinoacetoacetamide, 2-acetylcyclopentanone, 2-acetylcyclohexanone, 1,3- Bis(4-methoxyphenyl)-1,3-propanedione, 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione, 1-(4-bromophenyl) -1,3-butanedione, 3-chloroacetylacetone, 1-(4-chlorophenyl)-4,4,4-trifluoro-1,3-butanedione, dipivaloylmethane, 2,2-dimethyl-6,6 , 7,7,8,8,8-heptafluoro-3,5-octanedione, and 2,6-dimethyl-3,5-heptanedione. In the present disclosure, “β-diketone” includes compounds having a β-diketone structure such as ketolactone and ketoamide.
 カルボン酸としては、ギ酸、酢酸、プロピオン酸のような脂肪族カルボン酸、及び安息香酸、桂皮酸のような芳香族カルボン酸が挙げられる。チオールとしては、メタンチオール、エタンチオール、プロパンチオールのような脂肪族チオール、及びベンゼンチオールのような芳香族チオールが挙げられる。ピリジン類縁体としては、ピリジン、クロロピリジン、ブロモピリジン等が挙げられる。3価有機リン化合物としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン等が挙げられる。無機ハロゲン化物としては、塩化カルシウム、塩化マグネシウム、臭化カルシウム、臭化マグネシウム等が挙げられる。 Carboxylic acids include aliphatic carboxylic acids such as formic acid, acetic acid and propionic acid, and aromatic carboxylic acids such as benzoic acid and cinnamic acid. Thiols include methanethiol, ethanethiol, aliphatic thiols such as propanethiol, and aromatic thiols such as benzenethiol. Examples of the pyridine analog include pyridine, chloropyridine, bromopyridine and the like. Examples of the trivalent organic phosphorus compound include triphenylphosphine and tricyclohexylphosphine. Examples of the inorganic halide include calcium chloride, magnesium chloride, calcium bromide, magnesium bromide and the like.
 中でも、芳香族3級アミン及びβ-ジケトンが好ましく、N,N-ジメチルアニリン、N,N-ジメチルアセトアセトアミド、及びN-ピロリジノアセトアセトアミドがより好ましい。 Among them, aromatic tertiary amines and β-diketones are preferable, and N,N-dimethylaniline, N,N-dimethylacetoacetamide, and N-pyrrolidinoacetoacetamide are more preferable.
 コバルト配位性化合物(D)は、一般に利用される有機溶剤に溶解させて添加してもよく、エチレン性不飽和単量体(B)に溶解させて添加してもよい。 The cobalt coordinating compound (D) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
 コバルト配位性化合物(D)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.01~1質量部、さらに好ましくは0.05~0.5質量部である。コバルト配位性化合物(D)の含有量が不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001質量部以上であれば、不飽和ポリエステル樹脂組成物のゲル化時間を短くし、かつ樹脂硬化物中の残存モノマー量を低減することができ、5質量部以下であれば、適切なゲル化時間で不飽和ポリエステル樹脂組成物を硬化させることが可能である。 The content of the cobalt coordinating compound (D) is preferably 0.001 to 5 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), The amount is more preferably 0.01 to 1 part by mass, further preferably 0.05 to 0.5 part by mass. When the content of the cobalt coordinating compound (D) is 0.001 part by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), the unsaturated The gelling time of the polyester resin composition can be shortened, and the amount of residual monomers in the resin cured product can be reduced. If it is 5 parts by mass or less, the unsaturated polyester resin composition is cured with an appropriate gelling time. It is possible to
[無機スズ化合物(E)]
 無機スズ化合物(E)として、市販のものを使用することができる。無機スズ化合物(E)としては、塩化スズ(II)(SnCl)等の二価の無機スズ化合物、及び塩化スズ(IV)(SnCl)等の四価の無機スズ化合物が挙げられる。これらの中でも、二価の無機スズ化合物を用いることが好ましい。
[Inorganic tin compound (E)]
A commercially available compound can be used as the inorganic tin compound (E). Examples of the inorganic tin compound (E) include a divalent inorganic tin compound such as tin (II) chloride (SnCl 2 ), and a tetravalent inorganic tin compound such as tin (IV) chloride (SnCl 4 ). Among these, it is preferable to use a divalent inorganic tin compound.
 二価の無機スズ化合物としては、例えば、フッ化スズ(II)(SnF)、塩化スズ(II)(SnCl)、臭化スズ(II)(SnBr)、ヨウ化スズ(II)(SnI)、酸化スズ(II)(SnO)、及び硫化スズ(II)(SnS)が挙げられる。中でも塩化スズ(II)、臭化スズ(II)、及びフッ化スズ(II)が好ましく、塩化スズ(II)及び臭化スズ(II)がより好ましい。 Examples of the divalent inorganic tin compound include tin (II) fluoride (SnF 2 ), tin (II) chloride (SnCl 2 ), tin (II) bromide (SnBr 2 ), tin (II) iodide ( SnI 2), tin oxide (II) (SnO), and the like tin sulfide (II) (SnS) is. Among them, tin (II) chloride, tin (II) bromide, and tin (II) fluoride are preferable, and tin (II) chloride and tin (II) bromide are more preferable.
 無機スズ化合物(E)は、一般に利用される有機溶剤に溶解させて添加してもよく、エチレン性不飽和単量体(B)に溶解させて添加してもよい。 The inorganic tin compound (E) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
 無機スズ化合物(E)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して、好ましくは0.001~1質量部、より好ましくは0.005~0.5質量部、さらに好ましくは0.01~0.3質量部である。無機スズ化合物(E)の含有量が不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001質量部以上であれば、不飽和ポリエステル樹脂組成物の貯蔵安定性を高めることができ、5質量部以下であれば、耐水性に優れた樹脂硬化物を得ることが可能である。 The content of the inorganic tin compound (E) is preferably 0.001 to 1 part by mass, more preferably 100 parts by mass with respect to the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Is 0.005 to 0.5 parts by mass, more preferably 0.01 to 0.3 parts by mass. If the content of the inorganic tin compound (E) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), the unsaturated polyester resin If the storage stability of the composition can be increased and the content is 5 parts by mass or less, a cured resin product having excellent water resistance can be obtained.
[アミン系酸化防止剤(F)]
 アミン系酸化防止剤(F)として、市販のものを使用することができる。アミン系酸化防止剤(F)としては、エチルアミン、プロピルアミン、ブチルアミンのような1級脂肪族アミン、ジエチルアミン、ジプロピルアミン、ジブチルアミンのような2級脂肪族アミン、アニリン及びその誘導体のような1級芳香族アミン、及びフェノチアジンのような2級芳香族アミンが挙げられる。これらの中でも、2級芳香族アミンを用いることが好ましい。
[Amine antioxidant (F)]
As the amine-based antioxidant (F), commercially available products can be used. Examples of the amine-based antioxidant (F) include primary aliphatic amines such as ethylamine, propylamine and butylamine, secondary aliphatic amines such as diethylamine, dipropylamine and dibutylamine, aniline and its derivatives. Examples include primary aromatic amines and secondary aromatic amines such as phenothiazine. Among these, it is preferable to use a secondary aromatic amine.
 2級芳香族アミンとしては、例えば、3-メトキシジフェニルアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-フェニル-1-ナフチルアミン、ジオクチルジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、及びN,N’-ジナフチル-p-フェニレンジアミンが挙げられる。中でも3-メトキシジフェニルアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン、及びN-イソプロピル-N’-フェニル-p-フェニレンジアミンが好ましく、3-メトキシジフェニルアミン及びフェノチアジンがより好ましい。 Examples of the secondary aromatic amine include 3-methoxydiphenylamine, phenothiazine, N,N′-diphenyl-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N-phenyl-1-naphthylamine. , Dioctyldiphenylamine, p-(p-toluenesulfonylamido)diphenylamine, and N,N′-dinaphthyl-p-phenylenediamine. Among them, 3-methoxydiphenylamine, phenothiazine, N,N'-diphenyl-p-phenylenediamine, and N-isopropyl-N'-phenyl-p-phenylenediamine are preferable, and 3-methoxydiphenylamine and phenothiazine are more preferable.
 アミン系酸化防止剤(F)は、一般に利用される有機溶剤に溶解させて添加してもよく、エチレン性不飽和単量体(B)に溶解させて添加してもよい。 The amine-based antioxidant (F) may be dissolved in a generally used organic solvent and added, or may be dissolved in the ethylenically unsaturated monomer (B) and added.
 アミン系酸化防止剤(F)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して、好ましくは0.001~1質量部、より好ましくは0.003~0.1質量部、さらに好ましくは0.004~0.05質量部である。アミン系酸化防止剤(F)の含有量が不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001質量部以上であれば、不飽和ポリエステル樹脂組成物の貯蔵安定性を高めることができ、1質量部以下であれば、適切な硬化時間で不飽和ポリエステル樹脂組成物を硬化させることが可能である。 The content of the amine-based antioxidant (F) is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), The amount is more preferably 0.003 to 0.1 part by mass, further preferably 0.004 to 0.05 part by mass. If the content of the amine-based antioxidant (F) is 0.001 parts by mass or more based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B), it is unsaturated. The storage stability of the polyester resin composition can be increased, and if it is 1 part by mass or less, the unsaturated polyester resin composition can be cured in an appropriate curing time.
[ラジカル重合開始剤(G)]
 不飽和ポリエステル樹脂組成物は、硬化を促進させるために、硬化剤として、ラジカル重合開始剤(G)を含んでもよい。不飽和ポリエステル樹脂組成物にラジカル重合開始剤(G)を添加すると、不飽和ポリエステル樹脂組成物の硬化が開始するため、例えば、不飽和ポリエステル樹脂組成物を貯蔵する場合には、ラジカル重合開始剤(G)は不飽和ポリエステル樹脂組成物を硬化させる直前に組成物中に添加することが望ましい。
[Radical polymerization initiator (G)]
The unsaturated polyester resin composition may contain a radical polymerization initiator (G) as a curing agent in order to accelerate curing. When the unsaturated polyester resin composition is added with the radical polymerization initiator (G), the unsaturated polyester resin composition starts to be cured. For example, when the unsaturated polyester resin composition is stored, the radical polymerization initiator is used. It is desirable to add (G) to the composition immediately before curing the unsaturated polyester resin composition.
 ラジカル重合開始剤(G)は、用途、硬化条件等に応じて適宜選択すればよく、特に限定されない。ラジカル重合開始剤として、例えば、公知の熱ラジカル開始剤、光ラジカル開始剤を用いることができる。中でも、熱ラジカル開始剤が好ましい。熱ラジカル開始剤としては、例えば、ベンゾイルパーオキサイド等のジアシルパーオキサイド;tert-ブチルパーオキシベンゾエート等のパーオキシエステル;クメンハイドロパーオキサイド等のハイドロパーオキサイド;ジクミルパーオキサイド等のジアルキルパーオキサイド;メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド;パーオキシケタール;アルキルパーエステル;パーカーボネート等の有機過酸化物が挙げられる。 The radical polymerization initiator (G) may be appropriately selected according to the application, curing conditions, etc., and is not particularly limited. As the radical polymerization initiator, for example, a known thermal radical initiator or photo radical initiator can be used. Of these, thermal radical initiators are preferable. Examples of the thermal radical initiator include diacyl peroxides such as benzoyl peroxide; peroxyesters such as tert-butylperoxybenzoate; hydroperoxides such as cumene hydroperoxide; dialkyl peroxides such as dicumyl peroxide; Examples thereof include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide; peroxyketals; alkylperesters; organic peroxides such as percarbonates.
 ラジカル重合開始剤(G)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対し、0.1~10.0質量部であることが好ましく、0.2~6.0質量部であることがより好ましく、0.3~3.5質量部であることが特に好ましい。このような範囲であれば、不飽和ポリエステル樹脂組成物のラジカル重合反応が促進されるため、高い硬度を有する硬化物を得ることができる。 The content of the radical polymerization initiator (G) is 0.1 to 10.0 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Is more preferable, 0.2 to 6.0 parts by mass is more preferable, and 0.3 to 3.5 parts by mass is particularly preferable. Within such a range, the radical polymerization reaction of the unsaturated polyester resin composition is promoted, so that a cured product having high hardness can be obtained.
[溶剤(H)]
 不飽和ポリエステル樹脂組成物は、溶剤(H)を含んでもよい。溶剤(H)は、不飽和ポリエステル樹脂(A)の合成の際に使用した溶剤に由来してもよい。溶剤としては、例えば、酢酸n-ブチル、酢酸n-プロピル等のエステル;ベンゼン、トルエン、キシレン等の芳香族炭化水素等の有機溶剤を挙げることができる。溶剤として、スチレンなどの上述したエチレン性不飽和単量体(B)を使用してもよい。
[Solvent (H)]
The unsaturated polyester resin composition may include a solvent (H). The solvent (H) may be derived from the solvent used in the synthesis of the unsaturated polyester resin (A). Examples of the solvent include organic solvents such as esters such as n-butyl acetate and n-propyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene. As the solvent, the above-mentioned ethylenically unsaturated monomer (B) such as styrene may be used.
 溶剤(H)の含有量は、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対し、好ましくは5~60質量部であり、より好ましくは10~50質量部であり、さらに好ましくは20~40質量部である。溶剤(H)の含有量には、エチレン性不飽和単量体(B)は含まれない。 The content of the solvent (H) is preferably 5 to 60 parts by mass, more preferably 10 to 10 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). The amount is 50 parts by mass, more preferably 20 to 40 parts by mass. The content of the solvent (H) does not include the ethylenically unsaturated monomer (B).
[添加剤(I)]
 不飽和ポリエステル樹脂組成物には、本発明の効果に影響を及ぼさない範囲内で、又は硬化物の機械的強度等を低下させない範囲内で、添加剤を一種以上適宜配合することができる。添加剤としては、例えば、揺変性付与剤、揺変性付与助剤、増粘剤、着色剤、可塑剤、ワックス、重合禁止剤等が挙げられる。
[Additive (I)]
One or more additives can be appropriately added to the unsaturated polyester resin composition within the range that does not affect the effects of the present invention or within the range that does not reduce the mechanical strength of the cured product. Examples of the additives include thixotropic agents, thixotropic agents, thickeners, colorants, plasticizers, waxes, polymerization inhibitors, and the like.
 揺変性付与剤としては、例えば、シリカ、クレー等の無機粉末が挙げられる。 Examples of the thixotropic agent include inorganic powders such as silica and clay.
 揺変性付与助剤としては、例えば、ポリエチレングリコール、グリセリン、ポリヒドロキシカルボン酸アミド、有機四級アンモニウム塩等が挙げられる。ポリヒドロキシカルボン酸アミドの具体例は、BYK-R-605(ビックケミー・ジャパン株式会社製)である。 Examples of the thixotropic agent include polyethylene glycol, glycerin, polyhydroxycarboxylic acid amide, organic quaternary ammonium salt and the like. A specific example of the polyhydroxycarboxylic acid amide is BYK-R-605 (manufactured by BYK Japan KK).
 増粘剤としては、例えば、酸化マグネシウム、酸化カルシウム、酸化亜鉛等の金属酸化物、及び水酸化マグネシウム、水酸化カルシウム等の金属水酸化物が挙げられる。 Examples of the thickener include metal oxides such as magnesium oxide, calcium oxide and zinc oxide, and metal hydroxides such as magnesium hydroxide and calcium hydroxide.
 着色剤としては、例えば、有機顔料、無機顔料、染料等が挙げられる。 Examples of the colorant include organic pigments, inorganic pigments, dyes and the like.
 可塑剤としては、例えば、塩素化パラフィン、リン酸エステル、フタル酸エステル等が挙げられる。 Examples of the plasticizer include chlorinated paraffin, phosphoric acid ester, phthalic acid ester and the like.
 ワックスは、硬化物の表面の空気遮断効果により表面乾燥性を向上させる目的で加えることができる。係るワックスとしては、例えば、石油ワックス、オレフィンワックス、極性ワックス、特殊ワックス等が挙げられる。 Wax can be added for the purpose of improving the surface dryness due to the air blocking effect on the surface of the cured product. Examples of such waxes include petroleum wax, olefin wax, polar wax, and special wax.
 重合禁止剤としては、ハイドロキノン、トリメチルハイドロキノン、p-ベンゾキノン、ナフトキノン、tert-ブチルハイドロキノン、カテコール、p-tert-ブチルカテコール、2,6-ジ-tert-ブチル-4-メチルフェノールなど従来公知のものを使用できる。 Known polymerization inhibitors such as hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, tert-butylhydroquinone, catechol, p-tert-butylcatechol, and 2,6-di-tert-butyl-4-methylphenol. Can be used.
(複合材料)
 複合材料は、不飽和ポリエステル樹脂組成物に、例えば、繊維補強材、充填材及び骨材からなる群より選択される少なくとも一種を組み合わせて得ることができる。
(Composite material)
The composite material can be obtained by combining the unsaturated polyester resin composition with at least one selected from the group consisting of a fiber reinforcing material, a filler and an aggregate.
[繊維補強材]
 繊維補強材としては、ガラス繊維、カーボン繊維、ポリエステル繊維、アラミド繊維、ビニロン繊維、セルロースナノファイバーなどの有機又は無機の合成又は天然の繊維補強材などが挙げられる。
[Fiber reinforcement]
Examples of the fiber reinforcing material include organic or inorganic synthetic or natural fiber reinforcing materials such as glass fiber, carbon fiber, polyester fiber, aramid fiber, vinylon fiber and cellulose nanofiber.
 繊維補強材としては、例えば、短繊維、長繊維、撚糸、チョップ、チョップドストランドマット、コンティニュアスストランドマット、ロービング、スパンボンド不織布若しくはメルトブローン不織布等の不織布、ロービングクロス、平織り、朱子織り若しくは綾織等の織物、組物、三次元織物、又は三次元組物などの形状のものが使用できる。 Examples of the fiber reinforcing material include short fibers, long fibers, twisted yarns, chops, chopped strand mats, continuous strand mats, rovings, nonwoven fabrics such as spunbonded nonwoven fabrics or meltblown nonwoven fabrics, roving cloths, plain weaves, satin weaves, or twill weaves. The shape of the woven fabric, the braid, the three-dimensional woven fabric, or the three-dimensional braid can be used.
 繊維補強材の含有量は、複合材料の使用用途及び要求性能等に応じて適宜規定することができ、特に限定されない。例えば、不飽和ポリエステル樹脂組成物100質量部に対し、0.1~500質量部とすることができる。 The content of the fiber reinforcing material can be appropriately specified according to the intended use of the composite material, required performance, etc., and is not particularly limited. For example, it can be 0.1 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
[充填材]
 充填材としては、例えば、炭酸カルシウム、水酸化アルミニウム、フライアッシュ、硫酸バリウム、タルク、クレー、ガラス粉末、木粉などが挙げられ、ガラスマイクロバルーン、サラン樹脂のマイクロバルーン、アクリロニトリルのマイクロバルーン、シラスバルーンなどの中空フィラーなども使用することができる。
[Filling material]
Examples of the filler include calcium carbonate, aluminum hydroxide, fly ash, barium sulfate, talc, clay, glass powder, wood powder, and the like, glass microballoons, microballoons of saran resin, microballoons of acrylonitrile, and shirasu. Hollow fillers such as balloons can also be used.
 充填材の含有量は、複合材料の使用用途及び要求性能等に応じて適宜規定することができ、特に限定されない。例えば、不飽和ポリエステル樹脂組成物100質量部に対し、10~500質量部とすることができる。 The content of the filler can be appropriately specified according to the intended use of the composite material, required performance, etc., and is not particularly limited. For example, it can be 10 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
[骨材]
 骨材としては、例えば、珪砂、砕石、砂利などの一般骨材、焼却灰などから合成した合成骨材、軽量骨材などが挙げられる。
[aggregate]
Examples of aggregates include general aggregates such as silica sand, crushed stone, and gravel, synthetic aggregates synthesized from incinerated ash, lightweight aggregates, and the like.
 骨材の含有量は、複合材料の使用用途及び要求性能等に応じて適宜規定することができ、特に限定されない。例えば、不飽和ポリエステル樹脂組成物100質量部に対し、10~500質量部とすることができる。 The content of the aggregate can be appropriately specified according to the intended use of the composite material and the required performance, and is not particularly limited. For example, it can be 10 to 500 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin composition.
(硬化物)
 硬化物は、不飽和ポリエステル樹脂組成物又は複合材料を硬化させることにより得られる。
(Cured product)
The cured product is obtained by curing the unsaturated polyester resin composition or the composite material.
(不飽和ポリエステル樹脂組成物の製造方法)
 不飽和ポリエステル樹脂組成物は、例えば、上記(A)~(F)の各成分と必要に応じて上記(G)~(I)の各成分の1つ又は複数とを混練する方法より製造することができる。混練方法としては特に制限はなく、例えば、双腕式ニーダー、加圧式ニーダー、プラネタリーミキサー等を用いることができる。混練温度は-10℃~80℃が好ましく、より好ましくは0℃~60℃であり、最も好ましくは20℃~60℃である。混練温度が-10℃以上であれば、混練性がより向上する。混練温度が80℃以下であれば、不飽和ポリエステル樹脂組成物の混練中の硬化反応をより抑制することができる。混練時間は各成分及びその比率に応じて適宜選択することができる。
(Method for producing unsaturated polyester resin composition)
The unsaturated polyester resin composition is produced, for example, by a method of kneading the respective components (A) to (F) and, if necessary, one or more of the respective components (G) to (I). be able to. The kneading method is not particularly limited, and for example, a double-arm kneader, a pressure kneader, a planetary mixer or the like can be used. The kneading temperature is preferably -10°C to 80°C, more preferably 0°C to 60°C, and most preferably 20°C to 60°C. When the kneading temperature is -10°C or higher, the kneading property is further improved. When the kneading temperature is 80° C. or lower, the curing reaction during the kneading of the unsaturated polyester resin composition can be further suppressed. The kneading time can be appropriately selected according to each component and its ratio.
 不飽和ポリエステル樹脂組成物を製造する際の各成分を混練する順番については特に制限はない。例えば、不飽和ポリエステル樹脂(A)とエチレン性不飽和単量体(B)の一部又は全部を混合してから他の成分を混合すると、均一に混合された不飽和ポリエステル樹脂組成物が得られやすいため好ましい。 There is no particular limitation on the order of kneading each component when manufacturing the unsaturated polyester resin composition. For example, when a part or all of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B) are mixed and then other components are mixed, a uniformly mixed unsaturated polyester resin composition is obtained. It is preferable because it is easily damaged.
(複合材料の製造方法)
 複合材料の製造方法は目的に応じて適宜選択すればよく、特に限定されない。複合材料は、例えば、不飽和ポリエステル樹脂組成物と、繊維補強材、充填材及び骨材から選択される少なくとも1種とを混練する方法、又は必要に応じて充填材及び骨材から選択される少なくとも1種を加えた不飽和ポリエステル樹脂組成物を繊維補強材に含侵させる方法により製造することができる。混練方法としては特に制限はなく、例えば、双腕式ニーダー、加圧式ニーダー、プラネタリーミキサー等を用いることができる。混練温度は-10℃~80℃が好ましく、より好ましくは0℃~60℃である。混練温度が-10℃以上あれば、混練性がより向上する。混練温度が80℃以下であれば、不飽和ポリエステル樹脂組成物の混練中の硬化反応をより抑制することができる。混練時間は各成分及びその比率に応じて適宜選択することができる。
(Method of manufacturing composite material)
The manufacturing method of the composite material may be appropriately selected according to the purpose and is not particularly limited. The composite material is, for example, a method of kneading an unsaturated polyester resin composition and at least one selected from a fiber reinforcing material, a filler and an aggregate, or selected from a filler and an aggregate as necessary. It can be produced by a method of impregnating a fiber reinforcement with an unsaturated polyester resin composition containing at least one kind. The kneading method is not particularly limited, and for example, a double-arm kneader, a pressure kneader, a planetary mixer or the like can be used. The kneading temperature is preferably −10° C. to 80° C., more preferably 0° C. to 60° C. When the kneading temperature is -10°C or higher, the kneading property is further improved. When the kneading temperature is 80° C. or lower, the curing reaction during the kneading of the unsaturated polyester resin composition can be further suppressed. The kneading time can be appropriately selected according to each component and its ratio.
(不飽和ポリエステル樹脂組成物及び複合材料の硬化方法)
 不飽和ポリエステル樹脂組成物及び複合材料は、公知の方法で硬化させることができる。不飽和ポリエステル樹脂組成物又は複合材料の硬化方法としては、例えば、不飽和ポリエステル樹脂組成物若しくは複合材料にラジカル重合開始剤(G)を添加し、常温下若しくは加熱により硬化させる方法、ラジカル重合開始剤(G)を含む不飽和ポリエステル樹脂組成物を用いて調製した複合材料を、常温下若しくは加熱により硬化させる方法、不飽和ポリエステル樹脂組成物若しくは複合材料のコバルト石鹸(C)以外の成分を含む不飽和ポリエステル樹脂前駆組成物若しくは複合前駆材料にコバルト石鹸(C)を添加して混合した後、ラジカル重合開始剤(G)をさらに添加し、常温下若しくは加熱により硬化させる方法、又は上記不飽和ポリエステル樹脂前駆組成物にコバルト石鹸(C)を添加して混合した後にラジカル重合開始剤(G)をさらに添加した不飽和ポリエステル樹脂組成物を用いて調製した複合材料を、常温下若しくは加熱により硬化させる方法等が挙げられる。ここで、常温及び加熱の具体的な温度範囲としては、例えば、15℃~200℃の温度範囲とすることができる。
(Method for curing unsaturated polyester resin composition and composite material)
The unsaturated polyester resin composition and the composite material can be cured by a known method. Examples of the method for curing the unsaturated polyester resin composition or the composite material include a method in which a radical polymerization initiator (G) is added to the unsaturated polyester resin composition or the composite material, and the mixture is cured at room temperature or by heating, radical polymerization initiation. Method of curing a composite material prepared by using an unsaturated polyester resin composition containing an agent (G) at room temperature or by heating, and containing a component other than the cobalt soap (C) of the unsaturated polyester resin composition or the composite material A method in which cobalt soap (C) is added to and mixed with an unsaturated polyester resin precursor composition or a composite precursor, and then a radical polymerization initiator (G) is further added and cured at room temperature or by heating, or the above-mentioned unsaturated A composite material prepared by using an unsaturated polyester resin composition obtained by adding a cobalt soap (C) to a polyester resin precursor composition and mixing and then further adding a radical polymerization initiator (G) is cured at room temperature or by heating. And the like. Here, the specific temperature range of room temperature and heating may be, for example, a temperature range of 15°C to 200°C.
(不飽和ポリエステル樹脂組成物及び複合材料の使用方法)
 不飽和ポリエステル樹脂組成物及び複合材料の使用方法は、特に限定されない。例えば、化学プラントのパイプ、薬液貯蔵タンク、コンクリート補修材等に適用される、一般的な繊維強化プラスチック(以下「FRP」という。)の原料として用いることができる。不飽和ポリエステル樹脂組成物及び複合材料は、硬化時間が短く、ゲルタイムドリフトを低減又は防止する作用を呈し得るため、特に、速硬化性が要求される用途、例えば化粧板、波平板、及び各種基材に対するプライマー等の材料として好ましく用いられる。
(Method of using unsaturated polyester resin composition and composite material)
The method of using the unsaturated polyester resin composition and the composite material is not particularly limited. For example, it can be used as a raw material of general fiber reinforced plastic (hereinafter referred to as “FRP”) applied to pipes of chemical plants, chemical storage tanks, concrete repair materials and the like. The unsaturated polyester resin composition and the composite material have a short curing time and can exhibit an action of reducing or preventing gel time drift, and therefore, in particular, applications requiring fast curing property, such as a decorative plate, a corrugated plate, and various substrates. It is preferably used as a material such as a primer for a material.
 FRPの製造方法は、目的に応じて適宜選択すればよく、特に限定されない。例えば、不飽和ポリエステル樹脂組成物を繊維補強材に含浸させながら塗布若しくは機械成形し、硬化させる方法、又は複合材料を塗布若しくは機械成形し、硬化させる方法などが挙げられる。 The FRP manufacturing method may be appropriately selected according to the purpose and is not particularly limited. For example, a method of applying or mechanically molding and curing while impregnating a fiber reinforcement with an unsaturated polyester resin composition, or a method of applying or mechanically molding and curing a composite material can be used.
 不飽和ポリエステル樹脂組成物を繊維補強材に含浸させながら塗布又は機械成形し、硬化させる方法の例としては、ハンドレイアップ成形法、レジントランスファー成形法、バキュームアシストレジントランスファー成形法などが挙げられる。 Examples of methods for coating or mechanically molding the unsaturated polyester resin composition while impregnating the fiber reinforcing material and curing the resin include a hand layup molding method, a resin transfer molding method, and a vacuum assist resin transfer molding method.
 ここで、不飽和ポリエステル樹脂組成物は、例えば、ハケ、ロール、コテ、ヘラ、シリンジ等の公知の塗布手段を用いて塗布することができる。 Here, the unsaturated polyester resin composition can be applied using a known application means such as a brush, roll, trowel, spatula, or syringe.
 複合材料を塗布又は機械成形し、硬化させる方法の例としては、スプレーアップ成形法、フィラメントワインディング成形法、シートワインディング成形法、引き抜き成形法、射出成形法などが挙げられる。 Examples of the method of coating or mechanically molding the composite material and curing it include a spray-up molding method, a filament winding molding method, a sheet winding molding method, a pultrusion molding method, and an injection molding method.
 以下、実施例に基づいて本発明を説明するが、本発明は、実施例により制限されるものではない。なお、不飽和ポリエステル樹脂組成物の貯蔵安定性及び硬化性能は以下の方法で測定した。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples. The storage stability and curing performance of the unsaturated polyester resin composition were measured by the following methods.
[貯蔵安定性の測定方法]
 実施例及び比較例で得られた不飽和ポリエステル樹脂組成物100gを無色透明で全長110mm及び内径35mmの平底ガラス管に底から90mmの高さまで注ぎ込み、残りを大気で満たして測定用サンプルを調製し、50℃の恒温槽で保存し、1日毎に不飽和ポリエステル樹脂組成物の流動性を目視観察してゲル化までの日数を測定した。「ゲル化」とは不飽和ポリエステル樹脂組成物に流動性が無く、ガラス管を逆さまにした時、ガラス管内上部にあった気泡が動かず、下部に存在し続ける状態のことを指す。
[Method of measuring storage stability]
100 g of the unsaturated polyester resin composition obtained in each of Examples and Comparative Examples was poured into a flat transparent glass tube having a total length of 110 mm and an inner diameter of 35 mm to a height of 90 mm from the bottom, and the rest was filled with air to prepare a measurement sample. The sample was stored in a constant temperature bath at 50° C., and the fluidity of the unsaturated polyester resin composition was visually observed every day to measure the number of days until gelation. The term "gelling" means that the unsaturated polyester resin composition has no fluidity, and when the glass tube is turned upside down, the bubbles in the upper part of the glass tube do not move and remain in the lower part.
[硬化性能の測定方法]
 ラジカル重合開始剤としてパーメック(登録商標)N(メチルエチルケトンパーオキサイド、日油株式会社製)を不飽和ポリエステル樹脂組成物100質量部に対して1質量部添加し、JIS K6901:2008 5.10.1「常温ゲル化時間(A法)」に基づいて25℃におけるゲル化時間を測定した。ゲル化時間測定は、配合直後及び1週間後で実施した。
[Measuring method of curing performance]
1 part by mass of Permec (registered trademark) N (methyl ethyl ketone peroxide, manufactured by NOF CORPORATION) as a radical polymerization initiator is added to 100 parts by mass of the unsaturated polyester resin composition, and JIS K6901: 2008 5.10.1 is added. The gelling time at 25° C. was measured based on “normal temperature gelling time (method A)”. The gelation time was measured immediately after compounding and after 1 week.
[不飽和ポリエステル樹脂の合成]
 撹拌機、分留コンデンサー、温度計、窒素ガス導入管を付した1Lのフラスコに、エチレングリコール71g、無水フタル酸135g、無水マレイン酸134gを仕込み、窒素ガス気流下で加熱撹拌しながら150℃で30分間反応させた後、ジシクロペンタジエン181gを4分割にして添加し、150℃で1時間反応させた。さらにプロピレングリコール113g、エチレングリコール14g、ネオペンチルグリコール(2,2-ジメチル-1,3-プロパンジオール)24g、無水マレイン酸90gを添加し、200℃でさらに反応させ酸価が36mgKOH/gになった時点で冷却し不飽和ポリエステル樹脂A-1(重量平均分子量3200)を得た。
[Synthesis of unsaturated polyester resin]
A 1 L flask equipped with a stirrer, a fractionating condenser, a thermometer, and a nitrogen gas inlet tube was charged with 71 g of ethylene glycol, 135 g of phthalic anhydride, and 134 g of maleic anhydride at 150° C. under heating and stirring under a nitrogen gas stream. After reacting for 30 minutes, 181 g of dicyclopentadiene was added in 4 portions, and the mixture was reacted at 150° C. for 1 hour. Further, 113 g of propylene glycol, 14 g of ethylene glycol, 24 g of neopentyl glycol (2,2-dimethyl-1,3-propanediol), and 90 g of maleic anhydride were added, and further reacted at 200° C. to give an acid value of 36 mg KOH/g. At that time, the mixture was cooled to obtain unsaturated polyester resin A-1 (weight average molecular weight 3200).
 不飽和ポリエステル樹脂A-1 100質量部に対してtert-ブチルキノン0.05g、tert-ブチルハイドロキノン0.05gを添加し、スチレン200g及びメチルメタクリレート95gと混合して不飽和ポリエステル樹脂とエチレン性不飽和単量体との混合物AB-1を調製した。 To 100 parts by mass of unsaturated polyester resin A-1, 0.05 g of tert-butylquinone and 0.05 g of tert-butylhydroquinone were added and mixed with 200 g of styrene and 95 g of methyl methacrylate to prepare unsaturated polyester resin and ethylenically unsaturated A mixture AB-1 with monomers was prepared.
(実施例1)
 得られた混合物AB-1 100質量部に、表1に示す成分をプラネタリーミキサーを用いて添加混合し、不飽和ポリエステル樹脂組成物を得た。得られた不飽和ポリエステル樹脂組成物の貯蔵安定性と硬化性能を評価した。結果を表1に示す。
(Example 1)
The components shown in Table 1 were added to and mixed with 100 parts by mass of the obtained mixture AB-1 using a planetary mixer to obtain an unsaturated polyester resin composition. The storage stability and curing performance of the obtained unsaturated polyester resin composition were evaluated. The results are shown in Table 1.
(実施例2~7、比較例1~5)
 表1に記載の配合に変更した以外は、実施例1と同様の方法により評価した。結果を表1に示す。
(Examples 2 to 7, Comparative Examples 1 to 5)
Evaluation was performed by the same method as in Example 1 except that the formulation shown in Table 1 was changed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7の不飽和ポリエステル樹脂組成物は30日以上安定に貯蔵することができた。一方、比較例1~5は早期にゲル化し、貯蔵安定性が低かった。二価の無機スズ化合物を用いた実施例1~7は、有機スズ化合物を用いた比較例4及び5より貯蔵安定性が良好であり、さらに硬化性能が貯蔵時間によって変化しにくかった。 The unsaturated polyester resin compositions of Examples 1 to 7 could be stably stored for 30 days or longer. On the other hand, in Comparative Examples 1 to 5, gelation occurred early and storage stability was low. Examples 1 to 7 using the divalent inorganic tin compound had better storage stability than Comparative Examples 4 and 5 using the organic tin compound, and the curing performance was hard to change with the storage time.
 上記構成によれば、高温での貯蔵安定性に優れ、長期間保存した場合でも硬化性能を維持することができるという効果を奏する。上記の不飽和ポリエステル樹脂組成物は、化粧板、レジンコンクリート、プライマーなどの速硬化性が要求される用途などの分野で好適に用いることができる。 According to the above configuration, the storage stability at high temperature is excellent, and the curing performance can be maintained even when stored for a long period of time. The unsaturated polyester resin composition described above can be suitably used in the field of applications such as decorative boards, resin concrete, and primers that require fast curing.

Claims (12)

  1.  不飽和ポリエステル樹脂(A)、エチレン性不飽和単量体(B)、コバルト石鹸(C)、コバルト配位性化合物(D)、無機スズ化合物(E)、アミン系酸化防止剤(F)を含む不飽和ポリエステル樹脂組成物。 Unsaturated polyester resin (A), ethylenically unsaturated monomer (B), cobalt soap (C), cobalt coordinating compound (D), inorganic tin compound (E), amine-based antioxidant (F) An unsaturated polyester resin composition containing.
  2.  前記コバルト石鹸(C)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~10質量部である請求項1に記載の不飽和ポリエステル樹脂組成物。 The content of the cobalt soap (C) is 0.001 to 10 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). The unsaturated polyester resin composition described.
  3.  前記コバルト配位性化合物(D)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~5質量部である請求項1又は2のいずれかに記載の不飽和ポリエステル樹脂組成物。 The content of the cobalt coordinating compound (D) is 0.001 to 5 parts by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Item 3. The unsaturated polyester resin composition according to item 1 or 2.
  4.  前記無機スズ化合物(E)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~1質量部である請求項1~3のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 The content of the inorganic tin compound (E) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). 4. The unsaturated polyester resin composition according to any one of 3 to 3.
  5.  前記アミン系酸化防止剤(F)の含有量が、不飽和ポリエステル樹脂(A)及びエチレン性不飽和単量体(B)の合計100質量部に対して0.001~1質量部である請求項1~4のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 The content of the amine antioxidant (F) is 0.001 to 1 part by mass based on 100 parts by mass of the total amount of the unsaturated polyester resin (A) and the ethylenically unsaturated monomer (B). Item 5. The unsaturated polyester resin composition according to any one of items 1 to 4.
  6.  前記コバルト石鹸(C)が、オクチル酸コバルト及びナフテン酸コバルトからなる群より選択される少なくとも1種を含む請求項1~5のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 The unsaturated polyester resin composition according to any one of claims 1 to 5, wherein the cobalt soap (C) contains at least one selected from the group consisting of cobalt octylate and cobalt naphthenate.
  7.  前記コバルト配位性化合物(D)が、芳香族3級アミン及びβ-ジケトンからなる群より選択される少なくとも1種を含む請求項1~6のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 7. The unsaturated polyester resin composition according to claim 1, wherein the cobalt coordinating compound (D) contains at least one selected from the group consisting of aromatic tertiary amines and β-diketones. Stuff.
  8.  前記無機スズ化合物(E)が、二価の無機スズ化合物である請求項1~7のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 The unsaturated polyester resin composition according to any one of claims 1 to 7, wherein the inorganic tin compound (E) is a divalent inorganic tin compound.
  9.  ラジカル重合開始剤(G)を更に含む、請求項1~8のいずれか一項に記載の不飽和ポリエステル樹脂組成物。 The unsaturated polyester resin composition according to any one of claims 1 to 8, which further comprises a radical polymerization initiator (G).
  10.  請求項1~9のいずれか一項に記載の不飽和ポリエステル樹脂組成物と、繊維補強材、充填材及び骨材からなる群より選択される少なくとも1種とを含む複合材料。 A composite material comprising the unsaturated polyester resin composition according to any one of claims 1 to 9 and at least one selected from the group consisting of a fiber reinforcing material, a filler and an aggregate.
  11.  請求項1~9のいずれか一項に記載の不飽和ポリエステル樹脂組成物の硬化物。 A cured product of the unsaturated polyester resin composition according to any one of claims 1 to 9.
  12.  請求項10に記載の複合材料の硬化物。 A cured product of the composite material according to claim 10.
PCT/JP2019/040114 2018-12-17 2019-10-10 Unsaturated polyester resin composition and cured product of said composition WO2020129373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561176A JPWO2020129373A1 (en) 2018-12-17 2019-10-10 Unsaturated polyester resin composition and cured product of the composition
CN201980064857.0A CN112789303A (en) 2018-12-17 2019-10-10 Unsaturated polyester resin composition and cured product of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-235191 2018-12-17
JP2018235191 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129373A1 true WO2020129373A1 (en) 2020-06-25

Family

ID=71102772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040114 WO2020129373A1 (en) 2018-12-17 2019-10-10 Unsaturated polyester resin composition and cured product of said composition

Country Status (3)

Country Link
JP (1) JPWO2020129373A1 (en)
CN (1) CN112789303A (en)
WO (1) WO2020129373A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008766A (en) * 2004-06-23 2006-01-12 Hitachi Chem Co Ltd Molding resin composition and manufacturing method of molded article of fiber reinforced plastic
JP2006298953A (en) * 2005-04-15 2006-11-02 Nof Corp Thermosetting resin composition and its curing process
CN101245217A (en) * 2007-11-30 2008-08-20 东南大学 Stibium doping nano-tin dioxide unsaturated polyester resin heat insulating coating film and manufacture method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE549425A (en) * 1956-07-10
GB1130308A (en) * 1966-02-10 1968-10-16 Universal Oil Prod Co Process for manufacturing polymers
FR2684680B1 (en) * 1991-12-05 1994-02-11 Cray Valley Sa IMPROVED COMPOSITIONS OF UNSATURATED POLYESTER RESINS FOR MOLDING.
WO2016171150A1 (en) * 2015-04-21 2016-10-27 昭和電工株式会社 Radical-polymerizable, water-containing resin composition, curing method thereof, and method for producing radical-polymerizable, water-containing resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008766A (en) * 2004-06-23 2006-01-12 Hitachi Chem Co Ltd Molding resin composition and manufacturing method of molded article of fiber reinforced plastic
JP2006298953A (en) * 2005-04-15 2006-11-02 Nof Corp Thermosetting resin composition and its curing process
CN101245217A (en) * 2007-11-30 2008-08-20 东南大学 Stibium doping nano-tin dioxide unsaturated polyester resin heat insulating coating film and manufacture method thereof

Also Published As

Publication number Publication date
CN112789303A (en) 2021-05-11
JPWO2020129373A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
US6329475B1 (en) Curable epoxy vinylester composition having a low peak exotherm during cure
CN101484486B (en) unsaturated polyester resin or vinyl ester resin compositions
JP4888027B2 (en) Curing agent for radical polymerization type thermosetting resin, molding material containing the same, and curing method thereof
CN101484487A (en) Unsaturated polyester resin compositions
JP7310410B2 (en) Unsaturated polyester resin composition and composite material containing said unsaturated polyester resin composition
US11441057B2 (en) Autobody repair formulation with improved control of work time and cure time at extreme ambient air temperatures
WO2020129373A1 (en) Unsaturated polyester resin composition and cured product of said composition
EP3484967A1 (en) Unsaturated polyester composition for autobody repair with improved adhesion to metal substrates
JP6588281B2 (en) Putty resin composition and putty using the same
JP2010150352A (en) Curing agent for radical polymerization type thermosetting resin, and molding material including the same
JP2021091805A (en) Thermosetting resin composition
TWI760623B (en) Vinyl ester resin composition, composite material comprising such composition, and hardened product of such composition or composite material
JP2007112985A (en) Radically curable resin composition
JP6588282B2 (en) Putty resin composition and putty using the same
CN109265618A (en) Preparation method of modified unsaturated polyester resin hybrid material
JP2005154688A (en) Thermosetting resin composition
WO1994004583A1 (en) Curable epoxy vinylester or polyester composition having a low peak exotherm during cure
JP2019085476A (en) Vinyl ester resin composition, composite material and cured product
JP5240006B2 (en) Method of curing molding material
JP3778331B2 (en) Unsaturated polyester resin composition, laminated molding material and molded article thereof
WO2024090151A1 (en) Radically polymerizable resin composition and pipe rehabilitation liner material
JPH07252330A (en) Unsaturated polyester resin composition and its curing method
JP2024517918A (en) (Meth)acrylate-based reactive diluent composition for unsaturated polyester resins
WO2020066175A1 (en) Vinyl ester resin composition, composite material containing said composition, and cured product of said composition or composite material
JP2019119849A (en) Curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900952

Country of ref document: EP

Kind code of ref document: A1