WO2020126677A1 - Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere - Google Patents

Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere Download PDF

Info

Publication number
WO2020126677A1
WO2020126677A1 PCT/EP2019/084438 EP2019084438W WO2020126677A1 WO 2020126677 A1 WO2020126677 A1 WO 2020126677A1 EP 2019084438 W EP2019084438 W EP 2019084438W WO 2020126677 A1 WO2020126677 A1 WO 2020126677A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
regenerated catalyst
weight
hydrodesulfurization
metal
Prior art date
Application number
PCT/EP2019/084438
Other languages
English (en)
Inventor
Elodie Devers
Philibert Leflaive
Etienne Girard
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN201980084701.9A priority Critical patent/CN113383056A/zh
Priority to MX2021005795A priority patent/MX2021005795A/es
Priority to KR1020217017927A priority patent/KR20210102256A/ko
Priority to JP2021534668A priority patent/JP2022513952A/ja
Priority to US17/414,437 priority patent/US11795405B2/en
Priority to EP19813884.4A priority patent/EP3898899A1/fr
Priority to BR112021008475-4A priority patent/BR112021008475A2/pt
Publication of WO2020126677A1 publication Critical patent/WO2020126677A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/701Use of spent catalysts

Definitions

  • the present invention relates to a process for hydrodesulfurization of a gasoline cut using a regenerated catalyst.
  • Sulfur is a naturally occurring element in crude oil and is therefore present in gasoline and diesel if it is not removed during refining.
  • Sulfur in gasoline affects the efficiency of emission reduction systems (catalytic converters) and contributes to air pollution.
  • emission reduction systems catalytic converters
  • all countries are gradually adopting strict sulfur specifications, the specifications being, for example, 10 ppm (weight) of sulfur in commercial species in Europe, China, United States and in Japan.
  • the problem of reducing sulfur contents essentially focuses on gasolines obtained by cracking, whether it is catalytic (FCC Fluid Catalytic Cracking according to English terminology) or non-catalytic (coking, visbreaking, steam cracking), main sulfur precursors in petrol pools.
  • a solution, well known to those skilled in the art, for reducing the sulfur content consists in carrying out a hydrotreatment (or hydrodesulfurization) of the hydrocarbon cuts (and in particular essences of catalytic cracking) in the presence of hydrogen and a heterogeneous catalyst .
  • this process has the major drawback of causing a very significant drop in the octane number if the catalyst used is not selective enough. This reduction in the octane number is notably linked to the hydrogenation of olefins present in this type of gasoline concomitantly with hydrodesulfurization.
  • the hydrodesulfurization of gasolines must therefore make it possible to respond to a double antagonistic constraint: ensuring deep hydrodesulfurization of gasolines and limiting the hydrogenation of the unsaturated compounds present.
  • the catalysts used for this type of application are sulfide type catalysts containing an element of group VI B (Cr, Mo, W) and an element of group VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt).
  • a hydrotreatment catalyst When it is used for the hydrotreatment of an oil cut, a hydrotreatment catalyst sees its activity decrease due to the deposition of coke and / or sulfur-containing compounds or containing other heteroelements. Beyond a certain period, its replacement is therefore necessary. In particular, the severity of the sulfur specifications of fuels induces an increase in the frequency of replacement of the catalyst, which leads to an increase in the cost associated with the catalyst and to an increase in the quantity of spent catalyst. To combat these drawbacks, the regeneration (gentle calcination) of hydrodesulfurization catalysts for middle distillates (diesel) or used residues is an economically and ecologically advantageous process because it allows these catalysts to be used again in industrial units rather than to landfill or recycle them (recovery of metals).
  • patent application US201 1/0079542 indicates that after regeneration, a typical distillate hydrotreatment catalyst, commercially available, can have a reactivity of about 75% to about 90% of the activity of the fresh catalyst. corresponding.
  • the gasoline selective hydrodesulfurization catalysts present different regeneration problems from the diesel hydrotreatment catalysts, in particular because of the need to maintain the selective nature of the catalyst with respect to hydrodesulfurization and hydrogenation reactions. olefins. Indeed, an increase in the selectivity is generally more sought after than an increase or maintenance of activity in the field of species.
  • the selective hydrodesulfurization of gasolines if conventional regeneration is possible, the skilled person expects, taking into account what has been demonstrated for hydrotreatment catalysts for middle distillates, that the catalyst has a significantly lower activity than that of fresh catalyst and with a potentially reduced selectivity, due to the changes in structure of the active phase supported on the catalyst during regeneration.
  • the invention therefore relates to a process for hydrodesulfurization of an olefinic gasoline cut containing sulfur in which said gasoline cut, hydrogen and a regenerated catalyst are brought into contact, said process being carried out at a temperature between 200 and 400 ° C, a total pressure between 1 and 3 MPa, an hourly volume speed, defined as the volume flow rate of feed relative to the catalyst volume, between 1 and 10 h 1 ; and a hydrogen / gasoline volume ratio of between 100 and 1200 NL / L, said regenerated catalyst being obtained from an at least partially used catalyst resulting from a hydrodesulfurization process of an olefinic gasoline fraction containing sulfur, said catalyst regenerated comprises at least one group VIII metal, at least one group VI B metal and an oxide support.
  • the regenerated catalyst has a group VI B metal content of between 1 and 20% by weight of oxide of said group VI B metal relative to the total weight of the regenerated catalyst and a group VIII metal content of between 0.1 and 10% by weight of oxide of said group VIII metal relative to the total weight of the regenerated catalyst.
  • the regenerated catalyst also contains phosphorus, the phosphorus content being between 0.3 and 10% by weight expressed as P2O5 relative to the total weight of the regenerated catalyst and the phosphorus / (metal from group VI B) molar ratio. ) in the regenerated catalyst is between 0.1 and 0.7.
  • the metal from group VI B is chosen from tungsten and molybdenum and the metal from group VIII is chosen from nickel and cobalt in the regenerated catalyst.
  • the regenerated catalyst is characterized by a specific surface of between 20 and 200 m 2 / g, preferably between 30 and 180 m 2 / g.
  • the oxide support of the regenerated catalyst is chosen from aluminas, silica, alumina silicas or alternatively titanium or magnesium oxides used alone or in mixture with alumina or silica alumina.
  • the regenerated catalyst contains residual carbon at a content of less than 2% by weight relative to the total weight of the regenerated catalyst.
  • the regenerated catalyst contains sulfur at a content of less than 5% by weight relative to the total weight of the regenerated catalyst.
  • the regenerated catalyst is subjected to a sulfurization step before or during the hydrodesulfurization process.
  • the gasoline cut is a gasoline from a catalytic cracking unit.
  • the regenerated catalyst comes from a regeneration stage carried out in a flow of gas containing oxygen carried out at a temperature between 350 ° C and 550 ° C.
  • the regeneration step is preceded by a deoiling step which comprises bringing into contact an at least partially used catalyst resulting from a hydrodesulfurization process of an olefinic gasoline cut containing sulfur with a stream of inert gas at a temperature between 300 ° C and 400 ° C.
  • the regenerated catalyst does not undergo the addition of metals from groups VI B and / or VIII, phosphorus and / or organic compound after the regeneration step.
  • the process is carried out in a catalytic bed of a reactor of the fixed bed type containing several catalytic beds, at least one other catalytic bed upstream or downstream of the catalytic bed containing the catalyst regenerated in the direction of circulation of the charge contains at least partly a fresh catalyst and / or a rejuvenated catalyst.
  • the process is carried out in at least two reactors in series of the fixed bed type or of the bubbling bed type, at least one of the reactors contains a regenerated catalyst while another reactor contains a fresh catalyst or a rejuvenated catalyst, or a mixture of a regenerated catalyst and a fresh and / or rejuvenated catalyst, and this in any order, with or without removal of at least part of the h ⁇ S from the effluent from the first reactor before treating said effluent in the second reactor.
  • the invention therefore relates to a process for hydrodesulfurization of an olefinic gasoline cut containing sulfur in which said gasoline cut, hydrogen and a regenerated catalyst are brought into contact, said process being carried out at a temperature between 200 and 400 ° C, a total pressure between 1 and 3 MPa, an hourly volume velocity, defined as being the volume flow rate of feed relative to the volume of catalyst, between 1 and 10 fr 1 ; and a hydrogen / gasoline volume ratio of between 100 and 1200 NL / L, said regenerated catalyst being obtained from an at least partially used catalyst resulting from a hydrodesulfurization process of an olefinic gasoline fraction containing sulfur, said catalyst regenerated comprises at least one group VIII metal, at least one group VI B metal and an oxide support.
  • the hydrodesulfurization process according to the invention makes it possible to transform the organo-sulfur compounds of a gasoline fraction into hydrogen sulfide (H2S) while limiting as much as possible the hydrogenation of the olefins present in said fraction. Load to be processed
  • the method according to the invention makes it possible to treat any type of olefinic gasoline cut containing sulfur, such as for example a cut resulting from a coking unit (coking according to English terminology), visbreaking (visbreaking according to English terminology -saxonne), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
  • This gasoline can optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to English terminology) or from conversion (coking or steam cracking gasoline)
  • the said charge preferably consists of a gasoline cut coming from a catalytic cracking unit.
  • the feedstock is an olefinic petroleum cut containing sulfur, the range of boiling points typically extending from the boiling points of hydrocarbons with 2 or 3 carbon atoms (C2 or C3) up to 260 ° C, preferably from the boiling points of hydrocarbons with 2 or 3 carbon atoms (C2 or C3) up to 220 ° C, more preferably the boiling points of hydrocarbons with 5 carbon atoms up to 220 ° C .
  • the method according to the invention can also treat loads having end points lower than those mentioned above, such as for example a C5-180 ° C cut.
  • the sulfur content of gasoline cuts produced by catalytic cracking depends on the sulfur content of the feed treated by the FCC, on the presence or not of a pretreatment of the feed of the FCC, as well as on the end point of the chopped off.
  • the sulfur contents of an entire gasoline cut in particular those originating from the FCC, are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
  • gasolines from catalytic cracking units contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of olefins, between 10 ppm and 0.5% weight of sulfur of which generally less than 300 ppm of mercaptans.
  • Mercaptans are generally concentrated in the light fractions of petrol and more precisely in the fraction whose boiling temperature is below 120 ° C.
  • sulfur compounds present in gasoline can also include heterocyclic sulfur compounds, such as for example thiophenes, alkylthiophenes or benzothiophenes. These heterocyclic compounds, unlike mercaptans, cannot be removed by the extractive processes. These sulfur compounds are therefore removed by hydrotreatment, which leads to their transformation into hydrocarbons and H2S.
  • the gasoline treated by the process according to the invention is a heavy gasoline (or HCN for Heavy Cracked Naphtha according to English terminology) resulting from a distillation step aiming to separate a wide section from the gasoline obtained a cracking process (or FRCN for Full Range Cracked Naphtha according to English terminology) into a light essence (LCN for Light Cracked Naphtha according to Anglo-Saxon terminology) and a heavy essence FICN.
  • the cutting point of light petrol and heavy petrol is determined in order to limit the sulfur content of the light petrol and to allow its use in the petrol pool preferably without additional post-treatment.
  • the large cut FRCN is subjected to a selective hydrogenation step described below before the distillation step.
  • the regenerated catalyst used in the process according to the invention comes from an at least partially used catalyst, itself coming from a fresh catalyst, which has been used in a hydrodesulfurization process of an olefin gasoline fraction. containing sulfur under the conditions as described below for a certain period of time and has a significantly lower activity than the fresh catalyst which requires its replacement.
  • the fresh catalyst comprises at least one group VIII metal, at least one group VI B metal, an oxide support and optionally phosphorus.
  • the fresh catalyst can also further comprise at least one organic compound containing oxygen and / or nitrogen and / or sulfur before sulfurization.
  • the fresh catalyst does not comprise phosphorus.
  • the preparation of the fresh catalyst is known and generally comprises a step of impregnating the metals of group VIII and group VIB and optionally phosphorus and / or the organic compound on the oxide support, followed by drying, then optional calcination to obtain the active phase in their oxide forms.
  • the fresh catalyst is generally subjected to sulfurization in order to form the active species as described below.
  • the fresh catalyst has not undergone calcination during its preparation, that is to say that the impregnated catalytic precursor has not been subjected to a heat treatment step at a temperature above 200 ° C under an inert atmosphere or under an oxygen-containing atmosphere, in the presence of water or not.
  • the fresh catalyst has undergone a calcination step during its preparation, that is to say that the impregnated catalytic precursor has been subjected to a heat treatment step at a temperature comprised between 200 and 1000 ° C and preferably between 350 and 750 ° C, for a period typically between
  • An at least partially used catalyst is understood to mean a catalyst which leaves a hydrodesulfurization process of the olefinic gasoline fraction containing sulfur carried out under the conditions as described below and which has not undergone heat treatment under a gas containing air or oxygen at a temperature above 200 ° C. It may have been deoiled.
  • the term "coke” or "carbon” in the present application designates a hydrocarbon-based substance deposited on the surface of the catalyst during its use, strongly cyclized and condensed and having an appearance similar to graphite.
  • the at least partially used catalyst contains in particular carbon at a content generally greater than or equal to 2% by weight, preferably between 2 and 10% by weight, and even more preferably between 2.2 and 6% by weight relative to the total weight of at least partially spent catalyst.
  • the process for regenerating the at least partially spent catalyst used to generate the regenerated catalyst used in the process according to the invention comprises a step of removing coke and sulfur (regeneration step), generally preceded by a step of oil removal.
  • the regeneration is preferably not carried out by keeping the catalyst loaded in the hydrodesulfurization reactor (in situ regeneration).
  • the at least partially used catalyst is therefore extracted from the reactor and sent to a regeneration installation in order to perform the regeneration in said installation (ex-situ regeneration).
  • the deoiling step generally comprises bringing the at least partially spent catalyst into contact with a stream of inert gas (that is to say essentially free of oxygen), for example in a nitrogen atmosphere or the like. a temperature between 300 ° C and 400 ° C, preferably between 300 ° C and 350 ° C.
  • the flow rate of inert gas in terms of flow rate per unit volume of the catalyst is 5 to 150 NL.L Lh 1 for 3 to 7 hours.
  • the deoiling step can be carried out using light hydrocarbons, by steam treatment or any other similar process.
  • the regeneration step is generally carried out in a flow of gas containing oxygen, generally air.
  • the water content is generally between 0 and 50% by weight.
  • the gas flow rate in terms of flow rate per unit volume of spent catalyst is preferably from 20 to 2000 NL.L Lh 1 , more preferably from 30 to 1000 NL.L Lh 1 , and in a particularly preferred manner from 40 to 500 NL .L Lh 1 .
  • the duration of the regeneration is preferably 2 hours or more, more preferably 2.5 hours or more, and so particularly preferred 3 hours or more.
  • the regeneration of the at least partially spent catalyst is generally carried out at a temperature between 350 ° C and 550 ° C, preferably between 360 ° C and 500 ° C.
  • the regenerated catalyst obtained in the regeneration step contains residual carbon at a content preferably less than 2% by weight, preferably between 0.1% and 1.9% by weight relative to the total weight of the regenerated catalyst, preferably included between 0.1% and 1.5% by weight and particularly preferably between 0.1% and 1.0% by weight.
  • the regenerated catalyst may also not contain residual carbon.
  • residual carbon in the present application means carbon (coke) remaining in the regenerated catalyst after regeneration of the at least partially spent catalyst. This residual carbon content in the regenerated catalyst is measured by elemental analysis according to ASTM D5373.
  • the regenerated catalyst obtained in the regeneration stage contains residual sulfur (before optional sulfurization) at a content of less than 5% by weight, preferably between 0.1% and 4.9% by weight relative to the total weight of the catalyst regenerated, preferably between 0.1% and 2.0% by weight and particularly preferably between 0.2% and 0.8% by weight.
  • the regenerated catalyst may also not contain residual sulfur. This residual sulfur content in the regenerated catalyst is measured by elemental analysis according to ASTM D5373.
  • the regenerated catalyst of the process according to the invention is generally composed of the oxide support, of the active phase formed of at least one metal from group VI B and at least one metal from group VIII and optionally phosphorus from the fresh catalyst. .
  • the contents of group VI B metal, of group VIII metal and of phosphorus in the fresh, at least partially spent or regenerated catalyst are expressed as oxides after correction of the loss on ignition of the catalyst sample at 550 ° C. for two hours in a muffle oven. Loss on ignition is due to loss of moisture, carbon, sulfur and / or other contaminants. It is determined according to ASTM D7348.
  • the contents of group VIB metal, of group VIII metal and optionally of phosphorus in the regenerated catalyst are substantially identical to the contents of the at least partially spent catalyst from which it comes.
  • the contents of group VIB metal, group VIII metal and optionally phosphorus in the at least partially spent catalyst are substantially identical to the contents of the fresh catalyst from which it is derived.
  • the regenerated catalyst used in the hydrodesulfurization process according to the invention is in particular non-additive, that is to say that it does not contain any organic compound introduced after its regeneration.
  • no addition of metals from groups VIB and / or VIII or phosphorus is made after the regeneration step.
  • the group VIB metal present in the active phase of the regenerated catalyst is preferably chosen from molybdenum and tungsten.
  • the group VIII metal present in the active phase of the regenerated catalyst is preferably chosen from cobalt, nickel and the mixture of these two elements.
  • the active phase of the regenerated catalyst is preferably chosen from the group formed by the combination of the elements nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum, and very preferably the active phase consists of cobalt and molybdenum.
  • the content of group VIII metal is between 0.1 and 10% by weight of oxide of group VIII metal relative to the total weight of the regenerated catalyst, preferably between 0.6 and 8% by weight, preferably between 2 and 7%, very preferably between 2 and 6% by weight and even more preferably between 2.5 and 6% by weight.
  • the group VIB metal content is between 1 and 20% by weight of group VIB metal oxide relative to the total weight of the regenerated catalyst, preferably between 2 and 18% by weight, very preferably between 3 and 10% oxide weight.
  • the group VIII metal to group VIB metal molar ratio of the regenerated catalyst is generally between 0.15 and 1.15, preferably between 0.19 and 0.8.
  • the regenerated catalyst has a density of group VIB metal, expressed in number of atoms of said metal per unit area of catalyst, which is between 0.5 and 30 atoms of group VIB metal per nm 2 of catalyst. , preferably between 2 and 25, even more preferably between 3 and 15.
  • the density of group VIB metal expressed as the number of group VIB metal atoms per unit area of the catalyst (number of metal atoms of group VIB per nm 2 of catalyst) is calculated for example from the following relationship:
  • N A Number of Avogadro equal to 6,022.10 23 ;
  • M M molar mass of the group VIB metal (for example 95.94 g / mol for molybdenum).
  • M M molar mass of the group VIB metal (for example 95.94 g / mol for molybdenum).
  • the catalyst contains 20% by weight of molybdenum oxide M0O3 (i.e. 13.33% by weight of Mo) and has a specific surface of 100 m 2 / g, the density d (Mo) is equal to :
  • the regenerated catalyst of the process according to the invention may also have a phosphorus content generally between 0.3 and 10% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.5 and 5% by weight , very preferably between 1 and 3% by weight.
  • the phosphorus / (group VIB metal) molar ratio is generally between 0.1 and 0.7, preferably between 0.2 and 0.6, when the phosphorus is present.
  • the regenerated catalyst of the process according to the invention may have, in addition to coke and sulfur, also a low content of contaminants originating from the feed treated by the fresh catalyst from which it originates, such as silicon, arsenic or chlorine.
  • the silicon content (in addition to that possibly present on the fresh catalyst) is less than 2% by weight and very preferably less than 1% by weight relative to the total weight of the regenerated catalyst.
  • the arsenic content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the regenerated catalyst.
  • the chlorine content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the regenerated catalyst.
  • the regenerated catalyst is not contaminated, that is to say contains a content of less than 100 ppm by weight of silicon (in addition to that possibly present on the fresh catalyst), less than 50 ppm by weight of arsenic , and less than 50 ppm by weight of chlorine relative to the total weight of the regenerated catalyst.
  • the regenerated catalyst of the process according to the invention in oxide form, is characterized by a specific surface of between 5 and 400 m 2 / g, preferably between 10 and 250 m 2 / g, preferably between 20 and 200 m 2 / g, very preferably between 30 and 180 m 2 / g.
  • the specific surface is determined in the present invention by the BET method according to standard ASTM D3663, as described in the work Rouquerol F .; Rouquerol J .; Singh K. “Adsorption by Powders & Porous So / ids; Princip / e, methodology and applications ”, Academy Press, 1999, for example using an Autopore III TM model device from the Microméritics TM brand.
  • the pore volume of the regenerated catalyst is generally between 0.4 cm 3 / g and 1.3 cm 3 / g, preferably between 0.6 cm 3 / g and 1.1 cm 3 / g.
  • the total pore volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140 °, as described in the same work.
  • the packed filling density (DRT) of the regenerated catalyst is generally between 0.4 and 0.7 g / ml, preferably between 0.45 and 0.69 g / ml.
  • the measurement of DRT consists in introducing the catalyst into a test tube whose volume has previously been determined and then, by vibration, packing it until a constant volume is obtained.
  • the apparent density of the packed product is calculated by comparing the mass introduced and the volume occupied after packing.
  • This catalyst can be in the form of small diameter, cylindrical or multi-lobed extrudates (three-lobed, four-lobed, etc.), or spheres.
  • the oxide support of the regenerated catalyst is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or alternatively titanium or magnesium oxides used alone or as a mixture with alumina or silica alumina. It is preferably chosen from the group consisting of silica, the family of transition aluminas and alumina silicas, very preferably, the oxide support consists essentially of at least one transition alumina, that is to say saying that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of transition alumina. It preferably consists only of a transition alumina.
  • the oxide support of the regenerated catalyst of the process according to the invention is a “high temperature” transition alumina, that is to say which contains aluminas of theta, delta, kappa or alpha phase, alone or as a mixture and an amount of less than 20% of alumina of gamma, chi or eta phase.
  • the hydrodesulfurization process according to the invention consists in bringing the olefinic gasoline fraction containing sulfur into contact with the regenerated catalyst and hydrogen under the following conditions:
  • - a temperature between 200 and 400 ° C, preferably between 230 and 330 ° C - at a total pressure between 1 and 3 MPa, preferably between 1, 5 and 2.5 MPa
  • WH hourly volume speed
  • the hydrodesulfurization process can be carried out in one or more reactors in series of the fixed bed type or of the bubbling bed type. If the process is implemented using at least two reactors in series, it is possible to provide a device for removing H2S from the effluent from the first hydrodesulfurization reactor before treating said effluent in the second hydrodesulfurization reactor.
  • the hydrodesulfurization process according to the invention is carried out in the presence of a regenerated catalyst. It can also be carried out in the presence of a mixture of a regenerated catalyst and a fresh catalyst or a rejuvenated catalyst.
  • a fresh or rejuvenated catalyst when present, it comprises at least one group VIII metal, at least one group VI B metal and an oxide support, and optionally phosphorus and / or an organic compound as described above .
  • the active phase and the support of the fresh or rejuvenated catalyst may or may not be identical to the active phase and the support of the regenerated catalyst.
  • the active phase and the support of the fresh catalyst may or may not be identical to the active phase and the support of the rejuvenated catalyst.
  • the hydrodesulfurization process When the hydrodesulfurization process is carried out in the presence of a regenerated catalyst and a fresh or rejuvenated catalyst, it can be carried out in a reactor of the fixed bed type containing several catalytic beds. In this case, and according to a first variant, a catalytic bed containing the fresh or rejuvenated catalyst can precede a catalytic bed containing the regenerated catalyst in the direction of the charge circulation.
  • a catalytic bed containing the regenerated catalyst can precede a catalytic bed containing the fresh or rejuvenated catalyst in the direction of the charge circulation.
  • a catalytic bed can contain a mixture of a regenerated catalyst and a fresh catalyst and / or a rejuvenated catalyst.
  • the operating conditions are those described above. They are generally identical in the various catalytic beds except for the temperature which generally increases in a catalytic bed following the exothermic hydrodesulfurization reactions.
  • one reactor may comprise a regenerated catalyst while another reactor can comprise a fresh or rejuvenated catalyst, or a mixture of a regenerated catalyst and a fresh and / or rejuvenated catalyst, and this in any order.
  • One can provide a device for removing the hhS from the effluent from the first hydrodesulfurization reactor before treating said effluent in the second reactor.
  • gasoline cut is subjected to a selective hydrogenation step before the hydrodesulfurization process according to the invention.
  • the gasoline treated by the hydrodesulfurization process according to the invention is a heavy gasoline resulting from a distillation step aiming to separate a wide cut from the gasoline resulting from a cracking process (or FRCN for Full Range Cracked Naphtha according to Anglo-Saxon terminology) in a light essence and a heavy essence.
  • the large cut FRCN is subjected to a selective hydrogenation step described below before the distillation step.
  • Said FRCN cut is previously treated in the presence of hydrogen and of a selective hydrogenation catalyst so as to at least partially hydrogenate the diolefins and carry out a weighting reaction for part of the mercaptan compounds (RSH) present in the feed. as thioethers, by reaction with olefins.
  • RSH mercaptan compounds
  • the large cut FRCN is sent to a selective hydrogenation catalytic reactor containing at least one fixed or mobile bed of catalyst for the selective hydrogenation of diolefins and the weighting of mercaptans.
  • the reaction for the selective hydrogenation of diolefins and the weighting down of mercaptans is preferably carried out on a sulfur catalyst comprising at least one group VIII metal and optionally at least one group VI B metal and an oxide support.
  • the group VIII metal is preferably chosen from nickel and cobalt and in particular nickel.
  • the group VIB metal when it is present, is preferably chosen from molybdenum and tungsten and very preferably molybdenum.
  • the catalyst oxide support is preferably chosen from alumina, nickel aluminate, silica, silicon carbide, or a mixture of these oxides.
  • Alumina is preferably used and even more preferably high-purity alumina.
  • the selective hydrogenation catalyst contains nickel at a content by weight of nickel oxide (in NiO form) of between 1 and 12%, and molybdenum at a content by weight of molybdenum oxide. (in M0O3 form) of between 6% and 18% relative to the total weight of the catalyst and a nickel / molybdenum molar ratio of between 0.3 and 2.5, the metals being deposited on a support consisting of alumina and the sulfurization rate of the metals constituting the catalyst being greater than 50%.
  • the gasoline is brought into contact with the catalyst at a temperature between 50 ° C and 250 ° C, and preferably between 80 ° C and 220 ° C, and even more preferably between 90 ° C and 200 ° C, with a liquid space speed (LHSV) of between 0.5 h 1 and 20 h 1 , the unit of liquid space speed being the liter load per liter of catalyst per hour (L / L. h).
  • the pressure is between 0.4 MPa and 5 MPa, preferably between 0.6 and 4 MPa and even more preferably between 1 and 2 MPa.
  • the optional selective hydrogenation stage is typically carried out with a gasoline hV charge ratio of between 2 and 100 Nm 3 of hydrogen per m 3 of charge, preferably between 3 and 30 Nm 3 of hydrogen per m 3 of charge.
  • the regenerated catalyst of the process according to the invention Before the contact with the feed to be treated, the regenerated catalyst of the process according to the invention generally undergoes a sulfurization step.
  • the sulfurization is preferably carried out in a sulforeductive medium, that is to say in the presence of hhS and of hydrogen, in order to transform the metal oxides into sulphides such as, for example, SO 2 and CogSs.
  • Sulfurization is carried out by injecting a flux containing hhS and hydrogen onto the catalyst, or else a sulfur-containing compound capable of decomposing into H2S in the presence of the catalyst and hydrogen.
  • Polysulfides such as dimethyldisulfide (DM DS) are hhS precursors commonly used to sulfurize catalysts. Sulfur can also come from the feed.
  • DM DS dimethyldisulfide
  • the temperature is adjusted so that the hhS reacts with the metal oxides to form metal sulfides.
  • This sulphurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600 ° C, and more preferably between 300 ° C and 500 ° C. Examples
  • the support for catalyst A is a transition alumina with a specific surface of 140 m 2 / g and a pore volume of 1.0 cm 3 / g.
  • Catalyst A is prepared by dry impregnation of the support with an aqueous solution of ammonium heptamolybdate and cobalt nitrate, the volume of the solution containing the metal precursors being strictly equal to the pore volume of the mass of support. The concentration of metal precursors in aqueous solution is adjusted so as to obtain the desired weight percentage of molybdenum, cobalt and phosphorus on the final catalyst. After dry impregnation on the support, the catalyst is left to mature for 1 h 30 in an enclosure saturated with water, air dried in an oven at 90 ° C for 12 hours and then calcined in air at 450 ° C for 2 hours.
  • the catalyst A obtained after calcination has a content of 15.5% by weight of molybdenum (equivalent MOO3) and 3.4% by weight of cobalt (equivalent CoO). This catalyst has a Co / Mo atomic ratio of 0.42.
  • Catalyst A is used to desulfurize a catalytic cracking gasoline (FCC), the characteristics of which are collated in Table 1.
  • FCC catalytic cracking gasoline
  • the catalyst is treated beforehand at 350 ° C. with a feed containing 4% by weight of sulfur in the form of DM DS (dimethyldisulfide) to ensure the sulfurization of the oxide phases.
  • DM DS dimethyldisulfide
  • the spent catalyst A is taken from the reactor after the hydrodesulfurization of a catalytic cracking gasoline (FCC) described above.
  • FCC catalytic cracking gasoline
  • the spent catalyst A is then washed with toluene in a Soxhlet for 7 hours at 250 ° C. (deoiling).
  • a model charge representative of a catalytic cracking gasoline (FCC) containing 10% by weight of 2,3-dimethylbut-2-ene and 0.33% by weight of 3-methylthiophene (i.e. 1000 ppm by weight of sulfur in the charge) is used for the evaluation of the catalytic performances of the various catalysts.
  • the solvent used is heptane.
  • the catalyst Prior to the HDS reaction, the catalyst is sulfurized in situ at 350 ° C for 2 hours under a stream of hydrogen containing 15 mol% of H2S at atmospheric pressure. Each of the catalysts is placed successively in said reactor. Samples are taken at different time intervals and are analyzed by gas chromatography in order to observe the disappearance of the reagents and the formation of the products.
  • the catalytic performances of the catalysts are evaluated in terms of catalytic activity and selectivity.
  • the hydrodesulfurization activity (H DS) is expressed from the rate constant for the HDS reaction of 3-methylthiophene (kHDS), normalized by the volume of catalyst introduced and assuming order 1 kinetics with respect to to the sulfur compound.
  • the olefin hydrogenation activity (HydO) is expressed from the rate constant of the hydrogenation reaction of 2,3-dimethylbut-2-ene, normalized by the volume of catalyst introduced and assuming kinetics of order 1 compared to the olefin.
  • the selectivity of the catalyst is expressed by the normalized ratio of the rate constants kHDS / kHydO.
  • the kHDS / kHydO ratio will be higher the more selective the catalyst.
  • the values obtained are normalized by taking catalyst A as a reference (relative H DS activity and relative selectivity equal to 100). The performances are therefore the relative H DS activity and the relative selectivity (Table 2).
  • the regenerated catalyst B has an activity similar to fresh catalyst A and an improved selectivity in hydrodesulfurization compared to the hydrogenation of olefins compared to comparative catalyst A (fresh calcined).
  • This improvement in the selectivity of the catalysts is particularly advantageous in the case of implementation in a process for the hydrodesulfurization of gasoline containing olefins for which it is sought to limit as much as possible the loss of octane due to the hydrogenation of the olefins.

Abstract

L'invention concerne un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur régénéré, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h-1; et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 NL/L, ledit catalyseur régénéré étant issu d'un catalyseur au moins partiellement usé issu d'un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre et comprend au moins un métal du groupe VIIl, au moins un métal du groupe VIB et un support d'oxyde.

Description

PROCEDE D’HYDRODESULFURATION DE COUPES ESSENCE OLEFINIQUE CONTENANT DU SOUFRE METTANT EN ŒUVRE UN CATALYSEUR REGENERE
Domaine de l’invention
La présente invention concerne un procédé d'hydrodésulfuration d'une coupe essence mettant en œuvre un catalyseur régénéré.
État de la technique
Le soufre est un élément naturellement présent dans le pétrole brut et est donc présent dans l’essence et le gazole s’il n’est pas retiré lors du raffinage. Or, le soufre dans l'essence nuit à l'efficacité des systèmes de réduction des émissions (pots catalytiques) et contribue à la pollution de l'air. Afin de lutter contre la pollution de l’environnement, l’ensemble des pays adoptent en conséquence progressivement des spécifications sévères en soufre, les spécifications étant par exemple 10 ppm (poids) de soufre dans les essences commerciales en Europe, Chine, Etats-Unis et au Japon. Le problème de réduction des teneurs en soufre se concentre essentiellement sur les essences obtenues par craquage, qu'il soit catalytique (FCC Fluid Catalytic Cracking selon la terminologie anglo-saxonne) ou non catalytique (cokéfaction, viscoréduction, vapocraquage), principaux précurseurs de soufre dans les pools essence.
Une solution, bien connue de l'homme du métier, pour réduire la teneur en soufre consiste à effectuer un hydrotraitement (ou hydrodésulfuration) des coupes hydrocarbonées (et notamment des essences de craquage catalytique) en présence d'hydrogène et d'un catalyseur hétérogène. Cependant, ce procédé présente l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane si le catalyseur mis en œuvre n'est pas assez sélectif. Cette diminution de l'indice d'octane est notamment liée à l'hydrogénation des oléfines présentes dans ce type d'essence de manière concomitante à l'hydrodésulfuration. Contrairement à d’autres procédés d’hydrotraitement, notamment ceux pour des charges de type gazole, l’hydrodésulfuration des essences doit donc permettre de répondre à une double contrainte antagoniste : assurer une hydrodésulfuration profonde des essences et limiter l’hydrogénation des composés insaturés présents.
La voie la plus utilisée pour répondre à la double problématique mentionnée ci-dessus consiste à employer des procédés dont l’enchaînement des étapes unitaires permet à la fois de maximiser l’hydrodésulfuration tout en limitant l'hydrogénation des oléfines. Ainsi, les procédés les plus récents, tels que le procédé Prime G+ (marque commerciale), permettent de désulfurer les essences de craquage riches en oléfines, tout en limitant l’hydrogénation des mono-oléfines et par conséquent la perte d’octane et la forte consommation d’hydrogène qui en résulte. De tels procédés sont par exemple décrits dans les demandes de brevet EP 1 077 247 et EP 1 174 485.
L’obtention de la sélectivité de réaction recherchée (ratio entre hydrodésulfuration et hydrogénation des oléfines) peut donc être en partie due au choix du procédé mais dans tous les cas l’utilisation d’un système catalytique intrinsèquement sélectif est très souvent un facteur clé. D’une façon générale, les catalyseurs utilisés pour ce type d’application sont des catalyseurs de type sulfure contenant un élément du groupe VI B (Cr, Mo, W) et un élément du groupe VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). Ainsi dans le brevet US 5 985 136, il est revendiqué qu’un catalyseur présentant une concentration de surface comprise entre 0,5.104 et 3.104 gMo03/m2 permet d’atteindre des sélectivités élevées en hydrodésulfuration (93 % d'hydrodésulfuration (H DS) contre 33 % d'hydrogénation des oléfines (H DO)). Par ailleurs, selon les brevets US 4 140 626 et US 4 774 220, il peut être avantageux d’ajouter un dopant (alcalin, alcalino-terreux) à la phase sulfure conventionnelle (CoMoS) dans le but de limiter l’hydrogénation des oléfines. On connaît également dans l'état de la technique les documents US 8 637 423 et EP 1 892 039 qui décrivent des catalyseurs d'hydrodésulfuration sélective. Lors de son utilisation pour l'hydrotraitement d’une coupe pétrolière, un catalyseur d'hydrotraitement voit son activité diminuer en raison du dépôt de coke et/ou de composés soufrés ou contenant d’autres hétéroéléments. Au-delà d’une certaine période, son remplacement est donc nécessaire. En particulier, la sévérisation des spécifications en soufre des carburants induit une augmentation de la fréquence de remplacement du catalyseur, ce qui conduit à une augmentation du coût associé au catalyseur et à une augmentation de la quantité de catalyseur usé. Pour lutter contre ces inconvénients, la régénération (calcination douce) des catalyseurs d’hydrodésulfuration de distillats moyens (gazole) ou de résidus usagés est un procédé économiquement et écologiquement intéressant car il permet d’utiliser à nouveau ces catalyseurs dans les unités industrielles plutôt que de les mettre en décharge ou de les recycler (récupération des métaux). Mais les catalyseurs régénérés sont généralement moins actifs que les solides de départ. Ainsi, la demande de brevet US201 1/0079542 indique qu’après régénération, un catalyseur d’hydrotraitement de distillats typique, disponible dans le commerce, peut avoir une réactivité d'environ 75% à environ 90% de l'activité du catalyseur frais correspondant.
Pour remédier à ce problème, ces catalyseurs régénérés sont généralement additivés par divers agents organiques (étape dite de « réjuvénation ») dans le domaine des distillats moyens. De nombreux brevets tels que par exemple, US 7 906 447, US 8 722 558, US 7 956 000, US 7 820 579 ou encore CN102463127 proposent ainsi différentes méthodes pour procéder à la réjuvénation des catalyseurs d’hydrotraitement de distillats moyens. Les catalyseurs d’hydrodésulfuration de distillats moyens, qui ont des teneurs élevées en métaux comparativement aux catalyseurs d’hydrodésulfuration sélective d’essences, connaissent un frittage important en cours d’usage et à la régénération. Ainsi, les traitements de réjuvénation se concentrent sur la dissolution et la redistribution des phases métalliques afin de récupérer une dispersion proche du catalyseur frais et donc une activité proche du catalyseur frais.
Les catalyseurs d’hydrodésulfuration sélective d’essences présentent des problématiques de régénération différentes des catalyseurs d’hydrotraitements des gazoles, du fait notamment de la nécessité de maintenir le caractère sélectif du catalyseur vis-à-vis des réactions d’hydrodésulfuration et d’hydrogénation des oléfines. En effet, une augmentation de la sélectivité est généralement plus recherchée qu’une augmentation ou le maintien de l’activité dans le domaine des essences. En ce qui concerne l’hydrodésulfuration sélective des essences, si la régénération classique est envisageable, l’homme du métier s’attend, compte-tenu de ce qui a été mis en évidence pour les catalyseurs d’hydrotraitement de distillats moyens, que le catalyseur présente une activité significativement plus faible que celle du catalyseur frais et avec une sélectivité potentiellement diminuée, en raison des changements de structure de la phase active supportée sur le catalyseur lors de la régénération.
Il existe donc encore aujourd'hui un vif intérêt chez les raffineurs pour des procédés d'hydrodésulfuration notamment de coupes essences qui présentent de bonnes performances catalytiques, notamment en termes d'activité catalytique en hydrodésulfuration et de sélectivité, permettant la mise en œuvre de catalyseurs issus de catalyseurs d’hydrotraitement usés.
Objets de l’invention L'invention concerne donc un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur régénéré, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1; et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, ledit catalyseur régénéré étant issu d’un catalyseur au moins partiellement usé issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre, ledit catalyseur régénéré comprend au moins un métal du groupe VIII, au moins un métal du groupe VI B et un support d’oxyde. II a en effet été constaté que l’utilisation d’un catalyseur régénéré dans un procédé d’hydrodésulfuration sélective des essences n’entrainait qu’une perte très faible d’activité par rapport à l’utilisation du même catalyseur frais et induisait de manière surprenante une amélioration de la sélectivité. Sans être lié à aucune théorie, il semble que les changements sur la phase active provoqués par la régénération du catalyseur et induisant une meilleure sélectivité envers la réaction d’hydrodésulfuration des sites actifs permettent de compenser la réduction du nombre de ces sites et maintiennent ainsi l’activité du catalyseur.
Selon une variante, le catalyseur régénéré a une teneur en métal du groupe VI B comprise entre 1 et 20 % poids d'oxyde dudit métal du groupe VI B par rapport au poids total du catalyseur régénéré et une teneur en métal du groupe VIII comprise entre 0,1 et 10% poids d'oxyde dudit métal du groupe VIII par rapport au poids total du catalyseur régénéré.
Selon une variante, le catalyseur régénéré contient en outre du phosphore, la teneur en phosphore étant comprise entre 0,3 et 10% poids exprimé en P2O5 par rapport au poids total du catalyseur régénéré et le rapport molaire phosphore/(métal du groupe VI B) dans le catalyseur régénéré est compris entre 0,1 et 0,7.
Selon une variante, le métal du groupe VI B est choisi parmi le tungstène et le molybdène et le métal du groupe VIII est choisi parmi le nickel et le cobalt dans le catalyseur régénéré.
Selon une variante, le catalyseur régénéré se caractérise par une surface spécifique comprise entre 20 et 200 m2/g, de préférence comprise entre 30 et 180 m2/g.
Selon une variante, le support d’oxyde du catalyseur régénéré est choisi parmi les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine.
Selon une variante, le catalyseur régénéré contient du carbone résiduel à une teneur inférieure à 2% poids par rapport au poids total du catalyseur régénéré.
Selon une variante, le catalyseur régénéré contient du soufre à une teneur inférieure à 5% poids par rapport au poids total du catalyseur régénéré.
Selon une variante, le catalyseur régénéré est soumis à une étape de sulfuration avant ou pendant le procédé d'hydrodésulfuration. Selon une variante, la coupe d'essence est une essence issue d'une unité de craquage catalytique.
Selon une variante, le catalyseur régénéré est issu d’une étape de régénération effectuée dans un flux de gaz contenant de l'oxygène réalisée à une température comprise entre 350°C et 550°C.
Selon une variante, l’étape de régénération est précédée d’une étape de déshuilage qui comprend la mise en contact d’un catalyseur au moins partiellement usé issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre avec un courant de gaz inerte à une température comprise entre 300°C et 400°C. Selon une variante, le catalyseur régénéré ne subit pas d’ajout de métaux des groupes VI B et/ou VIII, de phosphore et/ou de composé organique après l’étape de régénération.
Selon une variante, le procédé est effectué dans un lit catalytique d’un réacteur du type lit fixe contenant plusieurs lits catalytiques, au moins un autre lit catalytique en amont ou en aval du lit catalytique contenant le catalyseur régénéré dans le sens de la circulation de la charge contient au moins en partie un catalyseur frais et/ou un catalyseur réjuvéné.
Selon une autre variante, le procédé est effectué en au moins deux réacteurs en série du type lit fixe ou du type lit bouillonnant, au moins un des réacteurs contient un catalyseur régénéré alors qu’un autre réacteur contient un catalyseur frais ou un catalyseur réjuvéné, ou un mélange d’un catalyseur régénéré et d’un catalyseur frais et/ou réjuvéné, et ceci dans n’importe quel ordre, avec ou sans élimination d’au moins une partie de l'h^S de l'effluent issu du premier réacteur avant de traiter ledit effluent dans le deuxième réacteur.
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. Description de l’invention
L'invention concerne donc un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur régénéré, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 fr1; et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, ledit catalyseur régénéré étant issu d’un catalyseur au moins partiellement usé issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre, ledit catalyseur régénéré comprend au moins un métal du groupe VIII, au moins un métal du groupe VI B et un support d’oxyde.
Le procédé d'hydrodésulfuration selon l'invention permet de transformer les composés organo-soufrés d'une coupe essence en sulfure d'hydrogène (H2S) tout en limitant autant que possible l'hydrogénation des oléfines présentes dans ladite coupe. Charge à traiter
Le procédé selon l'invention permet de traiter tout type de coupe essence oléfinique contenant du soufre, telle que par exemple une coupe issue d’une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo- saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Cette essence peut éventuellement être composée d’une fraction significative d’essence provenant d’autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage). La dite charge est de préférence constituée d’une coupe essence issue d’une unité de craquage catalytique. La charge est une coupe essence oléfinique contenant du soufre dont la gamme de points d'ébullition s'étend typiquement depuis les points d’ébullitions des hydrocarbures à 2 ou 3 atomes de carbone (C2 ou C3) jusqu'à 260°C, de préférence depuis les points d’ébullitions des hydrocarbures à 2 ou 3 atomes de carbone (C2 ou C3) jusqu'à 220°C, de manière plus préférée les points d’ébullitions des hydrocarbures à 5 atomes de carbone jusqu'à 220°C. Le procédé selon l'invention peut aussi traiter des charges ayant des points finaux inférieurs à ceux mentionnés précédemment, tel que par exemple une coupe C5-180°C.
La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée par le FCC, de la présence ou non d’un prétraitement de la charge du FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d’une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
Par ailleurs les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids d'oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans. Les mercaptans se concentrent généralement dans les fractions légères de l'essence et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C.
Il est à noter que les composés soufrés présents dans l'essence peuvent également comprendre des composés soufrés hétérocycliques, tels que par exemple les thiophènes, les alkylthiophènes ou des benzothiophènes. Ces composés hétérocycliques, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs. Ces composés soufrés sont par conséquent éliminés par un hydrotraitement, qui conduit à leur transformation en hydrocarbures et en H2S. De préférence, l’essence traitée par le procédé selon l’invention est une essence lourde (ou HCN pour Heavy Cracked Naphtha selon la terminologie anglo-saxonne) issue d’une étape de distillation visant à séparer une coupe large de l’essence issue d’un procédé de craquage (ou FRCN pour Full Range Cracked Naphtha selon la terminologie anglo-saxonne) en une essence légère (LCN pour Light Cracked Naphtha selon la terminologie anglo-saxonne) et une essence lourde FICN. Le point de coupe de l’essence légère et de l’essence lourde est déterminé afin de limiter la teneur en soufre de l’essence légère et de permettre son utilisation dans le pool essence de préférence sans post traitement supplémentaire. De façon avantageuse, la coupe large FRCN est soumise à une étape d’hydrogénation sélective décrite ci-après avant l’étape de distillation.
Catalyseur régénéré
Le catalyseur régénéré mise en œuvre dans le procédé selon l’invention est issu d’un catalyseur au moins partiellement usé, lui-même issu d’un catalyseur frais, qui a été utilisé dans un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans les conditions telles que décrites ci-dessous pendant une certaine période de temps et présente une activité sensiblement inférieure au catalyseur frais ce qui nécessite son remplacement.
Le catalyseur frais comprend au moins un métal du groupe VIII, au moins un métal du groupe VI B, un support d’oxyde et optionnellement du phosphore. Le catalyseur frais peut également comprendre en outre au moins un composé organique contenant de l'oxygène et/ou de l'azote et/ou du soufre avant sulfuration.
Selon une autre variante, le catalyseur frais ne comprend pas de phosphore.
La préparation du catalyseur frais est connue et comprend généralement une étape d’imprégnation des métaux du groupe VIII et du groupe VIB et éventuellement du phosphore et/ou du composé organique sur le support d’oxyde, suivie d’un séchage, puis d’une calcination optionnelle permettant d’obtenir la phase active sous leurs formes oxydes. Avant son utilisation dans un procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre, le catalyseur frais est généralement soumis à une sulfuration afin de former l’espèce active telle que décrite ci-dessous.
Selon une variante de l’invention, le catalyseur frais n’a pas subi de calcination lors de sa préparation, c'est-à-dire que le précurseur catalytique imprégné n'a pas été soumis à une étape de traitement thermique à une température supérieure à 200°C sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non.
Selon une autre variante de l’invention, préférée, le catalyseur frais a subi une étape de calcination lors de sa préparation, c'est-à-dire que le précurseur catalytique imprégné a été soumis à une étape de traitement thermique à une température comprise entre 200 et 1000°C et de préférence entre 350 et 750°C, pendant une durée typiquement comprise entre
15 minutes et 10 heures, sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. En effet, il a été remarqué qu’un catalyseur régénéré issu d’un catalyseur frais ayant subi une étape de calcination lors de sa préparation montre une baisse d’activité moins prononcée qu’un catalyseur régénéré issu d’un catalyseur frais n’ayant pas subi d’étape de calcination lors de sa préparation.
Au cours du procédé d'hydrodésulfuration de la coupe essence oléfinique contenant du soufre, du coke et du soufre ainsi que d’autres contaminants issus de la charge tels que le silicium, l’arsenic et du chlore se forment et/ou se déposent sur le catalyseur et transforment le catalyseur frais en un catalyseur au moins partiellement usé. On entend par un catalyseur au moins partiellement usé un catalyseur qui sort d’un procédé d'hydrodésulfuration de la coupe essence oléfinique contenant du soufre effectué dans les conditions telles que décrites ci-dessous et qui n’a pas subi de traitement thermique sous un gaz contenant de l’air ou de l’oxygène à une température supérieure à 200°C. Il peut avoir subi un déshuilage. On notera que le terme "coke" ou « carbone » dans la présente demande désigne une substance à base d’hydrocarbures déposée sur la surface du catalyseur lors de son utilisation, fortement cyclisée et condensée et ayant une apparence similaire au graphite. Le catalyseur au moins partiellement usé contient notamment du carbone à une teneur généralement supérieure ou égale à 2 % poids, de préférence comprise entre 2 et 10 % poids, et de manière encore plus préférée comprise entre 2,2 et 6 % poids par rapport au poids total du catalyseur au moins partiellement usé. Le procédé de régénération du catalyseur au moins partiellement usé utilisé pour générer le catalyseur régénéré mise en œuvre dans le procédé selon l’invention comprend une étape d'élimination du coke et du soufre (étape de régénération), généralement précédée d’une étape de déshuilage.
Même si cela est possible, la régénération n'est de préférence pas réalisée en conservant le catalyseur chargé dans le réacteur d'hydrodésulfuration (régénération in-situ). De préférence, le catalyseur au moins partiellement usé est donc extrait du réacteur et envoyé dans une installation de régénération afin d'effectuer la régénération dans ladite installation (régénération ex-situ).
L'étape de déshuilage comprend généralement la mise en contact du catalyseur au moins partiellement usé avec un courant de gaz inerte (c’est-à-dire essentiellement exempt d’oxygène), par exemple dans une atmosphère d'azote ou analogue, à une température comprise entre 300°C et 400°C, de préférence comprise entre 300°C et 350°C. Le débit de gaz inerte en termes de débit par unité de volume du catalyseur est de 5 à 150 NL.L Lh 1 pendant 3 à 7 heures. En variante, l'étape de déshuilage peut être réalisée par des hydrocarbures légers, par traitement à la vapeur ou tout autre procédé analogue.
L'étape de régénération est généralement effectuée dans un flux de gaz contenant de l'oxygène, généralement de l'air. La teneur en eau est généralement comprise entre 0 et 50% poids. Le débit de gaz en termes de débit par unité de volume du catalyseur usé est de préférence de 20 à 2000 NL.L Lh 1, plus préférablement de 30 à 1000 NL.L Lh 1, et de manière particulièrement préférée de 40 à 500 NL.L Lh 1. La durée de la régénération est de préférence de 2 heures ou plus, plus préférablement de 2,5 heures ou plus, et de manière particulièrement préférée de 3 heures ou plus. La régénération du catalyseur au moins partiellement usé est généralement réalisée à une température comprise entre 350°C et 550°C, de préférence comprise entre 360°C et 500°C.
Le catalyseur régénéré obtenu dans l'étape de régénération contient du carbone résiduel à une teneur de préférence inférieure à 2 % pds, de préférence comprise entre 0,1 % et 1 ,9% poids par rapport au poids total du catalyseur régénéré, préférentiellement comprise entre 0,1 % et 1 ,5% poids et de manière particulièrement préférée entre 0,1 % et 1 ,0% poids. Le catalyseur régénéré peut aussi ne pas contenir de carbone résiduel.
On notera que le terme "carbone résiduel" dans la présente demande signifie du carbone (coke) restant dans le catalyseur régénéré après régénération du catalyseur au moins partiellement usé. Cette teneur en carbone résiduel dans le catalyseur régénéré est mesurée par analyse élémentaire selon ASTM D5373.
Le catalyseur régénéré obtenu dans l'étape de régénération contient du soufre résiduel (avant la sulfuration optionnelle) à une teneur inférieure à 5% poids, de préférence comprise entre 0,1 % et 4,9% poids par rapport au poids total du catalyseur régénéré, préférentiellement comprise entre 0,1 % et 2,0% poids et de manière particulièrement préférée entre 0,2% et 0,8% poids. Le catalyseur régénéré peut aussi ne pas contenir de soufre résiduel. Cette teneur en soufre résiduel dans le catalyseur régénéré est mesurée par analyse élémentaire selon ASTM D5373. Le catalyseur régénéré du procédé selon l’invention est généralement composé du support d’oxyde, de la phase active formée d’au moins un métal du groupe VI B et d’au moins un métal du groupe VIII et optionnellement du phosphore du catalyseur frais.
Les teneurs en métal du groupe VI B, en métal du groupe VIII et en phosphore dans le catalyseur frais, au moins partiellement usé ou régénéré sont exprimées en oxydes après correction de la perte au feu de l’échantillon de catalyseur à 550°C pendant deux heures en four à moufle. La perte au feu est due à la perte d'humidité, de carbone, de soufre et/ou d’autres contaminants. Elle est déterminée selon l’ASTM D7348. Les teneurs en métal du groupe VIB, en métal du groupe VIII et optionnellement en phosphore dans le catalyseur régénéré sont sensiblement identiques aux teneurs du catalyseur au moins partiellement usé dont il est issu.
Les teneurs en métal du groupe VIB, en métal du groupe VIII et optionnellement en phosphore dans le catalyseur au moins partiellement usé sont sensiblement identiques aux teneurs du catalyseur frais dont il est issu.
Le catalyseur régénéré utilisé dans le procédé d'hydrodésulfuration selon l’invention est notamment non-additivé, c’est-à-dire qu’il ne contient pas de composé organique introduit après sa régénération. De plus, aucun ajout de métaux des groupes VIB et/ou VIII ou de phosphore n’est effectué après l’étape de régénération.
Le métal du groupe VIB présent dans la phase active du catalyseur régénéré est préférentiellement choisi parmi le molybdène et le tungstène. Le métal du groupe VIII présent dans la phase active du catalyseur régénéré est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments. La phase active du catalyseur régénéré est choisie de préférence dans le groupe formé par la combinaison des éléments nickel- molybdène, cobalt-molybdène et nickel-cobalt-molybdène, et de manière très préférée la phase active est constituée de cobalt et de molybdène.
La teneur en métal du groupe VIII est comprise entre 0,1 et 10% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur régénéré, de préférence comprise entre 0,6 et 8% poids, de préférence comprise entre 2 et 7%, de manière très préférée comprise entre 2 et 6% poids et de manière encore plus préférée comprise entre 2,5 et 6% poids.
La teneur en métal du groupe VIB est comprise entre 1 et 20% poids d'oxyde du métal du groupe VIB par rapport au poids total du catalyseur régénéré, de préférence comprise entre 2 et 18% poids, de manière très préférée comprise entre 3 et 10 % poids d'oxyde. Le rapport molaire métal du groupe VIII sur métal du groupe VIB du catalyseur régénéré est généralement compris entre 0,15 et 1 ,15, de préférence compris entre 0,19 et 0,8. En outre, le catalyseur régénéré présente une densité en métal du groupe VIB, exprimée en nombre d'atomes dudit métal par unité de surface du catalyseur, qui est comprise entre 0,5 et 30 atomes de métal du groupe VIB par nm2 de catalyseur, de manière préférée comprise entre 2 et 25, de manière encore plus préférée comprise entre 3 et 15. La densité en métal du groupe VIB, exprimée en nombre d'atomes de métal du groupe VIB par unité de surface du catalyseur (nombre d'atomes de métal du groupe VIB par nm2 de catalyseur) est calculée par exemple à partir de la relation suivante :
(X x Na)
d (métal du groupe VIB) =
(100 X 1018 X S X MM) avec :
• X = % poids de métal du groupe VIB;
• NA = Nombre d'Avogadro égal à 6,022.1023;
• S = Surface spécifique du catalyseur (m2/g), mesurée selon la norme ASTM D3663 ;
• M M = Masse molaire du métal du groupe VIB (par exemple 95,94 g/mol pour le molybdène). A titre d'exemple, si le catalyseur contient 20% poids d'oxyde de molybdène M0O3 (soit 13,33% poids de Mo) et a une surface spécifique de 100 m2/g, la densité d(Mo) est égale à :
(13,33 x Na) ,
d (Mo) = - - - - = 8,4 atomes de Mo/nrrr de catalyseur J (100 x 1018 x 100 x 96) ' y
Optionnellement, le catalyseur régénéré du procédé selon l'invention peut présenter en outre une teneur en phosphore généralement comprise entre 0,3 et 10% poids de P2O5 par rapport au poids total de catalyseur, de préférence comprise entre 0,5 et 5% poids, de manière très préférée comprise entre 1 et 3% poids. Par ailleurs, le rapport molaire phosphore/(métal du groupe VIB) est généralement compris entre 0,1 et 0,7, de préférence compris entre 0,2 et 0,6, lorsque le phosphore est présent. Optionnellement, le catalyseur régénéré du procédé selon l'invention peut présenter en plus du coke et du soufre en outre une faible teneur en contaminants issus de la charge traitée par le catalyseur frais dont il est originaire tels que le silicium, l’arsenic ou le chlore.
De préférence, la teneur en silicium (outre celui éventuellement présent sur le catalyseur frais) est inférieure à 2% poids et de manière très préférée inférieure à 1 % poids par rapport au poids total du catalyseur régénéré.
De préférence, la teneur en arsenic est inférieure à 2000 ppm poids et de manière très préférée inférieure à 500 ppm poids par rapport au poids total du catalyseur régénéré.
De préférence, la teneur en chlore est inférieure à 2000 ppm poids et de manière très préférée inférieure à 500 ppm poids par rapport au poids total du catalyseur régénéré.
De manière très préférée, le catalyseur régénéré n’est pas contaminé, c'est-à-dire contient une teneur inférieure à 100 ppm poids de silicium (outre celui éventuellement présent sur le catalyseur frais), inférieure à 50 ppm poids d’arsenic, et inférieure à 50 ppm poids de chlore par rapport au poids total du catalyseur régénéré. De manière préférée, le catalyseur régénéré du procédé selon l'invention, sous forme oxyde, se caractérise par une surface spécifique comprise entre 5 et 400 m2/g, de préférence comprise entre 10 et 250 m2/g, de préférence comprise entre 20 et 200 m2/g, de manière très préférée comprise entre 30 et 180 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, telle que décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous So/ids ; Princip/e, methodology and applications », Academie Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™.
Le volume poreux du catalyseur régénéré est généralement compris entre 0,4 cm3/g et 1 ,3 cm3/g, de préférence compris entre 0,6 cm3/g et 1 ,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans le même ouvrage. La densité de remplissage tassée (DRT) du catalyseur régénéré est généralement comprise entre 0,4 et 0,7 g/mL, de préférence comprise entre 0,45 et 0,69 g/mL. La mesure de DRT consiste à introduire le catalyseur dans une éprouvette dont on a préalablement déterminé le volume puis, par vibration, à le tasser jusqu’à obtenir un volume constant. La masse volumique apparente du produit tassé est calculée en comparant la masse introduite et le volume occupé après tassement.
Ce catalyseur peut se trouver sous forme d'extrudés de petit diamètre, cylindriques ou multilobés (trilobés, quadrilobes,...), ou de sphères.
Le support d’oxyde du catalyseur régénéré est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support d’oxyde est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il est de préférence constitué uniquement d'une alumine de transition. De manière préférée, le support d’oxyde du catalyseur régénéré du procédé selon l'invention est une alumine de transition « haute température », c'est-à-dire qui contient des alumines de phase thêta, delta, kappa ou alpha, seules ou en mélange et une quantité inférieure à 20% d'alumine de phase gamma, chi ou êta.
Procédé d'hydrodésulfuration
Le procédé d'hydrodésulfuration selon l’invention consiste à mettre en contact la coupe essence oléfinique contenant du soufre avec le catalyseur régénéré et de l'hydrogène dans les conditions suivantes:
- une température comprise entre 200 et 400°C, de préférence comprise entre 230 et 330°C - à une pression totale comprise entre 1 et 3 MPa, de préférence comprise entre 1 ,5 et 2,5 MPa
- une vitesse volumique horaire (WH), définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, de préférence comprise entre 2 et 6 h 1
- un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, de préférence compris entre 150 et 400 N L/L.
Le procédé d'hydrodésulfuration peut être réalisé dans un ou plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant. Si le procédé est mis en œuvre au moyen d'au moins deux réacteurs en série, il est possible de prévoir un dispositif d'élimination de l'H2S de l'effluent issu du premier réacteur d'hydrodésulfuration avant de traiter ledit effluent dans le deuxième réacteur d'hydrodésulfuration.
Le procédé d'hydrodésulfuration selon l’invention est effectué en présence d’un catalyseur régénéré. Il peut également être effectué en présence d’un mélange d’un catalyseur régénéré et d’un catalyseur frais ou d’un catalyseur réjuvéné.
Lorsque un catalyseur frais ou réjuvéné est présent, il comprend au moins un métal du groupe VIII, au moins un métal du groupe VI B et un support d’oxyde, et optionnellement du phosphore et/ou un composé organique tel que décrits ci-dessus.
La phase active et le support du catalyseur frais ou réjuvéné peuvent être identiques ou non à la phase active et au support du catalyseur régénéré.
La phase active et le support du catalyseur frais peuvent être identiques ou non à la phase active et au support du catalyseur réjuvéné.
Lorsque le procédé d'hydrodésulfuration est effectué en présence d’un catalyseur régénéré et d’un catalyseur frais ou réjuvéné, il peut être réalisé dans un réacteur du type lit fixe contenant plusieurs lits catalytiques. Dans ce cas, et selon une première variante, un lit catalytique contenant le catalyseur frais ou réjuvéné peut précéder un lit catalytique contenant le catalyseur régénéré dans le sens de la circulation de la charge.
Dans ce cas, et selon une deuxième variante, préférée, un lit catalytique contenant le catalyseur régénéré peut précéder un lit catalytique contenant le catalyseur frais ou réjuvéné dans le sens de la circulation de la charge.
Dans ce cas, et selon une troisième variante, un lit catalytique peut contenir un mélange d’un catalyseur régénéré et d’un catalyseur frais et/ou d’un catalyseur réjuvéné.
Dans ces cas, les conditions opératoires sont celles décrites ci-dessus. Elles sont généralement identiques dans les différents lits catalytiques à l’exception de la température qui augmente généralement dans un lit catalytique suite à l’exothermie des réactions d’hydrodésulfuration.
Lorsque le procédé d'hydrodésulfuration est effectué en présence d’un catalyseur régénéré et d’un catalyseur frais ou réjuvéné en plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant, un réacteur peut comprendre un catalyseur régénéré alors qu’un autre réacteur peut comprendre un catalyseur frais ou réjuvéné, ou un mélange d’un catalyseur régénéré et d’un catalyseur frais et/ou réjuvéné, et ceci dans n’importe quel ordre. On peut prévoir un dispositif d'élimination de l'hhS de l'effluent issu du premier réacteur d'hydrodésulfuration avant de traiter ledit effluent dans le deuxième réacteur.
Hydrogénation sélective (étape optionnelle)
Selon une variante, la coupe d’essence est soumise à une étape d’hydrogénation sélective avant le procédé d’hydrodésulfuration selon l’invention.
De préférence, l’essence traitée par le procédé d’hydrodésulfuration selon l’invention est une essence lourde issue d’une étape de distillation visant à séparer une coupe large de l’essence issue d’un procédé de craquage (ou FRCN pour Full Range Cracked Naphtha selon la terminologie anglo-saxonne) en une essence légère et une essence lourde. De façon avantageuse, la coupe large FRCN est soumise à une étape d’hydrogénation sélective décrite ci-après avant l’étape de distillation.
Ladite coupe FRCN est préalablement traitée en présence d'hydrogène et d'un catalyseur d'hydrogénation sélective de manière à hydrogéner au moins partiellement les dioléfines et réaliser une réaction d'alourdissement d'une partie des composés mercaptans (RSH) présents dans la charge en thioéthers, par réaction avec des oléfines.
A cette fin, la coupe large FRCN est envoyée dans un réacteur catalytique d'hydrogénation sélective contenant au moins un lit fixe ou mobile de catalyseur d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans. La réaction d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans s’effectue préférentiellement sur un catalyseur sulfuré comprenant au moins un métal du groupe VIII et éventuellement au moins un métal du groupe VI B et un support d’oxyde. Le métal du groupe VIII est choisi de préférence parmi le nickel et le cobalt et en particulier le nickel. Le métal du groupe VIB, lorsqu'il est présent, est de préférence choisi parmi le molybdène et le tungstène et de manière très préférée le molybdène.
Le support d’oxyde du catalyseur est de préférence choisi parmi l'alumine, l'aluminate de nickel, la silice, le carbure de silicium, ou un mélange de ces oxydes. On utilise, de manière préférée, de l'alumine et de manière encore plus préférée, de l'alumine de haute pureté. Selon un mode de réalisation préféré le catalyseur d'hydrogénation sélective contient du nickel à une teneur en poids d'oxyde de nickel (sous forme NiO) comprise entre 1 et 12%, et du molybdène à une teneur en poids d'oxyde de molybdène (sous forme M0O3) comprise entre 6% et 18% par rapport au poids total du catalyseur et un rapport molaire nickel/molybdène compris entre 0,3 et 2,5, les métaux étant déposés sur un support constitué d'alumine et dont le taux de sulfuration des métaux constituant le catalyseur étant supérieur à 5 0%.
Lors de l'étape optionnelle d'hydrogénation sélective, l'essence est mise en contact avec le catalyseur à une température comprise entre 50°C et 250°C, et de préférence entre 80°C et 220°C, et de manière encore plus préférée entre 90°C et 200°C, avec une vitesse spatiale liquide (LHSV) comprise entre 0,5 h 1 et 20 h 1, l'unité de la vitesse spatiale liquide étant le litre de charge par litre de catalyseur et par heure (L/L. h). La pression est comprise entre 0,4 MPa et 5 MPa, de préférence entre 0,6 et 4 MPa et de manière encore plus préférée entre 1 et 2 MPa. L’étape optionnelle d'hydrogénation sélective est typiquement réalisée avec un rapport hVcharge essence compris entre 2 et 100 Nm3 d'hydrogène par m3 de charge, de manière préférée entre 3 et 30 Nm3 d'hydrogène par m3 de charge.
Sulfuration (étape optionnelle)
Avant la mise en contact avec la charge à traiter, le catalyseur régénéré du procédé selon l'invention subit généralement une étape de sulfuration. La sulfuration est de préférence réalisée en milieu sulforéducteur, c'est-à-dire en présence d'hhS et d'hydrogène, afin de transformer les oxydes métalliques en sulfures tels que par exemple, le M0S2 et le CogSs. La sulfuration est réalisée en injectant sur le catalyseur un flux contenant de l'hhS et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les polysulfures tel que le diméthyldisulfure (DM DS) sont des précurseurs d'hhS couramment utilisés pour sulfurer les catalyseurs. Le soufre peut aussi provenir de la charge. La température est ajustée afin que l'hhS réagisse avec les oxydes métalliques pour former des sulfures métalliques. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur du procédé selon l’invention à des températures comprises entre 200 et 600°C, et plus préférentiellement entre 300°C et 500°C. Exemples
Exemple 1 - Préparation d'un catalyseur calciné A frais (comparatif)
Le support du catalyseur A est une alumine de transition de surface spécifique 140 m2/g et de volume poreux 1 ,0 cm3/g. Le catalyseur A est préparé par imprégnation à sec du support par une solution aqueuse d’heptamolybdate d’ammonium et de nitrate de cobalt, le volume de la solution contenant les précurseurs des métaux étant rigoureusement égal au volume poreux de la masse de support. La concentration des précurseurs de métaux en solution aqueuse est ajustée de manière à obtenir le pourcentage pondéral désiré en molybdène, cobalt et phosphore sur le catalyseur final. Après imprégnation à sec sur le support, le catalyseur est laissé à maturer pendant 1 h30 en enceinte saturée en eau, séché sous air en étuve à 90°C pendant 12 heures puis calciné sous air à 450°C pendant 2 heures.
Le catalyseur A obtenu après calcination a une teneur de 15,5% poids en molybdène (équivalent M0O3) et 3,4% poids de cobalt (équivalent CoO). Ce catalyseur présente un rapport atomique Co/Mo de 0,42. Exemple 2 - Préparation d'un catalyseur régénéré B (selon l’invention)
Le catalyseur A est utilisé pour désulfurer une essence de craquage catalytique (FCC) dont les caractéristiques sont rassemblées dans le tableau 1. La réaction est effectuée à 270°C pendant 900 heures en réacteur de type lit traversé dans les conditions suivantes : P=2 MPa, WH=4 h 1, H2/HC=300 litres/litres de charge hydrocarbonée. Le catalyseur est préalablement traité à 350°C par une charge contenant 4 % poids de soufre sous forme de DM DS (diméthyldisulfure) pour assurer la sulfuration des phases oxydes. La réaction se déroule en courant ascendant dans un réacteur pilote isotherme. Tableau 1 : Caractéristiques de la coupe essence de FCC utilisée pour le vieillissement du catalyseur A.
Figure imgf000023_0001
Le catalyseur A usé est prélevé dans le réacteur à l’issu de l’hydrodésulfuration d’une essence de craquage catalytique (FCC) décrite ci-dessus. Le catalyseur A usé est ensuite lavé au toluène en Soxhlet pendant 7 heures à 250°C (déshuilage).
La régénération du catalyseur A usé/lavé est ensuite réalisée en four tubulaire sous air sec à 450°C pendant 2 heures et on obtient le catalyseur B. La teneur résiduelle en carbone du catalyseur B est nulle. La teneur résiduelle en soufre est de 0,6 % poids par rapport au poids du catalyseur régénéré. Exemple 3 - Evaluation des performances catalytiques des catalyseurs A et B
Une charge modèle représentative d'une essence de craquage catalytique (FCC) contenant 10% poids de 2,3-diméthylbut-2-ène et 0,33% poids de 3-méthylthiophène (soit 1000 ppm pds de soufre dans la charge) est utilisée pour l'évaluation des performances catalytiques des différents catalyseurs. Le solvant utilisé est l'heptane. La réaction d'hydrodésulfuration (H DS) est opérée dans un réacteur à lit fixe traversé sous une pression totale de 1 ,5 MPa, à 210°C, à WH = 6 h 1 (WH = débit volumique de charge/volume de catalyseur), et un rapport volumique ^/charge de 300 N L/L, en présence de 4 mL de catalyseur. Au préalable à la réaction d'HDS, le catalyseur est sulfuré in-situ à 350°C pendant 2 heures sous un flux d'hydrogène contenant 15% mol d'H2S à pression atmosphérique. Chacun des catalyseurs est placé successivement dans ledit réacteur. Des échantillons sont prélevés à différents intervalles de temps et sont analysés par chromatographie en phase gazeuse de façon à observer la disparition des réactifs et la formation des produits.
Les performances catalytiques des catalyseurs sont évaluées en termes d'activité catalytique et de la sélectivité. L'activité en hydrodésulfuration (H DS) est exprimée à partir de la constante de vitesse pour la réaction d'HDS du 3-méthylthiophène (kHDS), normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport au composé soufré. L'activité en hydrogénation des oléfines (HydO) est exprimée à partir de la constante de vitesse de la réaction d'hydrogénation du 2,3-diméthylbut-2-ène, normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport à l'oléfine.
La sélectivité du catalyseur est exprimée par le rapport normalisé des constantes de vitesse kHDS/kHydO. Le rapport kHDS/kHydO sera d'autant plus élevé que le catalyseur sera plus sélectif. Les valeurs obtenues sont normalisées en prenant le catalyseur A comme référence (activité H DS relative et sélectivité relative égale à 100). Les performances sont donc l’activité H DS relative et la sélectivité relative (tableau 2).
Tableau 2
Figure imgf000024_0001
Le catalyseur régénéré B présente une activité similaire au catalyseur A frais et une sélectivité améliorée en hydrodésulfuration par rapport à l'hydrogénation des oléfines par rapport aux catalyseurs comparatif A (calciné frais).
Cette amélioration de sélectivité des catalyseurs est particulièrement intéressante dans le cas d'une mise en œuvre dans un procédé d'hydrodésulfuration d'essence contenant des oléfines pour lequel on cherche à limiter autant que possible la perte d'octane due à l'hydrogénation des oléfines.

Claims

REVENDICATIONS
1. Procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur régénéré, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, ledit catalyseur régénéré étant issu d’un catalyseur au moins partiellement usé issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre, ledit catalyseur régénéré comprend au moins un métal du groupe VIII, au moins un métal du groupe VIB et un support d’oxyde.
2. Procédé selon la revendication précédente, dans lequel le catalyseur régénéré a une teneur en métal du groupe VIB comprise entre 1 et 20 % poids d'oxyde dudit métal du groupe VIB par rapport au poids total du catalyseur régénéré et une teneur en métal du groupe VIII comprise entre 0,1 et 10% poids d'oxyde dudit métal du groupe VIII par rapport au poids total du catalyseur régénéré.
3. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré contient en outre du phosphore, la teneur en phosphore étant comprise entre 0,3 et 10% poids exprimé en P2O5 par rapport au poids total du catalyseur régénéré et le rapport molaire phosphore/(métal du groupe VIB) dans le catalyseur régénéré est compris entre 0,1 et 0,7.
4. Procédé selon l’une des revendications précédentes, dans lequel dans le catalyseur régénéré, le métal du groupe VIB est choisi parmi le tungstène et le molybdène et le métal du groupe VIII est choisi parmi le nickel et le cobalt.
5. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré se caractérise par une surface spécifique comprise entre 20 et 200 m2/g, de préférence comprise entre 30 et 180 m2/g.
6. Procédé selon l’une des revendications précédentes, dans lequel le support d’oxyde du catalyseur régénéré est choisi parmi les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine.
7. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré contient du carbone résiduel à une teneur inférieure à 2% poids par rapport au poids total du catalyseur régénéré.
8. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré contient du soufre à une teneur inférieure à 5% poids par rapport au poids total du catalyseur régénéré.
9. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré est soumis à une étape de sulfuration avant ou pendant le procédé d'hydrodésulfuration.
10. Procédé selon l’une des revendications précédentes, dans lequel la coupe d'essence est une essence issue d'une unité de craquage catalytique.
1 1. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré est issu d’une étape de régénération effectuée dans un flux de gaz contenant de l'oxygène réalisée à une température comprise entre 350°C et 550°C.
12. Procédé selon la revendication précédente, dans lequel l’étape de régénération est précédée d’une étape de déshuilage qui comprend la mise en contact d’un catalyseur au moins partiellement usé issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre avec un courant de gaz inerte à une température comprise entre 300°C et 400°C.
13. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur régénéré ne subit pas d’ajout de métaux des groupes VI B et/ou VIII, de phosphore et/ou de composé organique après l’étape de régénération.
14. Procédé selon l’une des revendications précédentes, lequel est effectué dans un lit catalytique d’un réacteur du type lit fixe contenant plusieurs lits catalytiques, au moins un autre lit catalytique en amont ou en aval du lit catalytique contenant le catalyseur régénéré dans le sens de la circulation de la charge contient au moins en partie un catalyseur frais et/ou un catalyseur réjuvéné.
15. Procédé selon l’une des revendications précédentes, lequel est effectué en au moins deux réacteurs en série du type lit fixe ou du type lit bouillonnant, au moins un des réacteurs contient un catalyseur régénéré alors qu’un autre réacteur contient un catalyseur frais ou un catalyseur réjuvéné, ou un mélange d’un catalyseur régénéré et d’un catalyseur frais et/ou réjuvéné, et ceci dans n’importe quel ordre, avec ou sans élimination d’au moins une partie de l'hhS de l'effluent issu du premier réacteur avant de traiter ledit effluent dans le deuxième réacteur.
PCT/EP2019/084438 2018-12-18 2019-12-10 Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere WO2020126677A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980084701.9A CN113383056A (zh) 2018-12-18 2019-12-10 使用再生的催化剂对含硫烯烃汽油馏分进行加氢脱硫的方法
MX2021005795A MX2021005795A (es) 2018-12-18 2019-12-10 Proceso de hidrodesulfuracion de cortes de gasolina olefinica que contienen azufre usando un catalizador regenerado.
KR1020217017927A KR20210102256A (ko) 2018-12-18 2019-12-10 재생된 촉매를 이용한 황 함유 올레핀계 가솔린 컷의 수소화탈황 방법
JP2021534668A JP2022513952A (ja) 2018-12-18 2019-12-10 再生触媒を用いる硫黄含有オレフィン性ガソリン留分の水素化脱硫方法
US17/414,437 US11795405B2 (en) 2018-12-18 2019-12-10 Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst
EP19813884.4A EP3898899A1 (fr) 2018-12-18 2019-12-10 Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en ouvre un catalyseur regenere
BR112021008475-4A BR112021008475A2 (pt) 2018-12-18 2019-12-10 processo de hidrodessulfuração de cortes de gasolina oleofínica contendo enxofre, usando um catalisador regenerado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873238 2018-12-18
FR1873238A FR3090005B1 (fr) 2018-12-18 2018-12-18 Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré.

Publications (1)

Publication Number Publication Date
WO2020126677A1 true WO2020126677A1 (fr) 2020-06-25

Family

ID=66530249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/084438 WO2020126677A1 (fr) 2018-12-18 2019-12-10 Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere

Country Status (9)

Country Link
US (1) US11795405B2 (fr)
EP (1) EP3898899A1 (fr)
JP (1) JP2022513952A (fr)
KR (1) KR20210102256A (fr)
CN (1) CN113383056A (fr)
BR (1) BR112021008475A2 (fr)
FR (1) FR3090005B1 (fr)
MX (1) MX2021005795A (fr)
WO (1) WO2020126677A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795405B2 (en) 2018-12-18 2023-10-24 IFP Energies Nouvelles Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140626A (en) 1976-03-04 1979-02-20 Standard Oil Company (Indiana) Process for the selective desulfurization of cracked naphthas with magnesia-containing catalyst
US4774220A (en) 1987-03-02 1988-09-27 Texaco, Inc. Lithium-doped gamma-alumina supported cobalt-molybdenum catalyst
WO1996041848A1 (fr) * 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
US20020010086A1 (en) * 2000-07-12 2002-01-24 Plantenga Frans Lodewijk Process for preparing an additive-based mixed metal catalyst, its composition and use
WO2005035691A1 (fr) * 2003-10-03 2005-04-21 Albemarle Netherlands B.V. Procede d'activation d'un catalyseur d'hydrotraitement
US20050159295A1 (en) * 2004-01-20 2005-07-21 Ginestra Josiane M. Method of restoring catalytic activity to a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
WO2007084471A1 (fr) * 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Catalyseurs sélectifs pour l'hydrodésulfurisation de naphta
EP1892039A1 (fr) 2006-07-28 2008-02-27 Ifp Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des gropes VIII et VIB
WO2009126278A2 (fr) * 2008-04-11 2009-10-15 Exxonmobil Research And Engineering Company Régénération et renouvellement de catalyseurs supportés d'hydrotraitement
US20110079542A1 (en) 2009-10-05 2011-04-07 Exxonmobil Research And Engineering Company Stacking of low activity or regenerated catalyst above higher activity catalyst
CN102463127A (zh) 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种催化剂再生活化方法
US8637423B2 (en) 2006-01-17 2014-01-28 Exxonmobil Research And Engineering Company Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
FR2994864A1 (fr) * 2012-09-05 2014-03-07 IFP Energies Nouvelles Procede de sulfuration d'un catalyseur d'hydrodesulfuration
US8722558B2 (en) 2009-07-09 2014-05-13 Jx Nippon Oil & Energy Corporation Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
WO2016173760A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE D'ACIDE y-CETOVALERIQUE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE
WO2017167522A1 (fr) * 2016-03-30 2017-10-05 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP3315195A1 (fr) * 2016-10-28 2018-05-02 Repsol, S.A. Procédés d'activation d'un catalyseur d'hydrotraitement
EP3338887A1 (fr) * 2016-12-22 2018-06-27 IFP Energies nouvelles Procédé de sulfuration d'un catalyseur à partir d'une coupe d'hydrocarbures préalablement hydrotraitée et d'un composé soufré

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236723B1 (en) 1998-06-29 2001-05-22 Aspect Communications Computer/telephony integration logging application
CN103920541A (zh) * 2013-01-16 2014-07-16 中国石油化工集团公司 一种沸腾床加氢催化剂脱油系统及其方法
FR3090005B1 (fr) 2018-12-18 2021-07-30 Ifp Energies Now Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré.

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140626A (en) 1976-03-04 1979-02-20 Standard Oil Company (Indiana) Process for the selective desulfurization of cracked naphthas with magnesia-containing catalyst
US4774220A (en) 1987-03-02 1988-09-27 Texaco, Inc. Lithium-doped gamma-alumina supported cobalt-molybdenum catalyst
WO1996041848A1 (fr) * 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
US20020010086A1 (en) * 2000-07-12 2002-01-24 Plantenga Frans Lodewijk Process for preparing an additive-based mixed metal catalyst, its composition and use
WO2005035691A1 (fr) * 2003-10-03 2005-04-21 Albemarle Netherlands B.V. Procede d'activation d'un catalyseur d'hydrotraitement
US7956000B2 (en) 2003-10-03 2011-06-07 Albemarle Europe, SPRL Process for activating a hydrotreating catalyst
US7820579B2 (en) 2004-01-20 2010-10-26 Shell Oil Company Method of restoring catalytic activity to a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
US20050159295A1 (en) * 2004-01-20 2005-07-21 Ginestra Josiane M. Method of restoring catalytic activity to a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
US8637423B2 (en) 2006-01-17 2014-01-28 Exxonmobil Research And Engineering Company Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
WO2007084471A1 (fr) * 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Catalyseurs sélectifs pour l'hydrodésulfurisation de naphta
EP1892039A1 (fr) 2006-07-28 2008-02-27 Ifp Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des gropes VIII et VIB
WO2009126278A2 (fr) * 2008-04-11 2009-10-15 Exxonmobil Research And Engineering Company Régénération et renouvellement de catalyseurs supportés d'hydrotraitement
US7906447B2 (en) 2008-04-11 2011-03-15 Exxonmobil Research And Engineering Company Regeneration and rejuvenation of supported hydroprocessing catalysts
US8722558B2 (en) 2009-07-09 2014-05-13 Jx Nippon Oil & Energy Corporation Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
US20110079542A1 (en) 2009-10-05 2011-04-07 Exxonmobil Research And Engineering Company Stacking of low activity or regenerated catalyst above higher activity catalyst
CN102463127A (zh) 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种催化剂再生活化方法
FR2994864A1 (fr) * 2012-09-05 2014-03-07 IFP Energies Nouvelles Procede de sulfuration d'un catalyseur d'hydrodesulfuration
WO2016173760A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE D'ACIDE y-CETOVALERIQUE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE
WO2017167522A1 (fr) * 2016-03-30 2017-10-05 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP3315195A1 (fr) * 2016-10-28 2018-05-02 Repsol, S.A. Procédés d'activation d'un catalyseur d'hydrotraitement
EP3338887A1 (fr) * 2016-12-22 2018-06-27 IFP Energies nouvelles Procédé de sulfuration d'un catalyseur à partir d'une coupe d'hydrocarbures préalablement hydrotraitée et d'un composé soufré

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000
ROUQUEROL F.ROUQUEROL J.SINGH K: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795405B2 (en) 2018-12-18 2023-10-24 IFP Energies Nouvelles Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst

Also Published As

Publication number Publication date
BR112021008475A2 (pt) 2021-08-03
KR20210102256A (ko) 2021-08-19
EP3898899A1 (fr) 2021-10-27
FR3090005B1 (fr) 2021-07-30
CN113383056A (zh) 2021-09-10
US20220081627A1 (en) 2022-03-17
US11795405B2 (en) 2023-10-24
FR3090005A1 (fr) 2020-06-19
JP2022513952A (ja) 2022-02-09
MX2021005795A (es) 2021-06-30

Similar Documents

Publication Publication Date Title
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP2161076B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique
EP2072607A1 (fr) Procédé de désulfuration en deux étapes d'essences oléfiniques comprenant de l'arsenic
WO2006037884A1 (fr) Procede de captation selective de l'arsenic dans les essences riches en soufre et en olefines
FR2904242A1 (fr) Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des elements des groupes viii et vib
FR2895415A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
EP1849850A1 (fr) Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration
FR2988732A1 (fr) Procede d'hydrogenation selective d'une essence
WO2020126679A1 (fr) Procede de rejuvenation d'un catalyseur use non regenere d'un procede d'hydrodesulfuration d'essences
WO2020126676A1 (fr) Procede de rejuvenation d'un catalyseur use et regenere d'un procede d'hydrodesulfuration d'essences
WO2020126677A1 (fr) Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere
WO2016096364A1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
EP2606969B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
WO2020126678A1 (fr) Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur rejuvene a un compose organique
EP2796196B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
FR3116828A1 (fr) Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
EP3283601B1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
WO2021013526A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2023110732A1 (fr) Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique
WO2021224172A1 (fr) Catalyseur d'hydrogenation comprenant un support et un ratio nimo specifique
WO2021224173A1 (fr) Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate
WO2023110730A1 (fr) Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse
WO2021013525A1 (fr) Procede de traitement d'une essence par separation en trois coupes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19813884

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008475

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021534668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019813884

Country of ref document: EP

Effective date: 20210719

ENP Entry into the national phase

Ref document number: 112021008475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210430