WO2020125347A1 - 一种顶盖组件、电池单体、电池模组及其制造方法 - Google Patents

一种顶盖组件、电池单体、电池模组及其制造方法 Download PDF

Info

Publication number
WO2020125347A1
WO2020125347A1 PCT/CN2019/121027 CN2019121027W WO2020125347A1 WO 2020125347 A1 WO2020125347 A1 WO 2020125347A1 CN 2019121027 W CN2019121027 W CN 2019121027W WO 2020125347 A1 WO2020125347 A1 WO 2020125347A1
Authority
WO
WIPO (PCT)
Prior art keywords
top cover
plate
battery
cover plate
isolation
Prior art date
Application number
PCT/CN2019/121027
Other languages
English (en)
French (fr)
Inventor
雷育永
邢承友
王鹏
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to EP19900459.9A priority Critical patent/EP3800688B1/en
Priority to EP22183777.6A priority patent/EP4102625A3/en
Priority to EP22183772.7A priority patent/EP4102624A3/en
Publication of WO2020125347A1 publication Critical patent/WO2020125347A1/zh
Priority to US17/138,852 priority patent/US12002972B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • H01M50/287Fixing of circuit boards to lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Some embodiments of the present application relate to the technical field of battery modules, and in particular, to a battery cell top cover assembly, battery cells, and battery modules.
  • the battery module is usually isolated by using an integrated wiring harness isolation plate, that is, an integrated wiring harness isolation plate is used for a battery module.
  • the purpose of some embodiments of the present application is to provide a battery cell top cover assembly, a battery cell and a battery module for solving the technical problems of the prior art.
  • top cover assembly for a battery cell, including:
  • An isolation plate provided with a sampling channel for accommodating the sampling member
  • a top cover plate, the top cover plate is used to close the electrode assembly of the battery cell in the battery case,
  • the top cover plate is provided under the partition plate, and the partition plate is fixed to the top cover plate.
  • the isolation plate is fixed to the top cover plate by means of bonding, bolting, riveting, snapping, or interference fit.
  • a protrusion is provided at the bottom of the isolation plate, and a blind hole is provided at the top of the top cover plate, the protrusion is received in the blind hole to fix the isolation plate For the top cover plate;
  • the top of the top cover plate is provided with a protruding portion
  • the isolation plate is provided with a through hole
  • the protruding portion passes through the through hole and is riveted to the isolation plate to fix the isolation plate to the top Cover plate.
  • the isolation plate is further provided with an electrode connection piece positioning structure, and the electrode connection piece positioning structure is used to limit the displacement of the electrode connection piece.
  • the isolation plate includes a first plate and a second plate, the first plate and the second plate both extend in the width direction and the two are oppositely arranged in the length direction, the first plate and The sampling channel is formed between the second plates.
  • first plates there are two first plates, and two first plates are oppositely arranged along the length direction; there are two second plates, and two second plates are along the length The directions are oppositely arranged; three sampling channels are formed between the two second plates and the two first plates.
  • a pole through hole is provided on the isolation plate, the pole through hole is used to pass through the pole of the battery cell, and the sampling member is provided on the first plate Sampling opening through.
  • the sampling channel is provided on the upper surface of the isolation plate, the lower surface of the isolation plate is provided with a groove, the groove is opposite to the explosion-proof valve of the battery cell, the The groove extends in the width direction.
  • the above technical solution directly fixes the isolation plate on the top cover plate of the battery cell, one isolation plate corresponds to the top cover plate of one battery cell, replacing the integral isolation plate of the battery module in the prior art .
  • the technical scheme can be applied to battery modules with different assembly methods, greatly improve the efficiency of battery module grouping, have strong adaptability and high versatility, and can effectively reduce the cost of R&D and manufacturing of battery systems.
  • Some embodiments of the present application also provide a battery cell, including:
  • An electrode assembly housed in the battery case;
  • the top cover assembly covers the opening.
  • the above technical solution directly fixes the isolation plate on the top cover plate of the battery cell to realize the battery cell with the unitized isolation plate, so that it can be applied to battery modules of different assembly methods, adaptability Strong, high versatility, can effectively reduce the cost of the battery system.
  • Some embodiments of the present application also provide a battery module, including:
  • Two or more of the battery cells provided above, two or more of the battery cells are arranged in sequence, the sampling channels between the two or more battery cells communicate with each other, the two The above battery cells are electrically connected through the electrode connection piece;
  • a sampling member which is accommodated in the sampling channel.
  • the above technical solution integrates the isolation plate in the battery module into the top cover plate of each battery cell, no matter how the arrangement of the battery cells is changed, there is no need to change the structure of the isolation plate. It can meet the assembly requirements of battery modules, greatly improve the efficiency of battery module formation, and reduce R&D and manufacturing costs.
  • Some embodiments of the present application also provide a method for manufacturing a top cover assembly, including the following steps:
  • the top cover plate is provided with pole posts, and the isolation plate is provided with pole post through holes, And a sampling channel for accommodating the sampling member;
  • the isolation board cover on the top cover board it specifically includes:
  • Protruding parts are made on the bottom of the isolation board
  • Some embodiments of the present application also provide a method for manufacturing a battery cell, including the following steps:
  • the top cover assembly is assembled with the battery case, and the top cover plate closes the opening to produce a battery cell.
  • Some embodiments of the present application also provide a method for manufacturing a battery module, including the following steps:
  • a sampling member Provides a sampling member, at least one electrode connection sheet, and a plurality of battery cells manufactured by the method for manufacturing a battery cell as described above;
  • One end of the sampling member is connected to the electrode connection piece, and the other end of the sampling member is introduced into the sampling channel to manufacture the battery module.
  • the separator plate of each battery cell is also provided with a positioning structure of an electrode connecting piece; after the step of arranging a plurality of the battery cells in a preset direction, Before the step of welding the poles of the battery cells, the following steps are further included:
  • the electrode connection piece positioning structure of each battery cell is used to position the electrode connection piece.
  • Figure 1 is a schematic diagram of the structure of the battery module
  • Figure 2 is an exploded view of the battery cell
  • FIG. 3 is a schematic structural diagram of a top cover assembly of a battery cell
  • Figure 4 is a schematic diagram of the structure of the bottom of the isolation board
  • FIG. 5 is a top view of the top cover assembly of the battery cell
  • FIG. 6 is a cross-sectional view at A-A in FIG. 5;
  • FIG. 7 is an enlarged schematic view at A in FIG. 6;
  • FIG. 8 is an enlarged schematic view at B in FIG. 6;
  • FIG. 10 is an enlarged schematic view at C in FIG. 9;
  • FIG. 11 is a schematic view of the state of the isolation plate and the top cover plate during manufacturing.
  • FIG. 12 is a flowchart of a method of manufacturing a top cover assembly
  • FIG. 13 is a flowchart of a method of manufacturing a battery cell
  • connection refers to two or more; the terms “connection”, “fixed”, etc. should be understood in a broad sense, for example, “connection” may be a fixed connection or a detachable connection , Or integrally connected, or electrically connected; either directly or indirectly through an intermediary.
  • connection may be a fixed connection or a detachable connection , Or integrally connected, or electrically connected; either directly or indirectly through an intermediary.
  • the arrow direction x appearing in all the drawings indicates the length direction
  • the arrow direction y indicates the width direction
  • the arrow direction z indicates the height direction.
  • the size of the battery module is different according to the type of battery cells and the arrangement of battery cells, when the battery cells are updated, iterated, or a new arrangement is adopted, it means that different integrated wiring harness isolation needs to be designed. Board, increasing R&D time and labor costs. Different integrated wiring harness isolation plates mean that different injection molds need to be manufactured, new production lines are established, and the cost of the entire battery system is also increased.
  • some embodiments of the present application relate to a battery module including more than two battery cells 1 (for example, two, three, four, or ten), More than two battery cells 1 are arranged in sequence. It is worth noting that the arrangement of the battery cells 1 is not limited to the embodiment arranged in the width direction (that is, the direction indicated by the arrow y in the figure) in FIG. 1.
  • the battery cells 1 can be arranged along the length direction (ie The direction indicated by the arrow x in the figure) is arranged or staggered.
  • more than two battery cells 1 are electrically connected through the electrode connection sheet 2 to realize that the battery cells 1 are connected in parallel or in series with other battery cells 1.
  • the battery cell 1 includes a top cover assembly, an electrode assembly 15 and a battery case 14.
  • the top cover assembly includes an isolation plate 11, a top cover plate 12, a pole 16 and a pole connecting piece 13.
  • the top cover plate 12 is provided with two pole posts 16, namely a positive pole and a negative pole, respectively.
  • the isolation board 11 is provided with three sampling channels 111 for receiving the sampling member.
  • the sampling member may be a flexible circuit board 31 (FPC), a printed circuit board (PCB), and a wire harness 32
  • FPC flexible circuit board 31
  • PCB printed circuit board
  • wire harness 32 one or more of the sampling channels 111 in the middle may be used to accommodate the flexible circuit board 31 (FPC), and the sampling channels 111 on both sides may be used to accommodate the wiring harness 32.
  • the sampling channels 111 between the two or more battery cells 1 communicate with each other.
  • the material of the top cover plate 12 is made of metal, but it is not limited to aluminum, steel, etc., and other metal materials can also be used.
  • the shape of the pole 16 on the top cover plate 12 is not limited to circular, triangular, A square or the like, the top cover plate 12 is provided with a liquid injection hole 122 for injecting an electrolyte into the battery cell 1.
  • the battery case 14 may have a hexahedral shape or other shapes.
  • the battery case 14 has an internal space that accommodates the electrode assembly 15 and the electrolyte, and the battery case 14 has an opening 141.
  • the electrode assembly 15 is accommodated in the battery case 14, the top cover assembly covers the opening 141, and is used to close the electrode assembly 15 in the battery case 14, and the electrode assembly 15 and the pole 16 are electrically connected by the pole connecting member 13.
  • the battery case 14 may be made of materials such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 15 may be formed by stacking or winding a first pole piece, a second pole piece, and a separator together, wherein the separator is interposed between the first pole piece and the second pole piece Insulator.
  • the first pole piece is a positive pole piece and the second pole piece is a negative pole piece.
  • the first pole piece may also be a negative pole piece, and the second pole piece is a positive pole piece.
  • the positive electrode active material is coated on the coating area of the positive electrode sheet
  • the negative electrode active material is coated on the coating area of the negative electrode sheet. The uncoated area extending from the main body serves as the tab.
  • the electrode assembly 15 includes two tabs, namely a positive tab and a negative tab.
  • the positive tab extends from the coated area of the positive tab; the negative tab is coated from the negative tab. Covering area extends.
  • the positive ear and the positive pole are electrically connected by a positive connector, and the negative ear and the negative pole are electrically connected by a negative connector.
  • the isolation plate 11 in the battery module is integrated on the top cover plate 12 of each battery cell 1, one battery cell 1 corresponds to one isolation plate 11, no matter how the battery cells 1 are arranged
  • the change does not need to change the structure of the isolation plate 11 to meet the assembly requirements of the battery module, greatly improve the efficiency of the module group, and reduce the development and manufacturing costs.
  • the top cover assembly includes a partition plate 11 and a top cover plate 12.
  • the top cover plate 12 is disposed below the partition plate 11, and the partition plate 11 is provided corresponding to the top cover plate 12 and ⁇ 12 ⁇ Fixed to the top cover plate 12.
  • the corresponding setting refers to that the size and shape of the partition plate 11 are substantially the same as the size and shape of the top cover plate 12.
  • the isolation plate 11 is provided with a convex portion 112, an electrode connection piece positioning structure 113 and a groove 117.
  • the bottom of the isolation plate 11 is provided with four protrusions 112, and the top of the top cover plate 12 is provided with four blind holes 121 for receiving the protrusions 112.
  • the isolation plate 11 may be provided with a convex portion 112, and the top cover plate 12 may be provided with a blind hole 121, which does not limit the number of the convex portion 112 and the blind hole 121.
  • the bottom of the isolation plate 11 is provided with a convex portion 112
  • the top of the top cover plate 12 is provided with a blind hole 121
  • the convex portion 112 is accommodated in the blind hole 121 to fix the isolation plate 11 to the top cover plate 12 .
  • the material of the isolation plate 11 is plastic. It can be formed by one-piece injection molding (that is, the top cover plate 12 is placed in the mold, and the isolation plate 11 is formed by injection molding. During the injection molding process, the plastic flows into the blind hole 121 and solidifies to form the protrusion 112).
  • the top of the top cover plate 12 is provided with a protrusion 123
  • the isolation plate 11 is provided with a through hole 118
  • the protrusion 123 passes through the through hole 118 and is connected to the isolation plate 11 Riveting to fix the isolation plate 11 to the top cover plate 12.
  • the top of the top cover plate 12 may be provided with protrusions
  • the partition plate 11 may be provided with holes (which may be through holes or blind holes). The diameter of the protrusion is larger than the diameter of the hole, and the protrusion is inserted into the hole to achieve an interference fit.
  • the isolation plate 11 may be fixed on the top cover plate 12 by other fixing methods, for example, the bonding plate 11 may be bonded, bolted, riveted, snapped, or interference fit, wherein the bonding includes Adhesive bonding, solvent bonding, etc.
  • bonding and riveting are non-removable fixed connections, and bolt connection, snap connection or interference fit are detachable fixed connections.
  • the electrode connection piece positioning structure 113 on the isolation plate 11 includes a positioning buckle 1131 and two positioning blocks 1132, the two positioning blocks 1132 are disposed opposite to the electrode connection piece 2, and the two positioning blocks 1132 It is used to limit the displacement of the electrode connection piece 2 in the width direction (that is, the direction indicated by the arrow y in the figure), and the positioning buckle 1131 is used to limit the length and height of the electrode connection piece 2 (that is, the direction indicated by the arrow x in the figure). Displacement in the direction (that is, the direction indicated by arrow z in the figure).
  • the electrode connection piece positioning structure 113 is not limited to some embodiments in FIG. 3, and the electrode connection piece 2 may be positioned in other embodiments, for example, by bundling positioning, bolt positioning, clamping positioning As long as the electrode connection sheet 2 can be positioned, it is within the implementation scope of each embodiment.
  • the sampling channel 111 is provided on the upper surface of the isolation plate 11, and the lower surface of the isolation plate 11 is provided with a groove 117.
  • the groove 117 extends in the width direction (that is, the direction indicated by arrow y in the figure) to cover the battery
  • the explosion-proof valve of the cell 1 is opened at the left and right ends of the partition plate 11 and communicates with the outside atmosphere.
  • the arrangement of the groove 117 can effectively guide the combustible gas ejected from the explosion-proof valve when the single battery cell 1 fails in case of an accident to the outside of the battery module, to avoid other single cells in the single battery module 1 Chain failure.
  • the isolation plate 11 includes a first plate 114 and a second plate 115. Both the first plate 114 and the second plate 115 extend in the width direction (ie, the direction indicated by the arrow y in the figure) and both The two are arranged along the length direction (that is, the direction indicated by the arrow x in the figure), and a sampling channel 111 is formed between the first plate 114 and the second plate 115.
  • first plates 114 there are two first plates 114, and the two first plates 114 are oppositely arranged along the length direction (that is, the direction indicated by the arrow x in the figure); the second plates 115 are two, and the two second plates 115 are along the length
  • the directions that is, the direction indicated by the arrow x in the figure) are oppositely arranged; three sampling channels 111 are formed between the two second plates 115 and the two first plates 114, as shown in FIG. 5.
  • the middle sampling channel 111 can be used to guide and restrain the flexible circuit board 31, and the sampling channels 111 on both sides can be used to guide and restrain the wiring harness 32, so as to achieve electrical isolation between the flexible circuit board 31 and the wiring harness 32.
  • the separator 11 is further provided with a pole through hole 116, which is provided corresponding to the pole 16 of the battery cell 1, and the pole through hole 116 is used to pass through the battery cell
  • the pole 16 of the body 1 and the first plate 114 are provided with a sampling opening 1141 through which the sampling member passes.
  • the sampling opening 1141 is provided corresponding to the pole through hole 116.
  • the sampling opening 1141 may be a through hole structure or a groove structure penetrating the top of the first plate 114.
  • the sampling opening 1141 is a through hole structure. In this way, the sampling member enters the sampling channel 111 through the sampling opening 1141, which facilitates the arrangement and guidance of the sampling member.
  • both ends of the first plate 114 and the second plate 115 are provided with a wire guide groove 1151.
  • the harness guide grooves 1151 on the first plate 114 and the second plate 115 between two adjacent battery cells 1 can organize and guide the flexible circuit board 31, so as to realize the flexible circuit board 31 and other sampling members Isolation.
  • protrusions 112 are provided on the bottom of the isolation plate 11, and four are provided on the top of the top cover plate 12 to accommodate the protrusions 112
  • the blind hole 121 The cross-sectional area of the end portion 1121 of the protrusion is larger than that of the middle section 1122 of the protrusion.
  • some embodiments of the present application also provide a method for manufacturing a top cover assembly, as shown in FIG. 12, including the following steps:
  • Step 1210 Provide a separator 11 and a top cover 12 for closing the electrode assembly 15 of the battery cell 1 in the battery case 14.
  • the top cover plate 12 is provided with a pole 16
  • the isolation plate 11 is provided with a pole through hole 116
  • a sampling channel 111 for accommodating a sampling member is provided.
  • Step 1220 Cover the top plate 12 with the isolation plate 11 so that the pole through holes 116 of the isolation plate 11 pass through the pole 16 of the top plate 12.
  • Step 1230 Fix the isolation plate 11 and the top cover plate 12 to obtain a top cover assembly.
  • step 1220 that is, the step of covering the isolation plate 11 on the top cover plate 12, specifically includes:
  • the back blind hole 121 is opened in the top cover plate 12.
  • a protrusion 112 is formed on the bottom of the partition plate 11.
  • a protrusion 123 is formed on the top of the top cover plate 12.
  • a through hole 118 is opened in the partition plate 11.
  • the protrusion 123 is passed through the through hole 118 until the partition plate 11 and the top cover plate 12 are attached.
  • some embodiments of the present application also provide a method for manufacturing a battery cell, as shown in FIG. 13, including the following steps:
  • Step 1310 Provide a battery case 14 equipped with the electrode assembly 15, and a top cover assembly manufactured by using the above-mentioned top cover assembly assembling method.
  • the battery case 14 has an opening 141.
  • Step 1320 Assemble the top cover assembly and the battery case 14 to close the opening 141 of the top cover plate 12 to manufacture the battery cell 1.
  • some embodiments of the present application also provide a method for manufacturing a battery module, as shown in FIG. 14, including the following steps:
  • Step 1410 Provide a sampling member, at least one electrode connection sheet 2, and a plurality of battery cells 1 manufactured by the battery cell manufacturing method as described above.
  • Step 1420 Arrange the plurality of battery cells 1 along a predetermined direction, so that the sampling channels 111 on each battery cell 1 communicate with each other.
  • Step 1430 Weld the electrode connecting piece 2 and the poles 16 of the plurality of battery cells 1 to connect each battery cell 1 in parallel or in series.
  • Step 1440 Connect one end of the sampling member to the electrode connecting piece 2 and introduce the other end of the sampling member into the sampling channel 111 to prepare a battery module.
  • the separator 11 of each battery cell 1 is further provided with an electrode connection sheet positioning structure 113. Therefore, after the step of arranging the plurality of battery cells 1 in a predetermined direction, that is, after step 1420, and before the step of welding the electrode connection sheet 2 and the poles 16 of the plurality of battery cells 1, That is, before step 1430, the following steps are also included:
  • step 1421 the electrode connection sheet positioning structure 113 of each battery cell 1 is used to position the electrode connection sheet 2. Therefore, when the motor connecting piece 2 is welded to the poles 16 of the plurality of battery cells 1, it is more stable.
  • the manufacturing process of the above battery module is as follows:
  • the top cover plate 12 punches out the back blind hole 121 at the stamping stage, and the protrusion 112 is extended into the blind hole 121, the isolation plate 11 and the top cover plate 12 are subjected to ultrasonic heat fusion, and the isolation plate 11 and the top cover plate 12 are completed Fixed.
  • sampling member One end of the sampling member is connected to the electrode connecting piece 2, and enters the sampling channels 111 on both sides through the sampling opening 1141, as shown in FIG.
  • the flexible circuit board 31 is disposed in the middle sampling channel 111 through the harness buckle as shown in FIG. 1.
  • the separator 11 is integrated on the battery cells 1, different numbers and groups of battery modules can meet their assembly requirements, which greatly improves the integration efficiency of the battery modules. Reduce the production cost of battery modules and their research and development cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池单体的顶盖组件、电池单体(1)及电池模组,电池单体(1)的顶盖组件包括:隔离板(11)以及顶盖板(12),所述隔离板(11)设置有用于容纳采样构件的采样通道(111);所述顶盖板(12)用于将所述电池单体(1)的电极组件(15)封闭在电池壳体(14)内,其中,所述顶盖板(12)设置在所述隔离板(11)的下方,所述隔离板(11)固定于所述顶盖板(12)。所述顶盖组件、电池单体(1)能够适用于不同组装方式的电池模组,大大提高电池模组成组效率,适应性强,通用性高,能有效降低电池系统的研发和制造成本。

Description

一种顶盖组件、电池单体、电池模组及其制造方法
交叉引用
本申请引用于2018年12月20日递交的名称为“一种顶盖组件、电池单体及电池模组”的第2018115617430号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请的部分实施例涉及电池模组技术领域,特别涉及一种电池单体的顶盖组件、电池单体及电池模组。
背景技术
目前,新能源汽车行业蓬勃发展,电池模组的安全性越来越引起人们的注意。电池模组为了避免电极连接片、采样构件等部件与电池单体的顶盖板之间短路,通常采用整体式线束隔离板来加以隔绝,即为一个电池模组使用一个整体式线束隔离板。
发明内容
为此,本申请部分实施例的目的在于需要提供一种电池单体的顶盖组件、电池单体及电池模组,用于解决现有技术的技术问题。
本申请的部分实施例提供了一种顶盖组件,用于电池单体,包括:
隔离板,所述隔离板设置有用于容纳采样构件的采样通道;以及
顶盖板,所述顶盖板用于将所述电池单体的电极组件封闭在电池壳体内,
其中,所述顶盖板设置在所述隔离板的下方,所述隔离板固定于所述顶盖板。
在一些实施例中,所述隔离板通过粘接、螺栓连接、铆接、卡接或过盈配合的方式固定于所述顶盖板。
在一些实施例中,所述隔离板的底部设置有凸起部,所述顶盖板的顶部设置有盲孔,所述凸起部容纳于所述盲孔内,以将所述隔离板固定于所述顶盖板;或者,
所述顶盖板的顶部设置有突出部,所述隔离板设置有通孔,所述突出部穿过所述通孔并与所述隔离板铆接,以将所述隔离板固定于所述顶盖板。
在一些实施例中,所述隔离板上还设置有电极连接片定位结构,所述电极连接片定位结构用于限制电极连接片的位移。
在一些实施例中,所述隔离板包括第一板以及第二板,所述第一板与所述第二板均沿宽度方向延伸且两者沿长度方向相对设置,所述第一板与所述第二板之间形成所述采样通道。
在一些实施例中,所述第一板为两个,两个所述第一板沿所述长度方向相对设置;所述第二板为两个,两个所述第二板沿所述长度方向相对设置;两个所述第二板与两个所述第一板之间形成三个所述采样通道。
在一些实施例中,所述隔离板上设置有极柱通孔,所述极柱通孔用于穿过所述电池单体的极柱,所述第一板上设置有供所述采样构件穿过的采样开口。
在一些实施例中,所述采样通道设置于所述隔离板的上表面,所述隔离板的下表面设置有凹槽,所述凹槽与所述电池单体的防爆阀相对设置,所述凹槽沿宽度方向延伸。
区别于现有技术,上述技术方案将隔离板直接固定在电池单体的顶盖板上,一个隔离板对应一个电池单体的顶盖板,替代现有技术中电池模组的整体式隔离板。此时,无论电池单体的排布方式如何更新,都不需要改变隔离板的结构,就能满足电池模组的装配要求。该技术方案能够适用于不同组装方式的电池模组,大大提高电池模组成组效率,适应性强、通用性高,能有效降低电池系统的研发和制造成本。
本申请的部分实施例还提供了一种电池单体,包括:
电池壳体,具有开口,
电极组件,容纳在所述电池壳体中;以及
如上述提供的所述电池单体的顶盖组件,所述顶盖组件覆盖所述开口。
区别于现有技术,上述技术方案将隔离板直接固定在电池单体的顶盖板上,实现具有单元化隔离板的电池单体,如此,能够适用于不同组装方式的电池模组,适应性强、通用性高,能有效降低电池系统的成本。
本申请的部分实施例还提供了一种电池模组,包括:
两个以上的如上述提供的所述电池单体,两个以上的所述电池单体依次排列设置,所述两个以上的电池单体之间的所述采样通道相互连通,所述两个以上的所述电池单体通过电极连接片电连接;以及
采样构件,所述采样构件容纳于所述采样通道内。
区别于现有技术,上述技术方案将电池模组中的隔离板集成到各个电池单体的顶盖 板上,无论电池单体的排布方式如何更改,都不需要改变隔离板的结构,就可以满足电池模组的装配要求,大大提高电池模组成组效率,减少研发和制造成本。
本申请的部分实施例还提供了一种顶盖组件的制造方法,包括如下步骤:
提供一隔离板,以及一用于将电池单体的电极组件封闭在电池壳体内的顶盖板;其中,所述顶盖板上设有极柱,所述隔离板上开设极柱通孔,以及设有用于容纳采样构件的采样通道;
将所述隔离板盖设于所述顶盖板,使所述隔离板的所述极柱通孔穿过所述顶盖板的所述极柱;
对所述隔离板与所述顶盖板进行固定,制得顶盖组件。
在将所述隔离板盖设于所述顶盖板的步骤中,具体包括:
在所述顶盖板上开设背面盲孔;
在所述隔离板的底部制作凸起部;
将所述凸起部伸入所述盲孔内,直至所述隔离板与所述顶盖板贴合;或者,
在所述顶盖板的顶部制作突出部;
在所述隔离板上开设通孔;
将所述突出部穿过所述通孔,直至所述隔离板与所述顶盖板贴合。
本申请的部分实施例还提供了一种电池单体的制造方法,包括如下步骤:
提供一装有电极组件的电池壳体,以及一采用如上所述的顶盖组件的制造方法制得的所述顶盖组件;其中,所述电池壳体具有开口;
将所述顶盖组件与所述电池壳体进行装配,使所述顶盖板封闭所述开口,制得电池单体。
本申请的部分实施例还提供了一种电池模组的制造方法,包括如下步骤:
提供采样构件、至少一个电极连接片,以及多个采用如上所述的电池单体的制造方法制得的电池单体;
将多个所述电池单体沿预设方向进行排列,使各所述电池单体上的采样通道相互连通;
将所述电极连接片与多个所述电池单体的所述极柱进行焊接,使各所述电池单体之间并联或串联;
将所述采样构件的一端与所述电极连接片连接,将所述采样构件的另一端导入所述采样通道内,制得所述电池模组。
各所述电池单体的所述隔离板上还设有电极连接片定位结构;在将多个所述电池单体沿预设方向进行排列的步骤之后,并在将所述电极连接片与多个所述电池单体的所述极柱进行焊接的步骤之前,还包括如下步骤:
由各所述电池单体的所述电极连接片定位结构对所述电极连接片进行定位。
附图说明
图1为电池模组的结构示意图;
图2为电池单体的爆炸图;
图3为电池单体的顶盖组件的结构示意图;
图4为隔离板底部的结构示意图;
图5为电池单体的顶盖组件的俯视图;
图6为图5中A-A处的剖视图;
图7为图6中A处的放大示意图;
图8为图6中B处的放大示意图;
图9为隔离板与顶盖板使用状态的剖视图;
图10为图9中C处的放大示意图;
图11为隔离板与顶盖板制造时的状态示意图。
图12为顶盖组件制造方法的流程框图;
图13为电池单体制造方法的流程框图;
图14为电池模组制造方法的流程框图;
附图标记说明:
1、电池单体,
11、隔离板,
111、采样通道,
112、凸起部,
1121、凸起部端部,
1122、凸起部中段,
113、电极连接片定位结构,
1131、定位卡扣,
1132、定位块,
114、第一板,
1141、采样开口,
115、第二板,
1151、线束导向槽,
116、极柱通孔,
117、凹槽,
118、通孔,
12、顶盖板,
121、盲孔,
122、注液孔,
113、突出部,
13、极柱连接件,
14、电池壳体,
141、开口,
15、电极组件,
16、极柱,
2、电极连接片,
31、柔性电路板,
32、线束。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
在本申请各实施例的描述中,除非另有明确的规定和限定,术语“第一”、“第二”、仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请各实施例中的具体含义。
本说明书的描述中,需要理解的是,本申请各实施例所描述的“上”、“下”、“左”、 “右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请各实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
所有附图中出现的箭头方向x指示的是长度方向,箭头方向y指示的是宽度方向,箭头方向z指示的是高度方向。
目前,由于电池模组的大小依据电池单体种类、电池单体排列方式的不同而不同,当电池单体更新、迭代或者采用新的排列方式时,就意味着需要设计不同的整体式线束隔离板,增加了研发的时间和人力成本。不同的整体式线束隔离板意味着需要制造不同的注塑模具、建立新的产线,同时也会增加整个电池系统的成本。
基于此,请参阅图1,本申请的部分实施例涉及一种电池模组,该电池模组包括两个以上的电池单体1(例如,两个、三个、四个或十个),两个以上的电池单体1依次排列设置。值得说明的是,电池单体1的排布方式,并不局限于图1中的沿宽度方向(即图中箭头y所指方向)排列的实施方式,电池单体1可以沿长度方向(即图中箭头x所指方向)排列或者交错排列的方式。
在一些实施例中,两个以上的电池单体1通过电极连接片2进行电连接,以实现电池单体1与其他电池单体1并联或串联。
如图2所示,在一些实施例中,电池单体1包括顶盖组件、电极组件15以及电池壳体14。其中,顶盖组件包括隔离板11、顶盖板12、极柱16以及极柱连接件13。在一些实施例中,顶盖板12上设有两个极柱16,即分别为正极柱和负极柱。
在一些实施例中,隔离板11设置有三个用于容纳采样构件的采样通道111,在一些实施例中,采样构件可以是柔性电路板31(FPC)、印制电路板(PCB)和线束32中的一种或多种例如,可以将中间的采样通道111用于容纳柔性电路板31(FPC),两侧的采样通道111用于容纳线束32。两个以上的电池单体1组成电池模组后,两个以上的电池单体1之间的采样通道111相互连通。
在一些实施例中,顶盖板12的材质采用金属材质,但不局限于铝材、钢材等,也可以采用其他金属材质,顶盖板12上极柱16形状不局限于圆形、三角形、方形等,顶盖板12上设置有用于对电池单体1进行注电解液的注液孔122。
在一些实施例中,电池壳体14可具有六面体形状或其他形状。电池壳体14具有容纳电极组件15和电解液的内部空间,并且电池壳体14具有开口141。电极组件15容纳在电 池壳体14内,顶盖组件覆盖开口141,并用于将电极组件15封闭在电池壳体14内,电极组件15与极柱16之间通过极柱连接件13电连接。在一些实施例中,极柱连接件13有两个,即分别为正极连接件和负极连接件。电池壳体14可以由例如铝、铝合金或塑料等材料制造。
在一些实施例中,电极组件15可通过将第一极片、第二极片以及隔膜一同堆叠或者卷绕而形成主体部,其中,隔膜是介于第一极片和第二极片之间的绝缘体。在一些实施例中,示例性地以第一极片为正极片,第二极片为负极片进行说明。同样地,在其他的实施例中,第一极片还可以为负极片,而第二极片为正极片。另外,正极活性物质被涂覆在正极片的涂覆区上,而负极活性物质被涂覆到负极片的涂覆区上。从主体部延伸出的未涂覆区则作为极耳,电极组件15包括两个极耳,即正极耳和负极耳,正极耳从正极片的涂覆区延伸出;负极耳从负极片的涂覆区延伸出。正极耳与正极柱之间通过正极连接件电连接,负极耳与负极柱之间通过负极连接件电连接。
在一些实施例中,将电池模组中的隔离板11集成到各个电池单体1的顶盖板12上,一个电池单体1对应一个隔离板11,无论电池单体1的排布方式如何更改,都不需要改变隔离板11的结构,就可以满足电池模组的装配要求,大大提高模组成组效率,减少研发和制造成本。
如图3以及图4所示,在一些实施例中,顶盖组件包括隔离板11以及顶盖板12,顶盖板12设置在隔离板11的下方,隔离板11对应顶盖板12设置且固定于顶盖板12。其中,对应设置指的是隔离板11的大小形状与顶盖板12的大小形状基本相同。
在一些实施例中,隔离板11上设置有凸起部112、电极连接片定位结构113以及凹槽117。
在一些实施例中,隔离板11的底部设置有四个凸起部112,顶盖板12的顶部设置有四个用于容纳凸起部112的盲孔121。需要说明的是,隔离板11可以设置一个凸起部112,顶盖板12可以设置一个盲孔121,并不限制凸起部112与盲孔121的数量。
可选的,隔离板11的底部设置有凸起部112,顶盖板12的顶部设置有盲孔121,凸起部112容纳于盲孔121内,以将隔离板11固定于顶盖板12。优选地,隔离板11的材质为塑胶。可以通过一体注塑的方式(即将顶盖板12放入模具内,通过注塑的方式形成隔离板11,在注塑过程中塑胶会流入盲孔121内并凝固形成凸起部112)。还可以通过先注塑出隔离板11,然后将凸起部112伸入盲孔121内,采用超声波热熔的方式熔化凸起部112以使凝固后的凸起部112与盲孔121紧密结合,从而提高凸起部112与盲孔121的结合强度。
可选的,在一些实施例中,如图11所示,顶盖板12的顶部设置有突出部123,隔离 板11上设置有通孔118,突出部123穿过通孔118并与隔离板11铆接,以将隔离板11固定于顶盖板12。可替代地,还可以是顶盖板12的顶部设置有突出部,隔离板11设置孔(可以是通孔或盲孔)。突出部的直径大于孔的直径,突出部插入孔内以实现过盈配合。
在其他实施例中,隔离板11可以通过其他的固定方式固定在顶盖板12上,例如,可11以通过粘接、螺栓连接、铆接、卡接或过盈配合的方式,其中粘接包括粘合剂粘接、溶剂粘接等。其中,粘接、铆接为不可拆卸固定连接,螺栓连接、卡接或过盈配合为可拆卸固定连接。
可选的,在一些实施例中,隔离板11上的电极连接片定位结构113包括定位卡扣1131以及两个定位块1132,两个定位块1132相对电极连接片2设置,两个定位块1132用于限制电极连接片2在宽度方向(即图中箭头y所指方向)上的位移,定位卡扣1131用于限制电极连接片2在长度方向(即图中箭头x所指方向)、高度方向(即图中箭头z所指方向)上的位移。
需要说明的是,电极连接片定位结构113并不局限于图3中的一些实施方式,还可以通过其他的实施方式对电极连接片2进行定位,例如,通过捆绑定位、螺栓定位、夹持定位等,只要能对电极连接片2进行定位,均在各实施例的实施范围内。
在一些实施例中,采样通道111设置于隔离板11的上表面,隔离板11的下表面设置有凹槽117,凹槽117沿宽度方向(即图中箭头y所指方向)延伸、覆盖电池单体1的防爆阀,并在隔离板11的左右两端开口且与外部大气相通。凹槽117的设置,能在意外情况下有效将单个电池单体1的失效时冲开防爆阀而喷发出的可燃气体引到电池模组的外部,避免单个电池模组内的其它单体电池1连锁失效。
可选的,在一些实施例中,隔离板11包括第一板114以及第二板115,第一板114与第二板115均沿宽度方向(即图中箭头y所指方向)延伸且两者沿长度方向(即图中箭头x所指方向)相对设置,第一板114与第二板115之间形成采样通道111。
可选的,第一板114为两个,两个第一板114沿长度方向(即图中箭头x所指方向)相对设置;第二板115为两个,两个第二板115沿长度方向(即图中箭头x所指方向)相对设置;两个第二板115与两个第一板114之间形成三个采样通道111,如图5所示。
其中,中间的采样通道111可用于对柔性电路板31进行导向以及约束,两侧的采样通道111可用于对线束32进行导向以及约束,从而实现柔性电路板31与线束32之间的电隔离。
可选的,在一些实施例中,隔离板11上还设置有极柱通孔116,极柱通孔116对应 电池单体1的极柱16设置,极柱通孔116用于穿过电池单体1的极柱16,第一板114上设置有供采样构件通过的采样开口1141,采样开口1141对应极柱通孔116设置。采样开口1141可以是通孔结构,也可以是贯通第一板114顶部的凹槽结构,在一些实施例中,采样开口1141为通孔结构。如此,采样构件穿过采样开口1141进入采样通道111中,便于对采样构件进行整理以及导向。
可选的,在一些实施例中,第一板114和第二板115的两端均设置有线束导向槽1151。其中相邻的两个电池单体1之间的第一板114与第二板115上的线束导向槽1151可以对柔性电路板31进行整理以及导向,从而实现柔性电路板31与其他采样构件之间的隔离。
使用过程中,如图6至图10所示,在一些实施例中,隔离板11的底部设置有四个凸起部112,顶盖板12的顶部设置有四个用于容纳凸起部112的盲孔121。凸起部端部1121的截面面积大于凸起部中段1122的截面面积。装配时,将凸起部112伸入盲孔121内,隔离板11与顶盖板12进行超声波热熔,完成隔离板11与顶盖板12的固定。
通过上述各实施例的方案不难看出,本申请的部分实施例还提供了一种顶盖组件的制造方法,结合图12所示,包括如下步骤:
步骤1210、提供一隔离板11,以及一用于将电池单体1的电极组件15封闭在电池壳体14内的顶盖板12。其中,顶盖板12上设有极柱16,隔离板11上开设极柱通孔116,以及设有用于容纳采样构件的采样通道111。
步骤1220、将隔离板11盖设于所述顶盖板12,使隔离板11的极柱通孔116穿过顶盖板12的极柱16。
步骤1230、对隔离板11与顶盖板12进行固定,制得顶盖组件。
其中,在步骤1220,即在将隔离板11盖设于顶盖板12的步骤中,具体包括:
在顶盖板12上开设背面盲孔121。
在隔离板11的底部制作凸起部112。
将凸起部112伸入盲孔121内,直至隔离板11与顶盖板12贴合;或者,
在顶盖板12的顶部制作突出部123。
在隔离板11上开设通孔118。
将突出部123穿过通孔118,直至隔离板11与顶盖板12贴合。
另外,本申请的部分实施例还提供了一种电池单体的制造方法,结合图13所示,包括如下步骤:
步骤1310、提供一装有电极组件15的电池壳体14,以及一采用如上所述的顶盖组 件的装配方法制得的顶盖组件。其中,电池壳体14具有开口141。
步骤1320、将顶盖组件与电池壳体14进行装配,使顶盖板12封闭的开口141,以制得电池单体1。
另外,本申请的部分实施例还提供了一种电池模组的制造方法,结合图14所示,包括如下步骤:
步骤1410、提供采样构件、至少一个电极连接片2,以及多个采用如上所述的电池单体的制造方法制得的电池单体1。
步骤1420、将多个所述电池单体1沿预设方向进行排列,使各电池单体1上的采样通道111相互连通。
步骤1430、将电极连接片2与多个电池单体1的极柱16进行焊接,使各电池单体1之间并联或串联。
步骤1440、将采样构件的一端与电极连接片2连接,将采样构件的另一端导入采样通道111内,制得电池模组。
其中,在部分实施例中,各电池单体1的隔离板11上还设有电极连接片定位结构113。因此,在将多个电池单体1沿预设方向进行排列的步骤之后,即在步骤1420之后,并在将电极连接片2与多个电池单体1的极柱16进行焊接的步骤之前,即在步骤1430之前,还包括如下步骤:
步骤1421,采用各电池单体1的电极连接片定位结构113对电极连接片2进行定位。从而使得电机连接片2在与多个电池单体1的极柱16进行焊接时,更为稳定。
上述电池模组的制造流程具体如下:
S1、顶盖板12在冲压阶段冲出背面盲孔121,将凸起部112伸入盲孔121内,隔离板11与顶盖板12进行超声波热熔,完成隔离板11与顶盖板12的固定。
S2、集成有隔离板11的顶盖板12与装有电极组件15的电池壳体14进行装配后,得到完整的电池单体1。
S3、根据电池模组成组的需要,对电池单体1进行排列,将电池单体1按所需的排布方式组成电池模组,如图1所示。
S4、将电极连接片2放置于定位块1132上进行预定位,向下施加压力直到电极连接片2被定位卡扣1131锁死,电极连接片2定位完成,进行电极连接片2与电极极柱的激光焊接,如图1所示。
S5、采样构件一端连着电极连接片2,通过采样开口1141进入两侧采样通道111, 如图1所示。
S6、柔性电路板31通过线束卡扣设置在中间采样通道111如图1所示。
区别现有技术,在一些实施例中,由于隔离板11集成在电池单体1上,对于不同数量以及不同成组方式的电池模组都能够达到其装配要求大大提高电池模组的集成效率,降低电池模组的生产成本以及其研发周期。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本申请的保护范围。因此,基于本申请的创新理念,对本文所述的各实施例进行的变更和修改,或利用本申请说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本申请的保护范围之内。

Claims (15)

  1. 一种顶盖组件,用于电池单体,包括:
    隔离板(11),所述隔离板(11)设置有用于容纳采样构件的采样通道(111);以及
    顶盖板(12),所述顶盖板(12)用于将所述电池单体(1)的电极组件(15)封闭在电池壳体(14)内,
    其中,所述顶盖板(12)设置在所述隔离板(11)的下方,所述隔离板(11)固定于所述顶盖板(12)。
  2. 根据权利要求1所述的顶盖组件,其中,所述隔离板(11)通过粘接、螺栓连接、铆接、卡接或过盈配合的方式固定于所述顶盖板(12)。
  3. 根据权利要求1或2所述的顶盖组件,其中,所述隔离板(11)的底部设置有凸起部(112),所述顶盖板(12)的顶部设置有盲孔(121),所述凸起部(112)容纳于所述盲孔(121)内,以将所述隔离板(11)固定于所述顶盖板(12);或者,
    所述顶盖板(12)的顶部设置有突出部(123),所述隔离板(11)设置有通孔(118),所述突出部(123)穿过所述通孔(118)并与所述隔离板(11)铆接,以将所述隔离板(11)固定于所述顶盖板(12)。
  4. 根据权利要求1至3中任意一项所述的顶盖组件,其中,所述隔离板(11)上还设置有电极连接片定位结构(113),所述电极连接片定位结构(113)用于限制电极连接片(2)的位移。
  5. 根据权利要求1至4中任意一项所述的顶盖组件,其中,所述隔离板(11)包括第一板(114)以及第二板(115),所述第一板(114)与所述第二板(115)均沿宽度方向延伸且两者沿长度方向相对设置,所述第一板(114)与所述第二板(115)之间形成所述采样通道。
  6. 根据权利要求5所述的顶盖组件,其中,所述第一板(114)为两个,两个所述第一板(114)沿所述长度方向相对设置;所述第二板(115)为两个,两个所述第二板(115)沿所述长度方向相对设置;两个所述第二板(115)与两个所述第一板(114)之间形成三个 所述采样通道(111)。
  7. 根据权利要求6所述的顶盖组件,其中,所述隔离板(11)上设置有极柱通孔(116),所述极柱通孔(116)用于穿过所述电池单体(1)的极柱(16),所述第一板(114)上设置有供所述采样构件穿过的采样开口(1141)。
  8. 根据权利要求1至7中任意一项所述的顶盖组件,其中,所述采样通道(111)设置于所述隔离板(11)的上表面,所述隔离板(11)的下表面设置有凹槽(117),所述凹槽(117)与所述电池单体(1)的防爆阀相对设置,所述凹槽(117)沿宽度方向延伸。
  9. 一种电池单体,包括:
    电池壳体(14),具有开口(141),
    电极组件(15),容纳在所述电池壳体(14)中;以及
    如权利要求1至8任意一项所述的顶盖组件,所述顶盖组件覆盖所述开口(141)。
  10. 一种电池模组,包括:
    两个以上的如权利要求9所述电池单体(1),两个以上的所述电池单体(1)依次排列设置,两个以上的所述电池单体(1)之间的所述采样通道(111)相互连通,两个以上的所述电池单体(1)通过电极连接片(2)电连接;以及
    采样构件,所述采样构件容纳于所述采样通道(111)内。
  11. 一种顶盖组件的制造方法,包括如下步骤:
    提供一隔离板(11),以及一用于将电池单体(1)的电极组件(15)封闭在电池壳体(14)内的顶盖板(12);其中,所述顶盖板(12)上设有极柱(16),所述隔离板(11)上开设极柱通孔(116),以及设有用于容纳采样构件的采样通道(111);
    将所述隔离板(11)盖设于所述顶盖板(12),使所述隔离板(11)的所述极柱通孔(116)穿过所述顶盖板(12)的所述极柱(16);
    对所述隔离板(11)与所述顶盖板(12)进行固定,制得顶盖组件。
  12. 根据权利要求11所述的顶盖组件的制造方法,其中,在将所述隔离板(11)盖设于所述顶盖板(12)的步骤中,具体包括:
    在所述顶盖板(12)上开设背面盲孔(121);
    在所述隔离板(11)的底部制作凸起部(112);
    将所述凸起部(112)伸入所述盲孔(121)内,直至所述隔离板(11)与所述顶盖板(12)贴合;或者,
    在所述顶盖板(12)的顶部制作突出部(123);
    在所述隔离板(11)上开设通孔(118);
    将所述突出部(123)穿过所述通孔(118),直至所述隔离板(11)与所述顶盖板(12)贴合。
  13. 一种电池单体的制造方法,包括如下步骤:
    提供一装有电极组件(15)的电池壳体(14),以及一采用如权利要求11或12所述的顶盖组件的制造方法制得的所述顶盖组件;其中,所述电池壳体(14)具有开口(141);
    将所述顶盖组件与所述电池壳体(14)进行装配,使所述顶盖板(12)封闭所述开口(141),制得电池单体(1)。
  14. 一种电池模组的制造方法,包括如下步骤:
    提供采样构件、至少一个电极连接片(2),以及多个采用如权利要求13所述的电池单体的制造方法制得的电池单体(1);
    将多个所述电池单体(1)沿预设方向进行排列,使各所述电池单体(1)上的采样通道(111)相互连通;
    将至少一个所述电极连接片(2)与多个所述电池单体(1)的所述极柱(16)进行焊接,使各所述电池单体(1)之间并联或串联;
    将所述采样构件的一端与所述电极连接片(2)连接,将所述采样构件的另一端导入所述采样通道(111)内,制得所述电池模组。
  15. 根据权利要求14所述的电池模组的制造方法,其中,各所述电池单体(1)的所述隔离板(11)上还设有电极连接片定位结构(113);
    在将多个所述电池单体(1)沿预设方向进行排列的步骤之后,并在将所述电极连接片(2)与多个所述电池单体(1)的所述极柱(16)进行焊接的步骤之前,还包括如下步骤:
    采用各所述电池单体(1)的所述电极连接片定位结构(113)对所述电极连接片(2)进行定位。
PCT/CN2019/121027 2018-12-20 2019-11-26 一种顶盖组件、电池单体、电池模组及其制造方法 WO2020125347A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19900459.9A EP3800688B1 (en) 2018-12-20 2019-11-26 Top cover assembly, battery cell, battery module and manufacturing method therefor
EP22183777.6A EP4102625A3 (en) 2018-12-20 2019-11-26 Top cover assembly, battery cell, battery module and manufacturing methods therefor
EP22183772.7A EP4102624A3 (en) 2018-12-20 2019-11-26 Top cover assembly, battery cell, battery module and manufacturing methods therefor
US17/138,852 US12002972B2 (en) 2018-12-20 2020-12-30 Top cover assembly, battery cell, battery module and manufacturing methods therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811561743.0A CN109546019A (zh) 2018-12-20 2018-12-20 一种顶盖组件、电池单体及电池模组
CN201811561743.0 2018-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,852 Continuation US12002972B2 (en) 2018-12-20 2020-12-30 Top cover assembly, battery cell, battery module and manufacturing methods therefor

Publications (1)

Publication Number Publication Date
WO2020125347A1 true WO2020125347A1 (zh) 2020-06-25

Family

ID=65856232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121027 WO2020125347A1 (zh) 2018-12-20 2019-11-26 一种顶盖组件、电池单体、电池模组及其制造方法

Country Status (3)

Country Link
EP (3) EP3800688B1 (zh)
CN (1) CN109546019A (zh)
WO (1) WO2020125347A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546019A (zh) * 2018-12-20 2019-03-29 江苏时代新能源科技有限公司 一种顶盖组件、电池单体及电池模组
CN110931903A (zh) * 2019-11-14 2020-03-27 深圳市普兰德储能技术有限公司 废旧动力电池模组的修复方法
CN115172997A (zh) * 2022-06-27 2022-10-11 深圳市雄韬电源科技股份有限公司 一种多腔体结构的动力电池组
CN115332715B (zh) * 2022-10-10 2023-07-28 深圳海辰储能控制技术有限公司 线束隔离板组件及电池模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623736A (zh) * 2011-01-30 2012-08-01 北京利维能电源设备有限公司 电池模块及电池模组
US20160172651A1 (en) * 2014-12-15 2016-06-16 Yazaki Corporation Battery wiring module and battery wiring module manufacturing method
CN206432298U (zh) * 2016-11-09 2017-08-22 安徽天鑫能源科技有限公司 组合式线束隔离板和使用该种线束隔离板的电池模组结构
CN108428824A (zh) * 2017-08-30 2018-08-21 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN109546019A (zh) * 2018-12-20 2019-03-29 江苏时代新能源科技有限公司 一种顶盖组件、电池单体及电池模组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5139745B2 (ja) * 2007-08-10 2013-02-06 矢崎総業株式会社 電源装置
CN202839812U (zh) * 2012-08-28 2013-03-27 惠州比亚迪电池有限公司 一种动力连接及信号采集的集成组件
CN104752639B (zh) * 2013-12-31 2017-07-04 比亚迪股份有限公司 动力电池模组
JP6346017B2 (ja) * 2014-07-18 2018-06-20 矢崎総業株式会社 バスバーモジュール及びバスバーモジュールの製造方法
JP6590212B2 (ja) * 2015-07-17 2019-10-16 株式会社オートネットワーク技術研究所 配線モジュール、及び蓄電モジュール
DE112017000545T5 (de) * 2016-01-29 2018-10-18 Gs Yuasa International Ltd. Energiespeicherapparatur
JP6299898B1 (ja) * 2017-02-21 2018-03-28 株式会社オートネットワーク技術研究所 接続モジュール
JP2018163847A (ja) * 2017-03-27 2018-10-18 株式会社豊田自動織機 セルホルダの製造方法、及び電池モジュール
CN206947422U (zh) * 2017-06-09 2018-01-30 芜湖天量电池系统有限公司 一种锂电池线束隔离板
CN207233789U (zh) * 2017-08-30 2018-04-13 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN207441843U (zh) * 2017-11-15 2018-06-01 宁德时代新能源科技股份有限公司 转接片、顶盖组件及二次电池
CN208028110U (zh) * 2018-02-26 2018-10-30 长城汽车股份有限公司 线束隔离板和动力电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623736A (zh) * 2011-01-30 2012-08-01 北京利维能电源设备有限公司 电池模块及电池模组
US20160172651A1 (en) * 2014-12-15 2016-06-16 Yazaki Corporation Battery wiring module and battery wiring module manufacturing method
CN206432298U (zh) * 2016-11-09 2017-08-22 安徽天鑫能源科技有限公司 组合式线束隔离板和使用该种线束隔离板的电池模组结构
CN108428824A (zh) * 2017-08-30 2018-08-21 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN109546019A (zh) * 2018-12-20 2019-03-29 江苏时代新能源科技有限公司 一种顶盖组件、电池单体及电池模组

Also Published As

Publication number Publication date
US20210119288A1 (en) 2021-04-22
EP3800688A4 (en) 2021-10-27
EP4102625A3 (en) 2024-01-17
EP3800688A1 (en) 2021-04-07
EP4102624A3 (en) 2023-12-27
EP4102624A2 (en) 2022-12-14
EP3800688B1 (en) 2022-08-17
CN109546019A (zh) 2019-03-29
EP4102625A2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2020125347A1 (zh) 一种顶盖组件、电池单体、电池模组及其制造方法
US9865849B2 (en) Assembled battery and method for manufacturing assembled battery
KR101020604B1 (ko) 이차전지 모듈
US9876204B2 (en) Battery module assembly with novel structure
KR100913838B1 (ko) 신규한 구조의 전지모듈
EP3166158A1 (en) Rechargeable battery module
CN105322114A (zh) 电源组件
US20200287194A1 (en) Electrical connecting member housing case and battery module
WO2011007508A1 (ja) 組電池及び電池モジュール
US10468647B2 (en) Battery pack
JP6192509B2 (ja) 組電池
KR20130058588A (ko) 이차 전지
CN104112830A (zh) 电池模块
EP3540814B1 (en) End plate, housing, and battery module
US10205142B2 (en) Battery, battery pack, and method of manufacturing battery
KR101666876B1 (ko) 이차 전지 및 그 모듈
CN106486624A (zh) 可再充电电池组
CN113571849A (zh) 锂电池顶盖组件及二次电池
CN109873104A (zh) 电池模组
WO2017071846A1 (en) Energy storage device
KR20050123485A (ko) 이차 전지
US12002972B2 (en) Top cover assembly, battery cell, battery module and manufacturing methods therefor
KR102368978B1 (ko) 배터리 팩
CN217562756U (zh) 电芯单元及总成
US20200176738A1 (en) Energy storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019900459

Country of ref document: EP

Effective date: 20201230

NENP Non-entry into the national phase

Ref country code: DE