WO2020125080A1 - Ct系统和用于ct系统的探测装置 - Google Patents

Ct系统和用于ct系统的探测装置 Download PDF

Info

Publication number
WO2020125080A1
WO2020125080A1 PCT/CN2019/105147 CN2019105147W WO2020125080A1 WO 2020125080 A1 WO2020125080 A1 WO 2020125080A1 CN 2019105147 W CN2019105147 W CN 2019105147W WO 2020125080 A1 WO2020125080 A1 WO 2020125080A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
detectors
detector
low
rows
Prior art date
Application number
PCT/CN2019/105147
Other languages
English (en)
French (fr)
Inventor
张丽
陈志强
黄清萍
孙运达
金鑫
沈乐
李亮
赵眺
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to EP19897922.1A priority Critical patent/EP3901669A4/en
Priority to SG11202103349RA priority patent/SG11202103349RA/en
Priority to JP2021518535A priority patent/JP7145326B2/ja
Priority to US17/309,684 priority patent/US11768163B2/en
Publication of WO2020125080A1 publication Critical patent/WO2020125080A1/zh

Links

Images

Classifications

    • G01V5/226
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • G01V5/224
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/423Imaging multispectral imaging-multiple energy imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/639Specific applications or type of materials material in a container

Definitions

  • the present application relates to the field of radiation detection, in particular to a CT system and a detection device for the CT system.
  • CT technology based on radiographic imaging is widely used in security inspections, especially for checking suspicious items in luggage items.
  • CT technology based on radiographic imaging the CT data reconstruction can obtain the characteristic distribution data of the scanned object in the fault, and through the analysis of the characteristic data, the common suspected substances in the luggage can be identified.
  • the commonly used dual-energy CT system adopts a double-layer detector structure to obtain dual-energy projection data to distinguish the detected object.
  • the dual-layer detector structure in the current CT system can only provide dual-energy projection data at most, which limits the ability to distinguish materials.
  • Embodiments of the present application provide a CT system and a detection device for a CT system. By using multi-energy projection data, the ability to distinguish materials is improved.
  • a detection device for a CT system includes:
  • High-energy detector assembly which includes multiple rows of high-energy detectors arranged along a predetermined trajectory
  • the low-energy detector assembly is stacked on top of the high-energy detector assembly.
  • the low-energy detector assembly includes multiple rows of low-energy detectors arranged at intervals along a predetermined track;
  • the row number of the low energy detector is smaller than that of the high energy detector
  • Each row of low-energy detectors covers a row of high-energy detectors.
  • any two adjacent rows of high-energy detectors are closely arranged.
  • multiple rows of high-energy detectors are arranged at intervals along a predetermined trajectory.
  • At least one row of high-energy detectors not covered by the low-energy detector is disposed between any two adjacent rows of high-energy detectors covered by the low-energy detector.
  • the high-energy detectors covered by the low-energy detector and the high-energy detectors not covered by the low-energy detector are alternately arranged according to a predetermined trajectory.
  • the second preset distance is 5 to 80 mm; or,
  • the second preset pitch is 30 to 50 mm.
  • the predetermined trajectory is a circular arc.
  • a detection device for a CT system includes:
  • the first layer detector assembly includes a plurality of rows of first detectors arranged along a predetermined trajectory
  • the second layer detector assembly includes a plurality of rows of second detectors arranged at intervals along a predetermined trajectory, ..., Nth layer detection
  • the detector assembly includes multiple rows of Nth detectors arranged at intervals along a predetermined trajectory
  • the energy corresponding to the peak energy response of the first detector, the energy corresponding to the peak energy response of the second detector, ..., the energy corresponding to the peak energy response of the Nth detector sequentially decrease;
  • Each row of detectors in the k+1th layer of detector assemblies covers a row of detectors in the kth layer of detector assemblies.
  • a CT system includes:
  • Scanning channel used for the object to be checked in and out of the CT system
  • the ray source connected to the slip ring;
  • a detection device disposed opposite to the ray source and connected to the slip ring.
  • the detection device is the device provided by the embodiment of the present application.
  • the CT system further includes: a data processing module configured to reconstruct a CT image of the object under inspection based on the data signal output by the detection device.
  • the detection device includes a high-energy detector assembly and a low-energy detector assembly stacked with the high-energy detector assembly
  • the high-energy detector assembly includes an arrangement along a predetermined trajectory Multiple rows of high-energy detectors
  • the low-energy detector assembly includes multiple rows of low-energy detectors arranged at intervals along the predetermined trajectory, because the number of rows of low-energy detectors is smaller than that of high-energy detectors, and each row of low-energy detectors covers one Rows of high-energy detectors, so the rays emitted by the ray source can have three ways to penetrate the detection device, so that three-energy projection images can be obtained, and the resolution of the material is improved.
  • FIG. 1 shows a schematic structural diagram of a CT system provided by some embodiments of the present application
  • FIG. 2 shows an exemplary structural schematic diagram of a detection device for a CT system provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a single-row detector provided by some embodiments of the present application.
  • FIG. 4 shows a side view of the detection device in FIG. 2;
  • FIG. 5 shows the energy response curves of the low-energy detector and the high-energy detector in the detection device in FIG. 2;
  • FIG. 6 shows a side view of a detection device provided by another embodiment of the present application.
  • FIG. 7 shows a side view of a detection device provided by yet another embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a CT system provided by an embodiment of the present application.
  • the CT system includes: a scanning channel 1, a ray source 2, a detection device 3, a slip ring 4, a control device 5, and a data processing device 6.
  • the object to be inspected enters and exits the CT system through the scanning channel 1 along the conveying direction V.
  • the ray source 2 is connected to the slip ring and is used to emit a ray beam.
  • the ray source 2 may be various commonly used X-ray machines and accelerators, or may be a device capable of emitting X-rays or ⁇ -rays such as radioisotopes and synchrotron radiation light sources.
  • the detection device 3 is arranged opposite to the radiation source 2, and the detection device 3 is connected to the slip ring 4.
  • the detection device 3 receives the radiation beam emitted by the radiation source 2 and passing through the object to be inspected.
  • the slip ring 4 rotates around the scanning channel 1.
  • the rotation axis of the slip ring 4 is substantially parallel to the conveying direction V of the scanning channel 1 to convey the object to be inspected.
  • the slip ring 4 rotates according to preset scanning parameters to drive the ray source 2 and the detection device 3 to rotate around the object to be inspected, thereby completing the rotation scanning of the object to be inspected.
  • the control device 5 controls the radiation emission of the radiation source 2 and the collection of the data signal output by the detection device 3. In addition, the control device 5 is also used to control the operation of the scanning channel 1 and the slip ring 4.
  • the data processing device 6 performs processing based on the data signal generated by the detection device 3 during the scanning of the object to be inspected, thereby reconstructing the CT image of the object to be inspected.
  • FIG. 2 shows a schematic structural diagram of a detection device 3 provided by an embodiment of the present application.
  • the detection device 3 includes:
  • the high-energy detector assembly 31 includes multiple rows of high-energy detectors 311 arranged along a predetermined trajectory.
  • the low-energy detector assembly 32 is stacked on the high-energy detector assembly 31.
  • the low-energy detector assembly 32 includes a plurality of rows of low-energy detectors 321 arranged at intervals along a predetermined trajectory.
  • the low-energy detector assembly 32 is disposed on the side close to the ray source 2, and the high-energy detector assembly 31 is disposed on the side away from the ray source 2. In other words, the radiation emitted by the radiation source 2 first enters the low energy detector 321.
  • the high-energy detector assembly 31 includes a surface array high-energy detector 311 arranged along a circular arc trajectory N indicated by a broken line with an arrow in FIG. 2.
  • the high energy detectors of the surface array include multiple rows of high energy detectors 311, and any two adjacent rows of high energy detectors 311 are closely arranged. In other words, the spacing between any two adjacent rows of high-energy detectors 311 is infinitely close to zero.
  • the center of each high-energy detection unit of the surface array may be distributed on an arc centered on the focal point of the ray source 2.
  • the predetermined trajectory arranged by the multiple rows of high-energy detectors is a straight line parallel to the transmission direction V.
  • FIG. 3 shows a schematic structural diagram of a single-row detector provided by an embodiment of the present application.
  • the single-row detector here may be a single-row low-energy detector or a single-row high-energy detector.
  • a single-row detector is formed by a plurality of detection units arranged according to a predetermined trajectory. Among them, each detection unit independently outputs a data.
  • multiple detection units may be arranged continuously or at intervals.
  • each row of high-energy detectors includes a plurality of high-energy detection units arranged according to a predetermined trajectory. Referring to FIG. 2, a plurality of high-energy detection units are arranged along the arc-shaped trajectory M in FIG. 2. Optionally, multiple high-energy detection units in each row of high-energy detectors may be arranged along a straight line.
  • the arrangement trajectory of the high-energy detection units in the high-energy detector may be a straight line substantially parallel to the transmission direction V of the scanning channel. That is to say, a plurality of high-energy detection units are arranged according to the conveying direction of the scanning channel.
  • the arrangement trajectory of the high-energy detection unit in the high-energy detector can also be an arc with the focus of the ray source as the center.
  • the low-energy detector assembly 32 includes multiple rows of low-energy detectors 321 arranged at intervals according to the circular arc trajectory N in FIG. 2.
  • the distance between two adjacent low-energy detectors 321 may be equal or not.
  • the distance between two adjacent rows of low-energy detectors is equal.
  • the interval between the low energy detectors 31 may be 5 to 80 mm, 10 to 70 mm, 20 to 60 mm, 30 to 50 mm, 35 to 45 mm, 36 to 40 mm, or 38 mm. Specifically, it can be set according to the needs of the inspected object.
  • each row of low-energy detectors includes a plurality of low-energy detection units arranged according to a predetermined trajectory.
  • multiple low-energy detection units in each row of low-energy detectors are also arranged along the arc-shaped trajectory in FIG. 2.
  • multiple low detection units in each row of low energy detectors may also be arranged in a line parallel to the conveying direction V.
  • the number of rows of the low-energy detector 321 is smaller than that of the high-energy detector 311, and each row of the low-energy detector 321 covers one row of the high-energy detector 321. Since the number of rows of the low energy detector 321 is smaller than that of the high energy detector 321, the high energy detector assembly includes a high energy detector covered by the low energy detector and a high energy detector not covered by the low energy detector.
  • FIG. 4 shows a side view of the detection device in FIG. 2.
  • FIG. 5 shows the energy response curves of the low-energy detector and the high-energy detector in FIG. 2.
  • the X-rays emitted by the ray source 1 have three ways to penetrate the detection device: X-rays directly enter the low-energy detector 321 and deposit, The X-rays penetrating the low-energy detector 321 then enter the high-energy detector covered by the low-energy detector for deposition, and the X-rays directly enter and deposit the high-energy detector not covered by the low-energy detector.
  • the high-energy detector assembly since the number of rows of the low-energy detector 321 is smaller than that of the high-energy detector 311, the high-energy detector assembly includes only high-energy detectors that are not covered by the low-energy detector, so X-rays can be directly deposited on the unenergy-detected High-energy detector covered by the detector.
  • each row of low-energy detectors 321 covers a row of high-energy detectors 321, rays penetrating the low-energy detectors can be deposited on the high-energy detectors covered by the low-energy detectors.
  • the solid line represents the first energy response curve of the low-energy detector
  • the dashed line represents the second energy response curve of the high-energy detector covered by the low-energy detector
  • the dot-and-dash line represents the non-low energy
  • the third energy response curve of the high energy detector covered by the detector is the solid line.
  • the first energy response of the low-energy detector 321 is more significant in the low-energy section.
  • the third energy response of the high-energy detector that is not covered by the low-energy detector is more significant in the high-energy section.
  • the high-energy detector covered by the low-energy detector has a second energy response different from the first energy response, and the second energy response is the first The product of the energy response and the third energy response.
  • the second energy response is more pronounced in the intermediate energy band between the low energy band and the high energy band.
  • the energy of photons deposited in each type of detector has the largest proportion different.
  • the energy corresponding to the peak value of the first energy response of the low energy detector the energy corresponding to the peak value of the second energy response of the high energy detector covered by the low energy detector, and the first energy response of the high energy detector not covered by the low energy detector.
  • the CT system using the detector device provided by the embodiment of the present application can acquire the three-energy projection data of the object to be inspected.
  • the three-energy projection image can describe the attenuation coefficient function of the scanned material more accurately, and thus has stronger material resolution.
  • no other device is provided between the low-energy detector assembly and the high-energy detector assembly, in order to realize that the rays emitted by the ray source can be directly deposited on the high-energy detector not covered by the low-energy detector, and It is deposited on the high-energy detector covered by the low-energy detector, so that the three-energy projection data can be obtained by using the two-layer detector assembly to improve the resolution of the material.
  • the attenuation coefficient function of material A has a K-edge jump
  • the attenuation coefficient function of material B does not have a K-edge jump, but it is generally the same as material A.
  • the attenuation coefficient functions are similar.
  • K-edge is the binding energy of atomic K layer electrons. When the photon energy exceeds K-edge, the photoelectric effect will occur between the atomic K layer electron and photon, and the atomic attenuation coefficient function will produce a jump.
  • the attenuation coefficient of material A reconstructed from the dual-energy projection data is an average of the attenuation coefficient function of material A on the X-ray spectrum, that is, the equivalent attenuation coefficient, which The equivalent attenuation coefficient of the reconstructed material B is very close, that is, the material A and the material B cannot be distinguished from the dual-energy projection data.
  • the detection device provided in the embodiment of the present application can provide three-energy projection data, and the three-energy projection data can give equivalent attenuation coefficients under three different energy spectra. Compared with the dual-energy equivalent attenuation coefficients, one-dimensional data is used. To reflect the existence of K-edge jump, which can distinguish material A and material B, that is, improve the ability to distinguish materials.
  • the low-energy detector assembly 32 is arranged on the side close to the ray source 2 and the high-energy detector assembly 31 is not arranged on the side close to the ray source 2 in order to realize the radiation emitted by the ray source
  • the low-energy detector assembly can be penetrated to enter the high-energy detector covered by the low-energy detector, thereby obtaining projection data having a second energy response.
  • the high-energy detector assembly 31 is disposed on the side close to the ray source 2, and the low-energy detector assembly 32 is disposed on the side far from the ray source 2, the three-energy projection data cannot be obtained.
  • the thickness of the high-energy detector is large, so all the photons in the rays will be deposited in the high-energy detector. If the high-energy detector assembly 31 is disposed on the side close to the ray source 2, no photons will be incident in the low-energy detector covered by the high-energy detector, so that only dual-energy projection data can be obtained.
  • the detection crystal in the high-energy detector is generally thick, so the high-energy detector assembly provided on the side far away from the ray source 2 can completely absorb the X-ray photons emitted by the ray source, so the detection efficiency of the detection device in the embodiment of the present application is high, The image noise is small and the penetration is strong.
  • the high energy detector covered by the low energy detector has a second energy response
  • the high energy detector not covered by the low energy detector has a third energy response.
  • the high energy detection unit in the high energy detector assembly can be calibrated or calibrated.
  • the relationship between the first data and the second data and the third data is established.
  • the first data is used as the independent variable
  • the second data and the third data are used as the dependent variable to establish the relationship between the first data and the second data and the third data, so as to obtain the second data and the
  • the weighted sum of the third data estimates the first data, the weight corresponding to the second data and the weight corresponding to the third data.
  • each high-energy detection unit in the high-energy detector covered by the low-energy detector will cover the third of the low-energy detection unit of the high-energy detection unit according to the pre-calibrated weights of the second data and the third data.
  • the data and the second data of the high-energy detection unit are weighted and summed to estimate the estimated projection data of each high-energy detection unit in the high-energy detector covered by the low-energy detector when it is not covered by the low-energy detector.
  • the estimated projection data corresponding to each high-energy detection unit in the high-energy detector covered by the low-energy detector is combined with the projection data output by the high-energy detection unit in other high-energy detectors not covered by the low-energy detector, thereby The projection data of the high-energy detector with only the third energy response is formed, and then the single-energy three-dimensional reconstruction result of the inspected object is given.
  • FIG. 6 shows a side view of a detection device provided by another embodiment of the present application.
  • the detection device shown in FIG. 6 differs from the detection device shown in FIG. 2 in that:
  • the multiple rows of high-energy detectors in the high-energy detector assembly are arranged at intervals along a predetermined trajectory.
  • the distance between any two rows of high-energy detectors can be equal or unequal.
  • any two adjacent rows of high-energy detectors can be made to have an equal spacing.
  • the row spacing of the low-energy detector is greater than that of the high-energy detector.
  • At least one row of high-energy detectors not covered by the low-energy detector is provided between any two adjacent rows of high-energy detectors that are covered by the low-energy detector .
  • the high-energy detectors covered by the low-energy detectors and the high-energy detectors not covered by the low-energy detectors are alternately arranged according to a predetermined trajectory to ensure the projection data with the second energy response and the projection data with the third energy response Uniform distribution, thereby improving the image quality of the detected object, to further improve the resolution of the material.
  • An embodiment of the present application further provides a detection device.
  • the detection device includes:
  • the first-layer detector assembly, the second-layer detector assembly, ..., the Nth-layer detector assembly are stacked, and N is an integer greater than 2.
  • the first layer detector assembly includes a plurality of rows of first detectors arranged along a predetermined trajectory
  • the second layer detector assembly includes a plurality of rows of second detectors arranged at intervals along a predetermined trajectory
  • Nth layer detection The detector assembly includes a plurality of rows of Nth detectors arranged at intervals along a predetermined trajectory.
  • the energy corresponding to the peak energy response of the first detector, the energy corresponding to the peak energy response of the second detector, ..., the energy corresponding to the peak energy response of the Nth detector sequentially decrease;
  • Each row of detectors in the k+1th layer of detector assemblies covers a row of detectors in the kth layer of detector assemblies.
  • the detection device provided with the three-layer and above three-layer detector assembly according to the embodiment of the present application is similar to the detection device including the two-layer detector assembly in combination with FIGS. 2 to 6, and will not be repeated here.

Abstract

一种CT系统和用于CT系统的探测装置(3)。该装置(3)包括:高能探测器组件(31),高能探测器组件(31)包括沿预定轨迹排布的多排高能探测器(311);低能探测器组件(32),与高能探测器组件(31)层叠设置,低能探测器组件(32)包括沿预定轨迹间隔排布的多排低能探测器(321);其中,低能探测器(321)的排数小于高能探测器(311)的排数;每排低能探测器(321)均覆盖一排高能探测器(311)。CT系统和用于CT系统的探测装置(3),提高了对材料的分辨能力。

Description

CT系统和用于CT系统的探测装置
相关申请的交叉引用
本申请要求享有于2018年12月17日提交的名称为“CT系统和用于CT系统的探测装置”的中国专利申请201811542627.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及辐射检测领域,特别是涉及一种CT系统和用于CT系统的探测装置。
背景技术
目前,基于射线辐射成像的计算机断层扫描技术被广泛应用于安全检查,尤其用于检查行李物品中的可疑物品。在基于射线辐射成像的CT技术中,通过CT数据重建可以得到断层内的被扫描物体的特征分布数据,通过对特征数据进行分析,可实现对行李中常见的嫌疑物质进行识别。
目前常用双能CT系统采用双层探测器结构,获取双能投影数据,以对被检测物体进行分辨。但是,目前的CT系统中的双层探测器结构最多只能提供双能投影数据,限制了对材料的分辨能力。
发明内容
本申请实施例提供一种CT系统和用于CT系统的探测装置,通过利用多能投影数据,提高了对材料的分辨能力。
根据本申请实施例的一方面,提供一种用于CT系统的探测装置,该装置包括:
高能探测器组件,高能探测器组件包括沿预定轨迹排布的多排高能探测器;
低能探测器组件,与高能探测器组件层叠设置,低能探测器组件包括沿预定轨迹间隔排布的多排低能探测器;
其中,低能探测器的排数小于高能探测器的排数;
每排低能探测器均覆盖一排高能探测器。
在一个实施例中,任意相邻两排高能探测器紧密设置。
在一个实施例中,多排高能探测器沿预定轨迹间隔排布。
在一个实施例中,任意相邻两排高能探测器之间均具有第一预设间距。
在一个实施例中,被低能探测器覆盖的任意相邻两排高能探测器之间,设置有至少一排未被低能探测器覆盖的高能探测器。
在一个实施例中,被低能探测器覆盖的高能探测器,与未被低能探测器覆盖的高能探测器按预定轨迹交替排布。
在一个实施例中,任意相邻两排低能探测器之间均具有第二预设间距。
在一个实施例中,第二预设间距为5至80毫米;或,
第二预设间距为30至50毫米。
在一个实施例中,预定轨迹为圆弧。
根据本申请实施例的另一方面,提供一种用于CT系统的探测装置,该装置包括:
层叠设置的第一层探测器组件、第二层探测器组件、……、第N层探测器组件,N为大于2的整数;
其中,第一层探测器组件包括沿预定轨迹排布的多排第一探测器,第二层探测器组件包括沿预定轨迹间隔排布的多排第二探测器,……,第N层探测器组件包括沿预定轨迹间隔排布的多排第N探测器;
第一探测器的能量响应峰值对应的能量、第二探测器的能量响应峰值对应的能量、……、第N探测器的能量响应峰值对应的能量依次减小;
第k+1层探测器组件中探测器的排数小于第k层探测器组件中探测器的排数,k=1,2,……,N-1;
第k+1层探测器组件中的每排探测器均覆盖第k层探测器组件中的一排探测器。
根据本申请实施例的再一方面,提供一种CT系统,该系统包括:
扫描通道,用于被检查物体进出CT系统;
滑环,用于围绕扫描通道旋转;
与滑环连接的射线源;以及
与射线源相对设置并连接在滑环上的探测装置,探测装置是如本申请实施例提供的装置。
在一个实施例中,CT系统还包括:数据处理模块,用于基于探测装置输出的数据信号重建被检查物体的CT图像。
根据本申请实施例中的CT系统和用于CT系统的探测装置,探测装置包括高能探测器组件以及与高能探测器组件层叠设置的低能探测器组件,高能探测器组件包括沿预定轨迹排布的多排高能探测器,低能探测器组件包括沿所述预定轨迹间隔排布的多排低能探测器,由于低能探测器的排数小于高能探测器的排数,并且每排低能探测器均覆盖一排高能探测器,因此射线源发出的射线可以具有三种穿透探测装置的方式,从而可以获取三能投影图像,提高了对材料的分辨率。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1示出本申请一些实施例提供的CT系统的结构示意图;
图2示出本申请一实施例提供的用于CT系统的探测装置的示例性结构示意图;
图3示出本申请一些实施例提供的单排探测器的结构示意图;
图4示出图2中探测装置的侧视图;
图5示出图2中探测装置中低能探测器和高能探测器的能量响应曲线;
图6示出本申请另一实施例提供的探测装置的侧视图;
图7示出本申请再一实施例提供的探测装置的侧视图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的CT系统和用于CT系统的探测装置,应注意,这些实施例并不是用来限制本申请公开的范围。
图1示出本申请实施例提供的CT系统的结构示意图。如图1所示,CT系统包括:扫描通道1、射线源2、探测装置3、滑环4、控制装置5和数据处理装置6。
在本申请的实施例中,被检查物体沿传送方向V通过扫描通道1进出CT系统。
射线源2与滑环连接,用于发出射线束。射线源2可以是常用的各种型号的X光机、加速器,也可以是放射性同位素、同步辐射光源等能够发出X射线或γ射线的装置。
探测装置3与射线源2相对设置,并且探测装置3连接在滑环4上。探测装置3接收射线源2发出的穿过被检查物体的射线束。
滑环4围绕扫描通道1旋转。其中,滑环4的旋转轴线与扫描通道1 传送被检查物体的传送方向V大致平行。滑环4按照预设的扫描参数旋转,以带动射线源2和探测装置3围绕被检查物体旋转,从而完成对被检查物体的旋转扫描。
控制装置5控制射线源2的辐射发射,以及控制对探测装置3输出的数据信号的采集。并且,控制装置5还用于控制扫描通道1和滑环4的动作。
数据处理装置6基于探测装置3在扫描被检查物体的过程中产生的数据信号进行处理,从而重建被检查物品的CT图像。
图2示出本申请一实施例提供的探测装置3的结构示意图。参考图2,探测装置3包括:
高能探测器组件31,高能探测器组件31包括沿预定轨迹排布的多排高能探测器311。
低能探测器组件32,与高能探测器组件31层叠设置,低能探测器组件32包括沿预定轨迹间隔排布的多排低能探测器321。
其中,低能探测器组件32设置于靠近射线源2的一侧,高能探测器组件31设置于远离射线源2的一侧。也就是说,射线源2发出的射线首先进入低能探测器321。
继续参考图2,高能探测器组件31包括沿图2中带箭头的虚线所示的圆弧轨迹N排列的面阵列高能探测器311。其中,面阵列的高能探测器包括多排高能探测器311,并且任意相邻两排的高能探测器311紧密设置。换句话说,任意相邻两排的高能探测器311之间的间距无限趋近于0。可选地,面阵列的每个高能探测单元的中心可以分布在以射线源2的焦点为圆心的圆弧上。
可选地,多排高能探测器排布的预定轨迹为与传送方向V平行的直线。
图3示出本申请实施例提供的单排探测器的结构示意图。此处的单排探测器可以为单排的低能探测器或单排的高能探测器。如图3所示,单排探测器是由多个探测单元按照预定轨迹排布形成的。其中,每个探测单元独立输出一个数据。可选地,多个探测单元之间可以连续排布也可以间隔 排布。
在本申请的实施例中,每排高能探测器包括多个按预定轨迹排布的高能探测单元。参考图2,多个高能探测单元沿图2中的弧形轨迹M排布。可选地,每排高能探测器中的多个高能探测单元可沿直线排布。
在本申请的实施例中,高能探测器中的高能探测单元的排布轨迹可以为与扫描通道的传送方向V大致平行的直线。也就是说,多个高能探测单元按照扫描通道的传送方向排布。高能探测器中的高能探测单元的排布轨迹也可以为以射线源的焦点为圆心的圆弧。
在本申请的实施例中,低能探测器组件32包括多排按图2中的圆弧轨迹N间隔排布的低能探测器321。可选地,相邻两个低能探测器321之间的间距可以相等,也可以不相等。
可选地,每相邻两排低能探测器之间的间距相等。低能探测器31之间的间距可以是5至80毫米、10至70毫米、20至60毫米、30至50毫米、35至45毫米、36至40毫米,或者38毫米。具体地,可根据被检查物体的需求进行设定。
其中,每排低能探测器均包括多个按预定轨迹排布的低能探测单元。参考图2,每排低能探测器中的多个低能探测单元也沿图2中的弧形轨迹排布。可选地,每排低能探测器中的多个低探测单元也可以按照与传送方向V平行的直线排布。
在本申请的实施例中,低能探测器321的排数小于高能探测器311的排数,并且每排低能探测器321均覆盖一排高能探测器321。由于低能探测器321的排数小于高能探测器321的排数,因此高能探测器组件中包括被低能探测器覆盖的高能探测器和未被低能探测器覆盖的高能探测器。
图4示出图2中探测装置的侧视图。图5示出图2中低能探测器和高能探测器的能量响应曲线。如图4所示,在使用CT系统的过程中,通过利用图2中的探测装置,射线源1发出的X射线有三种穿透探测装置的方式:X射线直接进入低能探测器321并沉积,穿透低能探测器321的X射线再进入被低能探测器覆盖的高能探测器沉积,X射线直接进入未被低能探测器覆盖的高能探测器并沉积。
其中,由于低能探测器321的排数小于高能探测器311的排数,因此高能探测器组件中才包括未被低能探测器覆盖的高能探测器,因此X射线才可以直接沉积在未被低能探测器覆盖的高能探测器。
由于每排低能探测器321均覆盖一排高能探测器321,因此穿透低能探测器的射线可以沉积在被低能探测器覆盖的高能探测器。
如图5所示,实线代表的是低能探测器的第一能量响应曲线、虚线代表的是被低能探测器覆盖的高能探测器的第二能量响应曲线、点划线代表的是未被低能探测器覆盖的高能探测器的第三能量响应曲线。
参考图4和图5,当X射线沉积在低能探测器后,低能探测器321的第一能量响应在低能段比较显著。
当X射线直接沉积在未被低能探测器覆盖的高能探测器时,未被低能探测器覆盖的高能探测器的第三能量响应在高能段较显著。
当X射线穿透低能探测器沉积在被低能探测器覆盖的高能探测器后,被低能探测器覆盖的高能探测器具有和第一能量响应不同的第二能量响应,第二能量响应是第一能量响应和第三能量响应的乘积。参见图5,第二能量响应在低能段和高能段之间的中间能段比较显著。
继续参考图5,对于低能探测器、被低能探测器覆盖的高能探测器以及未被低能探测器覆盖的高能探测器这三类探测器而言,每类探测器中沉积比例最大的光子的能量不同。
也就是说,低能探测器的第一能量响应的峰值对应的能量、被低能探测器覆盖的高能探测器的第二能量响应的峰值对应的能量、未被低能探测器覆盖的高能探测器的第三能量响应的峰值对应的能量依次增加。
因此,使用本申请实施例提供的探测器装置的CT系统可以获取被检查物体的三能投影数据。相比于双能投影图像,三能投影图像能更准确地描述被扫描材料的衰减系数函数,从而具有更强的材料分辨能力。
在本申请的实施例中,低能探测器组件和高能探测器组件之间未设置其他器件,是为了实现射线源射出的射线可以直接在未被低能探测器覆盖的高能探测器沉积,并实现在被低能探测器覆盖的高能探测器上沉积,从而实现利用两层探测器组件得到三能投影数据,以提高对材料的分辨能 力。
作为一个示例,对于两种不同的材料A和材料B,其中材料A的衰减系数函数存在K-edge跳变,而材料B的衰减系数函数不存在K-edge跳变,但整体上与材料A的衰减系数函数相近。其中,K-edge是原子K层电子的结合能。当光子能量超过K-edge时,原子K层电子与光子作用将发生光电效应,原子的衰减系数函数将产生跳变。
由于X射线能谱存在较明显的能量展宽,从双能投影数据重建出的材料A的衰减系数是材料A的衰减系数函数在X射线能谱上的一种平均,即等效衰减系数,它与重建出的材料B的等效衰减系数很接近,即无法从双能投影数据分辨材料A和材料B。
本申请实施例提供的探测装置可以提供三能投影数据,三能投影数据可以给出三个不同能谱下的等效衰减系数,相比于双能等效衰减系数,多出一维数据用来体现K-edge跳变是否存在,从而能区分材料A和材料B,即提高了对材料的分辨能力。
在本申请的实施例中,将低能探测器组件32设置于靠近射线源2的一侧,而未将高能探测器组件31设置于靠近射线源2的一侧,是为了实现射线源发出的射线可以穿透低能探测器组件,从而进入被低能探测器覆盖的高能探测器,进而得到具有第二能量响应的投影数据。
若将高能探测器组件31设置于靠近射线源2的一侧,而将低能探测器组件32设置于远离射线源2的一侧,则无法获取三能投影数据。一般地,高能探测器的厚度较大,因此射线中的全部光子将在高能探测器中全部沉积。若将高能探测器组件31设置于靠近射线源2的一侧,则会导致被高能探测器覆盖的低能探测器中没有光子射入,从而只能获取双能投影数据。
高能探测器中的探测晶体一般较厚,因此设置于远离射线源2一侧的高能探测器组件可以完全吸收射线源发射的X射线光子,因此本申请实施例中的探测装置的探测效率高、图像噪声较小且穿透力强。
在本申请的实施例中,被低能探测器覆盖的高能探测器具有第二能量响应,而未被低能探测器覆盖的高能探测器具有第三能量响应。为了进一 步提高被检查物体的图像质量,以及提高高能探测器组件中具有第三能量响应的投影数据的均匀性和准确性,可对高能探测器组件中的高能探测单元进行标定或校准。
作为一个示例,首先获取未被低能探测器覆盖时,高能探测器中多个高能探测单元分别输出的第一数据;然后将低能探测器覆盖在高能探测器上,以获取被低能探测器覆盖时,高能探测器中的多个高能探测单元分别输出的第二数据,以及和低能探测器中多个低能探测单元分别输出的第三数据。然后,根据多个第一数据、多个第二数据和多个第三数据,建立第一数据与第二数据和第三数据的关系。
作为一个具体示例,以第一数据作为自变量,第二数据和第三数据作为因变量,建立第一数据与第二数据、第三数据之间的关系,从而求取当利用第二数据和第三数据加权求和估计第一数据时,第二数据所对应的权重和第三数据所对应的权重。
对于探测装置中,被低能探测器覆盖的高能探测器中的每个高能探测单元,根据预先标定的第二数据的权重和第三数据的权重,将覆盖高能探测单元的低能探测单元的第三数据和该高能探测单元的第二数据进行加权求和,估计出被低能探测器覆盖的高能探测器中每个高能探测单元,在未被低能探测器覆盖时的估计投影数据。
然后,将被低能探测器覆盖的高能探测器中每个高能探测单元所对应的估计投影数据,与其他未被低能探测器覆盖的高能探测器中的高能探测单元输出的投影数据相结合,从而构成只具有第三能量响应的高能探测器的投影数据,进而给出被检查物体的单能三维重建结果。
通过提高高能探测器组件中高能探测器输出数据的一致性,可以得到被检查物体的更多数据,提高了数据的均匀性和图像质量,从而进一步提高对材料的分辨率。
图6示出本申请另一实施例提供的探测装置的侧视图。图6中示出的探测装置与图2中所示的探测装置的不同之处在于:
高能探测器组件中的多排高能探测器沿预定轨迹间隔排布。
其中,对于任意两排高能探测器之间的间距可以相等,也可以不等。 可选地,为了保持高能探测器输出的数据在空间上的均匀性和图像质量,可使任意相邻两排高能探测器之间具有相等的间距。
在本申请的实施例中,若每相邻两排低能探测器之间的间距相等,且每相邻两排高能探测器之间的间距也相等,为了保证高能探测器组件中包括未被低能探测器覆盖的高能探测器,则低能探测器的排间距大于高能探测器的排间距。
在本申请的实施例中,为了保持数据的均匀性和图像质量,任意相邻两排被低能探测器覆盖的高能探测器之间,设置有至少一排未被低能探测器覆盖的高能探测器。
具体地,被低能探测器覆盖的高能探测器,与未被低能探测器覆盖的高能探测器按预定轨迹交替排布,以保证具有第二能量响应的投影数据和具有第三能量响应的投影数据均匀分布,从而提高被检测物体的图像质量,以进一步提高对材料的分辨能力。
本申请实施例还提供一种探测装置,该探测装置包括:
层叠设置的第一层探测器组件、第二层探测器组件、……、第N层探测器组件,N为大于2的整数。
其中,第一层探测器组件包括沿预定轨迹排布的多排第一探测器,第二层探测器组件包括沿预定轨迹间隔排布的多排第二探测器,……,第N层探测器组件包括沿预定轨迹间隔排布的多排第N探测器。
第一探测器的能量响应峰值对应的能量、第二探测器的能量响应峰值对应的能量、……、第N探测器的能量响应峰值对应的能量依次减小;
第k+1层探测器组件中探测器的排数小于第k层探测器组件中探测器的排数,k=1,2,……,N-1。
第k+1层探测器组件中的每排探测器均覆盖第k层探测器组件中的一排探测器。
作为一个示例,图7示出当N=3时探测装置的侧视图。通过设置多层探测器组件,可以获取被检查物体的四能及四能以上的多能投影数据,从而更进一步提高对材料的分辨率。
根据本申请实施例提供的包括三层及三层以上的探测器组件的探测装 置与结合图2至图6的包括两层探测器组件的探测装置相类似,在此将不再赘述。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种用于CT系统的探测装置,其中,所述装置包括:
    高能探测器组件,所述高能探测器组件包括沿预定轨迹排布的多排高能探测器;
    低能探测器组件,与所述高能探测器组件层叠设置,所述低能探测器组件包括沿所述预定轨迹间隔排布的多排低能探测器;
    其中,所述低能探测器的排数小于所述高能探测器的排数;
    每排所述低能探测器均覆盖一排所述高能探测器。
  2. 根据权利要求1所述装置,其中,任意相邻两排所述高能探测器紧密设置。
  3. 根据权利要求1所述装置,其中,所述多排高能探测器沿所述预定轨迹间隔排布。
  4. 根据权利要求1所述的装置,其中,任意相邻两排所述高能探测器之间均具有第一预设间距。
  5. 根据权利要求1所述的装置,其中,被所述低能探测器覆盖的任意相邻两排所述高能探测器之间,设置有至少一排未被所述低能探测器覆盖的所述高能探测器。
  6. 根据权利要求1所述的装置,其中,被所述低能探测器覆盖的所述高能探测器,与未被所述低能探测器覆盖的所述高能探测器按所述预定轨迹交替排布。
  7. 根据权利要求1所述的装置,其中,任意相邻两排所述低能探测器之间均具有第二预设间距。
  8. 根据权利要求7所述的装置,其中,所述第二预设间距为5至80毫米;或,
    所述第二预设间距为30至50毫米。
  9. 根据权利要求1所述的装置,其中,所述预定轨迹为圆弧。
  10. 一种用于CT系统的探测装置,其中,所述装置包括:
    层叠设置的第一层探测器组件、第二层探测器组件、……、第N层探测器组件,所述N为大于2的整数;
    其中,所述第一层探测器组件包括沿预定轨迹排布的多排第一探测器,所述第二层探测器组件包括沿所述预定轨迹间隔排布的多排第二探测器,……,所述第N层探测器组件包括沿所述预定轨迹间隔排布的多排第N探测器;
    所述第一探测器的能量响应峰值对应的能量、所述第二探测器的能量响应峰值对应的能量、……、所述第N探测器的能量响应峰值对应的能量依次减小;
    第k+1层探测器组件中探测器的排数小于第k层探测器组件中探测器的排数,k=1,2,……,N-1;
    所述第k+1层探测器组件中的每排探测器均覆盖所述第k层探测器组件中的一排探测器。
  11. 一种CT系统,其中,所述系统包括:
    扫描通道,用于被检查物体进出所述CT系统;
    滑环,用于围绕所述扫描通道旋转;
    与所述滑环连接的射线源;以及
    与所述射线源相对设置并连接在所述滑环上的探测装置,所述探测装置是如权利要求1-10任意一项所述的装置。
  12. 根据权利要求11所述的系统,其中,所述系统还包括:
    数据处理模块,用于基于所述探测装置输出的数据信号重建所述被检查物体的CT图像。
PCT/CN2019/105147 2018-12-17 2019-09-10 Ct系统和用于ct系统的探测装置 WO2020125080A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19897922.1A EP3901669A4 (en) 2018-12-17 2019-09-10 CT SYSTEM AND DETECTION DEVICE FOR THE CT SYSTEM
SG11202103349RA SG11202103349RA (en) 2018-12-17 2019-09-10 Ct system and detection apparatus for ct system
JP2021518535A JP7145326B2 (ja) 2018-12-17 2019-09-10 Ctシステム及びctシステムに用いられる検出装置
US17/309,684 US11768163B2 (en) 2018-12-17 2019-09-10 CT system and detection device for CT system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811542627.4 2018-12-17
CN201811542627.4A CN109471185A (zh) 2018-12-17 2018-12-17 Ct系统和用于ct系统的探测装置

Publications (1)

Publication Number Publication Date
WO2020125080A1 true WO2020125080A1 (zh) 2020-06-25

Family

ID=65676216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105147 WO2020125080A1 (zh) 2018-12-17 2019-09-10 Ct系统和用于ct系统的探测装置

Country Status (6)

Country Link
US (1) US11768163B2 (zh)
EP (1) EP3901669A4 (zh)
JP (1) JP7145326B2 (zh)
CN (1) CN109471185A (zh)
SG (1) SG11202103349RA (zh)
WO (1) WO2020125080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768163B2 (en) 2018-12-17 2023-09-26 Nuctech Company Limited CT system and detection device for CT system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946747A (zh) * 2019-03-25 2019-06-28 北京航星机器制造有限公司 一种基于新型探测装置的双能ct探测系统
CN111157556B (zh) * 2019-12-20 2020-12-25 北京航星机器制造有限公司 一种低能稀疏的ct探测器、ct检测系统及检测方法
CN116183639A (zh) * 2021-11-26 2023-05-30 同方威视技术股份有限公司 面阵探测器、探测方法及相应的集装箱/车辆检查系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202948145U (zh) * 2012-09-26 2013-05-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
US20140110592A1 (en) * 2012-05-31 2014-04-24 Robert Sigurd Nelson Compton camera detector systems for novel integrated compton-Pet and CT-compton-Pet radiation imaging
CN204479498U (zh) * 2015-03-04 2015-07-15 公安部第一研究所 一种ct探测装置
CN105054954A (zh) * 2015-07-17 2015-11-18 王东良 实时多能x射线透视图像的获取及图像处理方法及其系统
CN204882412U (zh) * 2015-08-20 2015-12-16 环境保护部核与辐射安全中心 探测装置及文物病害检测设备
CN105806856A (zh) * 2014-12-30 2016-07-27 清华大学 双能射线成像方法和系统
CN109471185A (zh) * 2018-12-17 2019-03-15 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981311B2 (en) * 2010-05-24 2015-03-17 Koninklijke Philips N.V. CT detector including multi-layer fluorescent tape scintillator with switchable spectral sensitivity
US20140037045A1 (en) * 2011-04-08 2014-02-06 Arineta Ltd. Dual energy ct scanner
JP5852415B2 (ja) * 2011-11-08 2016-02-03 浜松ホトニクス株式会社 非破壊検査装置及び当該装置での輝度データの補正方法
CN103675931B (zh) * 2012-09-26 2016-09-28 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN104240270B (zh) * 2013-06-14 2017-12-05 同方威视技术股份有限公司 Ct成像方法和系统
CN105242322A (zh) * 2014-06-25 2016-01-13 清华大学 探测器装置、双能ct系统和使用该系统的检测方法
JP2016070752A (ja) * 2014-09-29 2016-05-09 シャープ株式会社 X線画像検出装置
CN105758873B (zh) * 2015-03-04 2019-12-31 公安部第一研究所 一种ct探测装置及其数据处理方法
WO2017025888A1 (en) 2015-08-07 2017-02-16 Koninklijke Philips N.V. Quantum dot based imaging detector
CN206863244U (zh) * 2017-03-14 2018-01-09 江苏尚飞光电科技有限公司 一体化探测板
CN209674014U (zh) * 2018-12-17 2019-11-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140110592A1 (en) * 2012-05-31 2014-04-24 Robert Sigurd Nelson Compton camera detector systems for novel integrated compton-Pet and CT-compton-Pet radiation imaging
CN202948145U (zh) * 2012-09-26 2013-05-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN105806856A (zh) * 2014-12-30 2016-07-27 清华大学 双能射线成像方法和系统
CN204479498U (zh) * 2015-03-04 2015-07-15 公安部第一研究所 一种ct探测装置
CN105054954A (zh) * 2015-07-17 2015-11-18 王东良 实时多能x射线透视图像的获取及图像处理方法及其系统
CN204882412U (zh) * 2015-08-20 2015-12-16 环境保护部核与辐射安全中心 探测装置及文物病害检测设备
CN109471185A (zh) * 2018-12-17 2019-03-15 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768163B2 (en) 2018-12-17 2023-09-26 Nuctech Company Limited CT system and detection device for CT system

Also Published As

Publication number Publication date
JP2022502199A (ja) 2022-01-11
US20220042929A1 (en) 2022-02-10
SG11202103349RA (en) 2021-05-28
CN109471185A (zh) 2019-03-15
EP3901669A4 (en) 2022-08-31
US11768163B2 (en) 2023-09-26
JP7145326B2 (ja) 2022-09-30
EP3901669A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2020125080A1 (zh) Ct系统和用于ct系统的探测装置
US7486764B2 (en) Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US7388208B2 (en) Dual energy x-ray detector
US7696481B2 (en) Multi-layered detector system for high resolution computed tomography
US9579075B2 (en) Detector array comprising energy integrating and photon counting cells
JP5537031B2 (ja) X線断層撮影検査システム
US10459094B2 (en) Detector array for imaging modality
US20100012845A1 (en) Energy-resolving detection system and imaging system
US8488854B2 (en) System and apparatus for classifying x-ray energy into discrete levels
EP3563182A1 (en) X-ray detector and x-ray imaging apparatus
WO2015196857A1 (zh) 探测器装置、双能ct系统和使用该系统的检测方法
US20160206255A1 (en) Hybrid passive/active multi-layer energy discriminating photon-counting detector
US9482630B2 (en) Multiple-layered energy-integrating detector in a hybrid computed tomography scanner
WO2023061340A1 (zh) 用于射线检查的成像系统和方法
WO2019062171A1 (zh) 用于物品安全检查的扫描成像系统及其成像方法
US20180356538A1 (en) Detector array for radiation imaging modality
JP2000070254A (ja) X線検出器
CN209674014U (zh) Ct系统和用于ct系统的探测装置
WO2020087825A1 (zh) 一种多级能量型静态安检ct系统及成像方法
US20220107430A1 (en) Computed tomography (ct) detector comprising a converter for converting high energy x-rays into electrons that escape from the converter and apparatus and method for detecting the escaped electrons
Kanamori et al. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator
Shikhaliev Material Decomposed Cargo Imaging with Dual Energy Megavoltage Radiography
Rachman et al. Study on SiPM GFAG scintillator for high time resolution Compton camera
KR20150039272A (ko) X선 검출기 및 x선 검출기를 포함하는 ct 시스템
WO2004050170A2 (en) Amorphous selenium detector for tomotherapy and other image-guided radiotherapy systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897922

Country of ref document: EP

Effective date: 20210719