WO2024090151A1 - Radically polymerizable resin composition and pipe rehabilitation liner material - Google Patents

Radically polymerizable resin composition and pipe rehabilitation liner material Download PDF

Info

Publication number
WO2024090151A1
WO2024090151A1 PCT/JP2023/036022 JP2023036022W WO2024090151A1 WO 2024090151 A1 WO2024090151 A1 WO 2024090151A1 JP 2023036022 W JP2023036022 W JP 2023036022W WO 2024090151 A1 WO2024090151 A1 WO 2024090151A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable resin
radical polymerizable
resin composition
acid
meth
Prior art date
Application number
PCT/JP2023/036022
Other languages
French (fr)
Japanese (ja)
Inventor
彬 宇佐美
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024090151A1 publication Critical patent/WO2024090151A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water

Definitions

  • the present invention relates to a radically polymerizable resin composition and a pipe rehabilitation lining material.
  • Patent Document 1 discloses a method for repairing a pipe.
  • the method for repairing a pipe includes a curing step in which a tubular prepreg is attached to the inner wall surface of a pipe buried underground, and the prepreg is cured by supplying compressed air to the inside of the prepreg while flowing hot water or steam into the inside of the prepreg.
  • the prepreg can be made by impregnating a reinforcing material made of fibers or the like with a thermosetting resin composition.
  • the thermosetting resin composition can be made by dissolving a resin such as an unsaturated polyester resin or an epoxy acrylate resin in an ethylenically unsaturated compound such as styrene or (meth)acrylate.
  • Patent Document 2 discloses that a combination of epoxy (meth)acrylate resins and urethane (meth)acrylate resins with a specific curing agent provides a pot life of 60 hours or more at 20°C and a gel time of 10 minutes or less at 70°C.
  • Patent Document 3 discloses that by adding an acid component to an unsaturated polyester resin and combining it with a specific curing agent, the pot life at 40° C. is 180 days or more and the gel time at 150° C. is 1 minute or less.
  • the pot life at 40° C. is 180 days or more and the gel time at 150° C. is 1 minute or less.
  • the present invention was made to solve the above problems, and aims to provide a radical polymerizable resin composition and a pipe rehabilitation lining material that have excellent curing properties in the temperature range of about 50°C to 80°C and excellent storage stability in the low temperature range of 20°C or less.
  • a composition comprising a radical polymerizable resin (A), an ethylenically unsaturated compound (B), a free radical-containing compound (C), and a curing agent (D), the free radical-containing compound (C) is 2,2,6,6-tetramethylpiperidine-1-oxyl or its analogues,
  • the radical polymerizable resin composition wherein the 10-hour half-life temperature of the curing agent (D) is 40° C. or higher and 120° C. or lower.
  • the curing agent (D) contains at least one selected from the group consisting of dilauroyl peroxide, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexano
  • the present invention provides a radically polymerizable resin composition that has excellent curing properties in the temperature range of about 50°C to 80°C and excellent storage stability at temperatures below 20°C.
  • the symbol “to” means greater than or equal to the value before “to” and less than or equal to the value after “to.”
  • (Meth)acrylic is a general term for acrylic and methacrylic
  • (meth)acrylate is a general term for acrylate and methacrylate.
  • ethylenically unsaturated bond means a double bond formed between carbon atoms other than those forming an aromatic ring
  • ethylenically unsaturated compound means a compound having an ethylenically unsaturated bond.
  • weight average molecular weight Mw (hereinafter also simply referred to as “Mw”) and the “number average molecular weight Mn” (hereinafter also simply referred to as “Mn”) are standard polystyrene equivalent molecular weights determined by gel permeation chromatography (GPC) measurements.
  • the radical polymerizable composition according to one embodiment of the present invention contains a radical polymerizable resin (A), an ethylenically unsaturated compound (B), a free radical-containing compound (C), and a curing agent (D). If necessary, the radical polymerizable composition according to one embodiment of the present invention may further contain a metal soap (E), a fiber base material (F), or other additives (G), etc.
  • the radical polymerizable resin according to this embodiment is not particularly limited as long as it has one or more radically reactive functional groups in the molecule.
  • the radical polymerizable resin (A) include an unsaturated polyester resin (A1), an epoxy (meth)acrylate resin (A2), and a urethane (meth)acrylate resin (A3).
  • the unsaturated polyester resin (A1) and the epoxy (meth)acrylate resin (A2) are preferred from the viewpoints of strength and chemical resistance of the cured product.
  • the unsaturated polyester resin (A1) is not particularly limited as long as it is obtained by polycondensation of a polyhydric alcohol, an unsaturated polybasic acid, and, if necessary, at least one selected from a saturated polybasic acid and a monobasic acid.
  • the unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond
  • the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond.
  • the unsaturated polyester resin may be used alone or in combination of two or more kinds.
  • the polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxyl groups.
  • the unsaturated polybasic acid is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and having two or more carboxyl groups or its acid anhydride.
  • maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, chloromaleic acid, etc. can be mentioned.
  • maleic anhydride, fumaric acid, citraconic acid, itaconic acid and chloromaleic acid are preferred, and maleic anhydride and fumaric acid are more preferred.
  • the unsaturated polybasic acid may be used alone or in combination of two or more kinds.
  • the saturated polybasic acid is not particularly limited as long as it is a compound or its acid anhydride that does not have an ethylenically unsaturated bond and has two or more carboxy groups.
  • phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, endomethylenetetrahydrophthalic anhydride, and tetrahydrophthalic anhydride are preferred, and phthalic anhydride, isophthalic acid, and terephthalic acid are more preferred.
  • the saturated polybasic acid may be used alone or in combination of two or more.
  • Examples of monobasic acids include dicyclopentadiene maleate, benzoic acid and its derivatives, and cinnamic acid and its derivatives, with dicyclopentadiene maleate being preferred.
  • Dicyclopentadiene maleate can be synthesized from maleic anhydride and dicyclopentadiene by a known method.
  • the monobasic acid may be used alone or in combination of two or more kinds.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin (A1) is not particularly limited.
  • the weight average molecular weight of the unsaturated polyester resin (A1) is preferably 2,000 to 25,000, more preferably 3,000 to 20,000, and even more preferably 3,500 to 10,000. If the weight average molecular weight is 2,000 to 25,000, the moldability of the unsaturated polyester resin composition becomes even better.
  • the "weight average molecular weight” is a standard polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the degree of unsaturation of the unsaturated polyester resin (A1) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%.
  • the degree of unsaturation of the unsaturated polyester resin (A1) can be calculated by the following formula using the number of moles of the unsaturated polybasic acid and the saturated polybasic acid used as raw materials. However, the number of unsaturated groups in the unsaturated polybasic acid is one.
  • Degree of unsaturation ⁇ (number of moles of unsaturated polybasic acid) / (number of moles of unsaturated polybasic acid + number of moles of saturated polybasic acid) ⁇ x 100
  • the acid value of the unsaturated polyester resin (A1) is not particularly limited. From the viewpoint of water resistance and chemical resistance, the acid value of the unsaturated polyester resin (A1) is preferably 0 to 50 mgKOH/g, more preferably 3 to 40 mgKOH/g, and even more preferably 5 to 30 mgKOH/g.
  • Unsaturated polyester resin (A1) can be synthesized, for example, using the above-mentioned raw materials by the method described in the Polyester Resin Handbook (published by Nikkan Kogyo Shimbun in 1988). Various conditions in the synthesis of unsaturated polyester resin (A1) can be set appropriately depending on the raw materials used and their amounts.
  • an esterification reaction can be carried out in a stream of an inert gas such as nitrogen gas at a temperature of 140 to 230°C under pressure or reduced pressure.
  • an esterification catalyst can be used as necessary.
  • esterification catalyst examples include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate.
  • the esterification catalysts may be used alone or in combination of two or more types.
  • the unsaturated polyester resin (A1) for example, an esterification reaction is carried out under the above reaction conditions, and the reaction is terminated when the acid value reaches 5 to 30 mg KOH/g.
  • the resin may contain unreacted monomers at the end of the reaction.
  • An example of a commercially available product of the unsaturated polyester resin (A1) is "Rigolac (registered trademark)" manufactured by Showa Denko K.K.
  • Epoxy (meth)acrylate resin (A2) is generally a compound having an ethylenically unsaturated bond obtained by a ring-opening reaction between an epoxy group and a carboxy group.
  • the epoxy group is an epoxy group in an epoxy compound (a) having two or more epoxy groups
  • the carboxy group is a carboxy group of an unsaturated monobasic acid (b) having an ethylenically unsaturated bond and a carboxy group.
  • the unsaturated monobasic acid is a monobasic acid having an ethylenically unsaturated bond.
  • Examples of such epoxy (meth)acrylate resins (A2) include "Lipoxy (registered trademark)" manufactured by Showa Denko K.K.
  • the epoxy (meth)acrylate resins may be used alone or in combination of two or more kinds.
  • the acid value of the epoxy (meth)acrylate resin (A2) is not particularly limited. From the viewpoints of chemical resistance and water resistance, the acid value of the epoxy (meth)acrylate resin (A2) is preferably 0 to 50 mgKOH/g, more preferably 0 to 40 mgKOH/g, and even more preferably 0 to 30 mgKOH/g.
  • the weight average molecular weight of the epoxy (meth)acrylate resin (A2) is not particularly limited.
  • the weight average molecular weight of the epoxy (meth)acrylate resin (A2) is preferably 700 to 30,000, more preferably 700 to 20,000, and even more preferably 700 to 15,000.
  • the epoxy compound is not particularly limited as long as it has two or more epoxy groups.
  • at least one selected from bisphenol type epoxy resin, hydrogenated bisphenol type epoxy resin, and novolac phenol type epoxy resin can be used.
  • Such epoxy resin can further improve the mechanical strength and corrosion resistance of the cured product.
  • bisphenol type epoxy resins include those obtained by reacting a bisphenol such as bisphenol A, bisphenol F, bisphenol S, or tetrabromobisphenol A with epichlorohydrin or methylepichlorohydrin, and those obtained by reacting a glycidyl ether of bisphenol A, a condensate of the above bisphenol compound, and epichlorohydrin or methylepichlorohydrin.
  • Examples of hydrogenated bisphenol type epoxy resins include those obtained by reacting a glycidyl ether of hydrogenated bisphenol A with a bisphenol compound such as bisphenol A, bisphenol F, bisphenol S, and tetrabromobisphenol A.
  • Examples of novolak phenol type epoxy resins include those obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
  • bisphenol type epoxy resins are preferred from the viewpoint of chemical resistance, and bisphenol A epoxy resins are more preferred.
  • the unsaturated monobasic acid is not particularly limited as long as it is a monocarboxylic acid having an ethylenic unsaturated bond.
  • it is preferably at least one selected from acrylic acid, methacrylic acid, crotonic acid, and cinnamic acid, more preferably acrylic acid or methacrylic acid, and even more preferably acrylic acid.
  • the epoxy (meth)acrylate resin (A2) obtained by reacting at least one selected from (meth)acrylic acid with an epoxy resin has high hydrolysis resistance against acid and alkali, and can further improve the corrosion resistance of the cured product.
  • the amount of the unsaturated monobasic acid used when the epoxy compound and the unsaturated monobasic acid are subjected to a ring-opening reaction is preferably 0.3 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the epoxy compound, more preferably 0.4 to 1.2 equivalents, and particularly preferably 0.5 to 1.0 equivalents.
  • the amount of the unsaturated monobasic acid used is within the range of 0.3 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the epoxy compound, a cured product having sufficient hardness can be obtained by the radical polymerization reaction of the thermosetting resin composition containing the epoxy (meth)acrylate resin (A2).
  • the epoxy (meth)acrylate resin (A2) can be synthesized by a known synthesis method, for example, a method in which an epoxy compound and an unsaturated monobasic acid are dissolved in a solvent as necessary in the presence of an esterification catalyst and reacted at 70 to 150° C., preferably 80 to 140° C., and more preferably 90 to 130° C.
  • the commercially available epoxy (meth)acrylate resin (A2) is not particularly limited, but examples thereof include "Lipoxy (registered trademark)" manufactured by Showa Denko KK and the like.
  • the unreacted unsaturated monobasic acid remaining after synthesis of the epoxy (meth)acrylate resin (A2) is regarded as an ethylenically unsaturated compound (B) described below.
  • urethane (meth)acrylate resin (A3) As the urethane (meth)acrylate resin, for example, a resin obtained by reacting hydroxyl groups or isocyanato groups at both ends of a polyurethane obtained by reacting a polyisocyanate with a polyhydric alcohol with (meth)acrylic acid can be used.
  • the urethane (meth)acrylate resins may be used alone or in combination of two or more kinds.
  • the ethylenically unsaturated compound according to the present embodiment is not particularly limited as long as it is a compound having one or more ethylenically unsaturated bonds in the molecule.
  • Examples of the ethylenically unsaturated compound (B) include aromatic vinyl compounds such as styrene, ⁇ -, o-, m-, and p-alkyl derivatives of styrene, nitro, cyano, amide, or ester derivatives of styrene, methoxystyrene, divinylbenzene, vinylnaphthalene, and acenaphthylene; diene compounds such as butadiene, 2,3-dimethylbutadiene, isoprene, and chloroprene; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (me
  • Examples of the (meth)acrylates include t-acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, allyl (meth)acrylate, isobornyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and the like; (meth)acrylamides such as (meth)acrylamide, N,N'-dimethyl (meth)acrylamide, and N,N'-diisopropyl (meth)acrylamide, and the like; unsaturated dicarboxylic acid diesters such as diethyl citraconic acid, and the like; mono
  • Examples of the ⁇ -, o-, m-, and p-alkyl derivatives of styrene include vinyl toluene and t-butyl styrene.
  • the ethylenically unsaturated compound (B) may be used alone or in combination of two or more kinds.
  • styrene methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and neopentyl glycol di(meth)acrylate are preferred, styrene, methyl (meth)acrylate, ethyl (meth)acrylate, phenoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and neopentyl glycol di(meth)acrylate are preferred
  • the content of the ethylenically unsaturated compound (B) is preferably 10 to 95% by mass, more preferably 30 to 75% by mass, and even more preferably 40 to 60% by mass, based on the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B). If the content of the ethylenically unsaturated compound (B) is 10 to 95% by mass based on the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B), the mechanical strength of the cured product can be further increased.
  • the free radical-containing compound (C) is not particularly limited as long as it is a compound having one or more radicals in the molecule that are stable in air.
  • the free radical-containing compound (C) include 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its analogues (structural analogs), 2,2,5,5-tetramethylpyrrolidine-1-oxyl and its analogues, dibutylhydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), 1,1-diphenyl-2-picrylhydrazyl, galvinoxyl free radical, 2-hydroxy-2-azaadamantane, and the like.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • BHT dibutylhydroxytoluene
  • TBHQ tertiary butylhydroquinone
  • 1,1-diphenyl-2-picrylhydrazyl galvinoxyl free radical, 2-hydroxy-2-
  • Examples of analogues of 2,2,6,6-tetramethylpiperidine-1-oxyl include 4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-isothiocyanate-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and 4-[2-[2-(4-iodophenoxy)ethoxy]carbonyl]benzoyl Oxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-carboxy-2,2,6,6-te
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • 4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 2-hydroxy-2-azaadamantane, 1,1-diphenyl-2-picrylhydrazyl, dibutylhydroxytoluene, etc. are particularly preferred.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • BHT dibutylhydroxytoluene
  • TBHQ tertiary butylhydroquinone
  • more preferred are 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, dibutylhydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ)
  • even more preferred are 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, dibutylhydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ).
  • the free radical-containing compound (C) may be used alone or in combination of two or more kinds.
  • the content of the free radical-containing compound (C) is preferably 0.005 to 1.000 parts by mass, more preferably 0.005 to 0.500 parts by mass, and even more preferably 0.005 to 0.100 parts by mass, relative to 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  • the content of the free radical-containing compound (C) is 0.005 parts by mass or more and 1.000 parts by mass or less, it is possible to maintain a long pot life at 20° C. or less while maintaining curability in the medium temperature range.
  • the curing agent according to the present embodiment is not particularly limited as long as it is a compound having one or more peroxide bonds in the molecule and a 10-hour half-life temperature of 40° C. or higher and 120° C. or lower.
  • the 10-hour half-life temperature can be measured by preparing a 0.1 mol/L curing agent solution using benzene as a solvent and thermally decomposing it at an arbitrary temperature, thereby measuring the temperature at which the organic peroxide is reduced by half in 10 hours.
  • Examples of the curing agent (D) include diacyl peroxides, peroxydicarbonates, peroxy esters, peroxy ketals, and dialkyl peroxides.
  • the curing agent (D) from the viewpoint of curability, dilauroyl peroxide, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amylperoxy-2-ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxy-2-ethylhexanoate, and tert-butylperoxybenzoate are preferred, and bis(4-tert-butylcyclohexyl)peroxide carbonate (e.g., Peroyl TCP (manufactured by NOF Corporation)), tert-he
  • the curing agent (D) may be used alone or in combination of two or more kinds.
  • the content of the curing agent (D) is preferably 0.5 to 5.0 parts by mass, more preferably 1.0 to 5.0 parts by mass, and even more preferably 1.0 to 3.0 parts by mass, relative to 100 parts by mass in total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  • the content of the curing agent (D) is 0.5 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass in total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B)
  • Metal soap (E) The metal soap according to the present embodiment is not particularly limited as long as it is a salt of a metal and a long-chain fatty acid or an organic acid other than a long-chain fatty acid.
  • long-chain fatty acids include, for example, fatty acids having 7 to 30 carbon atoms.
  • fatty acids include linear or cyclic saturated fatty acids such as octanoic acids, such as heptanoic acid and 2-ethylhexanoic acid, nonanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, octacosanoic acid, triacontanoic acid, and naphthenic acid, and unsaturated fatty acids, such as oleic acid, linoleic acid, and linolenic acid.
  • octanoic acids such as heptanoic acid and 2-ethylhexanoic acid
  • nonanoic acid decanoic acid
  • the organic acid other than the long-chain fatty acid is not particularly limited, but it is preferable that the organic acid is a weak acid compound having a carboxy group, a hydroxy group, or an enol group, and is soluble in an organic solvent.
  • the metal contained in the metal soap (E) is preferably chromium, manganese, iron, cobalt, nickel, or copper, more preferably manganese, iron, or cobalt, and even more preferably cobalt.
  • the metal soap (E) include manganese octylate, cobalt octylate, zinc octylate, vanadium octylate, cobalt naphthenate, copper naphthenate, barium naphthenate, vanadium acetylacetonate, cobalt acetylacetonate, and iron acetylacetonate.
  • manganese octylate, cobalt octylate, cobalt naphthenate, and the like are preferred, manganese octylate and cobalt octylate are more preferred, and cobalt octylate is even more preferred.
  • the metal soap (E) may be used alone or in combination of two or more kinds.
  • the content of the metal soap (E) is preferably 0 to 5.0 parts by mass, more preferably 0 to 3.0 parts by mass, and even more preferably 0 to 2.0 parts by mass, based on 100 parts by mass in total of the curing agent (D).
  • the resin composition can be cured more easily in the medium temperature range of 50°C.
  • the radical polymerizable resin composition of the present embodiment may contain a fiber substrate (F) as necessary depending on the purpose of use, application, etc.
  • the fiber substrate according to the present embodiment may include synthetic fibers such as amide, nylon, aramid, vinylon, polyester, and phenolic resin, reinforcing fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers, and composite fibers thereof. These may be used alone or in combination of two or more. Among these, aramid fiber, carbon fiber and glass fiber are preferred, and glass fiber is more preferred from the standpoints of strength, hardness, availability, price and the like. Examples of the form of the fiber substrate (F) include sheets, chopped strands, chopped, and middle fibers.
  • the sheet examples include those formed by aligning a plurality of reinforcing fibers in one direction, bidirectional woven fabrics such as plain weave and twill weave, non-crimp woven fabrics, nonwoven fabrics, mats, knits, braids, and paper made from reinforcing fibers.
  • the thickness of the sheet is, for example, preferably 0.01 to 5 mm in the case of a single layer, and when multiple layers are laminated, the total thickness is preferably 1 to 20 mm, more preferably 1 to 15 mm.
  • the shape of the fiber base material (F) may be a cylinder, a sheet, a tape, or the like.
  • the fiber base material (F) has a cylindrical shape
  • examples of the shape include a shape in which it is seamlessly woven into a cylindrical shape, and a shape in which sheet-like or tape-like base materials are partially overlapped to form a cylindrical shape, and the overlapped parts are bonded with an adhesive, sewn together with thread, or connected by needle punching.
  • the diameter of the fiber base material (F) is preferably the same as the inner diameter of the pipe to be rehabilitated.
  • the length of the short side of the sheet is slightly longer than the inner circumference of the pipe to be rehabilitated, taking into account the overlap (glue) of the sheets when manufacturing the lining material.
  • the width be 1/8 to 1/3 of the inner circumference of the pipe to be rehabilitated.
  • the radical polymerizable resin composition of the present embodiment may contain various additives (G) such as a colorant, a coupling agent, a surfactant, a wax, a thixotropic agent, etc., as necessary depending on the intended use or application.
  • G additives
  • the content of the additives can be appropriately adjusted according to the desired physical properties of the cured product of the resin composition to be produced, within a range that does not affect the curing performance and storage stability of the radical polymerizable resin composition.
  • the total content of the additives is preferably 0.1 to 700 parts by mass, more preferably 0.1 to 500 parts by mass, and even more preferably 0.1 to 300 parts by mass, relative to 100 parts by mass of the total of the radical polymerizable components.
  • solvent (H) The solvent (H) is used as necessary from the viewpoint of uniformly mixing each component contained in the radical polymerizable resin composition.
  • the content is not particularly limited, and can be appropriately adjusted according to the handling property during use.
  • the type of the solvent (H) is appropriately selected within a range that does not affect the curing performance and storage stability of the radical polymerizable resin composition according to the type of resin and the use purpose.
  • aliphatic hydrocarbons, aromatic hydrocarbons, ethers, ketones, esters, chain carbonates, etc. can be mentioned. These may be used alone or in combination of two or more.
  • examples of aliphatic hydrocarbons include cyclohexane, n-hexane, white spirits, and mineral spirits such as odorless mineral spirits.
  • examples of aromatic hydrocarbons include naphthene, a mixture of naphthene and paraffin, benzene, toluene, and quinoline.
  • examples of ethers include diethyl ether and diisopropyl ether.
  • ketones include acetone, methyl ethyl ketone, and cyclohexanone.
  • esters include ethyl acetate, butyl acetate, diethyl malonate, diethyl succinate, dibutyl succinate, dibutyl maleate, 2,2,4-trimethylpentanediol diisobutyrate, mono- and diesters of ketoglutaric acid, pyruvate, palmitate, and mono- and diesters of ascorbic acid.
  • chain carbonate esters include dimethyl carbonate and diethyl carbonate.
  • 1,2-dioximes, N-methylpyrrolidone, 1-ethyl-2-pyrrolidinone, and N,N-dimethylformamide can also be used.
  • the solvent (H) may be contained in commercially available products of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  • the radical polymerizable resin composition of the present embodiment can be produced, for example, by a method of kneading one or more of the above components (A) to (D), and, if necessary, each of the components (E), (F), (G), or (H).
  • a twin-arm kneader, a pressure kneader, a planetary mixer, a disperser, or the like can be used.
  • the kneading temperature is preferably -10°C to 40°C, more preferably 0°C to 40°C, and most preferably 20°C to 40°C.
  • the kneading temperature is -10°C or higher, the kneadability is further improved. If the kneading temperature is 40°C or lower, the curing reaction during kneading of the radical polymerizable resin composition can be further suppressed.
  • the kneading time can be appropriately selected according to each component and its ratio.
  • the order of mixing the components when producing the radical polymerizable resin composition of the present embodiment is not particularly limited. For example, it is preferable to mix the radical polymerizable resin (A) and a part or all of the ethylenically unsaturated compound (B) first and then mix the other components, since this makes it easier to obtain a uniformly mixed radical polymerizable resin composition.
  • a solvent may be used appropriately from the viewpoint of uniformly mixing the respective blending components.
  • a synthesis liquid containing unreacted monomers may be used without isolation after synthesis. That is, an example of the radical polymerizable resin composition may contain unreacted monomers that are raw materials for synthesizing the radical polymerizable resin (A).
  • the cured product of the radical polymerizable resin composition of the present embodiment is obtained by curing the above-mentioned resin composition of the present embodiment by a known method.
  • a method for curing the radical polymerizable resin composition a method of curing by heating can be mentioned.
  • the specific temperature range of heating can be, for example, a temperature range of 50°C to 200°C.
  • a pipe rehabilitation lining material according to one embodiment of the present invention uses the radical polymerizable resin composition according to this embodiment described above.
  • the polymerizable resin composition of this embodiment containing the above-mentioned fibrous base material (F) can be used to impregnate the fibrous base material with components other than the fibrous base material (F), thereby producing the pipe rehabilitation lining material of this embodiment.
  • a conventionally known method can be used to repair an existing pipe using the pipe rehabilitation lining material of this embodiment.
  • the pipe rehabilitation lining material may be pulled into the pipe in an uncured state or inserted into the pipe while turning the inner side and the outer side, and then the pipe rehabilitation lining material may be brought into contact with a heat medium such as hot water or steam to be thermally cured.
  • a heat medium such as hot water or steam
  • a pipe repaired using the pipe rehabilitation lining material is a pipe obtained by repairing an existing pipe using the pipe rehabilitation lining material of this embodiment.
  • the repaired pipe of this embodiment may include an existing pipe and a hardened product of the pipe rehabilitation lining material of this embodiment inserted into the existing pipe.
  • the repaired pipe of this embodiment may be obtained by drawing the unhardened pipe rehabilitation lining material into a pipe or inserting it into a pipe while turning the inner side and the outer side, and then contacting the pipe rehabilitation lining material with a heat medium such as hot water or steam to thermally harden it.
  • Peroyl TCP bis(4-tert-butylcyclohexyl) peroxide carbonate, manufactured by NOF Corporation, 10-hour half-life temperature 40.8°C Percure HO (N): NOF Corporation, tert-hexylperoxy-2-ethylhexanate, 10-hour half-life temperature 69.9°C Perbutyl Z: NOF Corporation, tert-butyl peroxybenzoate, 10-hour half-life temperature 104.3°C
  • the acid value of the radical polymerizable resin was determined in accordance with JIS K6901:2008 "Partial acid value (indicator titration method)" by measuring the mass of potassium hydroxide required for neutralizing the acid components contained in the unsaturated polyester resin (Synthesis Example 1) and the epoxy acrylate resin (Synthesis Example 2).
  • the unsaturated polyester resin or epoxy acrylate resin obtained in the above synthesis example was diluted with (B) an ethylenically unsaturated compound to prepare a mixture, which was used as a sample for measuring the acid value (sample 1: 65% by mass of unsaturated polyester resin, 35% by mass of styrene, sample 2: 70% by mass of epoxy acrylate resin, 30% by mass of phenoxyethyl methacrylate resin).
  • the mass of potassium hydroxide required to neutralize the acid component contained in the mixture was measured.
  • the acid values of the unsaturated polyester resin and the epoxy acrylate resin were calculated based on the measured value.
  • An "Autoburette UCB-2000" (manufactured by Hiranuma Sangyo Co., Ltd.) was used as a titration device, and a mixed indicator of bromothymol blue and phenol red was used as an indicator.
  • Example 1 55.00 g of the unsaturated polyester resin obtained in Synthesis Example 1, 45.00 g of styrene, 0.06 g of TEMPOL, 0.01 g of BHT, 0.01 g of TBHQ, 1.25 g of Perloyl TCP, and 1.00 g of Percure HO(N) were added and mixed with stirring at 23° C. to obtain a radical polymerizable resin composition.
  • a radical polymerizable resin composition having the formulation shown in Table 1 was poured into a test tube having an inner diameter of 7.5 mm and a height of 180 mm to a height of 10 mm.
  • a K thermocouple was introduced to monitor the temperature of the radical polymerizable resin composition.
  • the test tube containing the radical polymerizable resin composition was placed in an oil bath at 55° C., and the time required for the temperature of the radical polymerizable resin composition to reach 60° C. after reaching 40° C. was measured as the 55° C. gelation time.
  • the time required from when the temperature of the radical polymerizable resin composition reached 40°C until the heat generated by the curing associated with the radical polymerization reached a maximum was measured as the minimum curing time at 55°C, and the temperature at which the heat generated by the curing reached a maximum was measured as the maximum heat generation temperature.
  • Example 1-3 in which an unsaturated polyester resin was used as the radical polymerizable resin (A), the 55°C gelation time was within 60 minutes and the 20°C pot life was 21 days or more, whereas in Comparative Example 1-3, the gelation time exceeded 60 minutes or the 20°C pot life was less than 21 days. Furthermore, in Examples 4 to 6 in which an epoxy (meth)acrylate resin was used as the radical polymerizable resin (A), the gelation time at 50°C was within 100 minutes and the pot life at 20°C was 50 hours or more, whereas in Comparative Examples 4 to 6, the gelation time at 20°C was less than 50 hours and the pot life at 20°C was less than 50 hours.
  • the radical polymerizable resin composition of the present invention has excellent curing properties in the temperature range of 50 to 80° C. and excellent storage stability at temperatures below 20° C., and therefore can be suitably used as a prepreg for repairing pipes and culverts.
  • the radical polymerizable resin composition of the present invention when an unsaturated polyester resin is used as the radical polymerizable resin (A), has excellent curing properties at 55°C and excellent storage stability at 20°C or lower, and can therefore be suitably used as a prepreg for pipe and conduit repair.
  • the radical polymerizable resin composition of the present invention when an epoxy (meth)acrylate resin is used as the radical polymerizable resin (A), has excellent curing properties at 55°C and excellent storage stability at 20°C or lower, and therefore can be suitably used as a prepreg for pipe and conduit repair.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is a radically polymerizable resin composition that exhibits superior curing properties in the temperature range of approximately 50-80°C and superior storage stability in the low temperature range of 20°C or lower. A radically polymerizable resin composition according to the present invention contains a radically polymerizable resin (A), an ethylenically unsaturated compound (B), a free-radical-containing compound (C), and a curing agent (D). The free-radical-containing compound (C) is 2,2,6,6-tetramethylpiperidine-1-oxyl or an analog thereof. The curing agent (D) has a ten-hour half-life temperature of 40-120°C.

Description

ラジカル重合性樹脂組成物及び管更生ライニング材Radical polymerizable resin composition and pipe rehabilitation lining material
 本発明は、ラジカル重合性樹脂組成物及び管更生ライニング材に関する。
 本願は、2022年10月28日に、日本に出願された特願2022-173529号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a radically polymerizable resin composition and a pipe rehabilitation lining material.
This application claims priority based on Japanese Patent Application No. 2022-173529, filed on October 28, 2022, the contents of which are incorporated herein by reference.
 近年、上下水道管や農業用水管、工業用水管等、地中に埋設された管渠の老朽化が深刻化しており、これらを補修するための種々の方法が提案されている。 In recent years, the deterioration of underground pipes, such as water supply and sewerage pipes, agricultural water pipes, and industrial water pipes, has become a serious problem, and various methods have been proposed to repair them.
 例えば、特許文献1には、管渠の補修方法が開示されている。前記管渠の補修方法は、地中に埋設された管渠の内壁面に管状のプリプレグを密着させ、前記プリプレグの内部に圧縮空気を供給しつつ、前記プリプレグの内部に温水あるいは蒸気を流入することにより前記プリプレグを硬化させる硬化工程を含む。またプリプレグとして、繊維等からなる強化材に熱硬化性樹脂組成物を含浸したものを使用できることが記載されている。、前記熱硬化性樹脂組成物として、不飽和ポリエステル樹脂やエポキシアクリレート樹脂等の樹脂をスチレンや(メタ)アクリレート等のエチレン性不飽和化合物に溶解したものを使用できることが記載されている。 For example, Patent Document 1 discloses a method for repairing a pipe. The method for repairing a pipe includes a curing step in which a tubular prepreg is attached to the inner wall surface of a pipe buried underground, and the prepreg is cured by supplying compressed air to the inside of the prepreg while flowing hot water or steam into the inside of the prepreg. It also describes that the prepreg can be made by impregnating a reinforcing material made of fibers or the like with a thermosetting resin composition. It also describes that the thermosetting resin composition can be made by dissolving a resin such as an unsaturated polyester resin or an epoxy acrylate resin in an ethylenically unsaturated compound such as styrene or (meth)acrylate.
 特許文献2によれば、ラジカル重合性樹脂と硬化剤とを含んだプリプレグには貯蔵安定性の延長と速硬化性の両立が必要となる。特許文献2では、エポキシ(メタ)アクリレート樹脂およびウレタン(メタ)アクリレート樹脂と特定の硬化剤の組み合わせによって20℃における可使時間が60時間以上かつ70℃におけるゲル化時間が10分以内となることが開示されている。 According to Patent Document 2, prepregs containing radically polymerizable resins and curing agents need to have both extended storage stability and rapid curing properties. Patent Document 2 discloses that a combination of epoxy (meth)acrylate resins and urethane (meth)acrylate resins with a specific curing agent provides a pot life of 60 hours or more at 20°C and a gel time of 10 minutes or less at 70°C.
 さらに特許文献3によれば、不飽和ポリエステル樹脂に酸成分を添加し、特定の硬化剤の組み合わせによって、40℃における可使時間が180日以上かつ150℃におけるゲル化時間が1分以内となることが開示されている。
 一方で、管渠補修用プリプレグのガラス含有率の向上や既設管の老朽化の進行に伴う漏水の影響により、より低温で硬化性に優れたラジカル重合性樹脂組成物が望まれていた。
Furthermore, Patent Document 3 discloses that by adding an acid component to an unsaturated polyester resin and combining it with a specific curing agent, the pot life at 40° C. is 180 days or more and the gel time at 150° C. is 1 minute or less.
On the other hand, due to the increase in the glass content of prepregs for repairing pipes and the influence of water leakage due to the aging of existing pipes, there has been a demand for radical polymerizable resin compositions that have excellent curing properties at lower temperatures.
特許第2501048号公報Japanese Patent No. 2501048 特許第6460999号公報Japanese Patent No. 6460999 特許第6653713号公報Patent No. 6653713
 本発明は、上記課題を解決するためになされたものであり、50℃~80℃程度の温度域における硬化性に優れ、かつ20℃以下の低温域における貯蔵安定性に優れるラジカル重合性樹脂組成物、及び管更生ライニング材を提供することを目的とする。 The present invention was made to solve the above problems, and aims to provide a radical polymerizable resin composition and a pipe rehabilitation lining material that have excellent curing properties in the temperature range of about 50°C to 80°C and excellent storage stability in the low temperature range of 20°C or less.
 本発明は以下の態様を含む。
〔1〕 ラジカル重合性樹脂(A)と、エチレン性不飽和化合物(B)と、フリーラジカル含有化合物(C)と、硬化剤(D)と、を含み、
 前記フリーラジカル含有化合物(C)が2,2,6,6-テトラメチルピペリジン-1-オキシルおよびその類縁体であり、
 前記硬化剤(D)の10時間半減期温度が40℃以上120℃以下であることを特徴とするラジカル重合性樹脂組成物。
〔2〕 前記硬化剤(D)がジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、及びジアルキルパーオキサイドからなる群から選択される少なくとも1種含むことを特徴とする〔1〕に記載のラジカル重合性樹脂組成物。
〔3〕 前記硬化剤(D)がジラウロイルパーオキサイド、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-アミルペルオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、及びtert-ブチルパーオキシベンゾエートからなる群から選択される少なくとも1種含むことを特徴とする〔1〕又は〔2〕に記載のラジカル重合性樹脂組成物。
〔4〕 前記エチレン性不飽和化合物(B)の含有量は、前記ラジカル重合性樹脂(A)及び前記エチレン性不飽和化合物(B)の合計に対して、10~95質量%である〔1〕~〔3〕の何れかに記載のラジカル重合性樹脂組成物。
〔5〕 前記フリーラジカル含有化合物(C)の含有量は、前記ラジカル重合性樹脂(A)と前記エチレン性不飽和化合物(B)の合計100質量部に対して、0.005~1.000質量部である〔1〕~〔4〕の何れかに記載のラジカル重合性樹脂組成物。
〔6〕 前記硬化剤(D)の含有量は、前記ラジカル重合性樹脂(A)と前記エチレン性不飽和化合物(B)の合計100質量部に対して、0.5~5.0質量部である〔1〕~〔5〕の何れかに記載のラジカル重合性樹脂組成物。
〔7〕 さらに金属石鹸(E)を含むことを特徴とする〔1〕~〔6〕の何れかに記載のラジカル重合性樹脂組成物。
〔8〕 前記金属石鹸(E)に含まれる金属が、クロム、マンガン、鉄、コバルト、ニッケル、及び銅からなる群から選択されるすくなくとも1種以上であることを特徴とする〔7〕に記載のラジカル重合性樹脂組成物。
〔9〕 さらに繊維基材(F)を含むことを特徴とする〔1〕~〔8〕の何れかに記載のラジカル重合性樹脂組成物。
〔10〕 管更生ライニング材用であることを特徴とする〔1〕~〔9〕の何れかに記載のラジカル重合性樹脂組成物の硬化物。
〔11〕 〔1〕~〔9〕の何れかに記載のラジカル重合性樹脂組成物を用いた管更生ライニング材。
〔12〕 〔11〕に記載の管更生ライニング材を用いて補修された管渠。
The present invention includes the following aspects.
[1] A composition comprising a radical polymerizable resin (A), an ethylenically unsaturated compound (B), a free radical-containing compound (C), and a curing agent (D),
the free radical-containing compound (C) is 2,2,6,6-tetramethylpiperidine-1-oxyl or its analogues,
The radical polymerizable resin composition, wherein the 10-hour half-life temperature of the curing agent (D) is 40° C. or higher and 120° C. or lower.
[2] The radical polymerizable resin composition according to [1], wherein the curing agent (D) contains at least one selected from the group consisting of diacyl peroxides, peroxydicarbonates, peroxy esters, peroxy ketals, and dialkyl peroxides.
[3] The radical polymerizable resin composition according to [1] or [2], characterized in that the curing agent (D) contains at least one selected from the group consisting of dilauroyl peroxide, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amylperoxy-2-ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxy-2-ethylhexanoate, and tert-butylperoxybenzoate.
[4] The radical polymerizable resin composition according to any one of [1] to [3], wherein the content of the ethylenically unsaturated compound (B) is 10 to 95 mass% based on the total content of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
[5] The radical polymerizable resin composition according to any one of [1] to [4], wherein the content of the free radical-containing compound (C) is 0.005 to 1.000 parts by mass per 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
[6] The radical polymerizable resin composition according to any one of [1] to [5], wherein the content of the curing agent (D) is 0.5 to 5.0 parts by mass per 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
[7] The radical polymerizable resin composition according to any one of [1] to [6], further comprising a metal soap (E).
[8] The radical polymerizable resin composition according to [7], characterized in that the metal contained in the metal soap (E) is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel, and copper.
[9] The radical polymerizable resin composition according to any one of [1] to [8], further comprising a fibrous base material (F).
[10] A cured product of the radical polymerizable resin composition according to any one of [1] to [9], which is used as a pipe rehabilitation lining material.
[11] A pipe rehabilitation lining material using the radical polymerizable resin composition according to any one of [1] to [9].
[12] A pipe or conduit repaired using the pipe rehabilitation lining material according to [11].
 本発明によれば、50℃~80℃程度の温度域における硬化性に優れ、かつ20℃以下における貯蔵安定性に優れるラジカル重合性樹脂組成物を提供することができる。 The present invention provides a radically polymerizable resin composition that has excellent curing properties in the temperature range of about 50°C to 80°C and excellent storage stability at temperatures below 20°C.
 以下、本発明をさらに詳細に説明する。なお、本発明は以下に示す実施形態のみに限定されるものではない。 The present invention will be described in more detail below. Note that the present invention is not limited to the embodiments shown below.
 「~」は「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。「(メタ)アクリル」とはアクリルとメタクリルの総称であり、「(メタ)アクリレート」とは、アクリレートとメタクリレートの総称である。
「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く炭素原子間で形成される二重結合を意味し、「エチレン性不飽和化合物」とは、エチレン性不飽和結合を有する化合物を意味する。
The symbol "to" means greater than or equal to the value before "to" and less than or equal to the value after "to.""(Meth)acrylic" is a general term for acrylic and methacrylic, and "(meth)acrylate" is a general term for acrylate and methacrylate.
The term "ethylenically unsaturated bond" means a double bond formed between carbon atoms other than those forming an aromatic ring, and the term "ethylenically unsaturated compound" means a compound having an ethylenically unsaturated bond.
 「重量平均分子量Mw」(以下、単に「Mw」とも表記する。)および「数平均分子量Mn」(以下、単に「Mn」とも表記する。)は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求められる標準ポリスチレン換算分子量である。 The "weight average molecular weight Mw" (hereinafter also simply referred to as "Mw") and the "number average molecular weight Mn" (hereinafter also simply referred to as "Mn") are standard polystyrene equivalent molecular weights determined by gel permeation chromatography (GPC) measurements.
 [ラジカル重合性樹脂組成物]
 本発明の一実施形態に係るラジカル重合性組成物は、ラジカル重合性樹脂(A)と、エチレン性不飽和化合物(B)と、フリーラジカル含有化合物(C)と、硬化剤(D)とを含むものである。必要に応じて、本発明の一実施形態に係るラジカル重合性組成物は、さらに金属石鹸(E)、繊維基材(F)、又はその他の添加剤(G)等を含んでも良い。
[Radically polymerizable resin composition]
The radical polymerizable composition according to one embodiment of the present invention contains a radical polymerizable resin (A), an ethylenically unsaturated compound (B), a free radical-containing compound (C), and a curing agent (D). If necessary, the radical polymerizable composition according to one embodiment of the present invention may further contain a metal soap (E), a fiber base material (F), or other additives (G), etc.
 (ラジカル重合性樹脂(A))
 本実施形態に係るラジカル重合性樹脂は、分子内に1個以上のラジカル反応性官能基を有していれば、特に限定されない。
 ラジカル重合性樹脂(A)の例としては、不飽和ポリエステル樹脂(A1)、エポキシ(メタ)アクリレート樹脂(A2)、ウレタン(メタ)アクリレート樹脂(A3)が挙げられる。
 上記ラジカル重合性樹脂(A)の例中でも、硬化物の強度や耐薬品性の観点から、不飽和ポリエステル樹脂(A1)、エポキシ(メタ)アクリレート樹脂(A2)が好ましい。
(Radically Polymerizable Resin (A))
The radical polymerizable resin according to this embodiment is not particularly limited as long as it has one or more radically reactive functional groups in the molecule.
Examples of the radical polymerizable resin (A) include an unsaturated polyester resin (A1), an epoxy (meth)acrylate resin (A2), and a urethane (meth)acrylate resin (A3).
Among the above examples of the radically polymerizable resin (A), the unsaturated polyester resin (A1) and the epoxy (meth)acrylate resin (A2) are preferred from the viewpoints of strength and chemical resistance of the cured product.
 〔不飽和ポリエステル樹脂(A1)〕
 不飽和ポリエステル樹脂(A1)は、多価アルコールと不飽和多塩基酸と、必要に応じて飽和多塩基酸及び一塩基酸から選択される少なくとも一つとを重縮合させて得られるものであれば、特に限定されない。不飽和多塩基酸とは、エチレン性不飽和結合を有する多塩基酸であり、飽和多塩基酸とは、エチレン性不飽和結合を有さない多塩基酸である。不飽和ポリエステル樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
[Unsaturated polyester resin (A1)]
The unsaturated polyester resin (A1) is not particularly limited as long as it is obtained by polycondensation of a polyhydric alcohol, an unsaturated polybasic acid, and, if necessary, at least one selected from a saturated polybasic acid and a monobasic acid. The unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond, and the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond. The unsaturated polyester resin may be used alone or in combination of two or more kinds.
 <多価アルコール>
 多価アルコールは、2個以上の水酸基を有する化合物であれば特に制限はない。中でも、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、テトラエチレングリコール、ポリエチレングリコール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、水素化ビスフェノールA、ビスフェノールA、グリセリン、ビスフェノールAのエチレンオキサイド付加物及びビスフェノールAのプロピレンオキサイド付加物が好ましく、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、水素化ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物及びビスフェノールAのプロピレンオキサイド付加物がより好ましく、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコールがさらに好ましい。多価アルコールは、単独で使用してもよいし、2種以上を併用してもよい。
<Polyhydric alcohol>
The polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxyl groups. Among them, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, tetraethylene glycol, polyethylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, hydrogenated bisphenol A, bisphenol A, glycerin, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A are preferred, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A are more preferred, and propylene glycol, diethylene glycol, and neopentyl glycol are even more preferred. The polyhydric alcohol may be used alone or in combination of two or more kinds.
 <不飽和多塩基酸>
 不飽和多塩基酸は、エチレン性不飽和結合を有し、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に制限はない。例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロロマレイン酸等が挙げられる。中でも、硬化物の耐熱性及び機械的強度等の観点から、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸及びクロロマレイン酸が好ましく、無水マレイン酸及びフマル酸がより好ましい。不飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
<Unsaturated polybasic acid>
The unsaturated polybasic acid is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and having two or more carboxyl groups or its acid anhydride.For example, maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, chloromaleic acid, etc. can be mentioned.Among them, from the viewpoint of heat resistance and mechanical strength of the cured product, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and chloromaleic acid are preferred, and maleic anhydride and fumaric acid are more preferred.The unsaturated polybasic acid may be used alone or in combination of two or more kinds.
 <飽和多塩基酸>
 飽和多塩基酸は、エチレン性不飽和結合を有さず、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に制限はない。例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、ハロゲン化無水フタル酸、シュウ酸、マロン酸、アゼライン酸、グルタル酸及びヘキサヒドロ無水フタル酸等が挙げられる。中でも、硬化物の耐熱性及び機械的強度等の観点から、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、エンドメチレンテトラヒドロ無水フタル酸及びテトラヒドロ無水フタル酸が好ましく、無水フタル酸、イソフタル酸及びテレフタル酸がより好ましい。飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
<Saturated polybasic acid>
The saturated polybasic acid is not particularly limited as long as it is a compound or its acid anhydride that does not have an ethylenically unsaturated bond and has two or more carboxy groups. For example, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydrophthalic anhydride, nitrophthalic acid, tetrahydrophthalic anhydride, halogenated phthalic anhydride, oxalic acid, malonic acid, azelaic acid, glutaric acid, and hexahydrophthalic anhydride. Among them, from the viewpoint of heat resistance and mechanical strength of the cured product, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, endomethylenetetrahydrophthalic anhydride, and tetrahydrophthalic anhydride are preferred, and phthalic anhydride, isophthalic acid, and terephthalic acid are more preferred. The saturated polybasic acid may be used alone or in combination of two or more.
 <一塩基酸>
 一塩基酸としては、ジシクロペンタジエンマレート、安息香酸とその誘導体、桂皮酸とその誘導体が挙げられ、ジシクロペンタジエンマレートが好ましい。ジシクロペンタジエンマレートは、無水マレイン酸とジシクロペンタジエンから公知の方法によって合成可能である。一塩基酸を用いることで、不飽和ポリエステル樹脂の粘度を低下させることができ、スチレンの使用量を削減することができる。一塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
<Monobasic Acid>
Examples of monobasic acids include dicyclopentadiene maleate, benzoic acid and its derivatives, and cinnamic acid and its derivatives, with dicyclopentadiene maleate being preferred. Dicyclopentadiene maleate can be synthesized from maleic anhydride and dicyclopentadiene by a known method. By using a monobasic acid, the viscosity of the unsaturated polyester resin can be reduced, and the amount of styrene used can be reduced. The monobasic acid may be used alone or in combination of two or more kinds.
 不飽和ポリエステル樹脂(A1)の重量平均分子量(Mw)は、特に限定されない。不飽和ポリエステル樹脂(A1)の重量平均分子量は、好ましくは2,000~25,000であり、より好ましくは3,000~20,000であり、さらに好ましくは3,500~10,000である。重量平均分子量が2,000~25,000であれば、不飽和ポリエステル樹脂組成物の成形性がより一層良好となる。なお、本明細書において「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。
 不飽和ポリエステル樹脂(A1)の不飽和度は50~100モル%であることが好ましく、より好ましくは60~100モル%であり、さらに好ましくは70~100モル%である。不飽和度が上記範囲であると、不飽和ポリエステル樹脂(A1)を含む熱硬化性樹脂組成物の成形性がより良好となる。不飽和ポリエステル樹脂(A1)の不飽和度は、原料として用いた不飽和多塩基酸及び飽和多塩基酸のモル数を用いて、以下の式により算出可能である。ただし、不飽和多塩基酸中の不飽和基の数は1つとする。
The weight average molecular weight (Mw) of the unsaturated polyester resin (A1) is not particularly limited. The weight average molecular weight of the unsaturated polyester resin (A1) is preferably 2,000 to 25,000, more preferably 3,000 to 20,000, and even more preferably 3,500 to 10,000. If the weight average molecular weight is 2,000 to 25,000, the moldability of the unsaturated polyester resin composition becomes even better. In this specification, the "weight average molecular weight" is a standard polystyrene equivalent value measured by gel permeation chromatography (GPC).
The degree of unsaturation of the unsaturated polyester resin (A1) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%. When the degree of unsaturation is within the above range, the moldability of the thermosetting resin composition containing the unsaturated polyester resin (A1) is improved. The degree of unsaturation of the unsaturated polyester resin (A1) can be calculated by the following formula using the number of moles of the unsaturated polybasic acid and the saturated polybasic acid used as raw materials. However, the number of unsaturated groups in the unsaturated polybasic acid is one.
 不飽和度(モル%)={(不飽和多塩基酸のモル数)/(不飽和多塩基酸のモル数+飽和多塩基酸のモル数)}×100  Degree of unsaturation (mol %) = {(number of moles of unsaturated polybasic acid) / (number of moles of unsaturated polybasic acid + number of moles of saturated polybasic acid)} x 100
 不飽和ポリエステル樹脂(A1)の酸価は、特に限定されない。不飽和ポリエステル樹脂(A1)の酸価は、耐水性および耐薬品性の観点から好ましくは0~50mgKOH/gであり、より好ましくは3~40mgKOH/gであり、さらに好ましくは5~30mgKOH/gである。 The acid value of the unsaturated polyester resin (A1) is not particularly limited. From the viewpoint of water resistance and chemical resistance, the acid value of the unsaturated polyester resin (A1) is preferably 0 to 50 mgKOH/g, more preferably 3 to 40 mgKOH/g, and even more preferably 5 to 30 mgKOH/g.
 不飽和ポリエステル樹脂(A1)は、例えば上記の原料を用いてポリエステル樹脂ハンドブック(日刊工業新聞、1988年発行)に記載の方法で合成することができる。不飽和ポリエステル樹脂(A1)の合成における各種条件は、使用する原料及びその量に応じて適宜設定することができる。一般的に、窒素ガス等の不活性ガス気流中、140~230℃の温度にて加圧又は減圧下でのエステル化反応を用いることができる。エステル化反応では、必要に応じてエステル化触媒を使用することができる。エステル化触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛及び酢酸コバルト等の公知の触媒が挙げられる。エステル化触媒は、単独で使用してもよいし、2種以上を併用してもよい。 Unsaturated polyester resin (A1) can be synthesized, for example, using the above-mentioned raw materials by the method described in the Polyester Resin Handbook (published by Nikkan Kogyo Shimbun in 1988). Various conditions in the synthesis of unsaturated polyester resin (A1) can be set appropriately depending on the raw materials used and their amounts. In general, an esterification reaction can be carried out in a stream of an inert gas such as nitrogen gas at a temperature of 140 to 230°C under pressure or reduced pressure. In the esterification reaction, an esterification catalyst can be used as necessary. Examples of the esterification catalyst include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. The esterification catalysts may be used alone or in combination of two or more types.
 不飽和ポリエステル樹脂(A1)の合成の一例として、例えば、上記反応条件でエステル化反応が行い、酸価が5~30mgKOH/gとなった時点で反応を終える方法が挙げられる。この例では、反応終了の時点で未反応モノマーを含んでいてもよい。 As an example of the synthesis of the unsaturated polyester resin (A1), for example, an esterification reaction is carried out under the above reaction conditions, and the reaction is terminated when the acid value reaches 5 to 30 mg KOH/g. In this example, the resin may contain unreacted monomers at the end of the reaction.
 前記不飽和ポリエステル樹脂(A1)の市販品としては、例えば、昭和電工株式会社製「リゴラック(登録商標)」等が挙げられる。 An example of a commercially available product of the unsaturated polyester resin (A1) is "Rigolac (registered trademark)" manufactured by Showa Denko K.K.
 〔エポキシ(メタ)アクリレート樹脂(A2)〕
 エポキシ(メタ)アクリレート樹脂(A2)としては、一般的には、エポキシ基とカルボキシ基との開環反応によって得られるエチレン性不飽和結合を有する化合物である。前記エポキシ基が、2個以上のエポキシ基を有するエポキシ化合物(a)中のエポキシ基であり、前記カルボキシ基が、エチレン性不飽和結合及びカルボキシ基を有する不飽和一塩基酸(b)のカルボキシ基である。不飽和一塩基酸とは、エチレン性不飽和結合を有する一塩基酸である。このようなエポキシ(メタ)アクリレート樹脂(A2)は、例えば、昭和電工株式会社製「リポキシ(登録商標)」等が挙げられる。エポキシ(メタ)アクリレート樹脂は、単独で使用してもよいし、2種以上を併用してもよい。
[Epoxy (meth)acrylate resin (A2)]
The epoxy (meth)acrylate resin (A2) is generally a compound having an ethylenically unsaturated bond obtained by a ring-opening reaction between an epoxy group and a carboxy group. The epoxy group is an epoxy group in an epoxy compound (a) having two or more epoxy groups, and the carboxy group is a carboxy group of an unsaturated monobasic acid (b) having an ethylenically unsaturated bond and a carboxy group. The unsaturated monobasic acid is a monobasic acid having an ethylenically unsaturated bond. Examples of such epoxy (meth)acrylate resins (A2) include "Lipoxy (registered trademark)" manufactured by Showa Denko K.K. The epoxy (meth)acrylate resins may be used alone or in combination of two or more kinds.
 エポキシ(メタ)アクリレート樹脂(A2)の酸価は特に限定されない。エポキシ(メタ)アクリレート樹脂(A2)の酸価は、耐薬品性および耐水性の観点から好ましくは0~50mgKOH/gであり、より好ましくは0~40mgKOH/gであり、さらに好ましくは0~30mg/gである。
 エポキシ(メタ)アクリレート樹脂(A2)の重量平均分子量は特に限定されない。エポキシ(メタ)アクリレート樹脂(A2)の重量平均分子量は、好ましくは700~30,000であり、より好ましくは700~20,000であり、さらに好ましくは700~15,000である。
The acid value of the epoxy (meth)acrylate resin (A2) is not particularly limited. From the viewpoints of chemical resistance and water resistance, the acid value of the epoxy (meth)acrylate resin (A2) is preferably 0 to 50 mgKOH/g, more preferably 0 to 40 mgKOH/g, and even more preferably 0 to 30 mgKOH/g.
The weight average molecular weight of the epoxy (meth)acrylate resin (A2) is not particularly limited. The weight average molecular weight of the epoxy (meth)acrylate resin (A2) is preferably 700 to 30,000, more preferably 700 to 20,000, and even more preferably 700 to 15,000.
 <エポキシ化合物>
 エポキシ化合物は、2個以上のエポキシ基を有する化合物であれば特に制限はない。例えば、ビスフェノール型エポキシ樹脂、水素化ビスフェノール型エポキシ樹脂、及びノボラックフェノール型エポキシ樹脂から選択される少なくとも1種を使用することができる。このようなエポキシ樹脂は、硬化物の機械的強度及び耐食性をより向上させることができる。
 ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS及びテトラブロモビスフェノールA等のビスフェノールと、エピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるもの、或いは、ビスフェノールAのグリシジルエーテルと、上記ビスフェノール化合物の縮合物と、エピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるものが挙げられる。
 水素化ビスフェノール型エポキシ樹脂としては、例えば、水素化ビスフェノールAのグリシジルエーテルと、ビスフェノールA、ビスフェノールF、ビスフェノールS及びテトラブロモビスフェノールA等のビスフェノール化合物とを反応させて得られるものが挙げられる。
 ノボラックフェノール型エポキシ樹脂としては、例えば、フェノールノボラック又はクレゾールノボラックと、エピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるものが挙げられる。
 エポキシ樹脂の中でも、耐薬品性の観点からビスフェノール型エポキシ樹脂が好ましく、ビスフェノールAエポキシ樹脂がより好ましい。
<Epoxy Compound>
The epoxy compound is not particularly limited as long as it has two or more epoxy groups. For example, at least one selected from bisphenol type epoxy resin, hydrogenated bisphenol type epoxy resin, and novolac phenol type epoxy resin can be used. Such epoxy resin can further improve the mechanical strength and corrosion resistance of the cured product.
Examples of bisphenol type epoxy resins include those obtained by reacting a bisphenol such as bisphenol A, bisphenol F, bisphenol S, or tetrabromobisphenol A with epichlorohydrin or methylepichlorohydrin, and those obtained by reacting a glycidyl ether of bisphenol A, a condensate of the above bisphenol compound, and epichlorohydrin or methylepichlorohydrin.
Examples of hydrogenated bisphenol type epoxy resins include those obtained by reacting a glycidyl ether of hydrogenated bisphenol A with a bisphenol compound such as bisphenol A, bisphenol F, bisphenol S, and tetrabromobisphenol A.
Examples of novolak phenol type epoxy resins include those obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
Among the epoxy resins, bisphenol type epoxy resins are preferred from the viewpoint of chemical resistance, and bisphenol A epoxy resins are more preferred.
 <不飽和一塩基酸>
 不飽和一塩基酸としては、エチレン性不飽和結合を有するモノカルボン酸であれば、特に制限はない。例えば、アクリル酸、メタクリル酸、クロトン酸、及び桂皮酸から選択される少なくとも一種であることが好ましく、アクリル酸又はメタクリル酸であることがより好ましく、アクリル酸がさらに好ましい。(メタ)アクリル酸から選択される少なくとも一種とエポキシ樹脂との反応により得られるエポキシ(メタ)アクリレート樹脂(A2)は、酸及びアルカリに対する高い耐加水分解性を有するため、硬化物の耐食性をより向上させることができる。
 エポキシ化合物及び不飽和一塩基酸を開環反応させる際の不飽和一塩基酸の使用量は、エポキシ化合物のエポキシ基1当量に対し、0.3~1.5当量であることが好ましく、0.4~1.2当量であることがより好ましく、0.5~1.0当量であることが特に好ましい。不飽和一塩基酸の使用量が、エポキシ化合物のエポキシ基1当量に対して0.3~1.5当量の範囲であれば、エポキシ(メタ)アクリレート樹脂(A2)を含む熱硬化性樹脂組成物のラジカル重合反応により、十分な硬度を有する硬化物を得ることができる。
 エポキシ(メタ)アクリレート樹脂(A2)は、公知の合成方法により合成することができる。例えば、エステル化触媒の存在下、エポキシ化合物及び不飽和一塩基酸を必要に応じて溶剤に溶解させて、70~150℃、好ましくは80~140℃、さらに好ましくは90~130℃で反応させる方法が挙げられる。
 前記エポキシ(メタ)アクリレート樹脂(A2)の市販品としては、特に限定されるものではないが、例えば、昭和電工株式会社製「リポキシ(登録商標)」等が挙げられる。
 なお、エポキシ(メタ)アクリレート樹脂(A2)を合成した後の未反応の不飽和一塩基酸は、後述するエチレン性不飽和化合物(B)とみなす。
<Unsaturated monobasic acid>
The unsaturated monobasic acid is not particularly limited as long as it is a monocarboxylic acid having an ethylenic unsaturated bond.For example, it is preferably at least one selected from acrylic acid, methacrylic acid, crotonic acid, and cinnamic acid, more preferably acrylic acid or methacrylic acid, and even more preferably acrylic acid.The epoxy (meth)acrylate resin (A2) obtained by reacting at least one selected from (meth)acrylic acid with an epoxy resin has high hydrolysis resistance against acid and alkali, and can further improve the corrosion resistance of the cured product.
The amount of the unsaturated monobasic acid used when the epoxy compound and the unsaturated monobasic acid are subjected to a ring-opening reaction is preferably 0.3 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the epoxy compound, more preferably 0.4 to 1.2 equivalents, and particularly preferably 0.5 to 1.0 equivalents. When the amount of the unsaturated monobasic acid used is within the range of 0.3 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the epoxy compound, a cured product having sufficient hardness can be obtained by the radical polymerization reaction of the thermosetting resin composition containing the epoxy (meth)acrylate resin (A2).
The epoxy (meth)acrylate resin (A2) can be synthesized by a known synthesis method, for example, a method in which an epoxy compound and an unsaturated monobasic acid are dissolved in a solvent as necessary in the presence of an esterification catalyst and reacted at 70 to 150° C., preferably 80 to 140° C., and more preferably 90 to 130° C.
The commercially available epoxy (meth)acrylate resin (A2) is not particularly limited, but examples thereof include "Lipoxy (registered trademark)" manufactured by Showa Denko KK and the like.
Incidentally, the unreacted unsaturated monobasic acid remaining after synthesis of the epoxy (meth)acrylate resin (A2) is regarded as an ethylenically unsaturated compound (B) described below.
 〔ウレタン(メタ)アクリレート樹脂(A3)〕
 ウレタン(メタ)アクリレート樹脂としては、例えば、多価イソシアネートと多価アルコールとを反応させて得られるポリウレタンの両末端の水酸基又はイソシアナト基に対して、(メタ)アクリル酸を反応させて得られた樹脂を用いることができる。
 ウレタン(メタ)アクリレート樹脂は、単独でも、2種以上を組み合わせて用いてもよい。
[Urethane (meth)acrylate resin (A3)]
As the urethane (meth)acrylate resin, for example, a resin obtained by reacting hydroxyl groups or isocyanato groups at both ends of a polyurethane obtained by reacting a polyisocyanate with a polyhydric alcohol with (meth)acrylic acid can be used.
The urethane (meth)acrylate resins may be used alone or in combination of two or more kinds.
 (エチレン性不飽和化合物(B))
 本実施形態に係るエチレン性不飽和化合物は、分子内に1個以上のエチレン性不飽和結合を有している化合物であれば、特に限定されない。
 エチレン性不飽和化合物(B)の例としては、スチレン、スチレンのα-、o-、m-、p-アルキル誘導体、スチレンのニトロ、シアノ、アミド又はエステル誘導体、メトキシスチレン、ジビニルベンゼン、ビニルナフタレン、アセナフチレン等の芳香族ビニル化合物;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレン等のジエン化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリレート;(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジイソプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド;シトラコン酸ジエチル等の不飽和ジカルボン酸ジエステル;N-フェニルマレイミド等のモノマレイミド化合物;N-(メタ)アクリロイルフタルイミド等が挙げられる。スチレンのα-、о-、m-、p-アルキル誘導体の例としては、ビニルトルエン、t-ブチルスチレン等が挙げられる。
 前記エチレン性不飽和化合物(B)は、1種単独で使用してもよいし、2種以上を併用してもよい。
 エチレン性不飽和化合物(B)としては、スチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートが好ましく、スチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートがより好ましく、スチレン、フェノキシエチル(メタ)アクリレートがさらに好ましい。
 エチレン性不飽和化合物(B)の含有量は、ラジカル重合性樹脂(A)及びエチレン性不飽和化合物(B)の合計に対し好ましくは10~95質量%であり、より好ましくは30~75質量%であり、さらに好ましくは40~60質量%である。エチレン性不飽和化合物(B)の含有量が、ラジカル重合性樹脂(A)及びエチレン性不飽和化合物(B)の合計に対し10~95質量%であれば、硬化物の機械的強度をより高めることができる。
(Ethylenically Unsaturated Compound (B))
The ethylenically unsaturated compound according to the present embodiment is not particularly limited as long as it is a compound having one or more ethylenically unsaturated bonds in the molecule.
Examples of the ethylenically unsaturated compound (B) include aromatic vinyl compounds such as styrene, α-, o-, m-, and p-alkyl derivatives of styrene, nitro, cyano, amide, or ester derivatives of styrene, methoxystyrene, divinylbenzene, vinylnaphthalene, and acenaphthylene; diene compounds such as butadiene, 2,3-dimethylbutadiene, isoprene, and chloroprene; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, furfuryl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, and the like. Examples of the (meth)acrylates include t-acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, allyl (meth)acrylate, isobornyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and the like; (meth)acrylamides such as (meth)acrylamide, N,N'-dimethyl (meth)acrylamide, and N,N'-diisopropyl (meth)acrylamide, and the like; unsaturated dicarboxylic acid diesters such as diethyl citraconic acid, and the like; monomaleimide compounds such as N-phenylmaleimide, and the like; and N-(meth)acryloylphthalimide, and the like. Examples of the α-, o-, m-, and p-alkyl derivatives of styrene include vinyl toluene and t-butyl styrene.
The ethylenically unsaturated compound (B) may be used alone or in combination of two or more kinds.
As the ethylenically unsaturated compound (B), styrene, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and neopentyl glycol di(meth)acrylate are preferred, styrene, methyl (meth)acrylate, ethyl (meth)acrylate, phenoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and neopentyl glycol di(meth)acrylate are more preferred, and styrene and phenoxyethyl (meth)acrylate are even more preferred.
The content of the ethylenically unsaturated compound (B) is preferably 10 to 95% by mass, more preferably 30 to 75% by mass, and even more preferably 40 to 60% by mass, based on the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B). If the content of the ethylenically unsaturated compound (B) is 10 to 95% by mass based on the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B), the mechanical strength of the cured product can be further increased.
 (フリーラジカル含有化合物(C))
 本実施形態に係るフリーラジカル含有化合物(C)は、分子内に1個以上の空気中で安定してラジカルを有している化合物であれば、特に限定されない。
 フリーラジカル含有化合物(C)の例としては、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)及びその類縁体(Structural analog)、2,2,5,5-テトラメチルピロリジン-1-オキシル及びその類縁体、ジブチルヒドロキシトルエン(BHT)、ターシャリーブチルヒドロキノン(TBHQ)、1,1-ジフェニル-2-ピクリルヒドラジル、ガルビノキシルフリーラジカル、2-ヒドロキシ-2-アザアダマンタン等が挙げられる。
 2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)の類縁体としては、4-グリシジルオキシー2,2,6,6-テトラメチルピペリジン-1-オキシル、4-イソチオシアネート-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アミノ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-(2-ヨードアセトアミド)-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-[2-[2-(4-ヨードフェノキシ)エトキシ]カルボニル]ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-カルボキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-シアノ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルベンゾエート、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-1-オキシル、2,2,6,6-テトラメチル-4-(2-プロピニルオキシ)ピぺリジン-1-オキシル、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、等が挙げられる。2,2,5,5-テトラメチルピロリジン-1-オキシルの類縁体としては、16-ドキシル-ステアリン酸、3-カルボキシ-2,2,5,5-テトラメチルピロリジン-1-オキシルが挙げられる。
(Free Radical-Containing Compound (C))
The free radical-containing compound (C) according to the present embodiment is not particularly limited as long as it is a compound having one or more radicals in the molecule that are stable in air.
Examples of the free radical-containing compound (C) include 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its analogues (structural analogs), 2,2,5,5-tetramethylpyrrolidine-1-oxyl and its analogues, dibutylhydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), 1,1-diphenyl-2-picrylhydrazyl, galvinoxyl free radical, 2-hydroxy-2-azaadamantane, and the like.
Examples of analogues of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) include 4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-isothiocyanate-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and 4-[2-[2-(4-iodophenoxy)ethoxy]carbonyl]benzoyl Oxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-carboxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-cyano-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl benzoate, 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl, 2,2,6,6-tetramethyl-4-(2-propynyloxy)piperidine-1-oxyl, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and the like. Analogs of 2,2,5,5-tetramethylpyrrolidine-1-oxyl include 16-doxyl-stearic acid and 3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl.
 上記フリーラジカル含有化合物(C)の例中でも、入手容易性の観点から、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、4-グリシジルオキシー2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、2-ヒドロキシ-2-アザアダマンタン、1,1-ジフェニル-2-ピクリルヒドラジル、ジブチルヒドロキシトルエン(BHT)、ターシャリーブチルヒドロキノン(TBHQ)が好ましく、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、ジブチルヒドロキシトルエン(BHT)、ターシャリーブチルヒドロキノン(TBHQ)がより好ましく、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、ジブチルヒドロキシトルエン(BHT)、ターシャリーブチルヒドロキノン(TBHQ)がさらに好ましい。
 前記フリーラジカル含有化合物(C)は、1種単独で使用してもよいし、2種以上を併用してもよい。
Among the examples of the free radical-containing compound (C), from the viewpoint of availability, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 2-hydroxy-2-azaadamantane, 1,1-diphenyl-2-picrylhydrazyl, dibutylhydroxytoluene, etc. are particularly preferred. Preferred are 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, dibutylhydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ), more preferred are 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, dibutylhydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ), even more preferred are 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, dibutylhydroxytoluene (BHT), and tertiary butylhydroquinone (TBHQ).
The free radical-containing compound (C) may be used alone or in combination of two or more kinds.
 フリーラジカル含有化合物(C)の含有量は、ラジカル重合性樹脂(A)とエチレン性不飽和化合物(B)の合計100質量部に対して、0.005~1.000質量部が好ましく、より好ましくは0.005~0.500質量部であり、さらに好ましくは0.005~0.100質量部である。
 フリーラジカル含有化合物(C)の含有量が、0.005質量部以上1.000質量部以下であれば中温域での硬化性を保ちつつ、20℃以下における可使時間を長く保つことが可能である。
The content of the free radical-containing compound (C) is preferably 0.005 to 1.000 parts by mass, more preferably 0.005 to 0.500 parts by mass, and even more preferably 0.005 to 0.100 parts by mass, relative to 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
When the content of the free radical-containing compound (C) is 0.005 parts by mass or more and 1.000 parts by mass or less, it is possible to maintain a long pot life at 20° C. or less while maintaining curability in the medium temperature range.
 (硬化剤(D))
 本実施形態に係る硬化剤は、分子内に1つ以上の過酸化結合を有しており、10時間半減期温度が40℃以上120℃以下の化合物であれば、特に限定されない。
 10時間半減期温度が40℃以上であると貯蔵安定性が良好であり、10時間半減期温度が120℃以下であると、樹脂組成物の硬化性が良好である。
 10時間半減期温度の測定法としては、ベンゼンを溶媒に用い0.1mol/Lの硬化剤溶液を調整し、任意の温度で熱分解させることで、10時間で有機過酸化物が半減するときの温度を測定することができる。
 硬化剤(D)の例としては、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイドが挙げられる。
 上記硬化剤(D)の例中でも、硬化性の観点から、ジラウロイルパーオキサイド、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-アミルペルオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシベンゾエートが好ましく、ビス(4-tert-ブチルシクロヘキシル)パーオキシドカーボネート(例えば、パーロイルTCP(日油株式会社製))、tert-ヘキシルパーオキシ-2-エチルヘキサネート(例えば、パーキュアHO(N)(日油株式会社製))、tert-ブチルパーオキシベンゾエート(例えば、パーブチルZ(日油株式会社製))がより好ましい。
 前記硬化剤(D)は、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記硬化剤(D)の含有量は、ラジカル重合性樹脂(A)とエチレン性不飽和化合物(B)の合計100質量部に対して、0.5~5.0質量部が好ましく、より好ましくは1.0~5.0質量部であり、さらに好ましくは1.0~3.0質量部である。
 前記硬化剤(D)の含有量が、ラジカル重合性樹脂(A)とエチレン性不飽和化合物(B)の合計100質量部に対して、0.5質量部以上5.0質量部以下であれば、中温域での硬化性を保ちつつ、20℃以下における可使時間を長く保つことが可能である。
(Curing Agent (D))
The curing agent according to the present embodiment is not particularly limited as long as it is a compound having one or more peroxide bonds in the molecule and a 10-hour half-life temperature of 40° C. or higher and 120° C. or lower.
When the 10-hour half-life temperature is 40° C. or higher, the storage stability is good, and when the 10-hour half-life temperature is 120° C. or lower, the curability of the resin composition is good.
The 10-hour half-life temperature can be measured by preparing a 0.1 mol/L curing agent solution using benzene as a solvent and thermally decomposing it at an arbitrary temperature, thereby measuring the temperature at which the organic peroxide is reduced by half in 10 hours.
Examples of the curing agent (D) include diacyl peroxides, peroxydicarbonates, peroxy esters, peroxy ketals, and dialkyl peroxides.
Among the examples of the curing agent (D), from the viewpoint of curability, dilauroyl peroxide, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amylperoxy-2-ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxy-2-ethylhexanoate, and tert-butylperoxybenzoate are preferred, and bis(4-tert-butylcyclohexyl)peroxide carbonate (e.g., Peroyl TCP (manufactured by NOF Corporation)), tert-hexylperoxy-2-ethylhexanate (e.g., Percure HO(N) (manufactured by NOF Corporation)), and tert-butylperoxybenzoate (e.g., Perbutyl Z (manufactured by NOF Corporation)) are more preferred.
The curing agent (D) may be used alone or in combination of two or more kinds.
The content of the curing agent (D) is preferably 0.5 to 5.0 parts by mass, more preferably 1.0 to 5.0 parts by mass, and even more preferably 1.0 to 3.0 parts by mass, relative to 100 parts by mass in total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
When the content of the curing agent (D) is 0.5 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass in total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B), it is possible to maintain a long pot life at 20° C. or less while maintaining the curability in the medium temperature range.
 (金属石鹸(E))
 本実施形態に係る金属石鹸は、金属と長鎖脂肪酸又は長鎖脂肪酸以外の有機酸との塩であれば、特に限定されない。
 長鎖脂肪酸の例としては、例えば、炭素数7~30の脂肪酸が好ましい。具体的には、ヘプタン酸、2-エチルヘキサン酸等のオクタン酸、ノナン酸、デカン酸、ネオデカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、エイコサン酸、ドコサン酸、テトラコサン酸、ヘキサコサン酸、オクタコサン酸、トリアコンタン酸、ナフテン酸等の鎖状又は環状の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸などが挙げられる。
(Metal soap (E))
The metal soap according to the present embodiment is not particularly limited as long as it is a salt of a metal and a long-chain fatty acid or an organic acid other than a long-chain fatty acid.
Examples of long-chain fatty acids include, for example, fatty acids having 7 to 30 carbon atoms. Specific examples of such fatty acids include linear or cyclic saturated fatty acids such as octanoic acids, such as heptanoic acid and 2-ethylhexanoic acid, nonanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, octacosanoic acid, triacontanoic acid, and naphthenic acid, and unsaturated fatty acids, such as oleic acid, linoleic acid, and linolenic acid.
 また、長鎖脂肪酸以外の有機酸に特に制限はないが、カルボキシ基、ヒドロキシ基、エノール基を有する弱酸の化合物であって有機溶剤に溶けるものが好ましい。
 金属石鹸(E)に含まれる金属としては、クロム、マンガン、鉄、コバルト、ニッケル、及び銅が好ましく、マンガン、鉄、コバルトがより好ましく、コバルトがさらに好ましい。
 具体的な金属石鹸(E)としては、オクチル酸マンガン、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸バリウム、バナジウムアセチルアセトナート、コバルトアセチルアセトナート、及び鉄アセチルアセトナートが挙げられる。
 金属石鹸(E)としては、オクチル酸マンガン、オクチル酸コバルト、及びナフテン酸コバルト等が好ましく、オクチル酸マンガン、オクチル酸コバルトがより好ましく、オクチル酸コバルトがさらに好ましい。
In addition, the organic acid other than the long-chain fatty acid is not particularly limited, but it is preferable that the organic acid is a weak acid compound having a carboxy group, a hydroxy group, or an enol group, and is soluble in an organic solvent.
The metal contained in the metal soap (E) is preferably chromium, manganese, iron, cobalt, nickel, or copper, more preferably manganese, iron, or cobalt, and even more preferably cobalt.
Specific examples of the metal soap (E) include manganese octylate, cobalt octylate, zinc octylate, vanadium octylate, cobalt naphthenate, copper naphthenate, barium naphthenate, vanadium acetylacetonate, cobalt acetylacetonate, and iron acetylacetonate.
As the metal soap (E), manganese octylate, cobalt octylate, cobalt naphthenate, and the like are preferred, manganese octylate and cobalt octylate are more preferred, and cobalt octylate is even more preferred.
 金属石鹸(E)は、1種単独で使用してもよいし、2種以上を併用してもよい。
 金属石鹸(E)の含有量は、硬化剤(D)の合計100質量部に対して、好ましくは0~5.0質量部であり、より好ましくは0~3.0質量部であり、さらに好ましくは0~2.0質量部である。
 金属石鹸(E)の含有量が、硬化剤(D)の合計100質量部に対し、上記範囲であれば、50℃の中温域において該樹脂組成物をより一層容易に硬化させることが可能である。
The metal soap (E) may be used alone or in combination of two or more kinds.
The content of the metal soap (E) is preferably 0 to 5.0 parts by mass, more preferably 0 to 3.0 parts by mass, and even more preferably 0 to 2.0 parts by mass, based on 100 parts by mass in total of the curing agent (D).
When the content of the metal soap (E) is within the above range relative to 100 parts by mass of the total of the curing agent (D), the resin composition can be cured more easily in the medium temperature range of 50°C.
 (繊維基材(F))
 本実施形態のラジカル重合性樹脂組成物は、使用目的や用途等に応じて、必要により、繊維基材(F)を含んでもよい。本実施形態に係る繊維基材は、アミド、ナイロン、アラミド、ビニロン、ポリエステル及びフェノール樹脂等の合成繊維、炭素繊維、ガラス繊維、金属繊維、セラミックス繊維等の強化繊維また、これらの複合繊維が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、アラミド繊維、炭素繊維及びガラス繊維が好ましく、強度や硬度、入手容易性、価格等の観点から、ガラス繊維がより好ましい。
 繊維基材(F)の形態としては、例えば、シート、チョップ度ストランド、チョップ、ミドルファイバー等が挙げられる。シートとしては、例えば、複数の強化繊維を一方向に引き揃えて形成したもの、平織りや綾織等の二方向織物多軸織物、ノンクリンプ織物、不織布、マット、ニット、組紐、強化繊維等を抄紙した紙等が挙げられる。シートの厚さは、樹脂組成物の含浸性の観点から、例えば、単層の場合、好ましくは0.01~5mm、また、複数層積層されている場合は、合計の厚さが、好ましくは1~20mm、より好ましくは1~15mmである。
(Fiber base material (F))
The radical polymerizable resin composition of the present embodiment may contain a fiber substrate (F) as necessary depending on the purpose of use, application, etc. The fiber substrate according to the present embodiment may include synthetic fibers such as amide, nylon, aramid, vinylon, polyester, and phenolic resin, reinforcing fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers, and composite fibers thereof. These may be used alone or in combination of two or more.
Among these, aramid fiber, carbon fiber and glass fiber are preferred, and glass fiber is more preferred from the standpoints of strength, hardness, availability, price and the like.
Examples of the form of the fiber substrate (F) include sheets, chopped strands, chopped, and middle fibers. Examples of the sheet include those formed by aligning a plurality of reinforcing fibers in one direction, bidirectional woven fabrics such as plain weave and twill weave, non-crimp woven fabrics, nonwoven fabrics, mats, knits, braids, and paper made from reinforcing fibers. From the viewpoint of impregnation with the resin composition, the thickness of the sheet is, for example, preferably 0.01 to 5 mm in the case of a single layer, and when multiple layers are laminated, the total thickness is preferably 1 to 20 mm, more preferably 1 to 15 mm.
 繊維基材(F)の形状としては、円筒形状、シート状、テープ状等が挙げられる。
 繊維基材(F)が円筒形状の場合、円筒形状に継ぎ目なく編み込まれた形態や、シート状、テープ状の基材を一部重ね合わせて円筒形状とし、重ね合わせた部分を接着剤で接着したり、糸で縫い合わせたり、ニードルパンチでつなぎ合わせたりした形態が挙げられる。
 円筒形状の繊維基材(F)を用いる場合、繊維基材(F)の直径は、更生する管の内径と同じであることが好ましい。
 シート状の基材を用いる場合、ライニング材製造時のシートの重ね合わせ(のりしろ)を加味して、更生する管の内側の円周より、シートの短辺の長さが若干大きいことが好ましい。
 テープ状の基材を用いる場合には、特に限定されないが、更生する管の内側の円周の1/8~1/3の幅であることが好ましい。
The shape of the fiber base material (F) may be a cylinder, a sheet, a tape, or the like.
When the fiber base material (F) has a cylindrical shape, examples of the shape include a shape in which it is seamlessly woven into a cylindrical shape, and a shape in which sheet-like or tape-like base materials are partially overlapped to form a cylindrical shape, and the overlapped parts are bonded with an adhesive, sewn together with thread, or connected by needle punching.
When a cylindrical fiber base material (F) is used, the diameter of the fiber base material (F) is preferably the same as the inner diameter of the pipe to be rehabilitated.
When using a sheet-like substrate, it is preferable that the length of the short side of the sheet is slightly longer than the inner circumference of the pipe to be rehabilitated, taking into account the overlap (glue) of the sheets when manufacturing the lining material.
When a tape-like substrate is used, although there are no particular limitations, it is preferable that the width be 1/8 to 1/3 of the inner circumference of the pipe to be rehabilitated.
 (添加剤(G))
 本実施形態のラジカル重合性樹脂組成物は、使用目的や用途等に応じて、必要により、着色剤、カップリング剤、界面活性剤、ワックス、揺変剤等の各種添加剤(G)を含んでもよい。
 添加剤の含有量は、ラジカル重合性樹脂組成物の硬化性能及び保存安定性に影響を及ぼさない範囲内おいて、製造する該樹脂組成物の硬化物の所望の物性に応じて適宜調整することができる。添加剤の合計含有量は、ラジカル重合性成分の合計100質量部に対して、0.1~700質量部であることが好ましく、より好ましくは0.1~500質量部、さらに好ましくは0.1~300質量部である。
(Additive (G))
The radical polymerizable resin composition of the present embodiment may contain various additives (G) such as a colorant, a coupling agent, a surfactant, a wax, a thixotropic agent, etc., as necessary depending on the intended use or application.
The content of the additives can be appropriately adjusted according to the desired physical properties of the cured product of the resin composition to be produced, within a range that does not affect the curing performance and storage stability of the radical polymerizable resin composition. The total content of the additives is preferably 0.1 to 700 parts by mass, more preferably 0.1 to 500 parts by mass, and even more preferably 0.1 to 300 parts by mass, relative to 100 parts by mass of the total of the radical polymerizable components.
 (溶剤(H))
 溶剤(H)は、ラジカル重合性樹脂組成物中の各含有成分を均一に混合する観点から、必要に応じて用いられるものである。その含有量は、特に限定されるものではなく、使用時の取り扱い性等に応じて適宜調整することができる。溶剤(H)の種類は、樹脂の種類や使用用途等に応じて、ラジカル重合性樹脂組成物の硬化性能及び保存安定性に影響を及ぼさない範囲内で適宜選択されるものである。例えば、脂肪族炭化水素、芳香族炭化水素、エーテル、ケトン、エステル、鎖状炭酸エステル等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。
 具体的には、脂肪族炭化水素としては、シクロヘキサン、n-ヘキサン、ホワイトスピリット、無臭ミネラルスピリット等のミネラルスピリット等が挙げられる。芳香族炭化水素としては、ナフテン、ナフテンとパラフィンとの混合物、ベンゼン、トルエン、キノリン等が挙げられる。エーテルとしては、ジエチルエーテル、ジイソプロピルエーテル等が挙げられる。ケトンとしては、アセトン、メチルエチルケトン、シクロヘキサノン等が挙げられる。エステルとしては、酢酸エチル、酢酸ブチル、マロン酸ジエチル、コハク酸ジエチル、コハク酸ジブチル、マレイン酸ジブチル、2,2,4-トリメチルペンタンジオールジイソブチレート、ケトグルタル酸のモノ及びジエステル、ピルベート、パルミテート、アスコルビン酸のモノ及びジエステル等が挙げられる。鎖状炭酸エステルとしては、炭酸ジメチル、炭酸ジエチル等が挙げられる。その他、1,2-ジオキシム類、N-メチルピロリドン、1-エチル-2-ピロリジノン、N,N-ジメチルホルムアミド等も用いることができる。
 溶剤(H)は、市販のラジカル重合性樹脂(A)やエチレン性不飽和化合物(B)の製品中に含まれている場合もある。
(Solvent (H))
The solvent (H) is used as necessary from the viewpoint of uniformly mixing each component contained in the radical polymerizable resin composition. The content is not particularly limited, and can be appropriately adjusted according to the handling property during use. The type of the solvent (H) is appropriately selected within a range that does not affect the curing performance and storage stability of the radical polymerizable resin composition according to the type of resin and the use purpose. For example, aliphatic hydrocarbons, aromatic hydrocarbons, ethers, ketones, esters, chain carbonates, etc. can be mentioned. These may be used alone or in combination of two or more.
Specifically, examples of aliphatic hydrocarbons include cyclohexane, n-hexane, white spirits, and mineral spirits such as odorless mineral spirits. Examples of aromatic hydrocarbons include naphthene, a mixture of naphthene and paraffin, benzene, toluene, and quinoline. Examples of ethers include diethyl ether and diisopropyl ether. Examples of ketones include acetone, methyl ethyl ketone, and cyclohexanone. Examples of esters include ethyl acetate, butyl acetate, diethyl malonate, diethyl succinate, dibutyl succinate, dibutyl maleate, 2,2,4-trimethylpentanediol diisobutyrate, mono- and diesters of ketoglutaric acid, pyruvate, palmitate, and mono- and diesters of ascorbic acid. Examples of chain carbonate esters include dimethyl carbonate and diethyl carbonate. In addition, 1,2-dioximes, N-methylpyrrolidone, 1-ethyl-2-pyrrolidinone, and N,N-dimethylformamide can also be used.
The solvent (H) may be contained in commercially available products of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
 [ラジカル重合性樹脂組成物の製造方法]
 本実施形態のラジカル重合性樹脂組成物は、例えば、上記(A)~(D)の各成分、必要に応じて(E)、(F)、(G)、又は(H)の各成分を1つ又は複数を混練する方法により製造することができる。混練方法としては特に制限はなく、例えば、双腕式ニーダー、加圧式ニーダー、プラネタリーミキサー、ディスパー等を用いることができる。混練温度は-10℃~40℃が好ましく、0℃~40℃がより好ましく、20℃~40℃が最も好ましい。混練温度が-10℃以上であれば、混練性がより向上する。混練温度が40℃以下であれば、ラジカル重合性樹脂組成物の混練中の硬化反応をより抑制することができる。混練時間は各成分及びその比率に応じて適宜選択することができる。
 本実施形態のラジカル重合性樹脂組成物を製造する際の各成分を混練する順番については特に制限はない。例えば、ラジカル重合性樹脂(A)とエチレン性不飽和化合物(B)の一部または全部を混合してからほかの成分を混合すると、均一に混合されたラジカル重合性樹脂組成物が得られやすいため好ましい。
 混練の際、上述したように、各配合成分を均一に混合する観点から、適宜溶剤を用いてもよい。
 また、ラジカル重合性樹脂(A)としては、合成後で単離せず、未反応モノマーを含む合成液を使用してもよい。すなわち、ラジカル重合性樹脂組成物の一例では、ラジカル重合性樹脂(A)を合成する原料である未反応モノマーを含んでもよい。
[Method for producing radically polymerizable resin composition]
The radical polymerizable resin composition of the present embodiment can be produced, for example, by a method of kneading one or more of the above components (A) to (D), and, if necessary, each of the components (E), (F), (G), or (H). There is no particular limitation on the kneading method, and for example, a twin-arm kneader, a pressure kneader, a planetary mixer, a disperser, or the like can be used. The kneading temperature is preferably -10°C to 40°C, more preferably 0°C to 40°C, and most preferably 20°C to 40°C. If the kneading temperature is -10°C or higher, the kneadability is further improved. If the kneading temperature is 40°C or lower, the curing reaction during kneading of the radical polymerizable resin composition can be further suppressed. The kneading time can be appropriately selected according to each component and its ratio.
The order of mixing the components when producing the radical polymerizable resin composition of the present embodiment is not particularly limited. For example, it is preferable to mix the radical polymerizable resin (A) and a part or all of the ethylenically unsaturated compound (B) first and then mix the other components, since this makes it easier to obtain a uniformly mixed radical polymerizable resin composition.
During kneading, as described above, a solvent may be used appropriately from the viewpoint of uniformly mixing the respective blending components.
In addition, as the radical polymerizable resin (A), a synthesis liquid containing unreacted monomers may be used without isolation after synthesis. That is, an example of the radical polymerizable resin composition may contain unreacted monomers that are raw materials for synthesizing the radical polymerizable resin (A).
 [樹脂組成物の硬化物及びその製造方法]
 本実施形態のラジカル重合性樹脂組成物の硬化物は、上述の本実施形態の樹脂組成物を公知の方法で硬化させることにより得られたものである。ラジカル重合性樹脂組成物の硬化方法としては、加熱により硬化させる方法が挙げられる。ここで、加熱の具体的な温度範囲としては、例えば、50℃~200℃の温度範囲とすることができる。
[Cured product of resin composition and method for producing same]
The cured product of the radical polymerizable resin composition of the present embodiment is obtained by curing the above-mentioned resin composition of the present embodiment by a known method. As a method for curing the radical polymerizable resin composition, a method of curing by heating can be mentioned. Here, the specific temperature range of heating can be, for example, a temperature range of 50°C to 200°C.
 [管更生ライニング材及びそれを用いた管渠補修方法]
 本発明の一実施形態の管更生ライニング材(本実施形態の管更生ライニング材ということがある。)は、前述の本実施形態のラジカル重合性樹脂組成物を用いたものである。
 例えば、前述の繊維基材(F)を含む本実施形態の重合性樹脂組成物を用いて、繊維基材(F)以外の成分を繊維基材に含浸させることで、本実施形態の管更生ライニング材とすることができる。
 本実施形態の管更生ライニング材を用いて既設管渠を補修するには、従来公知の方法を用いることができる。例えば、前記管更生ライニング材を未硬化の状態で、管渠内へ引き込むか又は内面側と外面側とを反転させながら管渠内へ挿入した後、前記管更生ライニング材を温水、蒸気等の熱媒体と接触させて熱硬化させればよい。
[Pipe rehabilitation lining material and pipe repair method using it]
A pipe rehabilitation lining material according to one embodiment of the present invention (sometimes referred to as the pipe rehabilitation lining material of this embodiment) uses the radical polymerizable resin composition according to this embodiment described above.
For example, the polymerizable resin composition of this embodiment containing the above-mentioned fibrous base material (F) can be used to impregnate the fibrous base material with components other than the fibrous base material (F), thereby producing the pipe rehabilitation lining material of this embodiment.
A conventionally known method can be used to repair an existing pipe using the pipe rehabilitation lining material of this embodiment. For example, the pipe rehabilitation lining material may be pulled into the pipe in an uncured state or inserted into the pipe while turning the inner side and the outer side, and then the pipe rehabilitation lining material may be brought into contact with a heat medium such as hot water or steam to be thermally cured.
 [管更生ライニング材を用いて補修された管渠]
 本発明の一実施形態の、管更生ライニング材を用いて補修された管渠(本実施形態の補修後管渠)は、前記本実施形態の管更生ライニング材を用いて既設管渠を補修してなる管渠である。本実施形態の補修後管渠は、既設管渠と、前記既設管渠内に挿入された前記本実施形態の管更生ライニング材の硬化物と、を含んでもよい。本実施形態の補修後管渠は、前記管更生ライニング材を未硬化の状態で、管渠内へ引き込むか又は内面側と外面側とを反転させながら管渠内へ挿入した後、前記管更生ライニング材を温水、蒸気等の熱媒体と接触させて熱硬化させて得られたものであってもよい。
[Pipes repaired using pipe rehabilitation lining material]
A pipe repaired using the pipe rehabilitation lining material (repaired pipe of this embodiment) according to one embodiment of the present invention is a pipe obtained by repairing an existing pipe using the pipe rehabilitation lining material of this embodiment. The repaired pipe of this embodiment may include an existing pipe and a hardened product of the pipe rehabilitation lining material of this embodiment inserted into the existing pipe. The repaired pipe of this embodiment may be obtained by drawing the unhardened pipe rehabilitation lining material into a pipe or inserting it into a pipe while turning the inner side and the outer side, and then contacting the pipe rehabilitation lining material with a heat medium such as hot water or steam to thermally harden it.
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.
「実施例と比較例の使用原料(市販品)」
(エチレン性不飽和化合物(B))
 スチレン:NSスチレンモノマー株式会社製
 フェノキシエチルメタクリレート:ライトエステルPO、共栄社株式会社製
"Materials used in the Examples and Comparative Examples (commercially available products)"
(Ethylenically Unsaturated Compound (B))
Styrene: manufactured by NS Styrene Monomer Co., Ltd. Phenoxyethyl methacrylate: Light Ester PO, manufactured by Kyoeisha Co., Ltd.
(フリーラジカル含有化合物(C))
 4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル:東京化成工業株式会社製
 2,2,6,6-テトラメチルピペリジン-1-オキシル:東京化成工業株式会社
 BHT:製、2,6-ジ-tert-ブチル-p-クレゾール
 TBHQ:製、ターシャリーブチルハイドロキノン
(Free Radical-Containing Compound (C))
4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl: manufactured by Tokyo Chemical Industry Co., Ltd. 2,2,6,6-tetramethylpiperidine-1-oxyl: manufactured by Tokyo Chemical Industry Co., Ltd. BHT: manufactured by 2,6-di-tert-butyl-p-cresol TBHQ: manufactured by tertiary butyl hydroquinone
(硬化剤(D))
 パーロイルTCP:日油株式会社製、ビス(4-tert-ブチルシクロヘキシル)パーオキシドカーボネート、10時間半減期温度40.8℃
 パーキュアHO(N):日油株式会社製、tert-ヘキシルパーオキシ-2-エチルヘキサネート、10時間半減期温度69.9℃
 パーブチルZ:日油株式会社製、tert-ブチルパーオキシベンゾエート、10時間半減期温度104.3℃
(Curing Agent (D))
Peroyl TCP: bis(4-tert-butylcyclohexyl) peroxide carbonate, manufactured by NOF Corporation, 10-hour half-life temperature 40.8°C
Percure HO (N): NOF Corporation, tert-hexylperoxy-2-ethylhexanate, 10-hour half-life temperature 69.9°C
Perbutyl Z: NOF Corporation, tert-butyl peroxybenzoate, 10-hour half-life temperature 104.3°C
(金属石鹸(E))
 ヘキソエートコバルト8%:東栄化工株式会社、2-エチルヘキサン酸コバルト50%
 ヘキソエートマンガン8%:東栄化工株式会社、2-エチルヘキサン酸マンガン53%
 ナフテン酸銅5%:東栄化工株式会社、ナフテン酸銅50%
(Metal soap (E))
Cobalt hexoate 8%: Toei Kako Co., Ltd., Cobalt 2-ethylhexanoate 50%
Manganese hexoate 8%: Toei Kako Co., Ltd., Manganese 2-ethylhexanoate 53%
Copper naphthenate 5%: Toei Kako Co., Ltd., Copper naphthenate 50%
[ラジカル重合性樹脂の製造]
(合成例1)
「不飽和ポリエステル樹脂」
 撹拌機、還流冷却器、温度計、ガス導入管を付したフラスコに無水マレイン酸25.8g、イソフタル酸21.7g、テレフタル酸16.4g、プロピレングリコール12.1g、ネオペンチルグリコール(水分を10%含有)41.2gを仕込み、加熱攪拌しながら215℃で反応させ、酸価が15mgKOH/gになった時点で冷却し、本合成例の不飽和ポリエステル樹脂100gを得た。得られた不飽和ポリエステル樹脂を上記の方法で評価し、その結果は以下である。
 不飽和度:53.5
 酸価:15mgKOH/g
 重量平均分子量:9,900
[Production of radically polymerizable resin]
(Synthesis Example 1)
"Unsaturated polyester resin"
In a flask equipped with a stirrer, reflux condenser, thermometer, and gas inlet tube, 25.8 g of maleic anhydride, 21.7 g of isophthalic acid, 16.4 g of terephthalic acid, 12.1 g of propylene glycol, and 41.2 g of neopentyl glycol (containing 10% water) were charged and reacted at 215°C while heating and stirring, and when the acid value reached 15 mgKOH/g, the mixture was cooled to obtain 100 g of an unsaturated polyester resin of this synthesis example. The obtained unsaturated polyester resin was evaluated by the above-mentioned method, and the results are as follows.
Degree of unsaturation: 53.5
Acid value: 15 mg KOH / g
Weight average molecular weight: 9,900
 (合成例2)
 「エポキシアクリレート樹脂」
 撹拌機、還流冷却器、温度計、ガス導入管を付したフラスコにビスフェノールA型エポキシ樹脂74g、アクリル酸26gを空気を吹き込みながら120℃で反応させ酸価5mgKOH/g以下になった時点で冷却し、本合成例のエポキシアクリレート100gを得た。得られたエポキシアクリレートを上記の方法で評価し、その結果は以下である。
 酸価:5mgKOH/g
 重量平均分子量:780
(Synthesis Example 2)
"Epoxy acrylate resin"
In a flask equipped with a stirrer, reflux condenser, thermometer, and gas inlet tube, 74 g of bisphenol A type epoxy resin and 26 g of acrylic acid were reacted at 120° C. while blowing air into the flask, and the mixture was cooled when the acid value became 5 mgKOH/g or less, to obtain 100 g of epoxy acrylate of this synthesis example. The obtained epoxy acrylate was evaluated by the above-mentioned method, and the results are as follows.
Acid value: 5 mg KOH / g
Weight average molecular weight: 780
<酸価>
 ラジカル重合性樹脂の酸価は、JIS K6901:2008「部分酸価(指示薬滴定法)」に準拠して、不飽和ポリエステル樹脂(合成例1)及びエポキシアクリレート樹脂(合成例2)に含まれる酸成分を中和するために要する水酸化カリウムの質量を測定し、不飽和ポリエステル樹脂(合成例1)及びエポキシアクリレート樹脂(合成例2)の酸価を求めた。
 具体的には、上記合成例で得られた不飽和ポリエステル樹脂又はエポキシアクリレート樹脂を(B)エチレン性不飽和化合物を用いて希釈した混合物を作製し、酸価の測定試料とした(試料1:不飽和ポリエステル樹脂65質量%、スチレン35質量%、試料2:エポキシアクリレート樹脂70質量%、フェノキシエチルメタクリレート樹脂30質量%)。前記混合物に含まれる酸成分を中和するために要する水酸化カリウムの質量を測定した。そして、その測定値を元に換算して、不飽和ポリエステル樹脂及びエポキシアクリレート樹脂の酸価を求めた。滴定装置として「オートビュレット UCB-2000」(平沼産業株式会社製)、指示薬としてブロモチモールブルーとフェノールレッドの混合指示薬を用いた。
<Acid value>
The acid value of the radical polymerizable resin was determined in accordance with JIS K6901:2008 "Partial acid value (indicator titration method)" by measuring the mass of potassium hydroxide required for neutralizing the acid components contained in the unsaturated polyester resin (Synthesis Example 1) and the epoxy acrylate resin (Synthesis Example 2).
Specifically, the unsaturated polyester resin or epoxy acrylate resin obtained in the above synthesis example was diluted with (B) an ethylenically unsaturated compound to prepare a mixture, which was used as a sample for measuring the acid value (sample 1: 65% by mass of unsaturated polyester resin, 35% by mass of styrene, sample 2: 70% by mass of epoxy acrylate resin, 30% by mass of phenoxyethyl methacrylate resin). The mass of potassium hydroxide required to neutralize the acid component contained in the mixture was measured. The acid values of the unsaturated polyester resin and the epoxy acrylate resin were calculated based on the measured value. An "Autoburette UCB-2000" (manufactured by Hiranuma Sangyo Co., Ltd.) was used as a titration device, and a mixed indicator of bromothymol blue and phenol red was used as an indicator.
<重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mn>
 GPCにより、下記の測定条件で、Mw及びMnを測定し、これらの測定値から、Mw/Mnを算出した。
 (測定条件)
 ・装置:「ショウデックス(登録商標) GPC-101」(昭和電工株式会社製)
 ・カラム:「ショウデックス(登録商標) LF-804」(昭和電工株式会社製)
 ・検出器:示差屈折計「ショウデックス(登録商標) RI-71S」(昭和電工株式会社製)
 ・カラム温度:40℃
 ・試料:ビニルエステル樹脂の0.2質量%テトラヒドロフラン溶液
 ・展開溶媒:テトラヒドロフラン
 ・流速:1.0mL/分
 ・試料注入量:20μL
 ・標準試料:ポリスチレン
<Weight average molecular weight Mw, number average molecular weight Mn and molecular weight distribution Mw/Mn>
Mw and Mn were measured by GPC under the following measurement conditions, and Mw/Mn was calculated from these measured values.
(Measurement condition)
Apparatus: "Shodex (registered trademark) GPC-101" (manufactured by Showa Denko K.K.)
Column: "Shodex (registered trademark) LF-804" (manufactured by Showa Denko K.K.)
Detector: Differential refractometer "Shodex (registered trademark) RI-71S" (manufactured by Showa Denko K.K.)
Column temperature: 40°C
Sample: 0.2% by mass solution of vinyl ester resin in tetrahydrofuran Developing solvent: tetrahydrofuran Flow rate: 1.0 mL/min Sample injection amount: 20 μL
・Standard sample: polystyrene
 [ラジカル重合性樹脂組成物の製造]
(実施例1)
 上記合成例1で得られた不飽和ポリエステル樹脂55.00g、スチレン45.00g、TEMPOL0.06g、BHT0.01g、TBHQ0.01g、パーロイルTCP1.25g、パーキュアHO(N)1.00gを加え、23℃で攪拌混合することでラジカル重合性樹脂組成物を得た。
[Production of radically polymerizable resin composition]
Example 1
55.00 g of the unsaturated polyester resin obtained in Synthesis Example 1, 45.00 g of styrene, 0.06 g of TEMPOL, 0.01 g of BHT, 0.01 g of TBHQ, 1.25 g of Perloyl TCP, and 1.00 g of Percure HO(N) were added and mixed with stirring at 23° C. to obtain a radical polymerizable resin composition.
 (実施例2~6、比較例1~6)
 下記表1と表2に示した配合組成で、実施例1と同様にして、ラジカル重合性樹脂組成物を得た。
(Examples 2 to 6, Comparative Examples 1 to 6)
Using the blending compositions shown in Tables 1 and 2 below, radically polymerizable resin compositions were obtained in the same manner as in Example 1.
 [55℃硬化性の評価]
 内径7.5mm、高さ180mmの試験管に表1示した配合のラジカル重合性樹脂組成物を高さ10mmになるように加えた。
 K熱電対を導入し、ラジカル重合性樹脂組成物の温度をモニタリングした。ラジカル重合性樹脂組成物入りの試験管を55℃の油槽に静置し、ラジカル重合性樹脂組成物の温度が40℃に達した時点から60℃になるまでに要した時間を55℃ゲル化時間として測定した。
 ラジカル重合性樹脂組成物の温度が40℃に達した時点からラジカル重合に伴う硬化発熱が最大を示すまでに要した時間を55℃最小硬化時間として測定し、硬化発熱が最大を示した温度を最高発熱温度として測定した。
[Evaluation of 55°C curability]
A radical polymerizable resin composition having the formulation shown in Table 1 was poured into a test tube having an inner diameter of 7.5 mm and a height of 180 mm to a height of 10 mm.
A K thermocouple was introduced to monitor the temperature of the radical polymerizable resin composition. The test tube containing the radical polymerizable resin composition was placed in an oil bath at 55° C., and the time required for the temperature of the radical polymerizable resin composition to reach 60° C. after reaching 40° C. was measured as the 55° C. gelation time.
The time required from when the temperature of the radical polymerizable resin composition reached 40°C until the heat generated by the curing associated with the radical polymerization reached a maximum was measured as the minimum curing time at 55°C, and the temperature at which the heat generated by the curing reached a maximum was measured as the maximum heat generation temperature.
 [20℃可使時間]
 内径20mm、高さ80mmのガラス製スクリュー瓶に表1示した配合のラジカル重合性樹脂組成物を高さ70mmになるように加えた。スクリュー瓶のキャップを閉め、20℃環境下に静置した。適宜、スクリュー瓶を逆さまにすることで、該ラジカル重合性樹脂組成物の流動性を確認した。スクリュー瓶の頂部や底部に流動しないゲルが確認されるまでに要した日数を20℃可使時間として測定した。
Figure JPOXMLDOC01-appb-T000001
[Pot life at 20°C]
The radical polymerizable resin composition having the composition shown in Table 1 was added to a glass screw bottle having an inner diameter of 20 mm and a height of 80 mm so as to reach a height of 70 mm. The screw bottle was capped and allowed to stand in an environment at 20°C. The screw bottle was turned upside down as needed to confirm the fluidity of the radical polymerizable resin composition. The number of days required until a non-flowing gel was confirmed at the top or bottom of the screw bottle was measured as the pot life at 20°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ラジカル重合性樹脂(A)として不飽和ポリエステル樹脂を用いた実施例1-3は、55℃ゲル化時間が60分以内かつ20℃可使時間が21日以上であるのに対して、比較例1-3は、ゲル化時間が60分を超えるあるいは20℃可使時間が21日未満である。
 さらにラジカル重合性樹脂(A)としてエポキシ(メタ)アクリレート樹脂を用いた実施例4~6は50℃ゲル化時間が100分以内かつ20℃可使時間が50時間以上であるのに対して、比較例4-6は、ゲル化時間が20℃可使時間が50時間未満である。
In Example 1-3, in which an unsaturated polyester resin was used as the radical polymerizable resin (A), the 55°C gelation time was within 60 minutes and the 20°C pot life was 21 days or more, whereas in Comparative Example 1-3, the gelation time exceeded 60 minutes or the 20°C pot life was less than 21 days.
Furthermore, in Examples 4 to 6 in which an epoxy (meth)acrylate resin was used as the radical polymerizable resin (A), the gelation time at 50°C was within 100 minutes and the pot life at 20°C was 50 hours or more, whereas in Comparative Examples 4 to 6, the gelation time at 20°C was less than 50 hours and the pot life at 20°C was less than 50 hours.
 本発明のラジカル重合性樹脂組成物は、50~80℃の温度域における硬化性に優れ、20℃以下における貯蔵安定性に優れているため管渠補修用プリプレグとして好適に用いることが可能である。
 本発明のラジカル重合性樹脂組成物は、ラジカル重合性樹脂(A)として、不飽和ポリエステル樹脂を用いる場合、55℃における硬化性に優れ、20℃以下における貯蔵安定性に優れているため管渠補修用プリプレグとして好適に用いることが可能である。
 本発明のラジカル重合性樹脂組成物は、ラジカル重合性樹脂(A)として、エポキシ(メタ)アクリレート樹脂を用いる場合、55℃における硬化性に優れ、20℃以下における貯蔵安定性に優れているため管渠補修用プリプレグとして好適に用いることが可能である。
The radical polymerizable resin composition of the present invention has excellent curing properties in the temperature range of 50 to 80° C. and excellent storage stability at temperatures below 20° C., and therefore can be suitably used as a prepreg for repairing pipes and culverts.
The radical polymerizable resin composition of the present invention, when an unsaturated polyester resin is used as the radical polymerizable resin (A), has excellent curing properties at 55°C and excellent storage stability at 20°C or lower, and can therefore be suitably used as a prepreg for pipe and conduit repair.
The radical polymerizable resin composition of the present invention, when an epoxy (meth)acrylate resin is used as the radical polymerizable resin (A), has excellent curing properties at 55°C and excellent storage stability at 20°C or lower, and therefore can be suitably used as a prepreg for pipe and conduit repair.

Claims (12)

  1.  ラジカル重合性樹脂(A)と、エチレン性不飽和化合物(B)と、フリーラジカル含有化合物(C)と、硬化剤(D)と、を含み、
     前記フリーラジカル含有化合物(C)が2,2,6,6-テトラメチルピペリジン-1-オキシルおよびその類縁体であり、
     前記硬化剤(D)の10時間半減期温度が40℃以上120℃以下であることを特徴とするラジカル重合性樹脂組成物。
    A composition comprising a radical polymerizable resin (A), an ethylenically unsaturated compound (B), a free radical-containing compound (C), and a curing agent (D),
    the free radical-containing compound (C) is 2,2,6,6-tetramethylpiperidine-1-oxyl or its analogues,
    The radical polymerizable resin composition, wherein the 10-hour half-life temperature of the curing agent (D) is 40° C. or higher and 120° C. or lower.
  2.  前記硬化剤(D)がジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、及びジアルキルパーオキサイドからなる群から選択される少なくとも1種含むことを特徴とする請求項1に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1, characterized in that the curing agent (D) contains at least one selected from the group consisting of diacyl peroxides, peroxydicarbonates, peroxyesters, peroxyketals, and dialkyl peroxides.
  3.  前記硬化剤(D)がジラウロイルパーオキサイド、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-アミルペルオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、及びtert-ブチルパーオキシベンゾエートからなる群から選択される少なくとも1種含むことを特徴とする請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, characterized in that the curing agent (D) contains at least one selected from the group consisting of dilauroyl peroxide, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amylperoxy-2-ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxy-2-ethylhexanoate, and tert-butylperoxybenzoate.
  4.  前記エチレン性不飽和化合物(B)の含有量は、前記ラジカル重合性樹脂(A)及び前記エチレン性不飽和化合物(B)の合計に対して、10~95質量%である請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, wherein the content of the ethylenically unsaturated compound (B) is 10 to 95 mass% based on the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  5.  前記フリーラジカル含有化合物(C)の含有量は、前記ラジカル重合性樹脂(A)と前記エチレン性不飽和化合物(B)の合計100質量部に対して、0.005~1.000質量部である請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, wherein the content of the free radical-containing compound (C) is 0.005 to 1.000 parts by mass per 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  6.  前記硬化剤(D)の含有量は、前記ラジカル重合性樹脂(A)と前記エチレン性不飽和化合物(B)の合計100質量部に対して、0.5~5.0質量部である請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, wherein the content of the curing agent (D) is 0.5 to 5.0 parts by mass per 100 parts by mass of the total of the radical polymerizable resin (A) and the ethylenically unsaturated compound (B).
  7.  さらに金属石鹸(E)を含むことを特徴とする請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, further comprising a metal soap (E).
  8.  前記金属石鹸(E)に含まれる金属が、クロム、マンガン、鉄、コバルト、ニッケル、及び銅からなる群から選択されるすくなくとも1種以上であることを特徴とする請求項7に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 7, characterized in that the metal contained in the metal soap (E) is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel, and copper.
  9.  さらに繊維基材(F)を含むことを特徴とする請求項1又は2に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1 or 2, further comprising a fibrous substrate (F).
  10.  管更生ライニング材用であることを特徴とする請求項1又は2に記載のラジカル重合性樹脂組成物の硬化物。 A cured product of the radical polymerizable resin composition according to claim 1 or 2, which is used as a pipe rehabilitation lining material.
  11.  請求項1又は2に記載のラジカル重合性樹脂組成物を用いた管更生ライニング材。 A pipe rehabilitation lining material using the radical polymerizable resin composition according to claim 1 or 2.
  12.  請求項11に記載の管更生ライニング材を用いて補修された管渠。 A pipe and conduit repaired using the pipe rehabilitation lining material described in claim 11.
PCT/JP2023/036022 2022-10-28 2023-10-03 Radically polymerizable resin composition and pipe rehabilitation liner material WO2024090151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-173529 2022-10-28
JP2022173529 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090151A1 true WO2024090151A1 (en) 2024-05-02

Family

ID=90830649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036022 WO2024090151A1 (en) 2022-10-28 2023-10-03 Radically polymerizable resin composition and pipe rehabilitation liner material

Country Status (1)

Country Link
WO (1) WO2024090151A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293849A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Radically curable resin composition and its production method
JP2004063517A (en) * 2002-07-25 2004-02-26 Sumitomo Metal Mining Co Ltd Composition for resin bonded magnet and resin bonded magnet using the same
JP2004269662A (en) * 2003-03-07 2004-09-30 Japan Composite Co Ltd Radical-polymerizable resin composition for thermocompression molding
US20060173142A1 (en) * 2005-02-01 2006-08-03 Hildeberto Nava Functionalized thermosetting resin systems
WO2014103687A1 (en) * 2012-12-27 2014-07-03 昭和電工株式会社 Curable material for repair of inner surfaces of tubular molded bodies and repair method
JP2017186521A (en) * 2016-03-31 2017-10-12 三井化学株式会社 Thermosetting composition, sealing agent containing the same, frame sealing agent for organic el element, surface sealing agent for organic el element, and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293849A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Radically curable resin composition and its production method
JP2004063517A (en) * 2002-07-25 2004-02-26 Sumitomo Metal Mining Co Ltd Composition for resin bonded magnet and resin bonded magnet using the same
JP2004269662A (en) * 2003-03-07 2004-09-30 Japan Composite Co Ltd Radical-polymerizable resin composition for thermocompression molding
US20060173142A1 (en) * 2005-02-01 2006-08-03 Hildeberto Nava Functionalized thermosetting resin systems
WO2014103687A1 (en) * 2012-12-27 2014-07-03 昭和電工株式会社 Curable material for repair of inner surfaces of tubular molded bodies and repair method
JP2017186521A (en) * 2016-03-31 2017-10-12 三井化学株式会社 Thermosetting composition, sealing agent containing the same, frame sealing agent for organic el element, surface sealing agent for organic el element, and cured product thereof

Similar Documents

Publication Publication Date Title
US9206301B2 (en) Resin composition suitable for (re)lining of tubes, tanks and vessels
JP2012521470A (en) Process for producing unsaturated polyester
JP6460999B2 (en) Pipe rod repair resin composition, pipe rod repair material, and existing pipe rod repair method
FI116296B (en) Mixed polyester resin compositions with reduced monomer content
JP7310410B2 (en) Unsaturated polyester resin composition and composite material containing said unsaturated polyester resin composition
WO2024090151A1 (en) Radically polymerizable resin composition and pipe rehabilitation liner material
JP7358940B2 (en) thermosetting resin composition
TWI834245B (en) Pipe repair methods
AU2022203461B2 (en) Non-leaching styrene-free cured-in-place pipe system suitable for potable water applications
TWI760623B (en) Vinyl ester resin composition, composite material comprising such composition, and hardened product of such composition or composite material
JPS6094415A (en) Unsaturated epoxy resin composition of improved storage stability
JP2021147448A (en) Thermosetting resin composition
JP2006321947A (en) Epoxy(meth)acrylate compound and photocurable and/or thermosetting resin composition containing the compound and its cured product
WO2023017854A1 (en) Resin composition and method for producing same, and composite material
WO2023017852A1 (en) Resin composition and material for lining material
WO2024090516A1 (en) Radical polymerizable resin curing agent composition and radical polymerizable resin composition
TW202317703A (en) Resin composition and method for producing same, and composite material
CN115175948A (en) Unsaturated polyester resin composition and method for preparing same
JPWO2020129373A1 (en) Unsaturated polyester resin composition and cured product of the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882360

Country of ref document: EP

Kind code of ref document: A1