WO2018233173A1 - 一种基于锥齿轮传动的盘式调速磁力耦合器 - Google Patents
一种基于锥齿轮传动的盘式调速磁力耦合器 Download PDFInfo
- Publication number
- WO2018233173A1 WO2018233173A1 PCT/CN2017/108520 CN2017108520W WO2018233173A1 WO 2018233173 A1 WO2018233173 A1 WO 2018233173A1 CN 2017108520 W CN2017108520 W CN 2017108520W WO 2018233173 A1 WO2018233173 A1 WO 2018233173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bevel gear
- permanent magnet
- disc
- gear sleeve
- large bevel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/104—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
- H02K49/108—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/14—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
Definitions
- the invention relates to the technical field of transmission in mechanical engineering, and relates to a transmission device for realizing torque transmission through a non-contact connection, in particular to a disk-type speed-adjusting magnetic coupler based on bevel gear transmission. It can be used between a large vibration motor and a load as a transmission system for power transmission and speed regulation.
- the magnetic coupler utilizes the magnetic field generated by the permanent magnet to transmit force and motion.
- the use of the magnetic coupler to adjust the fan and the pump can compensate for the shortage of the inverter in a specific occasion.
- the main and driven disks in the magnetic coupler are physically Separate structural characteristics can make it work normally in various harsh environments. In the harsh occasions where coal powder, furnace ash and corrosive gas are filled in thermal power plants, coal mines, etc., the magnetic coupler can still drive the load of fans and pumps to be stable.
- magnetic couplers can also greatly reduce power consumption, when the operating speed and flow rate of fans and pumps are controlled at 80% of the rated value, consumption The energy rating is 64%, which greatly saves energy and production costs.
- magnetic couplers are generally used in fans and pumps to achieve the following advantages: (1) Separation of main and driven discs, with good isolation and overload protection Performance, can achieve soft start; (2) simple structure of parts, low cost of manufacturing, assembly and equipment maintenance; (3) no high frequency current, no high harmonics and electromagnetic interference; (4) speed governing mechanism It is a purely mechanical non-electronic device that can tolerate certain alignment errors, high reliability and long system life.
- Jiangsu University Patent No. 201210434367.5 discloses a meshing area adjustable asynchronous magnetic torque converter and a speed control method thereof, which control a pair of meshed bevel gears by a micro motor, and drive the screw of the thread through the output bevel gear to rotate the motor The rotation is transformed into the axial displacement of the inner rotor base body, thereby adjusting the meshing area between the permanent magnet and the copper strip to realize the speed regulation, and the present invention converts the axial displacement of the dial block into the large bevel gear sleeve by the large bevel gear sleeve.
- the circumferential rotation of the cylinder, and the rotation of the N-pole (or S-pole) permanent magnet is finally realized by the bevel gear meshing, which changes the average facing area and the air gap distance between the part of the permanent magnet and the conductor ring, and also changes
- the N and S poles are alternately arranged to adjust the air gap magnetic density to achieve the speed regulation effect.
- a disc type speed governing magnetic coupler based on a bevel gear transmission is composed of a driving disc assembly and a driven disc assembly, wherein the speed regulating device is mounted on the driven disc assembly.
- the driven disk assembly includes a driven shaft, a driven plate and a conductor ring, and the right end of the driven shaft is connected to the driven plate by a key, and a conductor ring is mounted on the right side of the driven plate.
- the active disk assembly includes a driving shaft, a driving plate, a permanent magnet assembly, a pinion shaft, a bevel pinion, a large bevel gear sleeve, a dial block and a dial pin, and the left side of the driving plate is fixedly mounted on the permanent magnet assembly.
- the magnet is magnetized in the opposite direction
- the magnet and each of the two permanent magnets have an axial through hole for arranging the permanent magnet assembly, so that the permanent magnets on the active disk assembly are alternately arranged in N and S poles, wherein the permanent magnets always become a permanent magnet and
- the yoke fixed installation structure of the same area the pinion shaft is mounted on the active disc through two radial circular through holes on the side of the active disc, a permanent magnet assembly is fixedly connected at the upper end of the pinion shaft, and a small cone is fixedly connected at the lower end
- the gear has a large bevel gear sleeve meshed with the small bevel gear, and the right side of the driving plate is connected with a driving shaft through a key, and a large bevel gear sleeve is arranged outside the driving shaft, and the dial pin fixedly connected with the dial block is inserted.
- the chute of the large bevel gear sleeve is in the straight groove of the driving shaft, and the contact between the dial
- the speed control mode in the magnetic coupler is different from the conventional magnetic coupler speed control mode, and the conventional magnetic coupler speed adjustment is only by adjusting the air gap spacing or the facing area between the permanent magnet and the conductor layer.
- the speed regulation process of this patent not only the average facing area and air gap spacing between part of the permanent magnet (the permanent magnet assembly part) and the conductor layer are changed, but also the alternating arrangement of the permanent magnet N and S poles is gradually changed. In this way, the speed regulation is realized by destroying the N and S magnetic circuits. In this way, the work done in the speed regulation process (especially the disk magnetic coupler) can be greatly reduced, so as to achieve the purpose of simple speed regulation.
- the conventional method of changing the air gap spacing or the facing area of the permanent magnet and the conductor ring is not completely used, but the portion between the permanent magnet (the permanent magnet assembly portion) and the conductor ring is changed. While averaging the area and the gap of the air gap, the alternating arrangement of the N and S poles of the permanent magnet is gradually changed. In this way, the overall relative position of the main driven disc can be changed without adjustment, and the effective use is utilized. space.
- FIG. 1 is a schematic cross-sectional view showing the working principle and structure of a disk-type variable speed magnetic coupler based on a bevel gear transmission of an embodiment.
- FIG. 2 is a quarter-sectional view showing a three-dimensional structure of a disk-type variable speed magnetic coupler based on a bevel gear transmission of an embodiment.
- FIG. 3 is a three-dimensional exploded view of the active disk assembly of the embodiment
- FIG. 4 is a schematic diagram of a three-dimensional structure of a driving disk of an embodiment.
- FIG. 5 is a three-dimensional structure diagram of a permanent magnet assembly of an embodiment.
- FIG. 6 is a three-dimensional structure diagram of a large bevel gear sleeve of an embodiment.
- FIG. 7 is a three-dimensional structure diagram of a drive shaft of an embodiment.
- FIG. 8 is a schematic diagram of a speed control principle of a disk-type speed-adjusting magnetic coupler based on a bevel gear transmission of an embodiment
- the driven disk assembly includes a driven shaft 2, a driven plate 1, a key 3, and a conductor ring 4, and the driven plate 1 is connected to the right end of the driven shaft 2 by a key 3, and A conductor ring 4 is mounted on the right end surface of the driven disk 1; as shown in FIG. 1, FIG. 2 and FIG.
- the driving disk assembly includes a driving shaft 10, a driving disk 5, a permanent magnet assembly 6, and a pinion shaft 7 a small bevel gear 11, a large bevel gear sleeve 9, a key 8, a dial 13 and a dial pin 12, and the left outer ring of the driving plate 5 is fixedly mounted with permanent magnets of the same magnetization direction (N pole or S pole) And each of the two permanent magnets has an axial through hole, and two radial holes are formed on the radial sides of the through hole, as shown in FIG.
- the inner ring of the active disk 5 is processed corresponding to the position of the circular hole and a through hole that is sized to fit the small bevel gear size 11;
- the pinion shaft 7 passes through two circular holes in the outer ring of the driving plate 5 and has a permanent magnet assembly 6 mounted on the upper end and a bevel pinion 11 mounted on the lower end,
- the bevel pinion 11 is located in the inner ring of the driving plate 5 and is fixedly fixed with the pinion shaft 7 and the permanent magnet assembly 6;
- the permanent magnet assembly 6 is composed of a permanent magnet and a yoke, and a through hole is formed on one side.
- the rounded corner is rounded to keep the gap with the driving plate 5 when rotating, and the magnetizing direction of the permanent magnet is S pole (or N pole), as shown in FIG. 5; the right side of the driving disk 5 is activated by the key 8
- the main shaft 10 is sleeved with a large bevel gear sleeve 9 and the large bevel gear sleeve is meshed with the bevel pinion 11; the left bevel gear sleeve 9 has a large bevel gear at the left end and a long sleeve at the right end.
- a cylinder, and two slant grooves are symmetrically machined on the sleeve, as shown in FIG.
- the drive shaft 10 is symmetrically machined with two straight grooves, and the right end is machined with a larger radius to maintain the large bevel gear sleeve 9 Axially fixed, as shown in FIG. 7;
- two dial pins 12 are mounted on the two through holes of the dial block 13, and the dial block 13 is sleeved on the large bevel gear sleeve 9 and can slide left and right;
- the block pin 12 is mounted on the straight groove of the drive shaft 10 and the chute of the large bevel gear sleeve 9 while maintaining a contact fit with the straight groove and the chute and can achieve axial sliding.
- Speed regulation principle the magnitude of the electromagnetic torque between the main and driven shafts of the magnetic coupler is related to the size of the air gap magnetic density.
- the dial block 13 is pulled to make an axial displacement, and the dial block 13 is fixedly connected with the dial pin 12, and the dial pin 12 is further connected with the straight slot of the drive shaft 10 and the large bevel gear sleeve 9
- the chute is simultaneously contacted, so that the dial pin 12 slides axially in the chute of the drive shaft 10, and simultaneously pushes the bevel gear sleeve 9 at a small angle in the circumferential direction, passing the left side of the large bevel gear sleeve 9.
- the large bevel gear meshes with the bevel pinion 11 to drive the rotation of the bevel pinion 11 to realize the synchronous rotation of the permanent magnet assembly 6.
- the permanent magnet assembly 6 parts of the permanent magnet and the conductor ring
- the average positive area and the average gap change, and the manner in which the N and S poles are alternately arranged changes, so the magnetic density generated by the permanent magnet disk is gradually reduced, and the electromagnetic torque generated by the coupler is also lowered, thereby generating the speed regulation.
- the effect is shown in Figure 8.
- the permanent magnets fixedly mounted on the active disk 5 are in the same magnetization direction, and the permanent magnets are always
- the permanent magnets in 6 are also in the same magnetization direction, and their magnetization directions are opposite, that is, the permanent magnets are alternately arranged in the N and S pole directions; on the other hand, by rationally designing the bevel gears on the large bevel gear sleeve 9
- the number of teeth, the circumferential angle of the chute and the number of teeth of the bevel pinion 11 ensure that the number of bevel gears corresponding to the circumferential angle of the chute is less than 1/4 of the total number of teeth of the bevel pinion 11 and greater than 1/8, that is, when the dial 13
- the angle of rotation of the bevel pinion 11 together with the permanent magnet assembly 6 after the entire stroke is slid along the straight groove on the drive shaft 10 is not higher than 90° (otherwise
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
一种基于锥齿轮传动的盘式调速磁力耦合器,涉及机械工程中的传动技术领域,其由主动盘总成(I)和从动盘总成(II)组成,其中调速装置安装在主动盘总成上。通过拨动拨块(13),使与拨块固定连接的拨块销(12)沿主动轴(10)的直槽轴向位移,由于拨块销与大锥齿轮套筒(9)斜槽的接触配合从而驱动大锥齿轮套筒轴向转动,通过若干个小锥齿轮(11)与大锥齿轮套筒上大锥齿轮的啮合将大锥齿轮套筒的转动转变为与小锥齿轮连接的永磁体总成(6)的转动,从而改变永磁体总成部分与导体环(4)之间的平均正对面积及气隙间距,同时也逐渐改变永磁体N、S极交替的排布方式以改变气隙磁密实现调速过程。
Description
本发明涉及机械工程中的传动技术领域,是一种通过非接触性连接实现力矩传递的传动装置,具体是一种基于锥齿轮传动的盘式调速磁力耦合器。它可应用于大振动的电机和负载之间,作为动力传递和调速的传动系统。
磁力耦合器利用永磁体产生的磁场传递力和运动,利用磁力耦合器对风机、泵类进行调速可以弥补特定场合下变频器的不足,一方面,磁力耦合器中主、从动盘物理上分开的结构特性可使其在各种恶劣环境中正常工作,在火力发电厂、煤矿等煤粉、炉灰、腐蚀性气体充斥的恶劣场合,磁力耦合器仍能带动风机、泵类变负载稳定运行,可靠性强,维护成本低,生产效率高;另一方面,使用磁力耦合器也可大幅度降低功率消耗,当风机、泵类的工作转速和流量控制在额定值的80%时,消耗的能量额定功率的64%,大大节约了能源和生产成本。除却节能、适合恶劣工作环境和可靠性高之外,磁力耦合器应用于风机、泵类变负载时普遍还具有以下优点:(1)主、从动盘分离,具有良好的隔震和过载保护性能,可实现软启动;(2)零部件结构简单,制造、装配和设备维护成本低;(3)没有高频率电流,不存在高次谐波和电磁干扰等问题;(4)调速机构是纯机械的非电子装置,可容忍一定的对中误差,可靠性高,系统寿命长。
江苏大学在专利201210434367.5中公开了一种啮合面积可调式异步磁力变矩器及其调速方法,通过微型电机控制一对啮合的锥齿轮,并通过输出的锥齿轮驱动螺纹丝杠旋转将电机的旋转转变为内转子基体的轴向位移,从而调节永磁体与铜条之间的啮合面积而实现调速,而本发明通过大锥齿轮套筒将拨块的轴向位移转变为大锥齿轮套筒的周向旋转,并通过锥齿轮啮合最终实现N极(或S极)永磁体的旋转运动,改变了部分永磁体与导体环之间的平均正对面积及气隙间距,同时也改变了N、S极交替排布的方式,从而调节气隙磁密以实现调速作用。
发明内容
一种基于锥齿轮传动的盘式调速磁力耦合器,由主动盘总成和从动盘总成组成,其中调速装置安装在从动盘总成上。从动盘总成包括从动轴、从动盘和导体环,从动轴右端通过键与从动盘连接,在从动盘的右侧安装有导体环。
主动盘总成包括主动轴、主动盘、永磁体总成、小齿轮轴、小锥齿轮、大锥齿轮套筒、拨块和拨块销,主动盘左侧固定安装有与永磁体总成上的磁体充磁方向相反的的永
磁体且每两个永磁体之间有一轴向通孔用于安放永磁体总成,从而使主动盘总成上的永磁体呈N、S极交替排布,其中永磁体总成为一永磁体与同等面积的轭铁固定安装的结构,小齿轮轴通过主动盘侧面两径向圆形通孔安装在主动盘上,在小齿轮轴的上端固定连接有永磁体总成,下端固定连接有小锥齿轮,另有大锥齿轮套筒与小锥齿轮啮合,同时主动盘右侧通过键连接有主动轴,主动轴外侧又套有大锥齿轮套筒,将与拨块固定连接的拨块销插入大锥齿轮套筒的斜槽与主动轴的直槽中,并保持拨块销与大锥齿轮套筒的斜槽壁与主动轴的直槽壁的接触配合。
工作原理:通过拨动拨块,使拨块连同拨块销沿从动轴的直槽产生轴向滑移,由于拨块销与大锥齿轮套筒的斜槽壁的接触配合,驱动大锥齿轮套筒产生周向转动,发生转动的大锥齿轮套筒通过与小锥齿轮的啮合作用驱动小齿轮轴连同永磁体总成同时转动,从而改变了永磁体总成部分与导体环之间的平均正对面积及气隙间距,同时也逐渐改变永磁体N、S极交替排布的方式,进而调节气隙磁密以实现调速作用。
本发明中磁力耦合器中的调速方式不同于传统磁力耦合器调速方式,传统磁力耦合器调速时仅仅是通过调整永磁体与导体层之间的气隙间距或正对面积,而在本专利的调速过程中,不仅改变了部分永磁体(永磁体总成部分)与导体层之间的平均正对面积及气隙间距,同时也逐渐改变永磁体N、S极交替排布的方式,以破坏N、S极磁路的方式实现调速,通过这种方式可以大大减小调速过程中所做的功(特别是盘式磁力耦合器),以实现简易调速的目的。
本发明的优点
(1)主动盘与从动盘之间为非接触性配合,通过主从动盘之间的气隙磁密传递转矩可以有效解决转动过程中的对中、软启动、过载保护及隔震等多方面问题。
(2)在本发明中并没有完全使用传统的改变永磁体与导体环的气隙间距或正对面积的方式,而是在改变部分永磁体(永磁体总成部分)与导体环之间的平均正对面积及气隙间距的同时,逐渐改变永磁体N、S极交替的排布方式,通过这种方式,可以在调速的同时不改变主从动盘的整体相对位置,有效利用了空间。
以下结合附图及实施例对发明作进一步说明
图1为实施例的基于锥齿轮传动的盘式调速磁力耦合器工作原理及结构剖切示意图。
图2为实施例的基于锥齿轮传动的盘式调速磁力耦合器三维结构的1/4剖面图。
图3为实施例的主动盘总成三维爆炸图
图4为实施例的主动盘的三维结构示意图
图5为实施例的永磁体总成的三维结构示意图
图6为实施例的大锥齿轮套筒的三维结构示意图
图7为实施例的主动轴的三维结构示意图
图8为实施例的基于锥齿轮传动的盘式调速磁力耦合器的调速原理示意图
如图1所示,它是由主动盘总成I与从动盘总成II组成,其中,调速机构安装在主动盘总成I中。如图1和图2所示,从动盘总成包括从动轴2、从动盘1、键3和导体环4,在所述从动轴2右端通过键3连接从动盘1,并在从动盘1右侧端面上安装有导体环4;如图1、图2和图4所示,主动盘总成包括主动轴10、主动盘5、永磁体总成6、小齿轮轴7、小锥齿轮11、大锥齿轮套筒9、键8、拨块13和拨块销12,所述主动盘5左侧外圈固定安装有同一充磁方向的永磁体(N极或S极)且每两个永磁体之间有一轴向通孔,通孔的径向两侧又加工有两圆孔,如图5所示,同时主动盘5内圈上加工有与圆孔位置对应且大小配合于小锥齿轮大小11的通孔;所述小齿轮轴7穿过主动盘5外圈上的两圆孔且上端安装有永磁体总成6,下端安装有小锥齿轮11,所述小锥齿轮11位于主动盘5的内圈中并与小齿轮轴7、永磁体总成6保持固定;所述永磁体总成6由永磁体与轭铁安装组成且一侧加工有通孔,并在两侧倒有圆角以保持旋转时与主动盘5的间隙配合,且永磁体充磁方向为S极(或N极),如图5所示;所述主动盘5右侧通过键8安装有主动轴10;所述主动轴10上套有大锥齿轮套筒9且大锥齿轮套筒与小锥齿轮11保持啮合;所述大锥齿轮套筒9左端为大锥齿轮,右端为一长套筒,且在套筒上对称加工有两斜槽,如图6所示;所述主动轴10上对称加工有两直槽,且右端加工有更大的半径以保持大锥齿轮套筒9的轴向固定,如图7所示;在所述拨块13的两通孔上安装有两拨块销12,且拨块13套在大锥齿轮套筒9上并且可以左右滑动;所述拨块销12安装在主动轴10的直槽与大锥齿轮套筒9的斜槽上且同时与直槽、斜槽保持接触配合并可以实现轴向滑动。
工作原理:当拨块13位于大锥齿轮套筒9的最右端且保持轴向固定时,主动盘总成I由动力源带动并旋转,与主动盘5上N、S极交替安装的永磁体产生相对运动,通过电磁感应原理,导体环4中产生感应涡流,感应涡流产生的感应磁场与主动盘5及永磁体总成6上的永磁体上产生的原磁场耦合并产生电磁转矩,带动从动盘总成II整体转动。
调速原理:磁力耦合器主从动轴之间的电磁转矩大小与其气隙磁密的大小相关,在
本实施例中,通过拨动拨块13,使其产生轴向位移,而拨块13与拨块销12固定连接,拨块销12又与主动轴10的直槽及大锥齿轮套筒9的斜槽同时接触配合,因此拨块销12在主动轴10的斜槽中轴向滑动的同时,又推动大锥齿轮套筒9在周向上小角度转动,通过大锥齿轮套筒9左侧的大锥齿轮与小锥齿轮11啮合驱动小锥齿轮11的转动,进而实现永磁体总成6的同步转动,当永磁体总成6旋转时,永磁体总成6部分的永磁体与导体环的平均正对面积及平均间隙发生改变,同时N、S极交替排布的方式改变,因此永磁体盘产生的磁密逐渐减小,耦合器产生的电磁转矩也会下降,从而产生调速效果,如图8所示。
特别指出,当拨块13滑移到大锥齿轮套筒9的最右端,即永磁体总成6没有发生旋转时,主动盘5上固定镶嵌的永磁体为同一充磁方向,而永磁体总成6上的永磁体也是同一充磁方向,且它们的充磁方向相反,即永磁体按N、S极方向交替排布;另一方面,通过合理设计大锥齿轮套筒9上锥齿轮的齿数、斜槽的周向角度与小锥齿轮11的齿数,保证对应斜槽周向角度的锥齿轮齿数小于小锥齿轮11的总齿数的1/4并大于1/8,即当拨块13沿着主动轴10上的直槽滑移了整个行程后小锥齿轮11连同永磁体总成6旋转的角度不高于90°(否则永磁体总成6与主动盘5发生干涉),且大于1/8以保证耦合器的调速作用。
Claims (5)
- 一种基于锥齿轮传动的盘式调速磁力耦合器,由主动盘总成和从动盘总成组成,其中调速装置安装在主动盘总成上,从动盘总成包括从动轴、从动盘和导体环,从动轴右端与从动盘通过键连接,导体环安装在从动盘右侧端面,其特征在于:主动盘总成包括主动轴、主动盘、小齿轮轴、永磁体总成、小锥齿轮、大锥齿轮套筒、拨块和拨块销,主动盘左侧固定安装有与永磁体总成上的磁体充磁方向相反的永磁体且每两个永磁体之间有一轴向通孔用于安放永磁体总成,从而使主动盘总成上的永磁体呈N、S极交替排布,其中永磁体总成为一永磁体与同等面积的轭铁固定安装的结构,小齿轮轴通过主动盘侧面两径向圆形通孔安装在主动盘上,在小齿轮轴的上端固定连接有永磁体总成且永磁体总成可在主动盘的轴向通孔中以小齿轮轴为中心旋转,在小齿轮轴下端固定连接有小锥齿轮,另有大锥齿轮套筒与小锥齿轮啮合,同时主动盘右端与主动轴通过键连接,而主动轴外侧套有大锥齿轮套筒,将与拨块固定连接的拨块销插入大锥齿轮套筒的斜槽及主动轴的直槽中,并保持拨块销与大锥齿轮套筒的斜槽壁与主动轴的直槽壁的接触配合。
- 如权利要求1所述的一种基于锥齿轮传动的盘式调速磁力耦合器,其特征在于:在主动盘左侧外圈上固定安装有与数量与永磁体极对数相同的永磁体,且每两个永磁体之间有一轴向通孔,轴向通孔的大小与永磁体总成的大小相同,轴向通孔的径向两侧又加工有两圆孔,在主动盘内圈加工有与圆孔位置对应且大小配合于小锥齿轮大小的通孔,且该通孔中心位置与外圈的径向通孔位置对应。
- 如权利要求1所述的一种基于锥齿轮传动的盘式调速磁力耦合器,其特征在于:所述永磁体总成由永磁体与轭铁安装组成且一侧加工有径向通孔,并在两侧倒有圆角以保持旋转时与主动盘5上轴向通孔的间隙配合。
- 如权利要求1所述的一种基于锥齿轮传动的盘式调速磁力耦合器,其特征在于:大锥齿轮套筒的左端为一大锥齿轮且大锥齿轮与小锥齿轮啮合,大锥齿轮套筒的右端为一空心圆筒且且套筒与主动轴为间隙配合,大锥齿轮套筒的右端圆筒上还加工有与主动轴上直槽数量相同的斜槽。
- 如权利要求1所述的一种基于锥齿轮传动的盘式调速磁力耦合器,其特征在于:大锥齿轮套筒上斜槽的周向角度所对应的大锥齿轮套筒上大锥齿轮齿数小于小锥齿轮的总齿数的1/4并大于1/8,使得当拨块沿着主动轴上的直槽滑移了整个行程后小锥齿轮连同永磁体总成旋转的角度不高于90°,否则永磁体总成与主动盘发生干涉;且大于1/8以保证耦合器的调速作用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/473,517 US10903733B2 (en) | 2017-06-19 | 2017-10-31 | Disc-type speed regulation magnetic coupler based on bevel gear drive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710461913.7 | 2017-06-19 | ||
CN201710461913.7A CN107370336B (zh) | 2017-06-19 | 2017-06-19 | 一种基于锥齿轮传动的盘式调速磁力耦合器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018233173A1 true WO2018233173A1 (zh) | 2018-12-27 |
Family
ID=60305386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/108520 WO2018233173A1 (zh) | 2017-06-19 | 2017-10-31 | 一种基于锥齿轮传动的盘式调速磁力耦合器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10903733B2 (zh) |
CN (1) | CN107370336B (zh) |
WO (1) | WO2018233173A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107370336B (zh) * | 2017-06-19 | 2019-08-02 | 江苏大学 | 一种基于锥齿轮传动的盘式调速磁力耦合器 |
US10581287B2 (en) * | 2018-01-02 | 2020-03-03 | GM Global Technology Operations LLC | Permanent magnet electric machine with variable magnet orientation |
DE102018200564A1 (de) * | 2018-01-15 | 2019-07-18 | Zf Friedrichshafen Ag | Gebermagnetanordnung und Verfahren zur Montage |
CN110165867B (zh) * | 2019-05-24 | 2024-01-26 | 安徽沃弗永磁科技有限公司 | 一种转角离合型永磁偶合器 |
CN110296037B (zh) * | 2019-06-26 | 2022-01-04 | 李楠楠 | 双层发电机以及风力发电平台 |
CN110460221B (zh) * | 2019-07-15 | 2021-07-20 | 江苏大学 | 一种磁体旋转型筒式可调速磁力耦合器 |
CN110504816B (zh) * | 2019-07-15 | 2021-03-23 | 江苏大学 | 一种单极磁体旋转式可调速笼型磁力耦合器 |
CN111664201B (zh) * | 2020-04-24 | 2021-05-18 | 清华大学 | 磁联轴器及具有该磁联轴器的动力机构 |
CN112311197B (zh) * | 2020-09-28 | 2021-12-21 | 江苏大学 | 一种90°Halbach排布双层永磁转子磁力耦合器 |
CN112636561B (zh) * | 2020-10-20 | 2022-08-23 | 江苏大学 | 一种单极磁体旋转超导耦合器 |
CN112737203A (zh) * | 2020-12-14 | 2021-04-30 | 江苏嘉瑞丰机电设备有限公司 | 一种自动调速功能的高压电机 |
CN114101091A (zh) * | 2021-11-23 | 2022-03-01 | 河南职业技术学院 | 一种基于双目视觉的物流单件抓取装置 |
CN115405745B (zh) * | 2022-09-13 | 2023-03-28 | 金华市卡德罗尼科技有限公司 | 一种瓦斯调节装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5569111A (en) * | 1994-10-11 | 1996-10-29 | The United States Of America As Represented By The Secretary Of The Navy | Permanent magnet torque/force transfer apparatus |
US5739627A (en) * | 1993-05-21 | 1998-04-14 | Magna Force, Inc. | Adjustable permanent magnet coupler |
US5903075A (en) * | 1998-06-10 | 1999-05-11 | Magna Force, Inc. | Permanent magnet coupler with soft start adjustment system |
CN102664512A (zh) * | 2012-05-09 | 2012-09-12 | 林贵生 | 一种无源永磁耦合传动、制动或负载装置 |
CN102299611B (zh) * | 2011-07-29 | 2013-03-20 | 上海普天邮通科技股份有限公司 | 一种磁力耦合可调变速器 |
CN104852538A (zh) * | 2014-02-18 | 2015-08-19 | 林英楠 | 旁路调控永磁动力装置 |
CN106712453A (zh) * | 2017-02-04 | 2017-05-24 | 奇瑞汽车股份有限公司 | 一种汽车用磁力变矩器系统 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3148269A1 (de) * | 1981-12-05 | 1983-06-09 | Karl-Heinz 7990 Friedrichshafen Linnig | Vorrichtung zum abbremsen von gegenstaenden |
US5834872A (en) * | 1993-05-21 | 1998-11-10 | Magna Force, Inc. | Adjustable magnetic coupler |
US5477093A (en) * | 1993-05-21 | 1995-12-19 | Magna Force, Inc. | Permanent magnet coupling and transmission |
US6072258A (en) * | 1999-08-04 | 2000-06-06 | Magna Force, Inc. | Permanent magnet coupler with adjustable air gaps |
AUPQ611700A0 (en) * | 2000-03-09 | 2000-03-30 | Barreiro Motor Company Pty Ltd | Electrodynamic machine |
JP2008253062A (ja) * | 2007-03-30 | 2008-10-16 | Dainippon Screen Mfg Co Ltd | 駆動力伝達装置および基板処理装置 |
US8742640B1 (en) * | 2010-04-19 | 2014-06-03 | Mag-Trans Corporation | Electric motor and magnet transmission for motor vehicle |
CN102355119B (zh) * | 2011-09-28 | 2013-11-06 | 兰州海兰德泵业有限公司 | 一种平面磁力传动耦合器 |
CN102624197B (zh) * | 2012-04-10 | 2014-02-12 | 江苏大学 | 一种径向气隙可调的调速异步磁力联轴器 |
DE102012206144A1 (de) * | 2012-04-16 | 2013-10-17 | Siemens Aktiengesellschaft | Antriebsvorrichtung für einen Kraftwagen |
CN102820762B (zh) * | 2012-06-19 | 2014-10-29 | 江苏大学 | 一种远程自动控制径向气隙的磁力调速器 |
WO2014034570A1 (ja) * | 2012-08-30 | 2014-03-06 | Nakamura Kazuhiko | 回転補助機構及びこれを備えた回転動力機構 |
CN102931806B (zh) | 2012-11-05 | 2015-07-08 | 江苏大学 | 一种啮合面积可调式异步磁力变矩器及其调速方法 |
CN103607097B (zh) * | 2013-09-11 | 2015-12-02 | 辽阳泰科雷诺科技有限公司 | 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构 |
CN105958791B (zh) * | 2016-06-28 | 2018-08-21 | 江苏大学 | 一种磁体径向移动式可调速磁力耦合器 |
CN107370336B (zh) * | 2017-06-19 | 2019-08-02 | 江苏大学 | 一种基于锥齿轮传动的盘式调速磁力耦合器 |
-
2017
- 2017-06-19 CN CN201710461913.7A patent/CN107370336B/zh active Active
- 2017-10-31 WO PCT/CN2017/108520 patent/WO2018233173A1/zh active Application Filing
- 2017-10-31 US US16/473,517 patent/US10903733B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5739627A (en) * | 1993-05-21 | 1998-04-14 | Magna Force, Inc. | Adjustable permanent magnet coupler |
US5569111A (en) * | 1994-10-11 | 1996-10-29 | The United States Of America As Represented By The Secretary Of The Navy | Permanent magnet torque/force transfer apparatus |
US5903075A (en) * | 1998-06-10 | 1999-05-11 | Magna Force, Inc. | Permanent magnet coupler with soft start adjustment system |
CN102299611B (zh) * | 2011-07-29 | 2013-03-20 | 上海普天邮通科技股份有限公司 | 一种磁力耦合可调变速器 |
CN102664512A (zh) * | 2012-05-09 | 2012-09-12 | 林贵生 | 一种无源永磁耦合传动、制动或负载装置 |
CN104852538A (zh) * | 2014-02-18 | 2015-08-19 | 林英楠 | 旁路调控永磁动力装置 |
CN106712453A (zh) * | 2017-02-04 | 2017-05-24 | 奇瑞汽车股份有限公司 | 一种汽车用磁力变矩器系统 |
Also Published As
Publication number | Publication date |
---|---|
US10903733B2 (en) | 2021-01-26 |
US20200153326A1 (en) | 2020-05-14 |
CN107370336A (zh) | 2017-11-21 |
CN107370336B (zh) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018233173A1 (zh) | 一种基于锥齿轮传动的盘式调速磁力耦合器 | |
WO2018000869A1 (zh) | 一种磁体径向移动式可调速磁力耦合器 | |
CN103326538B (zh) | 永磁智能调速节能装置 | |
CN206807260U (zh) | 一种新型磁齿轮装置 | |
WO2016078039A1 (zh) | 一种磁性传动装置 | |
CN104506015B (zh) | 一种磁性传动装置 | |
CN102570754A (zh) | 一种用于低速大转矩的永磁游标电机 | |
CN110460221A (zh) | 一种磁体旋转型筒式可调速磁力耦合器 | |
CN104953779A (zh) | 磁性齿轮低速大转矩电机 | |
CN103607097A (zh) | 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构 | |
WO2021000588A1 (zh) | 一种同轴双转子变速电磁传动器 | |
WO2023207003A1 (zh) | 一种多组多盘式多气隙联动调节型磁力耦合器 | |
CN103490587A (zh) | 一种用于永磁同步传动装置的套筒型聚磁式磁路结构 | |
CN202206274U (zh) | 同轴磁齿轮 | |
CN202405975U (zh) | 一种用于低速大转矩的永磁游标电机 | |
TWI452825B (zh) | 整合外轉式直流無刷馬達的同心式磁性齒輪減速機 | |
RU111367U1 (ru) | Магнитный редуктор | |
CN204696889U (zh) | 磁性齿轮低速大转矩电机 | |
RU2545166C1 (ru) | Магнитный редуктор | |
TWI675530B (zh) | 調速式磁性齒輪電機及含有其的馬達、發電機及電動載具 | |
CN203457031U (zh) | 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构 | |
CN207218508U (zh) | 一种永磁水密转矩传动装置 | |
CN203457029U (zh) | 一种用于永磁同步传动装置的套筒型聚磁式磁路结构 | |
RU169815U1 (ru) | Электромагнитная муфта привода насоса подачи топлива авиационного двигателя | |
CN107579635B (zh) | 一种转子式永磁水密转矩传动轴 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17914823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17914823 Country of ref document: EP Kind code of ref document: A1 |