WO2020125601A1 - 一种高坝放空系统 - Google Patents

一种高坝放空系统 Download PDF

Info

Publication number
WO2020125601A1
WO2020125601A1 PCT/CN2019/125829 CN2019125829W WO2020125601A1 WO 2020125601 A1 WO2020125601 A1 WO 2020125601A1 CN 2019125829 W CN2019125829 W CN 2019125829W WO 2020125601 A1 WO2020125601 A1 WO 2020125601A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
water
primary
tunnel
emptying
Prior art date
Application number
PCT/CN2019/125829
Other languages
English (en)
French (fr)
Inventor
杨家修
杜帅群
湛正刚
姚元成
郑雪玉
鲍伟
Original Assignee
中国电建集团贵阳勘测设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团贵阳勘测设计研究院有限公司 filed Critical 中国电建集团贵阳勘测设计研究院有限公司
Publication of WO2020125601A1 publication Critical patent/WO2020125601A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/04Valves, slides, or the like; Arrangements therefor; Submerged sluice gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Definitions

  • the invention belongs to the technical field of water conservancy and hydropower engineering, and in particular relates to a high dam emptying system.
  • the Chinese invention patent with publication number CN105220659B discloses a super-deep water blocking and venting system for a high dam and its operation method.
  • the technical scheme is to share the total water head by setting up multi-level gates, and fill the water behind each level of gates to offset the water blocking head, so that the water thrust of each level of gates is within the range of conventional design.
  • the system realizes the balance of water pressure and air pressure through the internal and external communication pipes, external maintenance communication pipes, water filling pipes and corridors. Overcome the difficulties of the existing technology.
  • the system has the following deficiencies:
  • the working gate and the maintenance gate hoist are arranged side by side on the hoist platform. Due to the operating space requirements of the hoist, the distance between the gate wells corresponding to the hoist is too large, and the engineering quantity of the gate well is increased. In particular, for projects with high gate well heights, project investment is bound to increase significantly.
  • the present invention provides a high dam emptying system.
  • the present invention is achieved by the following technical solutions.
  • the utility model provides a high dam emptying system, including a tunnel and a water supplementing unit, along the flow direction of the water flow inside the tunnel, a plurality of primary gate devices and at least one secondary gate are arranged in sequence above the tunnel at an appropriate interval Device and at least one evacuation gate device, the tunnel located upstream of the evacuation gate device is a pressure section, and the tunnel located downstream of the evacuation gate device is a pressureless section, and the primary gate device includes a primary gate body, along the In the tunnel, the water flow to the primary sluice body is provided with an inspection gate well and a working gate in parallel, and the top of the primary gate body is equipped with power equipment A.
  • the inspection gate and the working gate are respectively provided with an inspection gate, Working gate, the power equipment A provides power for the lifting and sliding of the maintenance gate and the working gate within the maintenance gate and the working gate, respectively, and the secondary gate device includes a secondary gate body and a secondary gate body A power device C is installed on the top, an accident gate is provided within the secondary gate body, and an accident gate is arranged within the accident gate. The power device C provides power for the lifting and sliding of the accident gate within the accident gate.
  • the emptying gate device includes an emptying gate chamber provided above the tunnel, the water supplement unit is independently provided outside the high dam emptying system and is the secondary gate device, the emptying gate device or a plurality of Make up water for the primary gate device.
  • the primary gate device further includes power equipment B, which is connected to the working gate or the maintenance gate.
  • the power equipment A and the power equipment B are installed in layers on top of the primary gate body.
  • a flat pressure pipe is embedded inside the primary sluice body, and the flat pressure pipe connects the maintenance gate and the working gate located within the same primary gate device, and the arrangement height of the flat pressure pipe corresponds to the rated control corresponding to the primary gate device The water level is consistent.
  • Power equipment D is installed within the emptying gate chamber, and an emptying gate is arranged at the connection between the emptying gate chamber and the tunnel, and the emptying gate is connected to the power equipment D, so that the emptying gate chamber and the tunnel can Turn on or block.
  • the emptying gate is an arc gate.
  • An anti-seepage curtain is also provided between the secondary gate device and the empty gate device.
  • the high dam venting system also includes a communication pipe, which communicates with each maintenance gate well, work gate well, accident gate well, emptying gate chamber, and no-pressure section, and the height of the communicating pipe is lower than that of the emptying gate device Rated control water level.
  • a vent pipe communicating with the tunnel is also buried within the secondary gate body, one end of the vent pipe extends into the tunnel, and the other end of the vent pipe extends upwards greater than the height of the emptying gate chamber.
  • the working gate well within each primary gate device is connected to the maintenance gate well within the next primary gate device through the drainage channel A, and the last primary gate
  • the working sluice well inside the device communicates with the accident sluice well inside the secondary gate device through the drainage channel B, the accident sluice well also communicates with the non-pressure section through the drainage channel C, and the upstream inlet of each drainage channel A is arranged
  • the height is determined by the rated water level height of the working gate well within the primary gate device connected to it, the height of the upstream inlet layout of the drainage channel B is determined by the rated water level height of the accident gate well within the secondary gate device connected to it, and the upstream inlet layout of the drainage channel C
  • the height is determined by the water blocking height of the emptying gate device, and the drainage channel C is also communicated with the pressurized section through a water filling pipe.
  • Weir heads are provided at the upstream inlets of the drainage channel A, the drainage channel B, and the drainage channel C.
  • the maintenance gate, working gate and accident gate are all flat gates.
  • the arrangement form of the maintenance gate and the working gate is the rear water stop.
  • the arrangement form of the accident gate is the front water stop.
  • the water replenishment unit includes a water reservoir and a water replenishment pipe, and the water reservoir is connected to the working gate within the primary gate device through the water replenishment pipe.
  • the water replenishment unit also includes a PID intelligent regulator.
  • a flow rate sensor Along the direction of water flow in the water replenishment pipe, a flow rate sensor, an electric regulating valve, and a water hammer eliminator are sequentially installed on the water replenishment pipe.
  • the PID intelligent regulator is relatively independent It is arranged outside the water supply pipe, and the PID intelligent regulator is electrically connected with the flow velocity sensor and the electric regulating valve, respectively.
  • the tunnel may be provided in multiple layers, each of the tunnels is provided with a plurality of primary gate devices, secondary gate devices, and evacuation gate devices according to any one of claims 1 to 10, and each layer of the tunnel is provided with Corresponding water replenishment unit, the connection elevation between the tunnels of each layer is determined by the water-retaining head and the minimum discharge amount of venting.
  • the number of primary gate devices provided on the tunnels of each layer increases gradually from layer to layer according to the direction from high to low.
  • the beneficial effect of the present invention lies in: adopting the technical solution of the present invention, by using a plurality of primary gate devices to gradually reduce the head pressure from the upstream, and then completely emptied by the emptying gate device, so that the head pressure from the upstream It is distributed step by step into the primary gate devices at all levels, which effectively prevents the head pressure from exceeding the limit that the gate bears, thereby improving the safety of the entire system.
  • the two gates in the primary gate device are independently arranged by the two floors.
  • the drive of a set of power equipment avoids interference between each other, reduces the operation space of power equipment, and greatly reduces the corresponding engineering volume and investment. When one set of power equipment fails, the other set of power equipment can still ensure the safe and stable operation of the entire system.
  • a water supply unit is added to multiple primary gate devices.
  • the system is controlled by an automatic control device.
  • the water pressure is compensated to ensure the stability of the water pressure of the gate devices at all levels.
  • the water hammer eliminator is installed to eliminate the water hammer generated during the fall of the water flow, so that the water flow rate is kept stable, and the secondary gate device behind is avoided. Being impacted by large water flow, the whole system is kept in stable operation and its service life is extended.
  • the utility model has the advantages of compact structure, simple construction and construction process, low project investment cost, high operation safety and reliability.
  • Figure 1 is a longitudinal sectional view of the present invention
  • FIG. 2 is a schematic structural view of the water supplement unit of the present invention.
  • FIG. 3 is a schematic diagram of installation in the power machine room of the present invention.
  • FIG 4 is a partial enlarged view of the upstream inlet of the drainage channel A of the present invention.
  • the utility model provides a high dam emptying system, as shown in FIG. 1, FIG. 2 and FIG. 3, including a tunnel 5 and a water replenishment unit 4, along the flow direction of the water flow within the tunnel 5, and sequentially arranged on the tunnel 5 at appropriate intervals
  • the primary sluice device 1 includes a primary sluice body 101, and a maintenance gate 102 and a working sluice 103 are arranged in parallel along the tunnel 5 to the primary sluice body 101, and a power equipment A6 is installed on the top of the primary sluice body 101 ,
  • the maintenance gate 102 and the working gate 103 are respectively equipped with the maintenance gate 104 and the working gate 105, and the power equipment A6 provides power for the lifting and sliding of the maintenance gate 104 and the working gate
  • the equipment C9 provides power for the up and down movement of the accident gate 802 within the accident gate 801.
  • the empty gate device 3 includes an empty gate chamber 11 provided above the tunnel 5.
  • the water supplement unit 4 is independently provided outside the high dam emptying system and is The secondary gate device 2, the empty gate device 3, or the plurality of primary gate devices 1 make up water.
  • the head pressure from the upstream is reduced step by step by using multiple primary gate devices, and then completely emptied by the drain gate device, so that the head pressure from the upstream is distributed to each level step by step
  • the water head pressure is effectively prevented from exceeding the limit of the gate device, thereby improving the safety of the entire system.
  • the two gates in the primary gate device are driven by two sets of power equipment that operate relatively independently. To avoid interference with each other, when one set of power equipment fails, the other set of power equipment can still ensure the safe and stable operation of the entire system.
  • a supplementary water unit is added to the second-stage primary gate device.
  • the utility model has the advantages of compact structure, simple construction process, low project investment cost, high operation safety and reliability.
  • the primary gate device 1 further includes a power equipment B7, which is connected to the working gate 105 or the maintenance gate 104, and the power equipment A6 and the power equipment B7 are installed on the top of the primary gate body 101 in layers.
  • the working gate 105 and the maintenance gate 104 can be driven by a set of power equipment to work simultaneously, or can be driven by two different sets of power equipment to work independently.
  • Power equipment A6 and power equipment B7 are installed in layers on the primary gate body.
  • the top of 101 can greatly reduce the size of the primary gate body 101, greatly reduce the amount of engineering, and save engineering investment.
  • a flat pressure pipe 10 is embedded inside the primary sluice body 101, and the flat pressure pipe 10 connects the maintenance gate 104 and the working gate 105 located within the same primary gate device 1, and the height of the flat pressure pipe 10 is arranged to the primary gate
  • the rated control water level elevation corresponding to the device 1 is consistent.
  • the maintenance gate 104, the working gate 105, and the accident gate 802 are all straight plate-shaped structures.
  • the evacuation gate device 3 includes an evacuation gate chamber 11 disposed above the tunnel 5, a power device D12 is installed within the evacuation gate chamber 11, and an evacuation gate 13 is disposed at the connection between the evacuation gate chamber 11 and the tunnel 5,
  • the drain gate 13 is connected to the power equipment D12 so that the drain gate 11 and the tunnel 5 can be connected or blocked.
  • the emptying gate 13 has an arc shape.
  • an anti-seepage curtain 26 is also provided between the secondary gate device 2 and the empty gate device 3. The anti-seepage curtain 26 is used to prevent water from seeping into the emptying gate chamber 11 to ensure the operation safety of the entire high dam emptying system.
  • the high dam venting system also includes a communication pipe 14 that communicates with each of the maintenance gate well 102, the work gate well 103, the accident gate well 801, the evacuation gate chamber 11, and the pressureless section 502, and the communication pipe 14 is provided
  • the height is lower than the rated control water level of the empty gate device 3.
  • the number of communication tubes 14 is two.
  • the relative height difference between the height of the channel water level before the secondary gate device 2 and the arrangement position of the communication pipe 14 is greater than zero.
  • a vent pipe 15 communicating with the tunnel 5 is also buried within the secondary sluice body 8.
  • One end of the vent pipe 15 extends into the tunnel 5, and the other end of the vent pipe 15 extends upward at a height greater than the height of the evacuation gate chamber 11, the vent pipe 15 and the tunnel 5
  • the connection point is located at the lower part of the bottom of the accident gate 801.
  • the vent pipe 15 is used to supplement an appropriate amount of air into the tunnel during the maintenance of the system, so as to ensure the safety of the maintenance operation.
  • the working gate well 103 within each primary gate device 1 passes through the drainage channel A16 and the maintenance gate well 102 within the next primary gate device 1 Connected, the last working gate well 103 within the primary gate device 1 communicates with the accident gate well 801 within the secondary gate device 2 through the drainage channel B17, and the accident gate well 801 also communicates with the pressureless section 502 through the drainage channel C18, each The height of the upstream inlet arrangement of the drainage channel A16 is determined by the rated water level of the working gate 103 within the primary gate device 1 communicating with it, and the height of the upstream inlet arrangement of the drainage channel B17 is rated by the accident gate 801 within the secondary gate device 2 communicating with it The height of the water level is determined, and the height of the upstream inlet arrangement of the drainage channel C18 is determined by the water blocking height of the emptying gate device 3, and the drainage channel C18 is also communicated with the pressurized section 501 through the water filling pipe 28.
  • the water-filling pipe 28 fills the tunnel 5 between the accident gate well 802 and the emptying gate chamber 11 to ensure the water pressure balance and prevent various buildings from being washed away by water flow.
  • the water-filling pipe 28 and the pressure section A waterproof pad 27 is provided directly below the 501 connection to prevent the inner wall of the tunnel 5 from being washed by excessive water flow.
  • weir heads 1601 are provided at the upstream inlets of the drainage channel A16, the drainage channel B17, and the drainage channel C18.
  • the maintenance gate 104, the work gate 105, and the accident gate 802 are all flat gates.
  • the arrangement form of the maintenance gate 104 and the working gate 105 is rear water stop.
  • the arrangement form of the accident gate 802 is the front water stop.
  • the high dam venting system also includes a communication pipe 14, which communicates with each of the maintenance gate well 102, the work gate well 103, the accident gate well 801, the evacuation gate chamber 11, and the pressureless section 502. Drain the upstream water level of the gate device 3.
  • the number of communicating tubes 14 is not less than two, one of which can be used for normal operation and the other as a spare, and at least two ball valves are provided on the communicating tube 14, one of which is used for normal operation and the other as a spare.
  • a water-filling pipe 28 communicating with the tunnel 5 is also buried within the secondary sluice body 8. The water-filling pipe 28 can also directly communicate with the lower part of the bottom of the accident gate 801.
  • a power machine room 19 is also installed on the top of the primary gate body 101, and at least two storage rooms 1901 are provided inside the power machine room 19, and the power equipment A6 and the power equipment B7 are installed in different storage rooms 1901, respectively.
  • the water replenishment unit 4 includes a water reservoir 20 and a water replenishment pipe 21.
  • the water reservoir 20 communicates with the working gate 105 within the primary gate device 1 through the water replenishment pipe 21.
  • the water replenishment unit 4 further includes a PID intelligent regulator 25.
  • a flow rate sensor 22, an electric regulating valve 23, a water hammer eliminator 24, and a PID intelligent regulator 25 are sequentially installed on the water replenishment pipe 21.
  • the PID intelligent regulator 25 is electrically connected to the flow rate sensor 22 and the electric regulating valve 23, respectively.
  • the installation positions of the flow rate sensor 22, the electric regulating valve 23, and the water hammer eliminator 24 are close to the working gate 105 within the second primary gate device 1. Further, the number of primary gate devices 1 is greater than two.
  • the water pressure in the system is compensated for by the automatic control device, thereby eliminating the water hammer generated by the water flow during the falling process, keeping the water flow velocity stable, and avoiding subsequent problems
  • the sluice gate device is impacted by large water flow, which keeps the entire system running stably and extends its service life.
  • the tunnel 5 may be provided in multiple layers, and each layer of the tunnel 5 is provided with a plurality of primary gate devices 1, secondary gate devices 2 and drain gate devices 3 according to any one of claims 1 to 10, each layer of tunnel 5
  • the corresponding water replenishment unit 4 is arranged outside, and the connection elevation between the tunnels 5 of each layer is determined by the water blocking head and the minimum discharge amount of the vent. It is preferable to take the arrangement height of the tunnels 5 in each layer as a reference amount, and the number of primary gate devices 1 provided on the tunnels 5 in each layer increases gradually from layer to layer according to the direction from high to low.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)

Abstract

本发明公开了一种高坝放空系统,包括沿着河道水流流向依次布置的多个初级闸门装置、次级闸门装置、排空闸门装置,初级闸门装置包括并列布置的检修闸井和工作闸井,以及安装在顶部的动力设备A和动力设备B,次级闸门装置包括事故闸井和安装在顶部的动力设备C,使检修闸门、工作闸门和事故闸门可相对独立地启闭,独立设置于外部的补水单元为第2个初级闸门装置以内的工作闸门补水,排空闸门装置包括排空闸室和弧形排空闸门。采用本实用新型的技术方案,通过多个初级闸门装置分担上游水头的压力,由排空闸门装置排空库水,通过补水单元对系统内水压进行补损,使水流流速保持稳定,避免了闸门装置承受过高的水头压力,保证了整个系统的安全、稳定。

Description

一种高坝放空系统 技术领域
本发明属于水利水电工程技术领域,具体是涉及一种高坝放空系统。
背景技术
随着坝工技术的发展,300m级高坝的出现,对工程的放空及运行提出了更高的要求。但是目前普遍放空设施只能放空库水到105m水深左右,究其原因,主要受闸门制造技术水平影响,使得闸门的挡水水头设计受限,导致潜在灾难性事故发生,带来巨大经济损失。因此,需要提出一种既能满足现有金属结构制造水平,又能增大放空深度的放空结构,来尽可能放空300级高坝工程的库水,最大限度的保障工程安全。
为满足上述要求,公开号为CN105220659B的中国发明专利公开了一种高坝大库超深层挡水放空系统及其操作方法。该技术方案是通过设置多级闸门分担总水头,并在各级闸门后充水抵消挡水水头,使各级闸门承受的水推力在常规设计范围内。同时在系统通过内、外部连通管、外部检修连通管、充水管、廊道等实现水压、气压平衡。克服了现有技术难题。但是该系统存在以下不足:
(1)在上述系统中没有设置备用充排水系统,仅通过内、外部连通管、外部检修连通管、充水管、廊道等实现水压、气压平衡,一旦连通管等失效,整个系统的平压作用也会失效,导致系统瘫痪无法实现深层挡水放空功能;
(2)在上述系统中工作闸门和检修闸门启闭机均并排布置在启闭机平台,由于启闭机运行空间要求,导致启闭机对应的闸门井间距过大,闸门井工程量增大,尤其对于闸门井高度较大的工程,势必大幅度增加工程投资。
发明内容
为解决上述技术问题,本发明提供了一种高坝放空系统。
本发明是通过如下技术方案予以实现的。
本实用新型提供了一种高坝放空系统,包括隧洞和补水单元,沿着所述隧洞以内水流流向,在所述隧洞之上按照适当间距依次布置有多个初级闸门装置、至少一个次级闸门装置和至少一个排空闸门装置,位于所述排空闸门装置上游隧洞为有压段,位于所述排空闸门装置下游隧洞为无压段,所述初级闸门装置包括初级闸体,沿着所述隧洞以内水流流向所述初级闸体内依次并列设置有检修闸井和工作闸井,所述初级闸体顶部安装有动力设备A,所述检修闸井、工作闸井以内分别配置有检修闸门、工作闸门,所述动力设备A为所述检修闸门、工作闸门分别在所述检修闸井、工作闸井以内的升降滑动提供动力,所述次级闸门装置包括次级闸体,次级闸体顶部安装有动力设备C,次级闸体以内设置有事故闸井,事故闸井以内配置有事故闸门,所述动力设备C为所述事故闸门在所述事故闸井以内的升降滑动提供动力,所述排空闸门装置包括设置于所述隧洞之上的排空闸室,所述补水单元独立设置于所述高坝放空系统外部并且为所述次级闸门装置、排空闸门装置或多个初级闸门装置补水。
所述初级闸门装置还包括动力设备B,动力设备B与所述工作闸门或检修闸门连接,所述动力设备A与动力设备B是分层安装于所述初级闸体顶部。
所述初级闸体内部埋设有平压管,平压管将位于同一个初级闸门装置以内的检修闸门与工作闸门相连通,并且所述平压管布置高度与该初级闸门装置所对应的额定控制水位高程一致。
所述排空闸室以内安装有动力设备D,排空闸室与所述隧洞连接处配置有排空闸门,排空闸门与所述动力设备D连接,使排空闸室与所述隧洞可导通或阻断。
所述排空闸门是弧形闸门。
所述次级闸门装置与排空闸门装置之间还设置有防渗帷幕。
所述高坝放空系统还包括连通管,连通管分别与各个检修闸井、工作闸井、事故闸井、排空闸室、无压段连通,连通管设置高度低于所述排空闸门装置额定控制水位。
所述次级闸体以内还埋设有与所述隧洞连通的通气管,通气管一端伸入所述隧洞以内,通气管另一端向上延伸高度大于所述排空闸室的高度。
沿着所述隧洞以内水流流向,自第二个初级闸门装置起,每个初级闸门装置以内的工作闸井均通过排水通道A与下一个初级闸门装置以内的检修闸井连通,最后一个初级闸门装置以内的工作闸井通过排水通道B与所述次级闸门装置以内的事故闸井连通,所述事故闸井还通过排水通道C与所述无压段连通,每个排水通道A上游进口布置高度由与其连通的初级闸门装置以内的工作闸井的额定水位高度确定,排水通道B上游进口布置高度由与其连通的次级闸门装置以内的事故闸井额定水位高度确定,排水通道C上游进口布置高度由排空闸门装置的挡水高程确定,排水通道C还通过充水管与所述有压段连通。
所述排水通道A、排水通道B和排水通道C上游进口处均设置有堰头。
所述检修闸门、工作闸门、事故闸门均为平板闸门。
所述检修闸门、工作闸门布置形式是后止水。
所述事故闸门布置形式是前止水。
所述补水单元包括储水池、补水管,所述储水池通过补水管与所述初级闸门装置以内的工作闸门连通。
所述补水单元还包括PID智能调节仪,沿着所述补水管以内水流流动的方向,所述补水管之上依次安装有流速传感器、电动调节阀、水锤消除器,PID智能调节仪相对独立地布置于所述补水管之外,PID智能调节仪分别与流速传感器、电动调节阀建立有电性连接。
所述隧洞可以设置为多层,每层隧洞之上均设置有如权利要求1至10任一项所述多个初级闸门装置、次级闸门装置和排空闸门装置,每层隧洞外部均配置有相应的补水单元,各层隧洞之间的衔接高程由挡水水头和放空最小泄量确定。
以所述各层隧洞布置高度为参照量,按照由高向低的方向,所述各层隧洞之上设置的初级闸门装置数量逐层递增。
本发明的有益效果在于:采用本实用新型的技术方案,通过采用多个初级闸门装置使来自于上游的水头压力逐级降低,再由排空闸门装置完全排空,从而使来自上游的水头压力逐级地分配至各级初级闸门装置中,有效防止了水头压力超过闸门承受的的限额,从而提升了整个系统的安全性,初级闸门装置中的两道闸门分别由错层独立布置运行的两套动力设备驱动,避免了互相之间存在干扰,缩小了动力设备操作空间,极大减小相应工程量及投资。当其中一套动力设备出现故障时,另一套动力设备仍然可以保证整个系统的安全稳定运行,此外,对多个初级闸门装置增设了补水单元,在需要的时候,通过自动化控制装置对系统内的水压进行补损,保障了各级闸门装置的水压稳定,设置的水锤消除器,消除了水流在下落过程中产生的水锤,使水流流速保持稳定,避免后面的次级闸门装置受到水流较大的冲击,从而使整个系统保持稳定运行,延长了其使用寿命,此外,本实用新型 具有结构紧凑,施工建设工艺简单,工程投资成本低,运行安全性和可靠性高等优点。
附图说明
图1是本发明的纵向剖视图;
图2是本发明的补水单元的结构示意图;
图3是本发明动力机房内的安装示意图;
图4是本发明排水通道A上游进口处的局部放大图。
图中:1-初级闸门装置,2-次级闸门装置,3-排空闸门装置,4-补水单元,5-隧洞,6-动力设备A,7-动力设备B,8-次级闸体,9-动力设备C,10-平压管,11-排空闸室,12-动力设备D,13-排空闸门,14-连通管,15-通气管,16-排水通道A,17-排水通道B,18-排水通道C,19-动力机房,20-储水池,21-补水管,22-流速传感器,23-电动调节阀,24-水锤消除器,25-PID智能调节仪,26-防水帷幕,27-防水垫,28-充水管,101-初级闸体,102-检修闸井,103-工作闸井,104-检修闸门,105-工作闸门,501-有压段,502-无压段,801-事故闸井,802-事故闸门,1601-堰头,1901-容纳室。
具体实施方式
下面结合附图进一步描述本发明的技术方案,但要求保护的范围并不局限于所述。
本实用新型提供了一种高坝放空系统,如图1、图2、图3所示,包括隧洞5和补水单元4,沿着隧洞5以内水流流向,在隧洞5之上按照适当间距依次布置有多个初级闸门装置1、至少一个次级闸门装置2和至少一个排空闸门装置3,位于排空闸门装置3上游隧洞5为有压段501,位于排空闸门装置3下游隧洞5为无压段502,初级闸门装置1包括初级闸体101,沿着隧洞5以内水流流向初级闸体101 内依次并列设置有检修闸井102和工作闸井103,初级闸体101顶部安装有动力设备A6,检修闸井102、工作闸井103以内分别配置有检修闸门104、工作闸门105,动力设备A6为检修闸门104、工作闸门105分别在检修闸井102、工作闸井103以内的升降滑动提供动力,次级闸门装置2包括次级闸体8,次级闸体8顶部安装有动力设备C9,次级闸体8以内设置有事故闸井801,事故闸井801以内配置有事故闸门802,动力设备C9为事故闸门802在事故闸井801以内的升降滑动提供动力,排空闸门装置3包括设置于隧洞5之上的排空闸室11,补水单元4独立设置于高坝放空系统外部并且为次级闸门装置2、排空闸门装置3或多个初级闸门装置1补水。
采用本实用新型的技术方案,通过采用多个初级闸门装置使来自于上游的水头压力逐级降低,再由排空闸门装置完全排空,从而使来自上游的水头压力逐级地分配至各级初级闸门装置、次级闸门装置中,有效防止了水头压力超过闸门装置的限额,从而提升了整个系统的安全性,初级闸门装置中的两道闸门分别由相对独立运行的两套动力设备驱动,避免了互相之间存在干扰,当其中一套动力设备出现故障时,另一套动力设备仍然可以保证整个系统的安全稳定运行,此外,对第二级初级闸门装置增设了补水单元,在需要的时候,通过自动化控制装置对系统内的水压进行补损,从而消除了水流在下落过程中产生的水锤,使水流流速保持稳定,避免后面的次级闸门装置受到水流较大的冲击,从而使整个系统保持稳定运行,延长了其使用寿命,此外,本实用新型具有结构紧凑,施工建设工艺简单,工程投资成本低,运行安全性和可靠性高等优点。
另外,初级闸门装置1还包括动力设备B7,动力设备B7与工作闸门105或检修闸门104连接,动力设备A6与动力设备B7是分层安装于初级闸体101顶部。这样使得工作闸门105和检修闸门104既可以通过一套动力设备驱动同时工作,也可以通过两套不同的动力设备 驱动分别独立的工作,动力设备A6与动力设备B7是分层安装于初级闸体101顶部,可大大降低初级闸体101的外形尺寸,极大减少工程量,节省工程投资。
进一步地,初级闸体101内部埋设有平压管10,平压管10将位于同一个初级闸门装置1以内的检修闸门104与工作闸门105相连通,并且平压管10布置高度与该初级闸门装置1所对应的额定控制水位高程一致。采用该技术方案,可方便地对各个相邻的初级闸门装置之间的水头压力进行调节,从而避免各级初级闸门装置受到较大的水流冲击,保证了整个系统的安全可靠运行。
进一步地,检修闸门104、工作闸门105、事故闸门802均为平直板状结构。
此外,排空闸门装置3包括设置于隧洞5之上的排空闸室11,排空闸室11以内安装有动力设备D12,排空闸室11与隧洞5连接处配置有排空闸门13,排空闸门13与动力设备D12连接,使排空闸室11与隧洞5可导通或阻断。优选排空闸门13为弧形形状。进一步地,次级闸门装置2与排空闸门装置3之间还设置有防渗帷幕26。防渗帷幕26用于防止水流渗入排空闸室11以内,保证了整个高坝放空系统的运行安全。
进一步地,高坝放空系统还包括连通管14,连通管14分别与各个检修闸井102、工作闸井103、事故闸井801、排空闸室11、无压段502连通,连通管14设置高度低于排空闸门装置3额定控制水位。优选连通管14数量为2条。次级闸门装置2之前的河道水位高度与连通管14布置位置之间的相对高度差大于零。采用该技术方案,可在用户需要时对各级初级闸门装置之前的水头压力进行调节,以保持水流压力的稳定,避免对初级闸门装置造成冲击,保护了设施,此外,当其中一条连通管出现故障或需要检修时,可随时启用另一条连通管 对水头压力进行调节,方便了操作,保证了系统仍然处理安全、可靠和稳定的运行状态。
次级闸体8以内还埋设有与隧洞5连通的通气管15,通气管15一端伸入隧洞5以内,通气管15另一端向上延伸高度大于排空闸室11的高度,通气管15与隧洞5连接处位于事故闸井801底部较低的部位。通气管15用于在对系统进行检修时,向隧洞内补充适量的空气,从而保证检修作业的安全。
此外,沿着隧洞5以内水流流向,自第二个初级闸门装置1起,每个初级闸门装置1以内的工作闸井103均通过排水通道A16与下一个初级闸门装置1以内的检修闸井102连通,最后一个初级闸门装置1以内的工作闸井103通过排水通道B17与次级闸门装置2以内的事故闸井801连通,事故闸井801还通过排水通道C18与无压段502连通,每个排水通道A16上游进口布置高度由与其连通的初级闸门装置1以内的工作闸井103的额定水位高度确定,排水通道B17上游进口布置高度由与其连通的次级闸门装置2以内的事故闸井801额定水位高度确定,排水通道C18上游进口布置高度由排空闸门装置3的挡水高程确定,排水通道C18还通过充水管28与有压段501连通。充水管28为事故闸门井802和排空闸室11之间的隧洞5充水,以保障水压平衡,避免各种建筑物受到水流过大的冲刷,此外,在充水管28与有压段501连接处的正下方设置有防水垫27,防止隧洞5内壁受到过大的水流冲刷。
此外,如图4所示,排水通道A16、排水通道B17和排水通道C18上游进口处均设置有堰头1601。检修闸门104、工作闸门105、事故闸门802均为平板闸门。检修闸门104、工作闸门105布置形式是后止水。事故闸门802布置形式是前止水。当通过泥沙含量较高水体时,排水通道A16、排水通道B17、排水通道C18横断面均为城门洞型,按照1%~6%坡度设计,便于增大水流流速,将泥沙带走。当通过泥沙 含量较低水体时,各级排水通道A16、排水通道B17、排水通道C18的横断面则可以采用其他任意形状。高坝放空系统还包括连通管14,连通管14分别与各个检修闸井102、工作闸井103、事故闸井801、排空闸室11、无压段502连通,连通管14设置高度低于排空闸门装置3上游水位。连通管14数量不小于2条,可将其中一条作为正常工作时使用,另一条作为备用,并且连通管14上设置至少两个球阀,其中一个作为正常工作时使用,另一个作为备用,此外,次级闸体8以内还埋设有与隧洞5连通的充水管28,充水管28还可直接连通事故闸井801底部较低的部位。
进一步地,初级闸体101顶部还安装有动力机房19,动力机房19以内设置有至少两层容纳室1901,动力设备A6、动力设备B7分别安装于不同的容纳室1901以内。
优选补水单元4包括储水池20、补水管21,储水池20通过补水管21与初级闸门装置1以内的工作闸门105连通。
补水单元4还包括PID智能调节仪25,沿着补水管21以内水流流动的方向,补水管21之上依次安装有流速传感器22、电动调节阀23、水锤消除器24,PID智能调节仪25相对独立地布置于补水管21之外,PID智能调节仪25分别与流速传感器22、电动调节阀23建立有电性连接。流速传感器22、电动调节阀23、水锤消除器24安装位置与第2个初级闸门装置1以内的工作闸门105相接近。进一步地,初级闸门装置1的数量大于2。采用本实用新型的技术方案,在需要的时候,通过自动化控制装置对系统内的水压进行补损,从而消除了水流在下落过程中产生的水锤,使水流流速保持稳定,避免后面的次级闸门装置受到水流较大的冲击,从而使整个系统保持稳定运行,延长了其使用寿命。
进一步地,隧洞5可以设置为多层,每层隧洞5之上均设置有如权利要求1至10任一项多个初级闸门装置1、次级闸门装置2和排 空闸门装置3,每层隧洞5外部均配置有相应的补水单元4,各层隧洞5之间的衔接高程由挡水水头和放空最小泄量确定。优选以各层隧洞5布置高度为参照量,按照由高向低的方向,各层隧洞5之上设置的初级闸门装置1数量逐层递增。
本申请的技术方案由中国电建集团贵阳勘测设计研究院有限公司投入实施应用,在实施中,受贵州省科技支撑计划科技项目黔科合支撑[2017]2865的资助、中国电建科研项目DJ-ZDXM-2017-05的资助,在实施后,取得了上述有益的技术效果,同时社会效益良好。

Claims (17)

  1. 一种高坝放空系统,其特征在于:包括隧洞(5)和补水单元(4),沿着所述隧洞(5)以内水流流向,在所述隧洞(5)之上按照适当间距依次布置有多个初级闸门装置(1)、至少一个次级闸门装置(2)和至少一个排空闸门装置(3),位于所述排空闸门装置(3)上游隧洞(5)为有压段(501),位于所述排空闸门装置(3)下游隧洞(5)为无压段(502),所述初级闸门装置(1)包括初级闸体(101),沿着所述隧洞(5)以内水流流向所述初级闸体(101)内依次并列设置有检修闸井(102)和工作闸井(103),所述初级闸体(101)顶部安装有动力设备A(6),所述检修闸井(102)、工作闸井(103)以内分别配置有检修闸门(104)、工作闸门(105),所述动力设备A(6)为所述检修闸门(104)、工作闸门(105)分别在所述检修闸井(102)、工作闸井(103)以内的升降滑动提供动力,所述次级闸门装置(2)包括次级闸体(8),次级闸体(8)顶部安装有动力设备C(9),次级闸体(8)以内设置有事故闸井(801),事故闸井(801)以内配置有事故闸门(802),所述动力设备C(9)为所述事故闸门(802)在所述事故闸井(801)以内的升降滑动提供动力,所述排空闸门装置(3)包括设置于所述隧洞(5)之上的排空闸室(11),所述补水单元(4)独立设置于所述高坝放空系统外部并且为所述次级闸门装置(2)、排空闸门装置(3)或多个初级闸门装置(1)补水。
  2. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述初级闸门装置(1)还包括动力设备B(7),动力设备B(7)与所述工作闸门(105)或检修闸门(104)连接,所述动力设备A(6)与动力设备B(7)是分层安装于所述初级闸体(101)顶部。
  3. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述初级闸体(101)内部埋设有平压管(10),平压管(10)将位于同一个初级闸门装置(1)以内的检修闸门(104)与工作闸门(105) 相连通,并且所述平压管(10)布置高度与该初级闸门装置(1)所对应的额定控制水位高程一致。
  4. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述排空闸室(11)以内安装有动力设备D(12),排空闸室(11)与所述隧洞(5)连接处配置有排空闸门(13),排空闸门(13)与所述动力设备D(12)连接,使排空闸室(11)与所述隧洞(5)可导通或阻断。
  5. 根据权利要求4所述的一种高坝放空系统,其特征在于:所述排空闸门(13)是弧形闸门。
  6. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述次级闸门装置(2)与排空闸门装置(3)之间还设置有防渗帷幕(26)。
  7. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述高坝放空系统还包括连通管(14),连通管(14)分别与各个检修闸井(102)、工作闸井(103)、事故闸井(801)、排空闸室(11)、无压段(502)连通,连通管(14)设置高度低于所述排空闸门装置(3)额定控制水位。
  8. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述次级闸体(8)以内还埋设有与所述隧洞(5)连通的通气管(15),通气管(15)一端伸入所述隧洞(5)以内,通气管(15)另一端向上延伸高度大于所述排空闸室(11)的高度。
  9. 根据权利要求1所述的一种高坝放空系统,其特征在于:沿着所述隧洞(5)以内水流流向,自第二个初级闸门装置(1)起,每个初级闸门装置(1)以内的工作闸井(103)均通过排水通道A(16)与下一个初级闸门装置(1)以内的检修闸井(102)连通,最后一个初级闸门装置(1)以内的工作闸井(103)通过排水通道B(17)与所述次级闸门装置(2)以内的事故闸井(801)连通,所述事故闸井(801)还通过排水通道C(18)与所述无压段(502)连通,每个排 水通道A(16)上游进口布置高度由与其连通的初级闸门装置(1)以内的工作闸井(103)的额定水位高度确定,排水通道B(17)上游进口布置高度由与其连通的次级闸门装置(2)以内的事故闸井(801)额定水位高度确定,排水通道C(18)上游进口布置高度由排空闸门装置(3)的挡水高程确定,排水通道C(18)还通过充水管(28)与所述有压段(501)连通。
  10. 根据权利要求9所述的一种高坝放空系统,其特征在于:所述排水通道A(16)、排水通道B(17)和排水通道C(18)上游进口处均设置有堰头(1601)。
  11. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述检修闸门(104)、工作闸门(105)、事故闸门(802)均为平板闸门。
  12. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述检修闸门(104)、工作闸门(105)布置形式是后止水。
  13. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述事故闸门(802)布置形式是前止水。
  14. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述补水单元(4)包括储水池(20)、补水管(21),所述储水池(20)通过补水管(21)与所述初级闸门装置(1)以内的工作闸门(105)连通。
  15. 根据权利要求10所述的一种高坝放空系统,其特征在于:所述补水单元(4)还包括PID智能调节仪(25),沿着所述补水管(21)以内水流流动的方向,所述补水管(21)之上依次安装有流速传感器(22)、电动调节阀(23)、水锤消除器(24),PID智能调节仪(25)相对独立地布置于所述补水管(21)之外,PID智能调节仪(25)分别与流速传感器(22)、电动调节阀(23)建立有电性连接。
  16. 根据权利要求1所述的一种高坝放空系统,其特征在于:所述隧洞(5)可以设置为多层,每层隧洞(5)之上均设置有如权利要求1至10任一项所述多个初级闸门装置(1)、次级闸门装置(2)和排空闸门装置(3),每层隧洞(5)外部均配置有相应的补水单元(4),各层隧洞(5)之间的衔接高程由挡水水头和放空最小泄量确定。
  17. 根据权利要求11所述的一种高坝放空系统,其特征在于:以所述各层隧洞(5)布置高度为参照量,按照由高向低的方向,所述各层隧洞(5)之上设置的初级闸门装置(1)数量逐层递增。
PCT/CN2019/125829 2018-12-21 2019-12-17 一种高坝放空系统 WO2020125601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811569928.6 2018-12-21
CN201811569928.6A CN109667247A (zh) 2018-12-21 2018-12-21 一种高坝放空系统

Publications (1)

Publication Number Publication Date
WO2020125601A1 true WO2020125601A1 (zh) 2020-06-25

Family

ID=66145803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125829 WO2020125601A1 (zh) 2018-12-21 2019-12-17 一种高坝放空系统

Country Status (2)

Country Link
CN (1) CN109667247A (zh)
WO (1) WO2020125601A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109667247A (zh) * 2018-12-21 2019-04-23 中国电建集团贵阳勘测设计研究院有限公司 一种高坝放空系统
CN110185007B (zh) * 2019-07-08 2024-07-12 辽宁省水利水电勘测设计研究院有限责任公司(原名称为辽宁省水利水电勘测设计研究院) 一种水库系统
CN110593225B (zh) * 2019-08-30 2024-03-19 中国电建集团贵阳勘测设计研究院有限公司 一种多级放空洞水力学监测系统
CN111188321B (zh) * 2020-01-13 2024-06-25 中国电建集团贵阳勘测设计研究院有限公司 一种进水口快速闸门通气孔结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2335599C2 (ru) * 2006-11-07 2008-10-10 Санкт-Петербургский государственный университет водных коммуникаций Способ защиты ворот шлюза от навала судов
CN105220659A (zh) * 2015-08-21 2016-01-06 中国电建集团贵阳勘测设计研究院有限公司 一种高坝大库超深层挡水放空系统及其操作方法
CN105421313A (zh) * 2015-12-28 2016-03-23 中国电建集团贵阳勘测设计研究院有限公司 一种特高水头闸门充水平压的方法及装置
JP2017002528A (ja) * 2015-06-08 2017-01-05 井上 晃一 ダム、河川、取水路の沈砂収集装置
CN109667247A (zh) * 2018-12-21 2019-04-23 中国电建集团贵阳勘测设计研究院有限公司 一种高坝放空系统
CN210002357U (zh) * 2018-12-21 2020-01-31 中国电建集团贵阳勘测设计研究院有限公司 一种具有补水功能的高坝放空系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779080A (zh) * 2004-11-19 2006-05-31 杨祁东 自动船闸与水运航道
CN205062764U (zh) * 2015-10-10 2016-03-02 中国电建集团贵阳勘测设计研究院有限公司 一种用于泄放高水头大流量隧洞的双闸门结构
KR20170033287A (ko) * 2017-03-06 2017-03-24 차운철 표층수 취수용 수문장치
CN107288106A (zh) * 2017-08-25 2017-10-24 中国电建集团中南勘测设计研究院有限公司 一种泄洪洞
CN208056007U (zh) * 2018-04-02 2018-11-06 黄河勘测规划设计有限公司 用于水工钢闸门平压的旁通管道系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2335599C2 (ru) * 2006-11-07 2008-10-10 Санкт-Петербургский государственный университет водных коммуникаций Способ защиты ворот шлюза от навала судов
JP2017002528A (ja) * 2015-06-08 2017-01-05 井上 晃一 ダム、河川、取水路の沈砂収集装置
CN105220659A (zh) * 2015-08-21 2016-01-06 中国电建集团贵阳勘测设计研究院有限公司 一种高坝大库超深层挡水放空系统及其操作方法
CN105421313A (zh) * 2015-12-28 2016-03-23 中国电建集团贵阳勘测设计研究院有限公司 一种特高水头闸门充水平压的方法及装置
CN109667247A (zh) * 2018-12-21 2019-04-23 中国电建集团贵阳勘测设计研究院有限公司 一种高坝放空系统
CN210002357U (zh) * 2018-12-21 2020-01-31 中国电建集团贵阳勘测设计研究院有限公司 一种具有补水功能的高坝放空系统

Also Published As

Publication number Publication date
CN109667247A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020125601A1 (zh) 一种高坝放空系统
CN105220659A (zh) 一种高坝大库超深层挡水放空系统及其操作方法
WO2020125602A1 (zh) 一种深层取水系统及其操作方法
WO2020125600A1 (zh) 一种用于高坝工程的多级挡水放空系统
CN209053164U (zh) 引水隧洞进水口分层取水结构
CN208857807U (zh) 一种用于大型升船机的充泄水及补水系统
CN212896607U (zh) 一种泵站自充式虹吸引水系统
CN109577290A (zh) 一种适用于高坝水库的放空系统
CN112746597A (zh) 一种高水位的水坝系统
CN210002357U (zh) 一种具有补水功能的高坝放空系统
CN211735598U (zh) 岸边式多水位组合取水泵房结构
CN207989064U (zh) 具有发电功能的隧道构造
CN209779580U (zh) 一种低层导流洞挡水结构
CN205604193U (zh) 一种高坝水库放空装置
CN110593220A (zh) 一种用于泄流消能洞的补气坎结构
CN115613529A (zh) 一种高水头生态流量泄水洞的布置结构
CN214660931U (zh) 一种采煤塌陷区浮船泵站
CN210530427U (zh) 一种火电厂主厂房布置结构
CN214143599U (zh) 水库放空系统更新改造的放空洞结构
CN210002355U (zh) 一种高坝水库放空系统
CN211395601U (zh) 一种拦水坝
CN208072514U (zh) 一种节能型虹吸井
CN112746605A (zh) 一种水力式升船机省水系统及其使用方法
CN207376792U (zh) 一种地下室消防供水系统
CN211773393U (zh) 一种新型溢流堰上橡胶坝充排水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897625

Country of ref document: EP

Kind code of ref document: A1