WO2020125585A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020125585A1
WO2020125585A1 PCT/CN2019/125680 CN2019125680W WO2020125585A1 WO 2020125585 A1 WO2020125585 A1 WO 2020125585A1 CN 2019125680 W CN2019125680 W CN 2019125680W WO 2020125585 A1 WO2020125585 A1 WO 2020125585A1
Authority
WO
WIPO (PCT)
Prior art keywords
access device
type
base station
domain resource
broadcast signal
Prior art date
Application number
PCT/CN2019/125680
Other languages
English (en)
French (fr)
Inventor
陈莹
罗禾佳
乔云飞
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19897874.4A priority Critical patent/EP3820201A4/en
Publication of WO2020125585A1 publication Critical patent/WO2020125585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a communication method and device.
  • Ground communication can include: ground communication and non-ground communication (for example: satellites, hot air balloons that can realize the function of base stations, high altitude platforms such as drones).
  • non-ground communication for example: satellites, hot air balloons that can realize the function of base stations, high altitude platforms such as drones.
  • ordinary terminal equipment can only support ground communication, and only dedicated satellite terminals can realize satellite communication.
  • the present application provides a communication method and device, which can realize communication fusion of ground communication and non-ground communication.
  • an embodiment of the present application provides a communication method applied to a terminal.
  • the method may include: the terminal receives a broadcast signal sent by an access device; subsequently, the terminal may acquire the access device based on the received broadcast signal
  • the type of the access device includes: a first type and/or a second type, where the first type includes a ground base station or a non-ground base station, and the second type includes at least one of the following types: a ground base station, a high-altitude base station , Low-orbit satellites, medium-orbit satellites or high-orbit satellites.
  • the terminal can identify the type of the access device through the broadcast signal sent by the access device, thereby realizing the communication fusion of terrestrial communication and non-terrestrial communication, effectively improving the resource utilization rate and user experience.
  • the broadcast signal includes first identification information, and the first identification information is used to indicate the type of the access device; wherein, the first identification information is the primary synchronization signal PSS and/or the secondary synchronization signal SSS.
  • the terminal can obtain the type of the access device according to the PSS or SSS, and the PSS and SSS.
  • obtaining the type of the access device based on the broadcast signal specifically includes, according to the relationship between the first identification information and the first type, determining whether the access device is a ground base station or a non-ground base station; If the device is a non-terrestrial base station, the type of the access device is obtained according to the relationship between the first identification information and the second type.
  • obtaining the type of the access device based on the broadcast signal specifically includes, according to the relationship between the PSS and the first type, determining whether the access device is a terrestrial base station or a non-terrestrial base station; if the access device is a non-terrestrial base station The ground base station obtains the type of the access device according to the relationship between the SSS and the second type.
  • the broadcast signal includes a first type parameter for identifying the type of the access device, and the first type parameter is a sequence for generating a preamble.
  • obtaining the type of the access device based on the broadcast signal specifically includes: parsing the first type parameter to obtain the first parameter; according to the relationship between the first parameter and the type of the access device, obtaining Type of access device.
  • acquiring the type of the access device according to the relationship between the first parameter and the type of the access device specifically includes: determining the access device as a ground base station according to the relationship between the first parameter and the first type Or a non-terrestrial base station; if the access device is a non-terrestrial base station, the type of the access device is obtained according to the relationship between the first parameter and the second type.
  • the sequence includes a ZC sequence and/or an M sequence.
  • obtaining the type of the access device based on the broadcast signal further includes: according to the relationship between the first identification information and the first type, determining whether the access device is a ground base station or a non-ground base station; if accessing If the device is a non-terrestrial base station, the type of the access device is obtained according to the relationship between the first parameter and the second type.
  • the location of the time domain resource and/or frequency domain resource of the broadcast signal is used to indicate the type of the access device.
  • acquiring the type of the access device based on the broadcast signal specifically includes: acquiring the location of the time domain resource and/or frequency domain resource of the broadcast signal; based on the location of the time domain resource and/or The relationship between the location of the frequency domain resource and the type of access device is used to obtain the type of access device.
  • the position of the time domain resource is used to indicate the offset value N between the position of the broadcast signal on the time domain resource to which it belongs and the specified location.
  • the access device if the value of N is in the first interval, the access device is a ground base station; if the value of N is not in the first interval, the access device is a non-ground base station.
  • obtaining the type of the access device based on the broadcast signal specifically includes obtaining the value of N; based on the value of N, the type of access device is obtained.
  • acquiring the type of the access device based on the broadcast signal specifically includes: acquiring the value of N; based on the value of N, determining whether the access device is a terrestrial base station or a non-terrestrial base station; if the access device is For non-terrestrial base stations, the type of access equipment is obtained based on the value of N.
  • the position of the frequency domain resource includes the size and/or starting position of the resource block occupied by the broadcast signal on the frequency domain resource to which it belongs.
  • the access device if the location of the frequency domain resource meets the first condition, the access device is a ground base station; if the location of the frequency domain resource does not satisfy the first condition, the access device is a non-terrestrial base station.
  • acquiring the type of the access device based on the broadcast signal specifically includes: acquiring the location of the frequency domain resource; and acquiring the type of the access device based on the location of the frequency domain resource.
  • acquiring the type of the access device based on the broadcast signal specifically includes: acquiring the location of the frequency domain resource; based on the location of the frequency domain resource, determining whether the access device is a ground base station or a non-ground base station; if If the access device is a non-terrestrial base station, the type of access device is obtained based on the location of the frequency domain resource.
  • an embodiment of the present application provides a communication method, which is applied to a base station.
  • the method may include: generating a broadcast signal, where the broadcast signal is used to indicate the type of the access device, the Types of access equipment include: terrestrial base stations or non-terrestrial base stations; sending the broadcast signal.
  • the broadcast signal includes first identification information, where the first identification information is used to indicate the type of the access device; wherein, the first identification information is the primary synchronization signal PSS and/or secondary Synchronization signal SSS.
  • PSS is used to indicate that the access device is a ground base station or a non-ground base station
  • SSS is used to indicate that if the PSS indicates that the access device is a non-ground base station, the access device is a high-altitude base station, a low-orbit satellite, medium Orbiting satellite or high-orbiting satellite.
  • the broadcast signal includes a first type parameter that identifies the type of the access device, and the first type parameter is a sequence for generating a preamble.
  • the sequence includes a ZC sequence and/or an M sequence.
  • the location of the time domain resource and/or frequency domain resource of the broadcast signal is used to indicate the type of the access device.
  • the position of the time-domain resource is used to indicate an offset value N between the position of the broadcast signal on the time-domain resource to which it belongs and a specified position.
  • the access device if the value of N is in the first interval, the access device is a terrestrial base station; if the value of N is not in the first interval, the access device is a non-terrestrial base station.
  • the value of N is used to indicate that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the position of the frequency domain resource includes the size and/or starting position of the resource block occupied by the broadcast signal on the frequency domain resource to which it belongs.
  • the access device if the location of the frequency domain resource meets the first condition, the access device is a ground base station; if the location of the frequency domain resource does not meet the first condition, then the The access device is a non-terrestrial base station.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a receiving module and an acquiring module.
  • the receiving module is used to receive the broadcast signal sent by the access device.
  • the acquiring module is used to acquire the type of the access device based on the broadcast signal, where the type of the access device includes: a first type and/or a second type, where the first type includes a ground base station or a non-terrestrial base station, and the second Types include at least one of the following types: ground base stations, high-altitude base stations, low-orbit satellites, medium-orbit satellites, or high-orbit satellites.
  • the broadcast signal includes first identification information, and the first identification information is used to indicate the type of the access device; wherein, the first identification information is the primary synchronization signal PSS and/or the secondary synchronization signal SSS.
  • the acquisition module may be used to: according to the relationship between the first identification information and the first type, determine that the access device is a terrestrial base station or a non-terrestrial base station; if the access device is a non-terrestrial base station, then according to the A relationship between the identification information and the second type to obtain the type of the access device.
  • the acquisition module may be used to: according to the relationship between the PSS and the first type, determine that the access device is a terrestrial base station or a non-terrestrial base station; if the access device is a non-terrestrial base station, according to the SSS and the second Type relationship to obtain the type of access device.
  • the broadcast signal includes a first type parameter for identifying the type of the access device, and the first type parameter is a sequence for generating a preamble.
  • the obtaining module may be used to: parse the first type parameter to obtain the first parameter; according to the relationship between the first parameter and the type of the access device, obtain the type of the access device.
  • the acquisition module may be used to: according to the relationship between the first parameter and the first type, determine that the access device is a ground base station or a non-ground base station; if the access device is a non-ground base station, then according to the first The relationship between the parameter and the second type obtains the type of the access device.
  • the sequence includes a ZC sequence and/or an M sequence.
  • the acquisition module may be used to: according to the relationship between the first identification information and the first type, determine that the access device is a terrestrial base station or a non-terrestrial base station; if the access device is a non-terrestrial base station, then according to the The relationship between a parameter and the second type obtains the type of the access device.
  • the location of the time domain resource and/or frequency domain resource of the broadcast signal is used to indicate the type of the access device.
  • the acquisition module may be used to: acquire the location of the time domain resource and/or the frequency domain resource of the broadcast signal; based on the location of the time domain resource and/or the location of the frequency domain resource and the access device Type relationship to obtain the type of access device.
  • the position of the time-domain resource is used to indicate an offset value N between the position of the broadcast signal on the time-domain resource to which it belongs and the specified location.
  • the access device if the value of N is in the first interval, the access device is a ground base station; if the value of N is not in the first interval, the access device is a non-ground base station.
  • the obtaining module may be used to: obtain the value of N; based on the value of N, obtain the type of the access device.
  • the obtaining module may be used to: obtain the value of N; based on the value of N, determine whether the access device is a terrestrial base station or a non-ground base station; if the access device is a non-terrestrial base station, the value based on N Get the type of access device.
  • the position of the frequency domain resource includes the size and/or starting position of the resource block occupied by the broadcast signal on the frequency domain resource to which it belongs.
  • the access device if the location of the frequency domain resource meets the first condition, the access device is a ground base station; if the location of the frequency domain resource does not satisfy the first condition, the access device is a non-terrestrial base station.
  • the acquisition module may be used to: acquire the location of the frequency domain resource; and acquire the type of the access device based on the location of the frequency domain resource.
  • the acquisition module may be used to: acquire the location of the frequency domain resource; determine the access device to be a ground base station or a non-ground base station based on the location of the frequency domain resource; if the access device is a non-terrestrial base station, then The type of access device is obtained based on the location of the frequency domain resource.
  • an embodiment of the present application provides an access device, including: a generating module and a sending module, wherein the generating module can be used to generate a broadcast signal, wherein the broadcast signal is used to indicate the type of the access device
  • the type of the access device includes: a terrestrial base station or a non-terrestrial base station; the sending module can be used to send the broadcast signal.
  • the broadcast signal includes first identification information, where the first identification information is used to indicate the type of the access device; wherein, the first identification information is the primary synchronization signal PSS and/or secondary Synchronization signal SSS.
  • PSS is used to indicate that the access device is a ground base station or a non-ground base station
  • SSS is used to indicate that if the PSS indicates that the access device is a non-ground base station, the access device is a high-altitude base station, a low-orbit satellite, medium Orbiting satellite or high-orbiting satellite.
  • the broadcast signal includes a first type parameter that identifies the type of the access device, and the first type parameter is a sequence for generating a preamble.
  • the sequence includes a ZC sequence and/or an M sequence.
  • the location of the time domain resource and/or frequency domain resource of the broadcast signal is used to indicate the type of the access device.
  • the position of the time-domain resource is used to indicate an offset value N between the position of the broadcast signal on the time-domain resource to which it belongs and a specified position.
  • the access device if the value of N is in the first interval, the access device is a terrestrial base station; if the value of N is not in the first interval, the access device is a non-terrestrial base station.
  • the value of N is used to indicate that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the position of the frequency domain resource includes the size and/or starting position of the resource block occupied by the broadcast signal on the frequency domain resource to which it belongs.
  • the access device if the location of the frequency domain resource meets the first condition, the access device is a ground base station; if the location of the frequency domain resource does not meet the first condition, then the The access device is a non-terrestrial base station.
  • an embodiment of the present application provides a communication device, including: a transceiver/transceiver pin and a processor, and optionally, a memory.
  • the transceiver/transceiver pin, the processor and the memory communicate with each other through an internal connection path; the processor is used to execute instructions to control the transceiver/transceiver pin to send or receive signals; the The memory is used to store instructions.
  • the processor executes instructions, the processor executes the method in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication device, including: a transceiver/transceiver pin and a processor, and optionally, a memory.
  • the transceiver/transceiver pin, the processor and the memory communicate with each other through an internal connection path; the processor is used to execute instructions to control the transceiver/transceiver pin to send or receive signals; the The memory is used to store instructions.
  • the processor executes instructions, the processor executes the method in the second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable medium for storing a computer program, the computer program including instructions for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer-readable medium for storing a computer program, where the computer program includes instructions for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a chip including a processing circuit and a transceiver pin.
  • the transceiver pin and the processor communicate with each other through an internal connection path, and the processor executes the method in the first aspect or any possible implementation manner of the first aspect to control the receiving pin to receive signals, Control the sending pins to send signals.
  • an embodiment of the present application provides a chip including a processing circuit and a transceiver pin.
  • the transceiver pin and the processor communicate with each other through an internal connection channel, and the processor executes the method in the second aspect or any possible implementation manner of the second aspect to control the receiving pin to receive the signal, Control the sending pins to send signals.
  • an embodiment of the present application provides a communication system including the terminal and the access device according to the first and second aspects.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • 2a is a schematic structural diagram of a base station
  • 2b is a schematic structural diagram of a terminal
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a terminal acquiring an access device type provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a terminal acquiring an access device type provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a terminal acquiring an access device type provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a terminal acquiring an access device type provided by an embodiment of the present application.
  • 8a to 8j are schematic diagrams of locations of frequency domain resources of broadcast signals provided by embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a terminal acquiring an access device type provided by an embodiment of the present application.
  • 10a to 10e are schematic diagrams of the frequency domain resource allocation methods of PSS and SSS provided by embodiments of the present application;
  • FIG. 11 is a schematic diagram of the PSS and SSS time domain resource and frequency domain resource allocation method provided by an embodiment of the present application;
  • 12a to 12d are schematic diagrams of the allocation method of the time domain resources and frequency domain resources of the PBCH provided by the embodiments of the present application;
  • FIG. 13 is a schematic block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • 15 is a schematic block diagram of an access device provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of an access device according to an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than describing a specific order of objects.
  • first target object and the second target object are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • FIG. 1 it is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes an access device 100, an access device 200, and a terminal 300.
  • the terminal 300 may be a computer, a smart phone, a telephone, a cable TV set-top box, a digital subscriber line router, and other devices.
  • the access device 100 and the access device 200 may be one of ground base stations, high-altitude base stations, low-orbit satellites, medium-orbit satellites, and high-orbit satellites. It should be noted that in actual applications, the number of access devices and terminals may be one or more, and the number of base stations and terminals of the communication system shown in FIG. 1 is only an example of adaptability, which is not limited in this application. .
  • the above communication system can be used to support fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system can also support fifth generation (fifth generation, 5G) ) Access technology, such as new radio (NR) access technology; or, the communication system can also be used to support third-generation (3G) access technology, such as universal mobile communication systems (universal mobile telecommunications) system (UMTS) access technology; or the communication system can also be used to support second generation (2G) access technology, such as global mobile communication system (global system for mobile communications, GSM) access technology; or, the The communication system can also be used for communication systems that support multiple wireless technologies, such as LTE technology and NR technology.
  • 4G fourth generation
  • 5G fifth generation
  • 3G third-generation
  • UMTS universal mobile telecommunications
  • 2G global mobile communication system
  • GSM global system for mobile communications
  • the communication system can also be applied to Narrow Band Internet of Things (Narrow Band-Internet of Things, NB-IoT), Enhanced Data Rate GSM Evolution System (Enhanced Data Evolution for GSM Evolution, EDGE), Broadband Code Division Multiple Access System (Wideband Code Division Multiple Access, WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), Time Division Synchronization Code Division Multiple Access system (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), long-term evolution system (LongTerm Evolution, LTE) and future-oriented communication technology.
  • Narrow Band-Internet of Things NB-IoT
  • NB-IoT Enhanced Data Rate GSM Evolution System
  • EDGE Enhanced Data Evolution for GSM Evolution, EDGE
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 system
  • Time Division Synchronization Code Division Multiple Access system Time Division-Synchronization Code Division Multiple Access
  • LTE LongTerm Evolution
  • the access device (referring to the access device 100 and the access device 200) in FIG. 1 can be used to support terminal access, for example, it can be a base transceiver station (BTS) in a 2G access technology communication system ) And base station controller (BSC), node B (node B) in 3G access technology communication system and radio network controller (RNC), evolution in 4G access technology communication system Base station (evolved nodeB, eNB), next-generation base station (nNB) in 5G access technology communication system, transmission and reception point (TRP), relay node (relay node), access point ( Access (point, AP) and other ground equipment can also be non-ground equipment: high-altitude base stations, such as hot air balloons and other equipment that can provide wireless access to terminals, low-orbit satellites, medium-orbit satellites, high-orbit satellites, and so on.
  • a device that provides a wireless communication function for a terminal is collectively referred to as
  • the terminal 300 in FIG. 1 may be a device that provides voice or data connectivity to users, for example, it may also be called a mobile station, a subscriber unit, a station, and a terminal equipment. , TE) etc.
  • the terminal may be a cellular phone (cellular), a personal digital assistant (personal digital assistant, PDA), a wireless modem (modem), a handheld device (handheld), a laptop computer (laptop computer), a cordless phone (cordless phone), wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can be terminals in the embodiments of the present application, for example, intelligent transportation Terminals in automobiles and home appliances in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments in smart safety networks, cash registers, etc.
  • the terminal may communicate with a base station, such as the access device 100 or the access device 200 in FIG. 1. Communication between multiple terminals is also possible.
  • the terminal can be statically fixed or mobile.
  • FIG. 2a is a schematic structural diagram of a base station.
  • Figure 2a is a schematic structural diagram of a base station.
  • the access device includes at least one processor 101, at least one memory 102, at least one transceiver 103, at least one network interface 104, and one or more antennas 105.
  • the processor 101, the memory 102, the transceiver 103 and the network interface 104 are connected, for example, through a bus.
  • the antenna 105 is connected to the transceiver 103.
  • the network interface 104 is used to connect the base station to other communication devices through a communication link. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: general-purpose central processing unit (Central Processing Unit, CPU), digital signal processor (Digital Signal Processor, DSP), microprocessor, Application-Specific Integrated Circuit (Application-Specific Integrated Circuit (ASIC)), microcontroller (Microcontroller Unit, MCU), field programmable gate array (Field Programmable Gate Array, FPGA), or an integrated circuit for implementing logic operations .
  • the processor 101 may be a single-CPU processor or a multi-CPU processor. At least one processor 101 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, and random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions can also be electrically erasable programmable read-only memory (Electrically, programmable-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc-read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , Disk storage media or other magnetic storage devices, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc-read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • Disk storage media or other magnetic storage devices or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 102 may exist independently and be connected to the processor 101. Alternatively, the memory 102 may also be integrated with the processor 101, for example, integrated in a chip. Wherein, the memory 102 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 101, and various types of computer program codes that are executed can also be regarded as the driver of the processor 101. For example, the processor 101 is used to execute the computer program code stored in the memory 102, so as to implement the technical solution in the embodiments of the present application.
  • the transceiver 103 may be used to support the reception or transmission of radio frequency signals between the access network device and the terminal, and the transceiver 103 may be connected to the antenna 105.
  • the transceiver 103 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 105 can receive radio frequency signals, and the receiver Rx of the transceiver 103 is used to receive the radio frequency signals from the antenna, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 101, so that the processor 101 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 103 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 101, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a Or multiple antennas 105 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one-level or multi-level down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the sequence is adjustable.
  • the transmitter Tx can selectively perform one-stage or multi-stage up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • FIG. 2b is a schematic structural diagram of a terminal.
  • Figure 2b is a schematic structural diagram of a terminal.
  • the terminal 300 includes at least one processor 301, at least one transceiver 302, and at least one memory 303.
  • the processor 301, the memory 303 and the transceiver 302 are connected.
  • the terminal 300 may further include one or more antennas 304.
  • the antenna 304 is connected to the transceiver 302.
  • the transceiver 302, the memory 303, and the antenna 304 may refer to the related description in FIG. 2a to implement similar functions.
  • the processor 301 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated together or separated.
  • the processor 301 may be used to implement various functions for the terminal 300, for example, to process communication protocols and communication data, or to control the entire terminal 300, execute a software program, and process data of the software program; or the processor 301 It is used to realize one or more of the above functions.
  • FIG. 3 is a schematic flowchart of a communication method in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method in an embodiment of the present application.
  • Step 101 The access device generates a broadcast signal.
  • the broadcast signal may include a physical broadcast channel part and a digital channel part, where the physical broadcast channel part includes a primary synchronization signal (Primary Synchronization Signal, PSS), and a secondary synchronization signal (Secondary Synchronization Signal) , SSS) and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the physical broadcast channel part of the broadcast signal may also be called an SS/PBCH block.
  • the correspondence between the broadcast signal and the type of the access device is predetermined.
  • the correspondence between the location of the broadcast signal in the time domain resource and the access device can be used to indicate the type of the access device.
  • the access device can set the broadcast signal based on the above correspondence and the type of the access device itself.
  • the location of time domain resources are predetermined.
  • the access device may set the position of the broadcast signal in the time domain, the position in the frequency domain, the information carried in the broadcast signal (such as the first identification information in the embodiment of the present application), and The position of the information carried in the broadcast signal in the time domain and the frequency domain indicates the type of the access device.
  • the specific indication method will be elaborated in the following embodiments.
  • the types of access equipment include: terrestrial base stations or non-terrestrial base stations. If the access equipment is a non-terrestrial base station, the types of access equipment include but are not limited to: high-altitude base stations, low-orbit satellites, medium-orbit satellites, or high-orbit satellites.
  • Step 102 The access device sends a broadcast signal.
  • the access device (for example, the access device 100 and the access device 200) sends a broadcast signal.
  • Step 103 the terminal receives the broadcast signal.
  • the access process is started. Specifically, after starting, the terminal starts cell search, that is, detects whether there is a broadcast signal sent by any access device.
  • the terminal can also perform cell search in the connected state and the idle state (including just after starting or after going offline from other cells). In the connected state, the terminal can search for a cell and find a cell with a stronger intensity than the current access cell, and then the terminal can perform cell switching. In the idle state, the terminal can access the cell through cell search.
  • the terminal may receive broadcast signals sent by one or more access devices. Then, the terminal may select a target access device to be accessed based on the strength of the broadcast signal, and enter step 104, that is, acquire the type of the access device through the broadcast signal sent by the target access device. Optionally, the terminal may also select the target access device to be accessed based on the sequence of the received broadcast signals.
  • the specific selection method can be set according to actual needs, and this application is not limited.
  • step 104 the terminal obtains the type of the access device based on the broadcast signal.
  • the terminal may identify the information carried in the broadcast signal (for example, the position of the broadcast signal in the frequency domain and/or the position in the time domain), and/or identify the information carried in the broadcast signal Information (for example, the position of the first identification information carried in the broadcast signal in the time domain, the position in the frequency domain, and/or the parameters contained in the first identification information itself, etc.), the type of the access device is obtained. That is, the terminal may determine that the access device is a ground base station or a non-ground base station through broadcast signals, and further, may determine that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the access device is a ground base station or a non-ground base station through broadcast signals, and further, may determine that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • Step 105 the terminal accesses the access device.
  • the delay type of the access device can be determined, and the delay type that the terminal can determine performs a subsequent communication process with the access device.
  • the terrestrial base station has a greater delay for the terminal than the non-terrestrial base station, and so on.
  • the delay of the high-orbit satellite is greater than that of the low-orbit satellite. Therefore, after the terminal determines the type of access equipment, that is The corresponding relationship between the type of access device and the delay can be obtained, for example, the terminal can store a correspondence table between the type of access device and the delay level, and the terminal can retrieve the corresponding relationship table by searching the correspondence table. Delay level corresponding to the type of incoming access device.
  • the terminal may determine the communication method with the access device according to the delay level of the access device, for example, the terminal may determine the retransmission method with the access device according to the delay level, and so on.
  • the terminal may obtain a physical cell identity (PCI) of the target cell (the target cell belongs to the access device) based on the parameters carried in the broadcast signal.
  • PCI physical cell identity
  • the terminal can obtain the PCI of the target cell through the calculation formula of PCI.
  • the calculation formula of PCI may be: among them, It is the way of expressing the PCI value specified in the agreement. as well as, Determined by the PSS in the broadcast signal, Determined by SSS in the broadcast signal.
  • the first type parameter is included in the PSS
  • the second type parameter is included in the SSS.
  • the terminal can parse the first type parameter and the second type parameter to obtain the first parameter corresponding to the first type parameter. And a second parameter corresponding to the second type parameter. Subsequently, the terminal can obtain the corresponding to the first parameter by looking up the table Value of and corresponding to the second parameter Value.
  • the PSS includes a pseudo-random sequence (hereinafter referred to as a first type parameter), and the pseudo-random sequence may be a ZC (Zadoff-Chu) sequence.
  • the SSS also includes a pseudo-random sequence (hereinafter referred to as a second type parameter), where the first type parameter is the same as or different from the second type parameter.
  • the terminal may parse the first type parameter and obtain the first parameter, for example: U0, and parse the second type parameter and obtain the second parameter, for example: U1. Subsequently, the terminal can obtain the corresponding to U0 by looking up the table The value is 1, corresponding to U1 The value is 3.
  • the terminal can obtain the formula according to PCI, for example: Obtained ) Is 10.
  • the terminal may access a cell with a PCI value of 10 in the access device according to the PCI value.
  • the specific access process may refer to the prior art, and this application will not repeat them.
  • both the ground base station and the non-terrestrial base station can send a broadcast signal with a uniform format, so that the terminal can obtain the type of the access device through the broadcast signal, thereby achieving the Communication integration of ground base stations to improve resource utilization and user experience.
  • the access device may indicate the type of the access device by setting the first identification information carried in the broadcast signal.
  • the first identification information may be PSS or SSS. That is, the access device may indicate the type of the access device by setting the PSS or SSS, and the terminal may determine the type of the access device according to the correspondence between the PSS or SSS and the type of the access device.
  • the access device may indicate the type of the access device by setting the information of PSS and SSS, that is, the access device may indicate the type of the access device by setting PSS and SSS in the broadcast signal ,
  • the terminal may determine the type of the access device according to the correspondence between the PSS and SSS and the type of the access device. For example, the terminal can identify the access device as a ground base station or a non-ground base station by identifying the PSS. If the access device is a non-ground base station, the terminal can then determine the access device as a high-altitude base station, low-orbit satellite, orbit by identifying the SSS Satellite or high-orbit satellite.
  • the access device may also indicate the type of the access device through a broadcast signal, that is, the location of the time domain resource and/or the location of the frequency domain resource of the SS/PBCH block.
  • the PSS or SSS in the broadcast signal can be used to indicate the type of access device.
  • the following uses the PSS to indicate the type of the access device as an example for detailed description.
  • the indication method of SSS is similar to that of PSS, and will not be repeated in this application.
  • the first type parameter included in the PSS can be used to indicate the type of access device.
  • FIG. 4 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 4 :
  • Step 201 The terminal parses the first type parameters to obtain the first parameters.
  • the terminal may extract the first type parameter included in the PSS in the broadcast signal, and parse the first type parameter to obtain the first parameter.
  • the first type parameter is a sequence for generating a preamble.
  • the first type parameter may be a ZC sequence, and in another embodiment, the first type parameter may be an M sequence.
  • the access device may set the first type parameter according to its own type. For example: if the access device is a low-orbit satellite, the access device may determine that the first parameter corresponding to the low-orbit satellite is U0, then the access device may obtain the first type parameter corresponding to U0 by looking up the table For example: A1 (A1 is only to identify the first type parameter, and the first type parameter is actually a sequence), then, the access device sets the PSS to A1.
  • the terminal After receiving the broadcast signal, the terminal extracts the first type parameter included in the PSS, namely A1, and parses A1 to obtain the first parameter U0.
  • Step 202 The terminal acquires the type of the access device according to the relationship between the first parameter and the type of the access device.
  • the terminal may obtain the correspondence between the first parameter and the type of the access device by looking up the table. For example, the terminal may obtain the type of the access device based on Table 1.
  • the terminal obtains the first parameter U0 by parsing the first type parameter, and determines the corresponding parameter when the first parameter is U0 by looking up the table
  • the value of is 0, and the corresponding access device type is a terrestrial base station.
  • the terminal may proceed to step 104, that is, the steps related to acquiring PCI and accessing the access device.
  • the calculation formula of PCI is usually and, The possible values are ⁇ 0, 1, 2 ⁇ , The possible values are ⁇ 0, 1, 2,... 335 ⁇ , then the value range of PCI is 0 to 1008.
  • the calculation formula of PCI can be changed accordingly.
  • the calculation formula of PCI can be: Among them, the value of K is For example, when When the value is ⁇ 0, 1, 2, 3, 4, 5 ⁇ , K is 6.
  • the type of the first type parameter included in the PSS can be used to indicate the type of access device.
  • FIG. 5 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 5 :
  • Step 301 The terminal acquires the type of the first type parameter.
  • the access device may indicate the type of the access device by setting the type of the first type parameter included in the PSS.
  • the terminal may acquire the type of the corresponding access device by identifying the type of the first type parameter.
  • the access device may further set the value of the M sequence to indicate the type of the non-terrestrial base station of the access device.
  • the first type parameter may also indicate that the access device is a terrestrial base station for the M sequence, and the ZC sequence indicates that the access device is a non-terrestrial base station.
  • This application is not limited.
  • the terminal may obtain the type of the access device according to the relationship between the type of the first type parameter and the type of the access device.
  • the access device and the terminal may specify the types of access devices corresponding to different sequences. Subsequently, the terminal may determine whether the access device is a terrestrial base station or a non-terrestrial base station according to the type of the acquired first type parameter. If the access device is a non-terrestrial base station, the terminal may further parse the first type parameter to obtain the type of the access device indicated by the parsed first parameter.
  • Table 2 shows the correspondence between different types of sequences and the types of access devices.
  • the terminal acquires the type of the first type parameter. If the type of the first type parameter is a ZC sequence, it is determined that the access device is a ground base station. The terminal may enter step 104, that is, parse the first type parameters to obtain the corresponding first parameter, and obtain the corresponding Value, also parse the SSS, get Value and calculate PCI. If the type of the first type parameter is M sequence, it is determined that the access device is a non-terrestrial base station. The terminal may continue to parse the first type of parameters to obtain the first parameter, for example, M0. By looking up the table, the terminal can obtain that the type of the access device corresponding to the first parameter M0 is a low-orbit satellite, and The value is 0. The terminal continues to perform PCI calculation steps.
  • PSS time domain resources can be used to indicate the type of access device.
  • FIG. 6 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 6 :
  • Step 401 The terminal obtains the location of the PSS time domain resource.
  • the terminal may obtain the location of the time-domain resource of the PSS in the broadcast signal.
  • the position of the PSS time domain resource may be an offset value N of the position of the PSS on the time domain resource to which the broadcast signal belongs and the position of the PSS on the time domain resource specified in the standard. That is, in prior art protocols, PSS and/or SSS have a fixed time-domain resource allocation scheme. In this application, the PSS and/or SSS in the broadcast signal can be translated from the position specified in the prior art ( The shift may be a shift value N after shifting to the left or to the right, which identifies the type of the access device. For example: in the prior art, the protocol stipulates that the position of the PSS on the time domain resource is the symbol bit 16. In this application, the terminal obtains the position of the PSS on the time domain resource as the symbol bit 12, then the terminal obtains The offset value N, that is, the position of the PSS time-domain resource is 4.
  • the location of the PSS time-domain resource may also be directly used to indicate the current location of the PSS on the time-domain resource. For example, if the position of the PSS on the time domain resource is the symbol bit 16, the position of the time domain resource of the PSS acquired by the terminal is 16.
  • the positions described in this application are the starting positions of the time domain resources, for example: the position of the PSS on the time domain resources is the symbol bit 16, which means that the starting position of the PSS is on the time domain resources The 16th bit of the sign bit.
  • step 402 the terminal obtains the type of the access device based on the location of the PSS time domain resource.
  • the terminal may acquire the type of the access device based on the correspondence between the position of the time domain resource of the PSS and the type of the access device.
  • the terminal may determine the type of the access device according to the magnitude of the offset value N. For example: if the offset value N falls within the first interval, the access device can be determined to be a ground base station; if N falls within the second interval, the access device can be determined to be a high-altitude base station; if N falls within the third interval, It can be determined that the access device is a low-orbit satellite; if N falls into the fourth interval, the access device can be determined to be a medium-orbit satellite; if N falls into the fifth interval, the access device can be determined to be a high-orbit satellite. It should be noted that the division of the above interval can be set according to actual needs, and this application is not limited.
  • the terminal may base on the correspondence between the location of the PSS different time-domain resources and the type of access device Relationship to get the type of access device. That is, the access device and the terminal in the embodiment of the present application may predefine types of access devices corresponding to different time-domain resource locations.
  • the location of the PSS time domain resource is ⁇ 2, 8, 16, 22 ⁇ , indicating that the access device is a ground base station, and ⁇ 1, 7, 13, 19 ⁇ indicates that the access device is a low-orbit satellite base station, ⁇ 3 , 9, 12, 17 ⁇ indicates that the access device is a medium-orbit satellite base station. ⁇ 4, 10, 15, 18 ⁇ indicates that the access equipment is a high-orbit satellite.
  • the position of the PSS on the frequency domain resource can be used to indicate the type of access device.
  • FIG. 7 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 7 :
  • Step 501 The terminal obtains the location of the frequency domain resource of the PSS.
  • the terminal may obtain the location of the frequency domain resource of the PSS in the broadcast signal.
  • the position of the frequency domain resource includes the size and/or starting position of the resource block occupied by the PSS on the frequency domain resource to which the broadcast signal belongs.
  • the size of the resource block occupied by the PSS in frequency domain resources can be used to indicate the type of access device (types include: ground base station, high altitude base station, low-orbit satellite, medium-orbit satellite, or high Satellites).
  • the starting position of the resource block occupied by the PSS in the frequency domain resource can be used to indicate the type of the access device (types include: ground base station, high-altitude base station, low-orbit satellite, medium-orbit Satellite or high-orbit satellite).
  • the size and starting position of the resource block occupied by the PSS on frequency domain resources may be used to indicate the type of access device.
  • the size of the resource block occupied by the PSS in frequency domain resources can be used to indicate that the access device is a ground base station or a non-terrestrial base station (for example, if the size of the resource block occupied exceeds the threshold, the access device is a non-terrestrial base station, On the contrary, it is a terrestrial base station.) If the access device is a non-terrestrial base station, the starting position of the occupied resource block can be used to indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the size of the occupied resource block is used to indicate a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • Step 502 the terminal obtains the type of the access device based on the location of the frequency domain resource of the PSS.
  • the base station may obtain the type of the access device based on the correspondence between the position of the acquired frequency domain resource and the type of the access device. As described in step 501, there is a correspondence between the location of the frequency domain resource of the PSS and the type of access device.
  • Figures 8a to 8j are schematic diagrams showing the location of frequency domain resources of broadcast signals.
  • the frequency domain resource to which the broadcast signal belongs is 0-239MHz.
  • the starting position of the resource block occupied by the PSS (hereinafter referred to as the starting position) is used as an example for detailed description.
  • the access device and the terminal may predefine the corresponding relationship between different starting positions and the access device.
  • a starting position of ⁇ 2,10,26,38 ⁇ indicates that the access device is a terrestrial base station; a starting position of ⁇ 3,11,27,39 ⁇ indicates that the access device It is a high-altitude base station; the starting position is ⁇ 4,12,28,40 ⁇ indicating that the access device is a low-orbit satellite; the starting position is ⁇ 5,13,29,41 ⁇ indicating that the access device is a medium-orbit satellite; starting The location of ⁇ 6,14,30,42 ⁇ indicates that the access device is a high-orbit satellite.
  • the terminal may determine that the access device is a ground base station.
  • the terminal may determine that the access device is a high-altitude base station.
  • the terminal may determine that the access device is a low-orbit satellite.
  • the terminal may determine that the access device is a medium-orbit satellite.
  • the terminal may determine that the access device is an high-orbit satellite.
  • the access device and the terminal may predefine the correspondence between different resource block sizes and the access device.
  • taking different intervals of the size of the resource block as an example for example: the size of the resource block at (0, 47MHz) indicates that the access device is a ground base station; the size of the resource block at (47MHz, 56MHz) indicates access The device is a high-altitude base station; the size of the resource block at (56MHz, 120MHz) indicates that the access device is a low-orbit satellite; the size of the resource block at (120MHz, 170MHz) indicates that the access device is a medium-orbit satellite; the size of the resource block is at (170MHz , 239MHz] indicates that the access device is a high-orbit satellite.
  • the terminal may determine that the access device is a ground base station.
  • the terminal may determine that the access device is a high-altitude base station.
  • the terminal may determine that the access device is a low-orbit satellite.
  • the size of the PSS resource block is 130MHz, and the terminal may determine that the access device is a medium-orbit satellite.
  • the terminal may determine that the access device is an high-orbit satellite.
  • the type of the access device is indicated with only a single condition.
  • the first type parameter included in the PSS may indicate the type of the access device.
  • the type of the access device may also be indicated in any combination of various conditions.
  • the first type parameter included in the PSS may indicate the type of the access device in combination with the location of the time domain resource or the location of the frequency domain resource.
  • the type of the first type parameter included in the PSS can be used to indicate that the access device is a ground base station or a non-ground base station.
  • the terminal may further obtain the position of the PSS in the time domain resource or the position of the PSS in the frequency domain resource to pass the position of the time domain resource or the frequency domain resource and the access device
  • the corresponding relationship of types obtains that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the location of the time domain resource or the frequency domain resource of the PSS can also be used to indicate that the access device is a terrestrial base station or a non-terrestrial base station.
  • the terminal can further determine the first type of PSS
  • the parameters are parsed to obtain the parsed first parameter, and the type of the access device is determined according to the correspondence between the first parameter and the high-altitude base station, low-orbit satellite, medium-orbit satellite, or high-orbit satellite.
  • the location of the PSS time domain resource may be combined with the location of the frequency domain resource to indicate the type of access device.
  • the location of the PSS time domain resource can be used to indicate that the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station terminal, the location of the PSS in the frequency domain resource can be further obtained, so as to obtain the access device as the high-altitude base station, low-orbit satellite, and medium-orbit through the correspondence between the frequency domain resource position and the type of the access device Satellite or high-orbit satellite.
  • the location of the frequency domain resource of the PSS can also be used to indicate whether the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the terminal may further obtain the location of the PSS in the time domain resource, to obtain the access device as a high-altitude base station, a low-orbit satellite, through the correspondence between the location of the time domain resource and the type of the access device Medium-orbit satellites or high-orbit satellites.
  • the PSS and SSS in the broadcast signal can be used together to indicate the type of access device.
  • the PSS may be used to indicate that the access device is a terrestrial base station or a non-terrestrial base station, that is, the terminal may obtain the access device as a terrestrial base station or a non-terrestrial base station according to the correspondence between the PSS and the type of the access device.
  • SSS can be used to indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite. That is, the terminal may further obtain whether the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite according to the relationship between the SSS and the type of the access device.
  • SSS can be used to indicate that the access device is a ground base station or a non-ground base station
  • PSS can be used to indicate a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the following uses PSS to indicate that the access device is a ground base station or a non-ground base station, and SSS is used to indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite as an example for detailed description.
  • the first type of parameters included in the PSS is used to indicate that the access equipment is a ground or non-ground base station
  • the second type of parameters included in the SSS is used to indicate that the access equipment is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite or a high-altitude satellite Orbiting satellite.
  • FIG. 9 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a terminal acquiring an access device type in an embodiment of the present application.
  • FIG. 9 :
  • Step 601 The terminal parses the first type parameters included in the PSS to obtain the first parameters.
  • step 201 For specific details, refer to step 201, which is not repeated here.
  • Step 602 The terminal determines whether the access device is a terrestrial base station or a non-terrestrial base station according to the relationship between the first parameter and the type of the access device.
  • the access device and the terminal may specify a correspondence between the first parameter and the type of the access device to indicate the type of the access device.
  • the corresponding The range of values determines whether the access device is a ground base station or a non-ground base station.
  • the number of ground base stations is limited, and the access equipment belonging to the ground base station may be preset with a corresponding serial number, for example: there are 1000 ground base stations, then, If the value is less than or equal to 1000, it can be determined that the access device is a ground base station. If If the value is greater than 1000, you can determine that the access device is a non-terrestrial base station.
  • the parsed first parameter corresponds to When the value is ⁇ 0,1,2,3,4 ⁇ , it indicates that the access device is a ground base station. If it is not within this interval, it is indicated as a non-terrestrial base station.
  • step 603 is entered.
  • Step 603 The terminal parses the second type parameter included in the SSS to obtain the second parameter.
  • Step 604 The terminal determines that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite according to the relationship between the second parameter and the type of the access device.
  • step 202 For details, please refer to step 202, which will not be repeated here.
  • PSS time domain resources and the location of SSS time domain resources together indicate the type of access device.
  • the location of the PSS time domain resource may be used to indicate that the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the location of the SSS time domain resource can be used to indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the location of the PSS time domain resource and the location of the SSS time domain resource may jointly indicate that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite .
  • the location of the PSS time domain resource when the location of the PSS time domain resource is 0 and the location of the SSS time domain resource is 2, it indicates that the access device is a ground base station; when the location of the PSS time domain resource is 1, the location of the SSS time domain resource When it is 3, it indicates that the access device is a high-altitude base station; when the position of the PSS time domain resource is 3, and the position of the SSS time domain resource is 5, it indicates that the access device is a low-orbit satellite; when the PSS time domain resource When the location is 4, the location of the SSS time domain resource is 6, it indicates that the access device is a medium-orbit satellite; when the location of the PSS time domain resource is 5, and the location of the SSS time domain resource is 7, it indicates that the access device For high-orbit satellites.
  • the type of the access device may also be indicated by the size of the position between the location of the PSS time domain resource and the location of the SSS time domain resource.
  • the size of the symbol bit between the time-domain resource position of the PSS and the time-domain resource position of the SSS meets the first interval (for example: (0,3)), it indicates that the access device is a ground base station; when the time-domain resource of the PSS When the size of the symbol bit whose position is separated from the time-domain resource position of the SSS satisfies the second interval, it indicates that the access device is a high-altitude base station; when the position of the PSS time-domain resource position and the SSS time-domain resource position are The third interval indicates that the access device is a low-orbit satellite; when the size of the symbol bit between the time domain resource location of the PSS and the time domain resource location of the SSS satisfies the fourth interval, it indicates that the access device is a mid-orbit satellite; when the PSS The size of the symbol bit
  • the terminal may acquire the type of the access device according to the relationship between the position of the time domain resource of the PSS and/or the position of the time domain resource of the SSS and the type of the access device. For specific details, reference may be made to the above embodiment, which will not be repeated here.
  • the location of the frequency domain resources of the PSS and the location of the frequency domain resources of the SSS together indicate the type of access equipment.
  • the location of the frequency domain resources of the PSS can be used to indicate that the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the location of the frequency domain resource of the SSS can be used to indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite. Wherein, the position of the frequency domain resource may be the size of the resource block or the starting position of the resource block.
  • the size of the resource block occupied by the PSS on the frequency domain resource is greater than or equal to the threshold, it indicates that the access device is a ground base station, otherwise, it indicates that the access device is a non-ground base station. If the access device is a non-terrestrial base station, the size of the resource block occupied by the SSS in frequency domain resources may further indicate that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the starting position of the resource block occupied by the PSS in frequency domain resources can be used to indicate that the access device is a ground base station or a non-terrestrial base station
  • the starting position of the resource block occupied by the SSS in frequency domain resources can be used to indicate the access
  • the incoming equipment is high-altitude base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the starting position of the resource block occupied by the PSS in the frequency domain resource can be used to indicate that the access device is a ground base station or a non-terrestrial base station, and the size of the resource block occupied by the SSS in the frequency domain resource can be used to indicate the access
  • the incoming equipment is high-altitude base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the position of the frequency domain resource of the PSS and the position of the frequency domain resource of the SSS may jointly indicate that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite . That is, the relative position of PSS and SSS on the frequency domain resource may indicate the type of access device. As shown in FIGS. 10a to 10e, there are several possible frequency domain resource allocation methods for PSS and SSS.
  • the access device and the terminal may predefine the correspondence between different frequency domain resource allocation methods and the type of access device, so that the terminal
  • the type of the access device can be obtained according to the relationship between the location of the frequency domain resources of the PSS and SSS and the type of the access device.
  • the starting positions of frequency domain resources of PSS and SSS are both 60 MHz, indicating that the access device is a ground base station.
  • the starting position of the PSS is 40 and the starting position of the SSS is 60, indicating that the access device is a high-altitude base station.
  • the start position of the PSS and the start position of the SSS are both 56, indicating that the access device is a low-orbit satellite.
  • the starting position of the PSS and the starting position of the SSS are both 40, indicating that the access device is a medium-orbit satellite.
  • the starting position of the PSS is 60 and the starting position of the SSS is 40, indicating that the access device is a high-orbit satellite.
  • the size of the resource blocks occupied by the PSS and SSS in the frequency domain resources are all fixed values.
  • the type of the access device may also be indicated by a combination of the size of the resource block occupied by the PSS or SSS on the frequency domain resource and the starting position. For example, if the size of the resource block occupied by the PSS in frequency domain resources is equal to a threshold (for example, 100 MHz), the access device is a non-terrestrial base station, and if it is less than the threshold, the access device is a terrestrial base station.
  • a threshold for example, 100 MHz
  • the terminal may determine that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite according to the starting position of the resource block occupied by the SSS in frequency domain resources.
  • the access device can be determined to be a high-altitude base station, and if the starting position of SSS meets the second interval, the access The incoming device is a low-orbit satellite; if the starting position of the SSS satisfies the third interval, the access device can be determined to be a medium-orbit satellite; if the starting position of the SSS satisfies the fourth interval, the access device can be determined to be a high-orbit satellite.
  • the access device and the terminal may predefine the correspondence between the positions of the PSS and SSS in the time domain resource and the frequency domain resource and the type of the access device.
  • the access device and the terminal can select from PSS and SSS the time domain resource and frequency domain resource allocation method of FIG. 11 to establish a corresponding relationship with the type of the access device, so that the access device generates broadcast signals ,
  • the location of the time and frequency domain resources of PSS and SSS can be set according to the corresponding relationship, and the terminal can obtain access according to the correspondence between the time and frequency domain resources of PSS and SSS and the type of access device The type of device.
  • the positions of PSS and SSS on time domain resources may indicate that the access device is of a terrestrial type or a non-terrestrial type.
  • the position of PSS on time domain resources is 0, the position of SSS on time domain resources is 1, and the position of PSS on time domain resources is 0, and the position of SSS on time domain resources is 2, Indicates that the access equipment is a ground base station.
  • the PSS position on the time domain resource is 0, the SSS position on the time domain resource is 3, and the PSS position on the time domain resource is 0, and the SSS position on the time domain resource is 4, it indicates The incoming device is a non-terrestrial base station.
  • the access device can be obtained as a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite according to the size and starting position of the frequency domain resources of PSS and SSS.
  • the size of the PSS and SSS in frequency domain resources can also be used to obtain whether the access device is a ground base station or a non-ground base station. For example, when the size of PSS and SSS are the same, the access device is a ground base station, and when the size of PSS and SSS are different, the access device is a non-ground base station. When the access device is a non-terrestrial base station, the type of the access device is further obtained according to the position of PSS and SSS on the time domain resource.
  • the access device when the position of the PSS in the time domain resource is 0 and the position of the SSS in the time domain resource is 1, the access device is an aerial base station; when the position of the PSS in the time domain resource is 0, the position of the SSS in the time domain resource is At 2, the access device is a low-orbit satellite; when the position of the PSS in the time domain resource is 0 and the position of the SSS in the time domain resource is 3, the access device is a medium-orbit satellite; when the position of the PSS in the time domain resource is 1. When the position of the SSS in the time domain resource is 2, the access device is a high-orbit satellite.
  • the manner in which the PSS and the SSS jointly indicate the type of the access device may also be any combination of the foregoing manners.
  • the relationship between the first type parameter included in the PSS and the type of the access device may be used to determine whether the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the location of the time and/or frequency domain resources of the PSS and SSS, and/or the location of the frequency and/or frequency domain resources of the SSS may be used to indicate that the access device is high altitude Base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the relationship between the type of the first type parameter included in the PSS and the type of the access device may be used to determine whether the access device is a terrestrial base station or a non-terrestrial base station. If the access device is a non-terrestrial base station, the location of the time and/or frequency domain resources of the PSS and SSS, and/or the location of the frequency and/or frequency domain resources of the SSS may be used to indicate that the access device is high altitude Base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the location of the PSS time domain resource and/or frequency domain resource may be used to determine whether the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the relationship between the second type parameter included in the SSS and the access device may be further used to determine that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the position of the time domain resource and/or the frequency domain resource of the SS/PBCH block are used to indicate the type of access device.
  • the location of the time domain resource of the SS/PBCH block is used to indicate the type of access equipment.
  • the access device and the terminal may predefine the corresponding relationship between the different starting positions of the SS/PBCH blocks on the time domain resource and the type of the access device. Therefore, the terminal can determine that the access device is a ground base station, a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite according to the location of the acquired time-domain resources of the SS/PBCH block.
  • the manner in which the location of the time domain resource of the SS/PBCH block indicates the type of the access device is similar to the manner in which the location of the time domain resource of the PSS indicates the type of the access device in the foregoing embodiment, and details are not described here.
  • the location of the time domain resource of the SS/PBCH block may be used to indicate that the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the access device can be further determined as a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite through PSS and SSS.
  • the access device is a non-terrestrial base station
  • the access may be further obtained through the relationship between the position of the time domain resource and/or the frequency domain resource of the PSS and the type of the access device
  • the equipment is high-altitude base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the access device is a non-terrestrial base station
  • the relationship between the location of the time domain resource and/or the frequency domain resource of the SSS and the type of the access device may be further obtained to obtain that the access device is high altitude Base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the access device may be further obtained through the relationship between the position of the time domain resource and/or the frequency domain resource of the PSS and SSS and the type of the access device It is high-altitude base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the relationship between the location of the time-domain resources of PSS and SSS and the type of access device may be further determined to determine that the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the relationship between the size and/or relative position of the PSS and SSS in frequency domain resources and the type of the access device may be used to determine whether the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the relationship between the first type parameter included in the PSS or the second type parameter included in the SSS and the access device may be further determined to be the high altitude base station, Low-orbit satellite, medium-orbit satellite or high-orbit satellite. That is, the terminal may further parse the first type parameter included in the PSS or the second type parameter included in the SSS to obtain the first parameter or the second parameter, and according to the first parameter or the second parameter and the type of the access device Relationship, determine whether the access device is a high-altitude base station, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • the location of the time domain resource of the SS/PBCH block may be used to indicate that the access device is a ground base station or a non-ground base station. If the access device is a non-terrestrial base station, the location of the time domain resource and/or the frequency domain resource of the PBCH in the SS/PBCH block can be further passed (referring to the size and start of the resource block occupied on the frequency domain resource Location) Determine whether the access equipment is high-altitude base station, low-orbit satellite, medium-orbit satellite or high-orbit satellite.
  • the access device is a non-terrestrial base station
  • the PBCH block is located in symbol bit 1, symbol bit 2, and symbol bit 3, and each symbol
  • the size and starting position of the PBCH on the bit are as shown in FIG. 12a, it indicates that the access device is a high-altitude base station.
  • the technical solutions in the embodiments of the present application can determine the type of access device through a combination of multiple indication methods, thereby effectively improving the efficiency of identifying the type of access device and reducing the complexity of broadcast signals degree.
  • the terminal includes a hardware structure and/or a software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the functional modules of the terminal according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 13 shows a possible structural schematic diagram of the terminal 400 involved in the foregoing embodiment, as shown in FIG.
  • the terminal may include a receiving module 401 and an acquiring module 402.
  • the receiving module 401 can be used for the step of “receiving a broadcast signal sent by an access device”.
  • the module can be used to support the terminal to perform step 102 in the foregoing method embodiment.
  • the obtaining module 402 can be used for the step of “Acquiring the type of access device based on the broadcast signal”, for example, the module can be used to support the terminal to perform the steps 104, 201, 202, 301, 302 in the above method embodiment , Step 401, Step 402, Step 501, Step 502, Step 601-Step 604.
  • FIG. 14 shows a schematic block diagram of a terminal 500 according to an embodiment of the present application.
  • the terminal 500 may include: a processor 501 and a transceiver/transceiver pin 502, and optionally, a memory 503.
  • the processor 501 may be used to execute the steps performed by the terminal in the methods of the foregoing embodiments, and control the receiving pin to receive signals and the sending pin to transmit signals.
  • the components of the terminal 500 are coupled together through a bus 504, where the bus system 504 includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the bus system 504 includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 504 in the figure.
  • the memory 503 may be used to store instructions in the foregoing method embodiments.
  • terminal 500 may correspond to the terminal in each method of the foregoing embodiments, and the above and other management operations and/or functions of the various elements in the terminal 500 are respectively to implement the corresponding For the sake of brevity, they will not be repeated here.
  • FIG. 15 shows a possible structural schematic diagram of the access device 600 involved in the foregoing embodiment.
  • the access device 600 may include: a generating module 601 and a sending module 602.
  • the generating module 601 can be used for the step of “generating a broadcast signal”.
  • the module can be used to support the access device to perform step 101 in the foregoing method embodiment.
  • the sending module 602 may be used for the step of "sending a broadcast signal”.
  • the module may be used to support the access device to perform step 102 in the foregoing method embodiment.
  • FIG. 16 shows a schematic block diagram of an access device 700 according to an embodiment of the present application.
  • the access device 700 may include: a processor 701 and a transceiver/transceiver pin 702, and optionally, a memory 703.
  • the processor 701 may be used to execute the steps performed by the terminal in the methods of the foregoing embodiments, and control the receiving pin to receive signals and the transmitting pin to send signals.
  • bus 704 The various components of the access device 700 are coupled together via a bus 704, where the bus system 704 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for clarity, various buses are marked as the bus system 704 in the figure.
  • the memory 703 may be used to store instructions in the foregoing method embodiments.
  • the access device 700 may correspond to the terminal in each method of the foregoing embodiment, and the above-mentioned and other management operations and/or functions of each element in the access device 700 are to implement the foregoing The corresponding steps of each method will not be repeated here for the sake of brevity.
  • embodiments of the present application also provide a computer-readable storage medium that stores a computer program that includes at least one piece of code that can be executed by a terminal to control the terminal Used to implement the above method embodiments.
  • embodiments of the present application also provide a computer program, which is used to implement the above method embodiments when the computer program is executed by a terminal.
  • the program may be stored in whole or in part on a storage medium packaged with the processor, or in part or in whole on a memory that is not packaged with the processor.
  • an embodiment of the present application further provides a processor, which is used to implement the foregoing method embodiments.
  • the above processor may be a chip.
  • the steps of the method or algorithm described in conjunction with the disclosure of the embodiments of the present application may be implemented by hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the network device.
  • the processor and the storage medium may also exist as discrete components in the network device.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及装置,涉及通信领域,该方法包括:终端接收接入设备发送的广播信号;随后,终端可基于接收到的广播信号,获取接入设备的类型,其中,接入设备的类型包括:第一类型和/或第二类型,其中第一类型包括地面基站或非地面基站,第二类型包括下述至少一种类型:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。本申请实现了终端可通过接入设备发送的广播信号,识别接入设备的类型,从而实现地面通信与非地面通信的通信融合,有效提升了资源利用率以及用户使用体验。

Description

通信方法及装置
本申请要求于2018年12月17日提交中国专利局、申请号为201811544528.X、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
目前的通信方式可以包括:地面通信与非地面通信(例如:卫星、可实现基站功能的热气球、无人机等高空平台)。在已有技术中,通常的终端设备只能支持地面通信,只有专用的卫星终端才能实现卫星通信。
随着通信技术的发展以及用户的需求,如何实现将地面通信与卫星通信的通信融合,将称为亟需解决的问题。
发明内容
本申请提供一种通信方法及装置,能够实现地面通信与非地面通信的通信融合。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该通信方法应用于终端,方法可以包括:终端接收接入设备发送的广播信号;随后,终端可基于接收到的广播信号,获取接入设备的类型,其中,接入设备的类型包括:第一类型和/或第二类型,其中第一类型包括地面基站或非地面基站,第二类型包括下述至少一种类型:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
通过上述方式,实现了终端可通过接入设备发送的广播信号,识别接入设备的类型,从而实现地面通信与非地面通信的通信融合,有效提升了资源利用率,以及用户使用体验。
在一种可能的实现方式中,广播信号包括第一标识信息,第一标识信息用于指示接入设备的类型;其中,第一标识信息为主同步信号PSS和/或辅同步信号SSS。
通过上述方式,实现了终端可根据PSS或SSS,以及PSS和SSS,获取接入设备的类型。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括,根据第一标识信息与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一标识信息与第二类型的关系,获取接入设备 的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括,根据PSS与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据SSS与第二类型的关系,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,其中,广播信号包含用于标识接入设备的类型的第一类型参数,第一类型参数为生成preamble的序列。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括:对第一类型参数进行解析,获取第一参数;根据第一参数与接入设备的类型的关系,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,根据第一参数与接入设备的类型的关系,获取接入设备的类型,具体包括:根据第一参数与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一参数与第二类型的关系,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,序列包括ZC序列和/或M序列。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,还包括:根据第一标识信息与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一参数与第二类型的关系,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,广播信号的时域资源和/或频域资源的位置用于指示接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括:获取广播信号的时域资源的位置和/或频域资源的位置;基于时域资源的位置和/或频域资源的位置与接入设备类型的关系,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,时域资源的位置用于指示广播信号在其所属时域资源上的位置与指定位置之间的偏移值N。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,若N的值在第一区间,则接入设备为地面基站;若N的值不在第一区间,则接入设备为非地面基站。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括获取N的值;基于N的值,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括:获取N的值;基于N的值,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则基于N的值获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,频域资源的位置包括广播信号在其所属频域资源上所占资源块的大小和/或起始位置。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,若频域资源的位置满足第一条件,则接入设备为地面基站;若频域资源的位置不满足第一条件,则接入设备为非地面基站。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括:获取频域资源的位置;基于频域资源的位置,获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
在一种可能的实现方式中,基于广播信号,获取接入设备的类型,具体包括:获取频域资源的位置;基于频域资源的位置,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则基于频域资源的位置获取接入设备的类型。
通过上述方式,实现了不同方式的组合共同指示接入设备的类型,从而降低广播信号的设计的复杂度,并提升终端识别接入设备的类型的效率。
第二方面,本申请实施例提供了一种通信方法,该方法应用于基站,所述方法可以包括:生成广播信号,其中,所述广播信号用于指示所述接入设备的类型,所述接入设备的类型包括:地面基站或非地面基站;发送所述广播信号。
在一种可能的实现方式中,广播信号中包括第一标识信息,所述第一标识信息用于指示接入设备的类型;其中,所述第一标识信息为主同步信号PSS和/或辅同步信号SSS。
在一种可能的实现方式中,PSS用于指示接入设备为地面基站或非地面基站,SSS用于若PSS指示接入设备为非地面基站指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在一种可能的实现方式中,广播信号包含标识所述接入设备的类型的第一类型参数,所述第一类型参数为生成前导preamble的序列。
在一种可能的实现方式中,所述序列包括ZC序列和/或M序列。
在一种可能的实现方式中,所述广播信号的时域资源和/或频域资源的位置用于指示所述接入设备的类型。
在一种可能的实现方式中,所述时域资源的位置用于指示所述广播信号在其所属时域资源上的位置与指定位置之间的偏移值N。
在一种可能的实现方式中,若N的值在第一区间,则所述接入设备为地面基站;若N的值不在所述第一区间,则所述接入设备为非地面基站。
在一种可能的实现方式中,所述N的值用于指示所述接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
在一种可能的实现方式中,所述频域资源的位置包括所述广播信号在其所属频域资源上所占资源块的大小和/或起始位置。
在一种可能的实现方式中,若所述频域资源的位置满足第一条件,则所述接入设备为地面基站;若所述频域资源的位置不满足所述第一条件,则所述接入设备为非地面基站。
第三方面,本申请实施例提供了一种终端,该终端包括接收模块、获取模块。其中,所述接收模块用于接收接入设备发送的广播信号。所述获取模块用于基于广播信号,获取接入设备的类型,其中,接入设备的类型包括:第一类型和/或第二类型,其中第一类型包括地面基站或非地面基站,第二类型包括下述至少一种类型:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
在一种可能的实现方式中,广播信号包括第一标识信息,第一标识信息用于指示接入设备的类型;其中,第一标识信息为主同步信号PSS和/或辅同步信号SSS。
在一种可能的实现方式中,获取模块可用于:根据第一标识信息与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一标识信息与第二类型的关系,获取接入设备的类型。
在一种可能的实现方式中,获取模块可用于:根据PSS与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据SSS与第二类型的关系,获取接入设备的类型。
在一种可能的实现方式中,其中,广播信号包含用于标识接入设备的类型的第一类型参数,第一类型参数为生成前导preamble的序列。
在一种可能的实现方式中,获取模块可用于:对第一类型参数进行解析,获取第一参数;根据第一参数与接入设备的类型的关系,获取接入设备的类型。
在一种可能的实现方式中,获取模块可用于:根据第一参数与第一类型的关系, 确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一参数与第二类型的关系,获取接入设备的类型。
在一种可能的实现方式中,序列包括ZC序列和/或M序列。
在一种可能的实现方式中,获取模块可用于:根据第一标识信息与第一类型的关系,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则根据第一参数与第二类型的关系,获取接入设备的类型。
在一种可能的实现方式中,广播信号的时域资源和/或频域资源的位置用于指示接入设备的类型。
在一种可能的实现方式中,获取模块可用于:获取广播信号的时域资源的位置和/或频域资源的位置;基于时域资源的位置和/或频域资源的位置与接入设备类型的关系,获取接入设备的类型。
在一种可能的实现方式中,其中,时域资源的位置用于指示广播信号在其所属时域资源上的位置与指定位置之间的偏移值N。
在一种可能的实现方式中,若N的值在第一区间,则接入设备为地面基站;若N的值不在第一区间,则接入设备为非地面基站。
在一种可能的实现方式中,获取模块可用于:获取N的值;基于N的值,获取接入设备的类型。
在一种可能的实现方式中,获取模块可用于:获取N的值;基于N的值,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则基于N的值获取接入设备的类型。
在一种可能的实现方式中,频域资源的位置包括广播信号在其所属频域资源上所占资源块的大小和/或起始位置。
在一种可能的实现方式中,若频域资源的位置满足第一条件,则接入设备为地面基站;若频域资源的位置不满足第一条件,则接入设备为非地面基站。
在一种可能的实现方式中,获取模块可用于:获取频域资源的位置;基于频域资源的位置,获取接入设备的类型。
在一种可能的实现方式中,获取模块可用于:获取频域资源的位置;基于频域资源的位置,确定接入设备为地面基站或者非地面基站;若接入设备为非地面基站,则基于频域资源的位置获取接入设备的类型。
第四方面,本申请实施例提供了一种接入设备,包括:生成模块和发送模块,其中,生成模块可用于生成广播信号,其中,所述广播信号用于指示所述接入设备的类型,所述接入设备的类型包括:地面基站或非地面基站;发送模块可用于发送所述广播信号。
在一种可能的实现方式中,广播信号中包括第一标识信息,所述第一标识信息用于指示接入设备的类型;其中,所述第一标识信息为主同步信号PSS和/或辅同步信号SSS。
在一种可能的实现方式中,PSS用于指示接入设备为地面基站或非地面基站,SSS用于若PSS指示接入设备为非地面基站指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在一种可能的实现方式中,广播信号包含标识所述接入设备的类型的第一类型参数,所述第一类型参数为生成前导preamble的序列。
在一种可能的实现方式中,所述序列包括ZC序列和/或M序列。
在一种可能的实现方式中,所述广播信号的时域资源和/或频域资源的位置用于指示所述接入设备的类型。
在一种可能的实现方式中,所述时域资源的位置用于指示所述广播信号在其所属时域资源上的位置与指定位置之间的偏移值N。
在一种可能的实现方式中,若N的值在第一区间,则所述接入设备为地面基站;若N的值不在所述第一区间,则所述接入设备为非地面基站。
在一种可能的实现方式中,所述N的值用于指示所述接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
在一种可能的实现方式中,所述频域资源的位置包括所述广播信号在其所属频域资源上所占资源块的大小和/或起始位置。
在一种可能的实现方式中,若所述频域资源的位置满足第一条件,则所述接入 设备为地面基站;若所述频域资源的位置不满足所述第一条件,则所述接入设备为非地面基站。
第五方面,本申请实施例提供了一种通信装置,包括:收发器/收发管脚和处理器,可选地,还包括存储器。其中,所述收发器/收发管脚、所述处理器和所述存储器通过内部连接通路互相通信;所述处理器用于执行指令以控制所述收发器/收发管脚发送或者接收信号;所述存储器用于存储指令。所述处理器执行指令时,所述处理器执行第一方面或第一方面中任一种可能实现方式所述的方法。
第六方面,本申请实施例提供了一种通信装置,包括:收发器/收发管脚和处理器,可选地,还包括存储器。其中,所述收发器/收发管脚、所述处理器和所述存储器通过内部连接通路互相通信;所述处理器用于执行指令以控制所述收发器/收发管脚发送或者接收信号;所述存储器用于存储指令。所述处理器执行指令时,所述处理器执行第二方面或第二方面中任一种可能实现方式所述的方法。
第七方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第九方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十一方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理器通过内部连接通路互相通信,该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第十二方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理器通过内部连接通路互相通信,该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第十三方面,本申请实施例提供一种通信系统,该系统包括上述第一方面和第二方面涉及的终端和接入设备。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信系统的示意图;
图2a是一种基站的结构示意图;
图2b是一种终端的结构示意图;
图3是本申请实施例提供的一种通信方法的流程示意图;
图4是本申请实施例提供的一种终端获取接入设备的类型的流程示意图之一;
图5是本申请实施例提供的一种终端获取接入设备的类型的流程示意图之一;
图6是本申请实施例提供的一种终端获取接入设备的类型的流程示意图之一;
图7是本申请实施例提供的一种终端获取接入设备的类型的流程示意图之一;
图8a~图8j是本申请实施例提供的广播信号的频域资源的位置的示意图;
图9是本申请实施例提供的一种终端获取接入设备的类型的流程示意图之一;
图10a~10e是本申请实施例提供的PSS与SSS的频域资源的分配方式的示意图;
图11是本申请实施例提供的PSS与SSS的时域资源和频域资源的分配方式的示意图;
图12a~12d是本申请实施例提供的PBCH的时域资源和频域资源的分配方式的示意图;
图13是本申请实施例提供的一种终端的示意性框图;
图14是本申请实施例提供的一种终端的结构示意图;
图15是本申请实施例提供的一种接入设备的示意性框图;
图16是本申请实施例提供的一种接入设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例 如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的通信系统进行说明。参见图1,为本申请实施例提供的一种通信系统示意图。该通信系统中包括接入设备100、接入设备200、以及终端300。在本申请实施例具体实施的过程中,终端300可以为电脑、智能手机、电话机、有线电视机顶盒、数字用户线路路由器等设备。接入设备100、接入设备200可以为地面基站、高空基站、低轨卫星、中轨卫星、高轨卫星中的一种。需要说明的是,在实际应用中,接入设备与终端的数量均可以为一个或多个,图1所示通信系统的基站与终端的数量仅为适应性举例,本申请对此不做限定。
上述通信系统可以用于支持第四代(fourth generation,4G)接入技术,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以支持第五代(fifth generation,5G)接入技术,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以用于支持第三代(third generation,3G)接入技术,例如通用移动通信系统(universal mobile telecommunications system,UMTS)接入技术;或者通信系统也可以用于支持第二代(second generation,2G)接入技术,例如全球移动通讯系统(global system for mobile communications,GSM)接入技术;或者,该通信系统还可以用于支持多种无线技术的通信系统,例如支持LTE技术和NR技术。另外,该通信系统也可以适用于窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及面向未来的通信技术。
以及,图1中的接入设备(指接入设备100和接入设备200)可用于支持终端接入,例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等地面设备,还可以为非地面设备:高空基站,例如:可为终端提供无线接入功能的热气球等设备、低轨卫星、中轨卫星、高轨卫星等等。为方便描述,本申请所有实施例中,为终端提供无线通信功能的装置统称为接入设备或基站。
图1中的终端300可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop  computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与基站,例如图1中的接入设备100或接入设备200进行通信。多个终端之间也可以进行通信。终端可以是静态固定的,也可以是移动的。
图2a是一种基站的结构示意图。在图2a中:
接入设备中包括至少一个处理器101、至少一个存储器102、至少一个收发器103、至少一个网络接口104和一个或多个天线105。处理器101、存储器102、收发器103和网络接口104相连,例如通过总线相连。天线105与收发器103相连。网络接口104用于使得基站通过通信链路,与其它通信设备相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器101,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器101可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器102,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器102可以是独立存在,与处理器101相连。可选地,存储器102也可以和处理器101集成在一起,例如集成在一个芯片之内。其中,存储器102能够存储执行本申请实施例的技术方案的程序代码,并由处理器101来控制执行,被执行的各类计算机程序代码也可被视为是处理器101的驱动程序。例如,处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器103可以用于支持接入网设备与终端之间射频信号的接收或者发送,收发器103可以与天线105相连。收发器103包括发射机Tx和接收机Rx。具体地,一个或多个天线105可以接收射频信号,该收发器103的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信 号提供给所述处理器101,以便处理器101对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器103中的发射机Tx还用于从处理器101接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线105发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
图2b是一种终端的结构示意图。在图2b中:
终端300包括至少一个处理器301、至少一个收发器302和至少一个存储器303。处理器301、存储器303和收发器302相连。可选地,终端300还可以包括一个或多个天线304。天线304与收发器302相连。
收发器302、存储器303以及天线304可以参考图2a中的相关描述,实现类似功能。
处理器301可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器301可以用于为终端300实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端300进行控制,执行软件程序,处理软件程序的数据;或者处理器301用于实现上述功能中的一种或者多种。
结合图1,如图3所示为本申请实施例中的通信方法的流程示意图,在图3中:
步骤101,接入设备生成广播信号。
具体的,在本申请的实施例中,广播信号可包括物理广播信道部分与数字信道部分,其中,物理广播信道部分中包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)。其中,广播信号的物理广播信道部分也可以称为SS/PBCH块。
具体的,在本申请的接入设备与终端预先规定有广播信号与接入设备的类型的对应关系。例如:广播信号在时域资源的位置与接入设备的对应关系,可用于指示接入设备的类型,则,接入设备可基于上述对应关系,以及接入设备自身的类型,设置广播信号在时域资源的位置。
在本申请的实施例中,接入设备可通过设置广播信号在时域上的位置、频域上的位置、广播信号中携带的信息(例如本申请实施例中的第一标识信息)、和/或广播信号中携带的信息在时域上的位置及频域上的位置指示该接入设备的类型。具体指示方式将在下面的实施例中进行详细阐述。
可选地,接入设备的类型包括:地面基站或非地面基站。其中,接入设备若为非地面基站,接入设备的类型包括但不限于:高空基站、低轨卫星、中轨卫星或高轨卫星。
步骤102,接入设备发送广播信号。
具体的,在本申请的实施例中,接入设备(例如接入设备100和接入设备200)发送广播信号。
步骤103,终端接收广播信号。
具体的,在本申请的实施例中,终端开机后,启动接入流程。具体的,终端启动后,开始进行小区搜索,即,检测是否存在任一接入设备发送的广播信号。可选地,终端在连接态以及空闲态(包括刚启动或者从其它小区下线后)时,同样可进行小区搜索。其中,在连接态时,终端可通过小区搜索,搜索到比现接入小区强度大的小区,则,终端可进行小区切换。在空闲态时,终端可通过小区搜索,接入小区。
在本申请的实施例中,终端可接收到一个或一个以上接入设备发送的广播信号。随后,终端可基于广播信号的强度,选择接入的目标接入设备,并进入步骤104,即,通过该目标接入设备发送的广播信号,获取接入设备的类型。可选地,终端还可基于接收到的广播信号的先后顺序,选择接入的目标接入设备。具体选择方式可根据实际需求进行设置,本申请不做限定。
步骤104,终端基于广播信号,获取接入设备的类型。
具体的,在本申请的实施例中,终端可通过识别广播信号的信息(例如:广播信号在频域上的位置、和/或在时域上的位置),和/或识别广播信号中携带的信息(例如:广播信号携带的第一标识信息在时域上的位置、在频域上的位置和/或第一标识信息自身包含的参数等等),获取到接入设备的类型。即,终端可通过广播信号,确定接入设备为地面基站或非地面基站,进一步,还可以确定接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
步骤105,终端接入接入设备。
具体的,在本申请的实施例中,终端获取到接入设备的类型后,即可确定接入设备的时延类型,终端可确定的时延类型与接入设备进行后续的通信过程。举例说明:地面基站对于终端而言,时延比非地面基站大,以此类推,高轨卫星的时延比低轨卫星的时延大,因此,终端在确定接入设备的类型后,即可获取到接入设备的类型与时延的对应关系,例如:终端中可存储有接入设备的类型与时延等级的对应关系表,终端可通过检索对应关系表,获取到与当前需要接入的接入设备的类型对应的时延等级。随后,终端可根据接入设备的时延等级,确定与接入设备的通信方式,例如:终端可根据时延等级确定与接入设备之间的重传方式等等。
接着,终端可基于广播信号中携带的参数,获取到目标小区(目标小区属于接入设备)的物理小区标识(Physical-layer Cell Identity,PCI)。具体的,终端可通过PCI的计算公式,获取到目标小区的PCI。可选地,PCI的计算公式可以为:
Figure PCTCN2019125680-appb-000001
其中,
Figure PCTCN2019125680-appb-000002
为协议中规定的PCI的值的表达方式。以及,
Figure PCTCN2019125680-appb-000003
由广播信号中的PSS决定,
Figure PCTCN2019125680-appb-000004
由广播信号中的SSS决定。
具体的,PSS中包含第一类型参数,SSS中包含有第二类型参数,终端可通过对第一类型参数与第二类型参数进行解析,以获取到与第一类型参数对应的第一参数,以及与第二类型参数对应的第二参数。随后,终端可通过查表获取到与第一参数对应的
Figure PCTCN2019125680-appb-000005
的值,以及与第二参数对应的
Figure PCTCN2019125680-appb-000006
的值。
举例说明:PSS中包含有伪随机序列(以下简称第一类型参数),伪随机序列可以为ZC(Zadoff-Chu)序列。SSS中同样包含有伪随机序列(以下简称第二类型参数),其中,第一类型参数与第二类型参数相同或不同。终端可对第一类型参数进行解析,获 取到第一参数,例如:U0,对第二类型参数进行解析,获取到第二参数,例如:U1。随后,终端可通过查表获取到与U0对应的
Figure PCTCN2019125680-appb-000007
值为1,与U1对应的
Figure PCTCN2019125680-appb-000008
值为3。
接着,终端可根据PCI的求取公式,例如:
Figure PCTCN2019125680-appb-000009
获取到
Figure PCTCN2019125680-appb-000010
)为10。终端可根据PCI的值,接入接入设备中PCI值为10的小区。具体接入过程可参照现有技术,本申请不再赘述。
综上,本申请实施例中的技术方案,地面基站与非地面基站均可发送具有统一格式的广播信号,从而使终端通过广播信号,能够获取到接入设备的类型,进而实现地面基站与非地面基站的通信融合,以提升资源利用率以及用户使用体验。
为使本领域技术人员更好的理解本申请的技术方案,下面对本申请实施例中的通信方法进行详细阐述。
在本申请的实施例中,接入设备可通过设置广播信号中携带的第一标识信息指示接入设备的类型。
可选地,在一个实施例中,第一标识信息可以为PSS,也可以为SSS。即,接入设备可通过设置PSS或SSS指示接入设备的类型,终端可根据PSS或SSS与接入设备的类型的对应关系,确定到接入设备的类型。
可选地,在另一个实施例中,接入设备可通过设置PSS和SSS的信息指示接入设备的类型,即,接入设备可通过设置广播信号中的PSS与SSS指示接入设备的类型,终端可根据PSS和SSS与接入设备的类型的对应关系,确定接入设备的类型。例如:终端可通过识别PSS确定接入设备为地面基站或非地面基站,若接入设备为非地面基站,则,终端可再通过识别SSS确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在本申请的实施例中,接入设备还可以通过广播信号,即,SS/PBCH块的时域资源的位置和/或频域资源的位置指示接入设备的类型。
下面对不同的指示方式进行详细阐述。
1.广播信号中的PSS或SSS可用于指示接入设备的类型。
下面以PSS指示接入设备的类型为例进行详细阐述,SSS与PSS的指示方式类似,本申请不再赘述。
1.1 PSS中包含的第一类型参数可用于指示接入设备的类型。
如图4所示为本申请实施例中的终端获取接入设备的类型的流程示意图,在图4中:
步骤201,终端对第一类型参数进行解析,获取第一参数。
具体的,在本申请的实施例中,终端可提取广播信号中的PSS包含的第一类型参数,并对第一类型参数进行解析,以获取第一参数。其中,在本申请的实施例中,第一类型参数为生成前导(preamble)的序列。可选地,在一个实施例中,第一类型参数可以为ZC序列,在另一个实施例中,第一类型参数可以为M序列。
需要说明的是,在接入设备端,接入设备可根据其自身的类型,设置第一类型参数。举例说明:若接入设备为低轨卫星,则,接入设备可确定对应于低轨卫星的第一参数为U0,则,接入设备可通过查表获取到与U0对应的第一类型参数,例如:A1(A1仅为标识第一类型参数,第一类型参数实际是序列),则,接入设备将PSS设置为A1。
终端接收到广播信号后,提取PSS包含的第一类型参数,即A1,并对A1进行解析,获取到第一参数U0。
步骤202,终端根据第一参数与接入设备的类型的关系,获取接入设备的类型。
接着,终端可通过查表获取到第一参数与接入设备的类型的对应关系。例如,终端可基于表1获取到接入设备的类型。
Figure PCTCN2019125680-appb-000011
表1
需要说明的是,表1中的第一参数与接入设备的类型的对应关系仅为示意性举例,本申请对此不作限定。
结合表1,终端通过解析第一类型参数,获取到第一参数U0,并通过查表确定当第一参数为U0时,对应的
Figure PCTCN2019125680-appb-000012
的值为0,并且对应的接入设备的类型为地面基站。
接着,终端可继续进行步骤104,即,获取PCI,并接入接入设备的相关步骤。
需要说明的是,如上文所述,在已有技术中,PCI的计算公式通常为
Figure PCTCN2019125680-appb-000013
Figure PCTCN2019125680-appb-000014
并且,
Figure PCTCN2019125680-appb-000015
的可能取值为{0,1,2},
Figure PCTCN2019125680-appb-000016
可能的取值为{0,1,2,…335},则,PCI的取值范围为0~1008。而在本申请的实施例中,由于
Figure PCTCN2019125680-appb-000017
的取值发生变化,为保证PCI的连续,可对PCI的计算公式进行相应的变换,例如,在本申请的实施例中,PCI的计算公式可以为:
Figure PCTCN2019125680-appb-000018
其中,K的取值为
Figure PCTCN2019125680-appb-000019
例如,当
Figure PCTCN2019125680-appb-000020
的取值为{0,1,2,3,4,5}时,K为6。
1.2 PSS中包含的第一类型参数的类型可用于指示接入设备的类型。
如图5所示为本申请实施例中的终端获取接入设备的类型的流程示意图,在图5中:
步骤301,终端获取第一类型参数的类型。
具体的,在本申请的实施例中,接入设备可通过设置PSS包含的第一类型参数的类型以指示接入设备的类型。相应的,终端可通过识别第一类型参数的类型,获取对应的接入设备的类型。
可选地,在一个实施例中,第一类型参数若为ZC序列,则指示接入设备为地面基站,若第一类型参数为M序列,则指示接入设备为非地面基站。其中,若接入设备为非地面基站,接入设备可进一步通过设置M序列的数值,以指示接入设备的非地面基站的类型。
可选地,在另一个实施例中,还可以通过第一类型参数为M序列指示接入设备为地面基站,ZC序列指示接入设备为非地面基站。本申请不做限定。
步骤302,终端可根据第一类型参数的类型与接入设备的类型的关系,获取接入设备的类型。
具体的,如步骤301所述,接入设备与终端可规定不同序列对应的接入设备的类型。 随后,终端可通过获取到的第一类型参数的类型,确定接入设备为地面基站或非地面基站。若接入设备为非地面基站,则,终端可进一步通过对第一类型参数进行解析,获取到解析后的第一参数指示的接入设备的类型。
举例说明:如表2所示为不同类型的序列与接入设备的类型的对应关系。
Figure PCTCN2019125680-appb-000021
表2
结合表2,终端获取第一类型参数的类型,若第一类型参数的类型为ZC序列,则确定接入设备为地面基站。终端可进入步骤104,即,对第一类型参数进行解析,以获取到对应的第一参数,并通过查表,获取对应的
Figure PCTCN2019125680-appb-000022
值,对SSS同样进行解析,获取
Figure PCTCN2019125680-appb-000023
值,并求取PCI。若第一类型参数的类型为M序列,则确定接入设备为非地面基站。终端可继续对第一类型参数进行解析,获取到第一参数,例如:M0。通过查表,终端可获取与第一参数M0对应的接入设备的类型为低轨卫星,且
Figure PCTCN2019125680-appb-000024
值为0。终端继续进行PCI的计算步骤。
1.3 PSS的时域资源的位置可用于指示接入设备的类型。
如图6所示为本申请实施例中的终端获取接入设备的类型的流程示意图,在图6中:
步骤401,终端获取PSS的时域资源的位置。
具体的,在本申请的实施例中,终端可获取到广播信号中的PSS的时域资源的位置。
可选地,在一个实施例中,PSS的时域资源的位置可以为PSS在广播信号所属的时域资源上的位置与标准中规定的PSS在时域资源上的位置的偏移值N。即,在已有技术的协议中,PSS和/或SSS具有固定的时域资源分配方案,本申请可通过将广播信号中的PSS和/或SSS较之已有技术中规定的位置进行平移(平移可以为向左平移或向右平移)后的偏移值N,标识接入设备的类型。举例说明:在已有技术中,协议规定PSS在时域资源上的位置为符号位16,在本申请中,终端获取到PSS在时域资源上的位置为符号位12,则,终端获取到偏移值N,即,PSS的时域资源的位置为4。
可选地,在另一个实施例中,PSS的时域资源的位置也可以直接用于指示PSS当前在时域资源上所处位置。举例说明:若PSS在时域资源上的位置为符号位16,则,终端获取到的PSS的时域资源的位置即为16。
可选地,本申请中所述的位置均为时域资源的起始位置,例如:PSS的在时域资源上的位置为符号位16,即指PSS的起始位置为时域资源上的符号位的第16位。
步骤402,终端基于PSS的时域资源的位置,获取接入设备的类型。
具体的,在本申请的实施例中,终端可基于PSS的时域资源的位置与接入设备的类型的对应关系,获取接入设备的类型。
可选地,若PSS的时域资源的位置为上文所举的偏移值N,则,终端可根据偏移值N的大小,确定接入设备的类型。举例说明:若偏移值N落入第一区间,则可确定接入 设备为地面基站;若N落入第二区间,则可确定接入设备为高空基站;若N落入第三区间,则可确定接入设备为低轨卫星;若N落入第四区间,则可确定接入设备为中轨卫星;若N落入第五区间,则可确定接入设备为高轨卫星。需要说明的是,上述区间的划分可根据实际需求进行设置,本申请不做限定。
可选地,若PSS的时域资源的位置为上文所举的PSS在时域资源上的实际位置,则,终端可基于PSS的不同的时域资源的位置与接入设备的类型的对应关系,获取到接入设备的类型。即,本申请实施例中的接入设备与终端可预先规定不同的时域资源位置对应的接入设备的类型。举例说明:PSS的时域资源的位置为{2,8,16,22},指示接入设备为地面基站,{1,7,13,19}指示接入设备为低轨卫星基站,{3,9,12,17}指示接入设备为中轨卫星基站。{4,10,15,18}指示接入设备为高轨卫星。
1.4、PSS在频域资源上的位置可用于指示接入设备的类型。
如图7所示为本申请实施例中的终端获取接入设备的类型的流程示意图,在图7中:
步骤501,终端获取PSS的频域资源的位置。
具体的,在本申请的实施例中,终端可获取到广播信号中的PSS的频域资源的位置。其中,频域资源的位置包括PSS在广播信号所属频域资源上所占的资源块的大小和/或起始位置。
可选地,在一个实施例中,PSS在频域资源上所占的资源块的大小可用于指示接入设备的类型(类型包括:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星)。
可选地,在另一个实施例中,PSS在频域资源上所占的资源块的起始位置可用于指示接入设备的类型(类型包括:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星)。
可选地,在又一个实施例中,PSS在频域资源上所占的资源块的大小和起始位置可用于指示接入设备的类型。其中,PSS在频域资源上所占的资源块的大小可用于指示接入设备为地面基站或非地面基站(例如,所占的资源块的大小超过阈值则指示接入设备为非地面基站,反之则为地面基站),若接入设备为非地面基站,所占的资源块的起始位置可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。反之,若所占的资源块的起始位置用于指示地面基站或非地面基站,则所占的资源块的大小用于指示高空基站、低轨卫星、中轨卫星或高轨卫星。
步骤502,终端基于PSS的频域资源的位置,获取接入设备的类型。
具体的,在本申请的实施例中,基站可基于获取到的频域资源的位置与接入设备的类型的对应关系,获取到接入设备的类型。如步骤501中所述,PSS的频域资源的位置与接入设备的类型存在对应关系。
举例说明:如图8a~8j所示为广播信号的频域资源的位置的示意图。其中,广播信号所属频域资源为0-239MHz。
在本实施例中,以PSS所占的资源块的起始位置(以下简称起始位置)为例进行详细说明。具体的,接入设备与终端可预先规定不同的起始位置与接入设备的对应关系。在本实施例中,以起始位置为{2,10,26,38}(单位为MHz)指示接入设备为地面基站;起始位置为{3,11,27,39}指示接入设备为高空基站;起始位置为{4,12,28,40}指示接入设备为 低轨卫星;起始位置为{5,13,29,41}指示接入设备为中轨卫星;起始位置为{6,14,30,42}指示接入设备为高轨卫星为例。
如图8a所示,PSS的起始位置为2MHz,则,终端可确定接入设备为地面基站。
如图8b所示,PSS的起始位置为27MHz,则,终端可确定接入设备为高空基站。
如图8c所示,PSS的起始位置为12MHz,则,终端可确定接入设备为低轨卫星。
如图8d所示,PSS的起始位置为41MHz,则,终端可确定接入设备为中轨卫星。
如图8e所示,PSS的起始位置为6MHz,则,终端可确定接入设备为高轨卫星。
下面以PSS所占的资源块的大小指示接入设备的类型为例进行详细说明。具体的,接入设备与终端可预先规定不同的资源块的大小与接入设备的对应关系。在本实施例中,以资源块的大小的不同区间为例,例如:资源块的大小在(0,47MHz]指示接入设备为地面基站;资源块的大小在(47MHz,56MHz]指示接入设备为高空基站;资源块的大小在(56MHz,120MHz]指示接入设备为低轨卫星;资源块的大小在(120MHz,170MHz]指示接入设备为中轨卫星;资源块的大小在(170MHz,239MHz]指示接入设备为高轨卫星。
如图8f所示,PSS的资源块的大小为23MHz,则,终端可确定接入设备为地面基站。
如图8g所示,PSS的资源块的大小为50MHz,则,终端可确定接入设备为高空基站。
如图8h所示,PSS的资源块的大小为100MHz,则,终端可确定接入设备为低轨卫星。
如图8i所示,PSS的资源块的大小为130MHz,则,终端可确定接入设备为中轨卫星。
如图8j所示,PSS的资源块的大小为200MHz,则,终端可确定接入设备为高轨卫星。
在上述实施例中,仅以单独一种条件指示接入设备的类型,例如,PSS包含的第一类型参数可指示接入设备的类型。在本申请的实施例中,还可通过多种条件任意结合的方式,指示接入设备的类型。
可选地,在一个实施例中,PSS中包含的第一类型参数可结合时域资源的位置或频域资源的位置指示接入设备的类型。例如:PSS中包含的第一类型参数的类型可用于指示接入设备为地面基站或非地面基站。在接入设备为非地面基站的情况下,终端可进一步获取PSS在时域资源的位置或PSS在频域资源的位置,以通过时域资源的位置或频域资源的位置与接入设备的类型的对应关系获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。反之,还可以通过PSS的时域资源的位置或频域资源的位置指示接入设备为地面基站或非地面基站,若接入设备为非地面基站,则,终端可进一步对PSS的第一类型参数进行解析,以获取解析后的第一参数,并根据第一参数与高空基站、低轨卫星、中轨卫星或高轨卫星的对应关系,确定接入设备的类型。
可选地,在另一个实施例中,PSS的时域资源的位置可结合频域资源的位置指示接入设备的类型。例如:PSS的时域资源的位置可用于指示接入设备为地面基站或非地面基站。若接入设备为非地面基站终端可进一步获取PSS在频域资源的位置,以通过频域资源的位置与接入设备的类型的对应关系获取接入设备为高空基站、低轨卫星、中轨卫 星或高轨卫星。反之,还可以通过PSS的频域资源的位置指示接入设备为地面基站或非地面基站。若接入设备为非地面基站,终端可进一步获取PSS在时域资源的位置,以通过时域资源的位置与接入设备的类型的对应关系,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
2.广播信号中的PSS和SSS可共同用于指示接入设备的类型。
在一个实施例中,PSS可用于指示接入设备为地面基站或非地面基站,即,终端可根据PSS与接入设备的类型的对应关系,获取接入设备为地面基站或非地面基站。若接入设备为非地面基站,则,SSS可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。即,终端可进一步根据SSS与接入设备的类型的关系,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在另一个实施例中,SSS可用于指示接入设备为地面基站或非地面基站,PSS可用于指示高空基站、低轨卫星、中轨卫星或高轨卫星。
下面以PSS指示接入设备为地面基站或非地面基站,SSS用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星为例进行详细说明。
2.1 PSS中包含的第一类型参数用于指示接入设备为地面基站或非地面基站,SSS中包含的第二类型参数用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
如图9所示为本申请实施例中的终端获取接入设备的类型的流程示意图,在图9中:
步骤601,终端对PSS包含的第一类型参数进行解析,获取第一参数。
具体细节可参照步骤201,此处不赘述。
步骤602,终端根据第一参数与接入设备的类型的关系,确定接入设备为地面基站或非地面基站。
具体的,在本申请的实施例中,接入设备与终端可规定第一参数与接入设备的类型的对应关系,以指示接入设备的类型。
可选地,在一个实施例中,可通过设置第一参数对应的
Figure PCTCN2019125680-appb-000025
值的取值范围,确定接入设备为地面基站或非地面基站。举例说明:地面基站的数量有限,属于地面基站的接入设备可预先设置有对应的序号,例如:存在1000个地面基站,则,
Figure PCTCN2019125680-appb-000026
的值若在小于等于1000,则可确定接入设备为地面基站。若
Figure PCTCN2019125680-appb-000027
的值大于1000,则可确定接入设备为非地面基站。
在另一个实施例中,也可以直接规定
Figure PCTCN2019125680-appb-000028
的值与接入设备的类型的对应关系。例如:当解析后的第一参数对应的
Figure PCTCN2019125680-appb-000029
的取值为{0,1,2,3,4}时,指示接入设备为地面基站。若不在该区间内,则指示为非地面基站。
在本申请的实施例中,若终端确定接入设备为非地面基站,则进入步骤603。
步骤603,终端对SSS包含的第二类型参数进行解析,获取第二参数。
具体细节可参照第一类型参数的解析过程,此处不赘述。
步骤604,终端根据第二参数与接入设备的类型的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
具体细节可参照步骤202,此处不赘述。
2.2 PSS的时域资源的位置和SSS的时域资源的位置共同指示接入设备的类型。
可选地,在一个实施例中,PSS的时域资源的位置可用于指示接入设备为地面基站或非地面基站。若接入设备为非地面基站,SSS的时域资源的位置可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
可选地,在另一个实施例中,PSS的时域资源的位置与SSS的时域资源的位置可共同指示接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。例如:当PSS的时域资源的位置为0,SSS的时域资源的位置为2时,指示接入设备为地面基站;当PSS的时域资源的位置为1,SSS的时域资源的位置为3时,指示接入设备为高空基站;当PSS的时域资源的位置为3,SSS的时域资源的位置为5时,指示接入设备为低轨卫星;当PSS的时域资源的位置为4,SSS的时域资源的位置为6时,指示接入设备为中轨卫星;当PSS的时域资源的位置为5,SSS的时域资源的位置为7时,指示接入设备为高轨卫星。例如:还可以以PSS的时域资源的位置与SSS的时域资源的位置之间相隔的位置大小,指示接入设备的类型。例如:当PSS的时域资源位置与SSS的时域资源位置相隔的符号位的大小满足第一区间(例如:(0,3])则指示接入设备为地面基站;当PSS的时域资源位置与SSS的时域资源位置相隔的符号位的大小满足第二区间,则指示接入设备为高空基站;当PSS的时域资源位置与SSS的时域资源位置相隔的符号位的大小满足第三区间,则指示接入设备为低轨卫星;当PSS的时域资源位置与SSS的时域资源位置相隔的符号位的大小满足第四区间,则指示接入设备为中轨卫星;当PSS的时域资源位置与SSS的时域资源位置相隔的符号位的大小满足第五区间,则指示接入设备为高轨卫星。
在本实施例中,终端可根据PSS的时域资源的位置和/或SSS的时域资源的位置与接入设备的类型的关系,获取接入设备的类型。具体细节可参照上述实施例,此处不赘述。
2.3 PSS的频域资源的位置与SSS的频域资源的位置共同指示接入设备的类型。
可选地,在一个实施例中,PSS的频域资源的位置可用于指示接入设备为地面基站或非地面基站。若接入设备为非地面基站,SSS的频域资源的位置可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。其中,所述频域资源的位置可以为资源块的大小,也可以为资源块的起始位置。例如:PSS在频域资源上所占的资源块的大小若大于等于阈值,则指示接入设备为地面基站,反之则指示接入设备为非地面基站。若接入设备为非地面基站,则,SSS在频域资源上所占的资源块的大小可进一步指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。以及,PSS在频域资源上所占的资源块的起始位置可用于指示接入设备为地面基站或非地面基站,SSS在频域资源上所占的资源块的起始位置可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。或者,还可以PSS在频域资源上所占的资源块的起始位置可用于指示接入设备为地面基站或非地面基站,SSS在频域资源上所占的资源块的大小可用于指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
可选地,在另一个实施例中,PSS的频域资源的位置与SSS的频域资源的位置可共 同指示接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。即,PSS与SSS在频域资源上的相对位置可指示接入设备的类型。如图10a~10e所示为PSS与SSS的几种可能的频域资源分配方式,接入设备与终端可预先规定不同的频域资源分配方式与接入设备的类型的对应关系,从而使终端可根据PSS和SSS的频域资源的位置与接入设备的类型的关系,获取接入设备的类型。
结合图10a~10e,在10a中,PSS与SSS的频域资源的起始位置(以下简称起始位置)均为60MHZ,指示接入设备为地面基站。在图10b中,PSS的起始位置为40,SSS的起始位置为60,指示接入设备为高空基站。在图10c中,PSS的起始位置与SSS的起始位置均为56,指示接入设备为低轨卫星。在图10d中,PSS的起始位置为与SSS的起始位置均为40,指示接入设备为中轨卫星。在图10e中,PSS的起始位置为60,SSS的起始位置为40,指示接入设备为高轨卫星。
需要说明的是,在图10a~10e中,PSS与SSS在频域资源上所占的资源块的大小均为固定值。在一个实施例中,同样可通过PSS或SSS在频域资源上所占的资源块的大小与起始位置结合的方式指示接入设备的类型。例如:若PSS在频域资源上所占的资源块的大小等于阈值(例如100MHz),则接入设备为非地面基站,若小于阈值,则接入设备为地面基站。在接入设备为非地面基站时,终端可根据SSS在频域资源上所占的资源块的起始位置,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。例如:若SSS的起始位置满足第一区间(可根据实际需求进行设置,例如(0,20MHz])可确定接入设备为高空基站,若SSS的起始位置满足第二区间,可确定接入设备为低轨卫星;若SSS的起始位置满足第三区间,可确定接入设备为中轨卫星;若SSS的起始位置满足第四区间,可确定接入设备为高轨卫星。
2.4 PSS与SSS的时域资源的位置和频域资源的位置共同指示接入设备的类型。
具体的,在本申请的实施例中,接入设备与终端可预先规定PSS与SSS在时域资源的位置和频域资源的位置与接入设备的类型的对应关系。
如图11所示为PSS与SSS的几种可能的时域资源和频域资源的分配方式。本实施例中,接入设备与终端可从图11中选择PSS与SSS的时域资源与频域资源的分配方式与接入设备的类型建立对应关系,从而使接入设备在生成广播信号时,可根据对应关系,设置PSS与SSS的时域资源和频域资源的位置,以及,终端可根据PSS与SSS的时域资源和频域资源与接入设备的类型的对应关系,获取接入设备的类型。
参照图11,在一个实施例中,PSS与SSS在时域资源上的位置可指示接入设备为地面类型或非地面类型。例如:当PSS在时域资源上的位置为0,SSS在时域资源上的位置为1,以及,PSS在时域资源上的位置为0,SSS在时域资源上的位置为2时,指示接入设备为地面基站。当PSS在时域资源上的位置为0,SSS在时域资源上的位置为3,以及,PSS在时域资源上的位置为0,SSS在时域资源上的位置为4时,指示接入设备为非地面基站。若接入设备为非地面基站,可进一步根据PSS与SSS的频域资源的大小及起始位置,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在另一个实施例中,还可以通过PSS与SSS在频域资源上的大小,获取接入设备为 地面基站或非地面基站。例如:当PSS与SSS大小相同时,接入设备为地面基站,当PSS与SSS大小不同时,接入设备为非地面基站。当接入设备为非地面基站时,进一步根据PSS与SSS在时域资源上的位置,获取接入设备的类型。例如:当PSS在时域资源的位置为0,SSS在时域资源的位置为1时,接入设备为高空基站;当PSS在时域资源的位置为0,SSS在时域资源的位置为2时,接入设备为低轨卫星;当PSS在时域资源的位置为0,SSS在时域资源的位置为3时,接入设备为中轨卫星;当PSS在时域资源的位置为1,SSS在时域资源的位置为2时,接入设备为高轨卫星。
此外,在本申请的实施例中,PSS与SSS共同指示接入设备的类型的方式还可以为上述方式的任意结合形式。
可选地,在一个实施例中,可通过PSS包含的第一类型参数与接入设备的类型的关系,确定接入设备为地面基站或非地面基站。若接入设备为非地面基站,可进一步通过PSS与SSS的时域资源和/或频域资源的位置,和/或SSS的频域资源和/或频域资源的位置指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在另一个实施例中,可通过PSS包含的第一类型参数的类型与接入设备的类型的关系,确定接入设备为地面基站或非地面基站。若接入设备为非地面基站,可进一步通过PSS与SSS的时域资源和/或频域资源的位置,和/或SSS的频域资源和/或频域资源的位置指示接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在又一个实施例中,可通过PSS的时域资源和/或频域资源的位置,确定接入设备为地面基站或非地面基站。若接入设备为非地面基站,可进一步通过SSS包含的第二类型参数与接入设备的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
3.SS/PBCH块的时域资源的位置和/或频域资源的位置用于指示接入设备的类型。
3.1 SS/PBCH块的时域资源的位置用于指示接入设备的类型。
具体的,在本申请的实施例中,接入设备与终端可预先规定SS/PBCH块在时域资源上的不同的起始位置与接入设备的类型的对应关系。以使终端可根据获取到的SS/PBCH块的时域资源的位置,确定接入设备为地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。SS/PBCH块的时域资源的位置指示接入设备的类型的方式与上述实施例中PSS的时域资源的位置指示接入设备的类型的方式类似,此处不赘述。
3.2 SS/PBCH块的时域资源的位置与SS/PBCH块中的PSS与SSS共同指示接入设备的类型。
在本申请的实施例中,SS/PBCH块的时域资源的位置可用于指示接入设备为地面基站或非地面基站。若接入设备为非地面基站,则可进一步通过PSS与SSS确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
可选地,在一个实施例中,若接入设备为非地面基站,则可进一步通过PSS的时域资源的位置和/或频域资源的位置与接入设备的类型的关系,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在另一个实施例中,若接入设备为非地面基站,则可进一步通过SSS的时域资源的位置和/或频域资源的位置与接入设备的类型的关系,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在又一个实施例中,若接入设备为非地面基站,则可进一步通过PSS与SSS的时域资源的位置和/或频域资源的位置与接入设备的类型的关系,获取接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。例如:可进一步通过PSS与SSS的时域资源的位置与接入设备的类型的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。还可以进一步通过PSS与SSS在频域资源上的大小和/或相对位置与接入设备的类型的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
在又一个实施例中,若接入设备为非地面基站,则可进一步通过PSS包含的第一类型参数或SSS包含的第二类型参数与接入设备的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。即,终端可进一步对PSS包含的第一类型参数或SSS包含的第二类型参数进行解析,以获取第一参数或第二参数,并根据第一参数或第二参数与接入设备的类型的关系,确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
3.3 SS/PBCH块的时域资源的位置与SS/PBCH块中的PBCH共同指示接入设备的类型。
可选地,在一个实施例中,SS/PBCH块的时域资源的位置可用于指示接入设备为地面基站或非地面基站。若接入设备为非地面基站,则可进一步通过SS/PBCH块中的PBCH的时域资源的位置和/或频域资源的位置(指在频域资源上所占资源块的大小及起始位置)确定接入设备为高空基站、低轨卫星、中轨卫星或高轨卫星。
举例说明:若SS/PBCH块的时域资源的位置指示接入设备为非地面基站,则,如图12a所示,当PBCH块位于符号位1、符号位2和符号位3,且各符号位上的PBCH的大小及起始位置如图12a所示时,指示接入设备为高空基站。
如图12b所示,当PBCH块位于符号位1、符号位2和符号位3,且各符号位上的PBCH的大小及起始位置如图12b所示时,指示接入设备为低轨卫星。
如图12c所示,当PBCH块位于符号位1、符号位2和符号位3,且各符号位上的PBCH的大小及起始位置如图12c所示时,指示接入设备为中轨卫星。
如图12d所示,当PBCH块位于符号位1、符号位2和符号位3,且各符号位上的PBCH的大小及起始位置如图12d所示时,指示接入设备为高轨卫星。
综上所述,本申请实施例中的技术方案可通过多种指示方式结合的形式,确定接入设备的类型,从而有效提升了接入设备的类型的识别的效率,并且降低广播信号的复杂度。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合 形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,在采用对应各个功能划分各个功能模块的情况下,图13示出了上述实施例中所涉及的终端400的一种可能的结构示意图,如图13所示,终端可以包括:接收模块401、获取模块402。其中,接收模块401可用于“接收接入设备发送的广播信号”的步骤,例如,该模块可以用于支持终端执行上述方法实施例中的步骤102。获取模块402可用于“基于广播信号,获取接入设备的类型”的步骤,例如,该模块可以用于支持终端执行上述方法实施例中的步骤104、步骤201、步骤202、步骤301、步骤302、步骤401、步骤402、步骤501、步骤502、步骤601-步骤604。
在另一个示例中,图14示出了本申请实施例的一种终端500的示意性框图。终端500可以包括:处理器501和收发器/收发管脚502,可选地,还包括存储器503。该处理器501可用于执行前述的实施例的各方法中的终端所执行的步骤,并控制接收管脚接收信号,以及控制发送管脚发送信号。
终端500的各个组件通过总线504耦合在一起,其中总线系统504除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统504。
可选地,存储器503可以用于前述方法实施例中的存储指令。
应理解,根据本申请实施例的终端500可对应于前述的实施例的各方法中的终端,并且终端500中的各个元件的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
图15示出了上述实施例中所涉及的接入设备600的一种可能的结构示意图,如图15所示,接入设备600可以包括:生成模块601、发送模块602。其中,生成模块601可用于“生成广播信号”的步骤,例如,该模块可以用于支持接入设备执行上述方法实施例中的步骤101。发送模块602可用于“发送广播信号”的步骤,例如,该模块可以用于支持接入设备执行上述方法实施例中的步骤102。
在另一个示例中,图16示出了本申请实施例的一种接入设备700的示意性框图。接入设备700可以包括:处理器701和收发器/收发管脚702,可选地,还包括存储器703。该处理器701可用于执行前述的实施例的各方法中的终端所执行的步骤,并控制接收管脚接收信号,以及控制发送管脚发送信号。
接入设备700的各个组件通过总线704耦合在一起,其中总线系统704除包括 数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统704。
可选地,存储器703可以用于前述方法实施例中的存储指令。
应理解,根据本申请实施例的接入设备700可对应于前述的实施例的各方法中的终端,并且接入设备700中的各个元件的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由终端执行,以控制终端用以实现上述方法实施例。
基于相同的技术构思,本申请实施例还提供一种计算机程序,当该计算机程序被终端执行时,用以实现上述方法实施例。
所述程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
基于相同的技术构思,本申请实施例还提供一种处理器,该处理器用以实现上述方法实施例。上述处理器可以为芯片。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出 很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种通信方法,其特征在于,应用于终端,所述方法包括:
    接收接入设备发送的广播信号;
    基于所述广播信号,获取所述接入设备的类型,其中,所述接入设备的类型包括:第一类型和/或第二类型,其中所述第一类型包括地面基站或非地面基站,第二类型包括下述至少一种类型:地面基站、高空基站、低轨卫星、中轨卫星或高轨卫星。
  2. 根据权利要求1所述的方法,其特征在于,
    所述广播信号包括第一标识信息,所述第一标识信息用于指示接入设备的类型;
    其中,所述第一标识信息为主同步信号PSS和/或辅同步信号SSS。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述广播信号,获取所述接入设备的类型,具体包括,
    根据所述第一标识信息与所述第一类型的关系,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则根据所述第一标识信息与所述第二类型的关系,获取所述接入设备的类型。
  4. 根据权利要求2所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括,
    根据所述PSS与所述第一类型的关系,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则根据所述SSS与所述第二类型的关系,获取所述接入设备的类型。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,其中,
    所述广播信号包含用于标识所述接入设备的类型的第一类型参数,所述第一类型参数为生成前导preamble的序列。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述广播信号,获取所述接入设备的类型,具体包括:
    对所述第一类型参数进行解析,获取第一参数;
    根据所述第一参数与所述接入设备的类型的关系,获取所述接入设备的类型。
  7. 根据权利要求6所述的方法,其特征在于,根据所述第一参数与所述接入设备的类型的关系,获取所述接入设备的类型,具体包括:
    根据所述第一参数与所述第一类型的关系,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则根据所述第一参数与所述第二类型的关系,获取所述接入设备的类型。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述序列包括ZC序列和/或M序列。
  9. 根据权利要求7所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,还包括:
    根据所述第一标识信息与所述第一类型的关系,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则根据所述第一参数与所述第二类型的关系,获取所述接入设备的类型。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述广播信号的时域资源和/或频域资源的位置用于指示所述接入设备的类型。
  11. 根据权利要求10所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括:
    获取所述广播信号的时域资源的位置和/或频域资源的位置;
    基于所述时域资源的位置和/或频域资源的位置与所述接入设备类型的关系,获取所述接入设备的类型。
  12. 根据权利要求10所述的方法,其特征在于,其中,
    所述时域资源的位置用于指示所述广播信号在其所属时域资源上的位置与指定位置之间的偏移值N。
  13. 根据权利要求12所述的方法,其特征在于,
    若N的值在第一区间,则所述接入设备为地面基站;
    若N的值不在所述第一区间,则所述接入设备为非地面基站。
  14. 根据权利要求12所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括:
    获取N的值;
    基于N的值,获取所述接入设备的类型。
  15. 根据权利要求12所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括:
    获取N的值;
    基于N的值,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则基于N的值获取所述接入设备的类型。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,
    所述频域资源的位置包括所述广播信号在其所属频域资源上所占资源块的大小和/或起始位置。
  17. 根据权利要求16所述的方法,其特征在于,
    若所述频域资源的位置满足第一条件,则所述接入设备为地面基站;
    若所述频域资源的位置不满足所述第一条件,则所述接入设备为非地面基站。
  18. 根据权利要求16所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括:
    获取所述频域资源的位置;
    基于所述频域资源的位置,获取所述接入设备的类型。
  19. 根据权利要求16所述的方法,其特征在于,基于所述广播信号,获取所述接入设备的类型,具体包括:
    获取所述频域资源的位置;
    基于所述频域资源的位置,确定所述接入设备为地面基站或者非地面基站;
    若所述接入设备为非地面基站,则基于所述频域资源的位置获取所述接入设备的类型。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由装置执行,以控制所述装置执行权利要求1-19中任一项所述的方法。
  21. 一种计算机程序,当所述计算机程序被装置执行时,用于执行权利要求1-19中任一项所述的方法。
  22. 一种装置,其特征在于,包括:
    存储器,用于存储指令;
    以及,与所述存储器进行通信连接的至少一个处理器,其中,所述至少一个处理器用于在运行所述指令时执行权利要求1-19中任一项所述的方法。
PCT/CN2019/125680 2018-12-17 2019-12-16 通信方法及装置 WO2020125585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19897874.4A EP3820201A4 (en) 2018-12-17 2019-12-16 COMMUNICATION PROCESS AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811544528.XA CN111328126B (zh) 2018-12-17 2018-12-17 通信方法及装置
CN201811544528.X 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020125585A1 true WO2020125585A1 (zh) 2020-06-25

Family

ID=71102006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125680 WO2020125585A1 (zh) 2018-12-17 2019-12-16 通信方法及装置

Country Status (3)

Country Link
EP (1) EP3820201A4 (zh)
CN (1) CN111328126B (zh)
WO (1) WO2020125585A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022126521A1 (zh) * 2020-12-17 2022-06-23 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2022147844A1 (zh) * 2021-01-11 2022-07-14 Oppo广东移动通信有限公司 接入方式指示方法、终端设备、应用服务器和网络功能实体
CN114629580B (zh) * 2022-05-17 2022-09-13 阿里巴巴达摩院(杭州)科技有限公司 低轨卫星链路仿真方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243666A (zh) * 2005-06-13 2008-08-13 高通股份有限公司 卫星与地面混合式ofdm通信方法和装置
CN101268631A (zh) * 2005-07-20 2008-09-17 高通股份有限公司 用于提供基站位置信息和利用位置信息来支持时基和/或频率校正的方法和装置
CN101932139A (zh) * 2009-06-26 2010-12-29 中兴通讯股份有限公司 指示基站类型的方法、获取基站类型的方法及系统
CN102057728A (zh) * 2008-06-06 2011-05-11 诺基亚西门子通信公司 小区选择性的网络接入
CN103945471A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种小区切换方法及装置
US20150146631A1 (en) * 2012-05-08 2015-05-28 Electronics And Telecommunications Research Institute Random access method and random access channel structure in mobile communication system having large cell radius
CN105491546A (zh) * 2014-10-11 2016-04-13 中兴通讯股份有限公司 Lte自组织网络中区分基站类型的方法、基站和终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303997B (en) * 1995-08-01 2000-03-08 Marconi Gec Ltd Selecting via which fixed station a transmission with a mobile air station is to be routed based on a score derived from received selected criteria
US7574224B2 (en) * 2005-06-13 2009-08-11 Qualcomm Incorporated Methods and apparatus for performing timing synchronization with base stations
KR100741861B1 (ko) * 2005-08-04 2007-07-24 주식회사 쏠리테크 위성 경로를 사용하는 지상파 디엠비 시스템 그리고 그것을 위한 지상파 디엠비 방송 방법
CN101409927A (zh) * 2007-10-11 2009-04-15 华为技术有限公司 发送和获取基站信息的方法、系统、基站和接入设备
US8848656B2 (en) * 2007-11-16 2014-09-30 Qualcomm Incorporated Utilizing broadcast signals to convey restricted association information
US8918112B2 (en) * 2007-11-16 2014-12-23 Qualcomm Incorporated Preamble design for a wireless signal
US8619684B2 (en) * 2008-05-01 2013-12-31 Qualcomm Incorporated Method and apparatus for downlink data arrival
CN101568135B (zh) * 2009-05-18 2011-08-10 华为技术有限公司 一种通信方法、设备及系统
US9781761B2 (en) * 2011-07-12 2017-10-03 Interdigital Patent Holdings, Inc. Method and apparatus for multi-RAT access mode operation
US20130195069A1 (en) * 2012-01-30 2013-08-01 Nokia Siemens Networks Oy Signaling mechanism for supporting flexible physical broadcast channel and common reference signal configurations
US9072000B2 (en) * 2012-10-19 2015-06-30 Qualcomm Incorporated Power efficient relay discovery protocol
CN107636997A (zh) * 2015-04-08 2018-01-26 交互数字专利控股公司 用于具有简化能力和覆盖增强的无线发射/接收单元的基于多子带传输的方法和设备
WO2017173051A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method for initial access using signatures
CN108259076B (zh) * 2016-12-28 2021-03-30 华为技术有限公司 空中基站数据传输方法、装置、设备及系统
CN107454571B (zh) * 2017-07-20 2019-04-16 清华大学 一种面向宽带体验的近海用户接入切换方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243666A (zh) * 2005-06-13 2008-08-13 高通股份有限公司 卫星与地面混合式ofdm通信方法和装置
CN101268631A (zh) * 2005-07-20 2008-09-17 高通股份有限公司 用于提供基站位置信息和利用位置信息来支持时基和/或频率校正的方法和装置
CN102057728A (zh) * 2008-06-06 2011-05-11 诺基亚西门子通信公司 小区选择性的网络接入
CN101932139A (zh) * 2009-06-26 2010-12-29 中兴通讯股份有限公司 指示基站类型的方法、获取基站类型的方法及系统
US20150146631A1 (en) * 2012-05-08 2015-05-28 Electronics And Telecommunications Research Institute Random access method and random access channel structure in mobile communication system having large cell radius
CN103945471A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种小区切换方法及装置
CN105491546A (zh) * 2014-10-11 2016-04-13 中兴通讯股份有限公司 Lte自组织网络中区分基站类型的方法、基站和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3820201A4

Also Published As

Publication number Publication date
CN111328126B (zh) 2021-09-07
EP3820201A4 (en) 2021-08-25
EP3820201A1 (en) 2021-05-12
CN111328126A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
WO2020125585A1 (zh) 通信方法及装置
EP4014633B1 (en) Method and device for sharing channel occupancy time, terminal device, and network device
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
CN104883242A (zh) 一种接入点、站点、信标帧的发送方法及系统
WO2019033396A1 (zh) 无线通信方法和设备
EP3855768A1 (en) Signal transmission method and device and terminal
WO2022042369A1 (zh) 一种多卡模式下的搜网方法、装置及终端设备
WO2020001183A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
WO2022166760A1 (zh) 一种网络接入方法、通信装置、芯片及模组设备
WO2022037451A1 (zh) 一种通信方法及装置
CA3084395A1 (en) Random access method, network device, and terminal
WO2022126637A1 (zh) 资源确定方法、终端设备和网络设备
AU2018407271A1 (en) Channel transmission method and apparatus, and computer storage medium
WO2017036236A9 (zh) 一种基于tdd的m2m系统的通信方法、装置与系统
CN110138535B (zh) 数据传输方法及装置
RU2744725C1 (ru) Способ, сетевое устройство и оконечное устройство беспроводной связи
WO2018145608A1 (zh) 基于速度等级的配置方法、接入方法及装置
WO2020155181A1 (zh) 信道传输的方法和设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2022204896A1 (zh) 一种确定smtc的方法及装置、终端设备
EP3457648A1 (en) Data transmission method, reception side device, and sending side device
US20220217691A1 (en) Parameter determining method and related apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019897874

Country of ref document: EP

Effective date: 20210208

NENP Non-entry into the national phase

Ref country code: DE