WO2020125116A1 - 一种内嵌隔磁套的磁轴承座结构 - Google Patents

一种内嵌隔磁套的磁轴承座结构 Download PDF

Info

Publication number
WO2020125116A1
WO2020125116A1 PCT/CN2019/107456 CN2019107456W WO2020125116A1 WO 2020125116 A1 WO2020125116 A1 WO 2020125116A1 CN 2019107456 W CN2019107456 W CN 2019107456W WO 2020125116 A1 WO2020125116 A1 WO 2020125116A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic bearing
thrust
bearing seat
radial
Prior art date
Application number
PCT/CN2019/107456
Other languages
English (en)
French (fr)
Inventor
周亦骏
吴立华
董继勇
Original Assignee
南京磁谷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京磁谷科技有限公司 filed Critical 南京磁谷科技有限公司
Publication of WO2020125116A1 publication Critical patent/WO2020125116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers

Definitions

  • the invention relates to a magnetic bearing seat structure embedded with a magnetic isolation sleeve.
  • the main magnetic circuit of the magnetic bearing is composed of the magnetic material of the magnetic bearing rotor, the magnetic material (silicon steel sheet, pure iron, etc.) and the air gap in the magnetic bearing stator, and passes through the magnetic circuit other than these three It is called the magnetic leakage circuit, and the magnetic leakage circuit will affect the working efficiency of the magnetic bearing.
  • the magnetic bearing stator and rotor materials cannot exist independently, they are usually attached to other parts.
  • the magnetic bearing rotor is usually fixed to the motor rotor, and the magnetic bearing stator is fixed to the motor base. The influence of attached parts on the magnetic circuit of the magnetic bearing.
  • the magnetic bearing seat aluminum alloy or non-magnetic stainless steel material will be selected as the magnetic bearing seat.
  • the magnetic bearing When the magnetic bearing is installed in the magnetic bearing seat of this type of material, it can reduce the leakage magnetic circuit. produce.
  • the magnetic bearing When using aluminum alloy as the magnetic bearing seat, because of the difference in thermal expansion coefficient between the aluminum alloy and the silicon steel sheet of the magnetic bearing, the magnetic bearing usually needs to design an interference value assembly and the magnetic bearing seat according to the estimated operating temperature to offset the thermal expansion The impact.
  • the basic size of magnetic bearings With the increase in motor power and volume, the basic size of magnetic bearings is also increasing, which means that the required interference is also increasing, which means that the difficulty of assembly has also become higher. And once the interference assembly, the magnetic bearing at this time will not have repeated disassembly.
  • Figure 2 is a common form of magnetic bearing housing.
  • Radial magnetic bearings are usually assembled in a magnetic bearing housing made of non-magnetic conductive materials due to the high working accuracy required, and are fixed by radial magnetic bearing rings. Press firmly. After a pair of thrust magnetic bearings are separated by a spacer ring, they are usually assembled in a magnetic bearing seat by a transition fit, which is pressed and fixed by a thrust magnetic bearing fixing ring.
  • the thrust magnetic bearing stator In addition to forming a closed magnetic circuit with the thrust magnetic bearing rotor, the thrust magnetic bearing stator also forms a magnetic circuit, that is, a leakage magnetic circuit, with another thrust magnetic bearing through the magnetic bearing housing.
  • Some magnetic leakage circuits can be quantitatively evaluated. For example, the magnetic leakage circuit caused by the coil itself, as shown in the left side of Figure 3, and the magnetic leakage circuit caused by the peripheral frame is inestimable, so this type of leakage Magnetic circuits should be avoided.
  • the present invention is to provide a magnetic bearing seat structure in which a magnetic shield is embedded in order to solve the problems in the prior art.
  • a magnetic bearing seat structure embedded with a magnetic isolation sleeve including a magnetic bearing seat, a radial magnetic bearing, a radial magnetic bearing fixing ring, a thrust magnetic bearing, a thrust magnetic bearing fixing ring, a partition Ring and magnetic isolation sleeve
  • the radial magnetic bearing is provided with a magnetic isolation sleeve
  • the transitional cooperation between the radial magnetic bearing and the magnetic isolation sleeve adopts a transition fit or a small interference fit
  • the radial magnetic sleeve of the magnetic isolation sleeve is sleeved
  • the bearing is set in the magnetic bearing seat, the radial magnetic bearing fixing ring is fixed on the magnetic bearing seat, and the radial magnetic bearing is positioned in the magnetic bearing seat;
  • the two thrust magnetic bearings are separated by a certain gap, and the spacer is placed between the two thrust magnetic bearings.
  • the thrust magnetic bearing and the spacer together form a thrust magnetic bearing unit, and a magnetic shield sleeve is set on the thrust magnetic bearing unit, and the magnetic shield A small clearance fit is used with the thrust magnetic bearing unit.
  • the thrust magnetic bearing unit with the magnetic isolation sleeve is set in the magnetic bearing housing.
  • the thrust magnetic bearing fixing ring is fixed on the magnetic bearing housing and the thrust magnetic bearing unit is positioned on the magnetic In the bearing housing, interference fit is adopted between the magnetic isolation sleeve and the magnetic bearing housing.
  • the magnetic bearing seat is made of magnetically conductive metal material or non-magnetically conductive metal material
  • the magnetic isolation sleeve is made of non-metallic magnetically conductive material.
  • the thinner stainless steel sleeve can be obtained through pipes, the raw materials are easy to obtain, and there is no need to set a very large interference value, which can meet the requirements of repeated disassembly and assembly.
  • Figure 1 is a sub-structure diagram of the present invention.
  • a magnetic bearing seat structure embedded with a magnetic sleeve of the present invention includes a magnetic bearing seat 1, a radial magnetic bearing 2, a radial magnetic bearing fixing ring 3, a thrust magnetic bearing 4, and a thrust magnetic bearing fixed
  • the ring 5, the spacer 6 and the magnetic isolation sleeve 7, the radial magnetic bearing 2 is provided with a magnetic isolation sleeve 7, and the radial magnetic bearing 2 and the magnetic isolation sleeve 7 adopt a transition fit or a small interference fit to ensure the radial magnetic Assembly concentricity of bearing 2.
  • the radial magnetic bearing 2 sleeved with the magnetic isolation sleeve 7 is provided in the magnetic bearing housing 1, the radial magnetic bearing fixing ring 3 is fixed on the magnetic bearing housing 1, and the radial magnetic bearing 2 is positioned in the magnetic bearing housing 1.
  • the two thrust magnetic bearings 4 are arranged with a certain gap, the spacer 6 is placed between the two thrust magnetic bearings 4, the thrust magnetic bearing 4 and the spacer 6 together form a thrust magnetic bearing unit, and a magnetic isolation sleeve 7 is set on the thrust magnetic bearing On the unit, and the magnetic isolation sleeve 7 and the thrust magnetic bearing unit adopt a small clearance fit, because the thrust magnetic bearing unit does not have too high requirements for concentricity, and the clearance fit can facilitate assembly.
  • the thrust magnetic bearing unit sleeved with the magnetic isolation sleeve 7 is provided in the magnetic bearing housing 1, the thrust magnetic bearing fixing ring 5 is fixed on the magnetic bearing housing 1, and the thrust magnetic bearing unit is positioned in the magnetic bearing housing 1.
  • An interference fit is adopted between the magnetic isolation sleeve 7 and the magnetic bearing housing 1.
  • the magnetic bearing housing 1 is made of magnetically conductive metal material or non-magnetically conductive metal material
  • the magnetic shielding sleeve 7 is made of non-metallic magnetically conductive material (such as high temperature alloy, non-magnetically conductive stainless steel, aluminum alloy, etc.).
  • the magnetic isolation sleeve 7 in the present invention can reduce the influence of magnetic leakage on the operation of the magnetic bearing, and because of the existence of the magnetic isolation sleeve, the material selection range of the magnetic bearing seat will be widened, and is no longer limited to aluminum alloy or stainless steel.
  • the magnetic isolation sleeve 7 is made of stainless steel
  • the magnetic bearing seat is made of carbon steel or cast iron.
  • the assembly of radial magnetic bearings does not require a large interference. In theory, as long as it is set to a transition fit, it can be guaranteed.
  • the gap between the magnetic bearing and the magnetic bearing seat is avoided during work. This is because the expansion coefficient of aluminum alloy is higher than that of stainless steel, and the expansion coefficient of stainless steel is higher than that of carbon steel. After that, there will inevitably be no gaps between them.
  • the thinner stainless steel sleeve can be obtained through pipes, the raw materials are easy to obtain, and there is no need to set a very large interference value, which can meet the requirements of repeated disassembly and assembly.
  • the use of carbon steel or cast iron materials for the magnetic bearing housing can significantly reduce the material cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种内嵌隔磁套(7)的磁轴承座结构,径向磁轴承(2)外套设一个隔磁套(7),且径向磁轴承(2)与隔磁套(7)之间采用过渡配合或者小过盈配合,套设隔磁套(7)的径向磁轴承(2)设于磁轴承座(1)内,径向磁轴承固定环(3)固定于磁轴承座(1)上;两个推力磁轴承(4)相隔一定间隙设置,隔圈(6)置于两推力磁轴承(4)之间,推力磁轴承(4)与隔圈(6)共同组成推力磁轴承单元,一个隔磁套(7)套设于推力磁轴承单元上,且隔磁套(7)与推力磁轴承单元之间采用小间隙配合,套设隔磁套(7)的推力磁轴承单元设于磁轴承座(1)内,推力磁轴承固定环(5)固定于磁轴承座(1)上,隔磁套(7)与磁轴承座(1)之间采用过盈配合。较薄的不锈钢套可以通过管材获得,原材料易于获得,并且不需要设置非常大的过盈值,能够满足反复拆装的要求。

Description

一种内嵌隔磁套的磁轴承座结构 技术领域:
本发明涉及一种内嵌隔磁套的磁轴承座结构。
背景技术:
磁悬浮轴承电机中,磁轴承的主磁路由磁轴承转子的导磁材料、磁轴承定子中的导磁材料(硅钢片、纯铁等)和气隙三部分组成,而通过这三者以外的磁路称之为漏磁路,漏磁路会影响磁轴承的工作效率。在工程应用中,因为磁轴承的定、转子材料不可能独立存在,通常依附于其他零部件,例如磁轴承转子通常与电机转子固连、磁轴承定子则与电机座固连,所以需要考虑所依附的零部件对于磁轴承磁路的影响。
通常,实际应用中,从成本和成型难度角度考虑,会选择铝合金或非导磁不锈钢材料作为磁轴承座,磁轴承安装于这一类材料的磁轴承座内时,可以减少漏磁路的产生。
在采用铝合金作为磁轴承座时,因为铝合金与磁轴承硅钢片的热膨胀系数的差别,磁轴承通常需要根据预估的工作温度,设计一个过盈值装配与磁轴承座内,以抵消热膨胀带来的影响。随着电机功率、体积的提高,磁轴承的基础尺寸也在提高,则意味着所需求的过盈量也在提高,这意味着装配难度也变高了。并且一旦过盈装配后,这时的磁轴承将不具备反复拆装性。
当采用非导磁不锈钢时,因为不锈钢材料的特性,则会带来高昂的材料成本和加工成本。
图2是一种常见的磁轴承座结构形式,径向磁轴承因为要求较高的工作精度通常采用过盈装配于由非导磁材料制作的磁轴承座内,并由径向磁轴承固定环压紧固定。一对推力磁轴承由隔圈分隔后,通常也采用过渡配合装配于磁轴承座内,由推力磁轴承固定环压紧固定。
当磁轴承正常工作时,其磁路沿图2所示闭合路径,注意箭头仅做示意,并非特指某一方向。
但是,当磁轴承结构随着电机增大,对过盈量需求增加时,较大的过盈值会对装配工艺提出严苛的要求,或者为了降低成本选择碳钢、铸铁等材料时,其材料的导磁特性 又对磁轴承的工作产生不利影响,如图3所示。推力磁轴承定子除了与推力磁轴承转子形成闭合的磁路外,还会通过磁轴承座与另一个推力磁轴承形成磁路,即漏磁路。有些漏磁路是能够定量评估的,例如由于线圈自身产生的漏磁路,如图3左侧漏磁路,而由于外围机座造成的漏磁路则是不可估算的,所以这一类漏磁路应当避免。
发明内容:
本发明是为了解决上述现有技术存在的问题而提供一种内嵌隔磁套的磁轴承座结构。
本发明所采用的技术方案有:一种内嵌隔磁套的磁轴承座结构,包括磁轴承座、径向磁轴承、径向磁轴承固定环、推力磁轴承、推力磁轴承固定环、隔圈和隔磁套,所述径向磁轴承外套设一个隔磁套,且径向磁轴承与隔磁套之间过渡配合采用过渡配合或者小过盈配合,套设隔磁套的径向磁轴承设于磁轴承座内,径向磁轴承固定环固定于磁轴承座上,并将径向磁轴承定位于磁轴承座内;
两个推力磁轴承相隔一定间隙设置,隔圈置于两推力磁轴承之间,推力磁轴承与隔圈共同组成推力磁轴承单元,一个隔磁套套设于推力磁轴承单元上,且隔磁套与推力磁轴承单元之间采用小间隙配合,套设隔磁套的推力磁轴承单元设于磁轴承座内,推力磁轴承固定环固定于磁轴承座上,并将推力磁轴承单元定位于磁轴承座内,隔磁套与磁轴承座之间采用过盈配合。
进一步地,所述磁轴承座采用导磁金属材料或者非导磁金属材料,隔磁套采用非金属导磁材料。
本发明具有如下有益效果:
1)较薄的不锈钢套可以通过管材获得,原材料易于获得,并且不需要设置非常大的过盈值,能够满足反复拆装的要求。
2)采用碳钢或铸铁材料制作磁轴承座可以显著降低材料陈本。
附图说明:
图1为本发明分结构图。
图2和图3为现有技术中磁轴承座结构形式。
具体实施方式:
下面结合附图对本发明作进一步的说明。
如图1所示,本发明一种内嵌隔磁套的磁轴承座结构,包括磁轴承座1、径向磁轴承2、径向磁轴承固定环3、推力磁轴承4、推力磁轴承固定环5、隔圈6和隔磁套7,径向磁轴承2外套设一个隔磁套7,且径向磁轴承2与隔磁套7采用过渡配合或者小过盈配合,以确保径向磁轴承2的装配同心度。套设隔磁套7的径向磁轴承2设于磁轴承座1内,径向磁轴承固定环3固定于磁轴承座1上,并将径向磁轴承2定位于磁轴承座1内。两个推力磁轴承4相隔一定间隙设置,隔圈6置于两推力磁轴承4之间,推力磁轴承4与隔圈6共同组成推力磁轴承单元,一个隔磁套7套设于推力磁轴承单元上,且隔磁套7与推力磁轴承单元之间采用小间隙配合,因为推力磁轴承单元对同心度并无太高需求,过采取间隙配合能够方便装配。套设隔磁套7的推力磁轴承单元设于磁轴承座1内,推力磁轴承固定环5固定于磁轴承座1上,并将推力磁轴承单元定位于磁轴承座1内。隔磁套7与磁轴承座1之间采用过盈配合。
磁轴承座1采用导磁金属材料或者非导磁金属材料,隔磁套7采用非金属导磁材料(诸如高温合金,非导磁不锈钢,铝合金等等)。
本发明中的隔磁套7能够降低漏磁对于磁轴承工作时的影响,并且因为隔磁套的存在,磁轴承座的材料选择范围将拓宽,不再局限于铝合金或者不锈钢。
再者,以隔磁套7为不锈钢材料,磁轴承座为碳钢或铸铁材料来说明,径向磁轴承的装配不在需要较大的过盈量,理论上只要设置为过渡配合,即可保证在工作中磁轴承与磁轴承座避免间隙产生,这是因为铝合金的膨胀系数比不锈钢高,不锈钢的膨胀系数比碳钢高,由内到外的材料的膨胀系数依次递减,那么温度升高之后,必然不会再彼此之间产生间隙。较薄的不锈钢套可以通过管材获得,原材料易于获得,并且不需要设置非常大的过盈值,能够满足反复拆装的要求。采用碳钢或铸铁材料制作磁轴承座可以显著降低材料陈本。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (2)

  1. 一种内嵌隔磁套的磁轴承座结构,其特征在于:包括磁轴承座(1)、径向磁轴承(2)、径向磁轴承固定环(3)、推力磁轴承(4)、推力磁轴承固定环(5)、隔圈(6)和隔磁套(7),所述径向磁轴承(2)外套设一个隔磁套(7),且径向磁轴承(2)与隔磁套(7)之间过渡配合采用过渡配合或者小过盈配合,套设隔磁套(7)的径向磁轴承(2)设于磁轴承座(1)内,径向磁轴承固定环(3)固定于磁轴承座(1)上,并将径向磁轴承(2)定位于磁轴承座(1)内;
    两个推力磁轴承(4)相隔一定间隙设置,隔圈(6)置于两推力磁轴承(4)之间,推力磁轴承(4)与隔圈(6)共同组成推力磁轴承单元,一个隔磁套(7)套设于推力磁轴承单元上,且隔磁套(7)与推力磁轴承单元之间采用小间隙配合,套设隔磁套(7)的推力磁轴承单元设于磁轴承座(1)内,推力磁轴承固定环(5)固定于磁轴承座(1)上,并将推力磁轴承单元定位于磁轴承座(1)内,隔磁套(7)与磁轴承座(1)之间采用过盈配合。
  2. 如权利要求1所述的内嵌隔磁套的磁轴承座结构,其特征在于:所述磁轴承座(1)采用导磁金属材料或者非导磁金属材料,隔磁套(7)采用非金属导磁材料。
PCT/CN2019/107456 2018-12-18 2019-09-24 一种内嵌隔磁套的磁轴承座结构 WO2020125116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811552194.0A CN109510370A (zh) 2018-12-18 2018-12-18 一种内嵌隔磁套的磁轴承座结构
CN201811552194.0 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020125116A1 true WO2020125116A1 (zh) 2020-06-25

Family

ID=65753572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107456 WO2020125116A1 (zh) 2018-12-18 2019-09-24 一种内嵌隔磁套的磁轴承座结构

Country Status (2)

Country Link
CN (1) CN109510370A (zh)
WO (1) WO2020125116A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510370A (zh) * 2018-12-18 2019-03-22 南京磁谷科技有限公司 一种内嵌隔磁套的磁轴承座结构
CN112039277A (zh) * 2020-08-24 2020-12-04 珠海格力电器股份有限公司 电机转轴轴端支撑结构、电机
JP7460923B2 (ja) * 2022-03-28 2024-04-03 ダイキン工業株式会社 回転式流体機械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2783023Y (zh) * 2005-04-05 2006-05-24 西南交通大学 无磁场耦合的电磁轴承
CN101482149A (zh) * 2008-12-31 2009-07-15 浙江大学 一种特性可控的主动电磁轴承的备用轴承装置
US20110316376A1 (en) * 2010-06-23 2011-12-29 Synchrony, Inc. Split Magnetic Thrust Bearing
CN205744912U (zh) * 2016-06-04 2016-11-30 上海大学 一种径向永磁轴承
CN206626094U (zh) * 2017-03-02 2017-11-10 常州市翰琪电机有限公司 一种智能化磁悬浮电主轴装置
CN109510370A (zh) * 2018-12-18 2019-03-22 南京磁谷科技有限公司 一种内嵌隔磁套的磁轴承座结构
CN209389825U (zh) * 2018-12-18 2019-09-13 南京磁谷科技有限公司 一种内嵌隔磁套的磁轴承座结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2783023Y (zh) * 2005-04-05 2006-05-24 西南交通大学 无磁场耦合的电磁轴承
CN101482149A (zh) * 2008-12-31 2009-07-15 浙江大学 一种特性可控的主动电磁轴承的备用轴承装置
US20110316376A1 (en) * 2010-06-23 2011-12-29 Synchrony, Inc. Split Magnetic Thrust Bearing
CN205744912U (zh) * 2016-06-04 2016-11-30 上海大学 一种径向永磁轴承
CN206626094U (zh) * 2017-03-02 2017-11-10 常州市翰琪电机有限公司 一种智能化磁悬浮电主轴装置
CN109510370A (zh) * 2018-12-18 2019-03-22 南京磁谷科技有限公司 一种内嵌隔磁套的磁轴承座结构
CN209389825U (zh) * 2018-12-18 2019-09-13 南京磁谷科技有限公司 一种内嵌隔磁套的磁轴承座结构

Also Published As

Publication number Publication date
CN109510370A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2020125116A1 (zh) 一种内嵌隔磁套的磁轴承座结构
TWI444539B (zh) 磁浮式液態冷媒泵
US2322924A (en) Method of making motors
AU2014273105B2 (en) Magnetic bearing assembly having inner ventilation
US20120299422A1 (en) Electromagnetic actuator
WO2020150966A1 (zh) 具有导热棒和散热套的磁性液体密封装置
WO2018233173A1 (zh) 一种基于锥齿轮传动的盘式调速磁力耦合器
KR20110112865A (ko) 로터 어셈블리
US2488827A (en) Magnetic coupling
JP6464407B2 (ja) 磁性流体シールの組立方法及び磁性流体シール
JPWO2008146579A1 (ja) ガスタービンエンジン
CN106337876A (zh) 异极式永磁偏置混合径向磁轴承
US3229132A (en) Eddy-current coupling
US10119572B2 (en) Electro-magnetic bearing assembly with inner ventilation to cool the bearing
CN209389825U (zh) 一种内嵌隔磁套的磁轴承座结构
US2857998A (en) Magnetic torque producing device
US2141595A (en) Magnet structure
WO2023226404A1 (zh) 一种磁悬浮轴承、压缩机
WO2020125115A1 (zh) 一种用于径向磁轴承及推力磁轴承散热的磁轴承座结构
US3076109A (en) Air-cooled eddy-current coupling and brake
US10465544B2 (en) Eddy current damper for lift off seal
JP6448354B2 (ja) 磁気軸受用ロータセンサターゲット
GB1433748A (en) Magnetic induction couplings
JP5611405B1 (ja) 回転電機
US11428324B2 (en) Seal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898002

Country of ref document: EP

Kind code of ref document: A1