WO2020124997A1 - Ultrasonic cleaning device and washing machine - Google Patents

Ultrasonic cleaning device and washing machine Download PDF

Info

Publication number
WO2020124997A1
WO2020124997A1 PCT/CN2019/095186 CN2019095186W WO2020124997A1 WO 2020124997 A1 WO2020124997 A1 WO 2020124997A1 CN 2019095186 W CN2019095186 W CN 2019095186W WO 2020124997 A1 WO2020124997 A1 WO 2020124997A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
water
ultrasonic cleaning
water storage
cleaning device
Prior art date
Application number
PCT/CN2019/095186
Other languages
French (fr)
Chinese (zh)
Inventor
米泽孝昭
直野浩树
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2020124997A1 publication Critical patent/WO2020124997A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F19/00Washing machines using vibrations for washing purposes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F7/00Washing devices adapted to be used independently of any particular receptacle, e.g. for removable mounting on wash-tubs, bath-tubs, or the like
    • D06F7/04Washing devices adapted to be used independently of any particular receptacle, e.g. for removable mounting on wash-tubs, bath-tubs, or the like of the vibrator type

Definitions

  • the present invention relates to an ultrasonic cleaning device and a washing machine provided with the ultrasonic cleaning device.
  • Patent Literature 1 describes a washing machine in which an ultrasonic cleaning device is arranged around the laundry inlet of the upper panel, for example, in front of the inlet.
  • the ultrasonic cleaning apparatus includes a water storage tank capable of storing water and an ultrasonic wave generating unit having an ultrasonic wave generating body located directly above the water storage tank.
  • the ultrasonic generating unit includes a housing that houses the ultrasonic generating body.
  • the case has an arm shape that is long in the front-rear direction and whose tip portion protrudes downward.
  • An opening is formed in the front end surface of the front end portion of the housing, and the front end portion of the ultrasonic generating body is exposed to the water storage tank side from the opening portion.
  • the dirt adhering part of the object to be cleaned is placed between the top end surface of the ultrasonic generator and the water storage tank so as to be immersed in the water stored in the water storage tank, and the cleaning operation is started.
  • the ultrasonic energy generated by the ultrasonic generating body acts on the dirt attachment portion soaked in water and peels the dirt.
  • the ultrasonic cleaning device When the ultrasonic cleaning device is provided on the upper panel, the user generally observes the ultrasonic cleaning device from above when using it. In this case, it is difficult for the user to confirm the gap between the tip surface of the ultrasonic generating body and the water storage tank. Therefore, in such a situation, there may be a problem of how the user can easily place the dirt attachment portion between the top end surface of the ultrasonic generating body and the water storage tank.
  • Patent Document 1 Japanese Patent Application Publication No. 2018-68435
  • the present invention has been made in view of this problem, and an object of the present invention is to provide an ultrasonic cleaning device in which a user can easily place a dirt adhering portion of an object to be cleaned between a tip surface of an ultrasonic generator and a water storage tank, and Washing machine with ultrasonic cleaning device.
  • An ultrasonic cleaning apparatus includes: an ultrasonic generator that generates ultrasonic waves; a water storage tank that is disposed below the ultrasonic generator and stores water for soaking the object to be cleaned; and an exterior body that houses the ultrasonic waves Spawn.
  • the exterior body includes: a covering portion that covers a portion of the ultrasonic generating body on the distal end side so as to expose the distal end portion thereof; and a guide portion that is provided on a side surface of the covering portion to clean the object to be cleaned The dirt attachment portion is guided between the top end surface of the ultrasonic wave generating body and the water storage tank.
  • the user can easily place the dirt adhering portion of the object to be cleaned between the distal end surface of the ultrasonic generating body and the water storage tank.
  • a guide surface can be provided in the guide portion, and the guide surface is inclined so as to approach the ultrasonic wave generating body as it approaches the water storage tank, and the dirt adhered portion follows.
  • the user only needs to make the dirt adhering portion of the object to be cleaned contact the guide surface and follow the guide surface, so that it can reach between the tip surface of the ultrasonic generating body and the water storage tank.
  • the structure can be adopted in which the exterior body includes: a housing that accommodates a portion other than the tip side portion of the ultrasonic generator; and a cover including the covering portion
  • the guide portion is detachably attached to the housing.
  • the user can detach the cover and clean the portion on the tip side of the ultrasonic wave generating body.
  • a structure can be adopted in which the position of the guide portion and the position of the ultrasonic generator are orthogonal to the direction in which the dirt adhesion portion is guided by the guide portion The location is consistent.
  • the guide portion becomes a mark, and the user can easily confirm the position of the ultrasound generator.
  • a structure can be adopted in which the lower end of the guide portion is located below the lower end of the covering portion.
  • the lower end portion of the guide portion can cover the tip portion of the ultrasound generator exposed from the covering portion in the direction in which the dirt adhesion portion is guided by the guide portion.
  • the dirt adhering portion guided by the guide portion is less likely to be caught by the corner of the tip portion of the ultrasound generator, and damage and the like are less likely to occur.
  • a washing machine includes: a washing tub for storing and washing laundry; an upper panel having an inlet for putting washing into the washing tub; and an ultrasonic cleaning device of the first aspect, attached to The upper panel.
  • the same effect as the ultrasonic cleaning device of the first aspect can be achieved.
  • an ultrasonic cleaning device in which a user can easily place a dirt adhering portion of an object to be cleaned between the tip surface of an ultrasonic generator and a water storage tank, and a washing machine provided with the ultrasonic cleaning device.
  • Fig. 1 is a side sectional view of a fully automatic washing machine of an embodiment.
  • FIG. 2 is a perspective view of the left side portion of the ultrasonic cleaning device and the upper panel before the ultrasonic cleaning device of the embodiment is installed.
  • Fig. 3 (a) is a perspective view of the ultrasonic cleaning device and the upper panel when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the standby position
  • Fig. 3 (b) is the ultrasonic cleaning unit and the water storage unit of the embodiment are in operation
  • FIG. 4 is a main cross-sectional view of the ultrasonic cleaning device, the left side surface portion of the upper panel, and the drainage unit of the embodiment, taken from the center of the main body.
  • 5 is a side cross-sectional view of the ultrasonic cleaning device taken from the center of the main body of the embodiment.
  • FIG. 6 is a side cross-sectional view of the main part of the ultrasonic cleaning device taken from the center of the ultrasonic cleaning unit.
  • FIG. 7( a) and (b) are main cross-sectional views of the ultrasonic cleaning section omitting the upper member of the housing according to the embodiment.
  • FIG. 8(a) is a perspective view of the cover of the embodiment
  • FIG. 8(b) is a bottom view of the cover of the embodiment.
  • FIG. 9(a) is a perspective view of the water storage portion of the embodiment, and FIG. 9(b) is an AA' cross-sectional view of FIG. 9(a).
  • FIG 10(a) and (b) are perspective views of the valve body switching mechanism and the water storage portion of the embodiment.
  • FIG. 11 is a longitudinal cross-sectional view of the water supply tank according to the embodiment.
  • FIG. 12 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning apparatus when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the operating position and the water supply tank is in the water outlet position.
  • FIG. 13 (a) to (c) are diagrams for explaining decontamination of an object to be cleaned by the ultrasonic cleaning device of the embodiment.
  • FIG. 14 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the standby position and the water supply tank is in the water discharge position.
  • 1 Automatic washing machine (washing machine); 12: Upper panel; 14: Input port; 20: Outer bucket (washing bucket); 22: Washing dehydration bucket (washing bucket); 50: Ultrasonic cleaning device; 100: Ultrasonic cleaning section; 100a: exterior body; 110: ultrasonic wave generator; 120: housing; 130: cover; 131: cover body (cover) 132: guide; 135: guide surface; 210: water tank.
  • FIG. 1 is a side sectional view of the fully automatic washing machine 1 of the present embodiment.
  • the fully automatic washing machine 1 includes a cabinet 10 that constitutes an appearance.
  • the cabinet 10 includes a rectangular tube-shaped body portion 11 whose upper and lower surfaces are open, an upper panel 12 covering the upper surface of the body portion 11, and a stand 13 supporting the body portion 11.
  • the upper panel 12 is formed with a laundry inlet 14.
  • the inlet 14 is covered by an upper cover 15 that can be opened and closed freely.
  • a control unit 16 is arranged inside the front of the upper panel 12. The control unit 16 controls the washing operation of the fully automatic washing machine 1 and the washing operation of the ultrasonic cleaning device 50 described later.
  • the outer tub 20 whose upper surface is open is elastically suspended and supported by four suspension bars 21 having vibration-proof devices.
  • a washing and dewatering tub 22 having an upper surface opened is disposed.
  • the washing and dewatering tub 22 rotates around a rotation axis extending in the vertical direction.
  • a large number of dehydration holes 22a are formed on the inner circumferential surface of the washing and dehydrating tub 22 over the entire circumference.
  • a balance ring 23 is provided at the bottom of the washing and dewatering tub 22, a pulsator 24 is arranged. On the surface of the pulsator 24, a plurality of blades 24a are provided radially.
  • the outer tub 20 and the washing and dewatering tub 22 constitute the washing tub of the present invention.
  • the drive unit 30 that generates torque that drives the washing and dewatering tub 22 and the pulsator 24 is disposed.
  • the drive unit 30 includes a drive motor 31 and a transmission mechanism 32.
  • the transmission mechanism section 32 has a clutch mechanism 32a. By the switching operation by the clutch mechanism 32a, the torque of the drive motor 31 is transmitted to the pulsator 24 and only the pulsator 24 is rotated during the washing process and the rinsing process.
  • the torque of the drive motor 31 is transmitted to the pulsator 24 and the washing and dehydrating tub 22 to rotate the pulsator 24 and the washing and dehydrating tub 22 integrally.
  • a drain port 20a is formed on the outer bottom of the outer tub 20.
  • a drain valve 40 is provided in the drain port 20a.
  • the drain valve 40 is connected to the drain hose 41. When the drain valve 40 is opened, the water stored in the washing and dehydrating tub 22 and the outer tub 20 is discharged to the outside of the machine through the drain hose 41.
  • An ultrasonic cleaning device 50 is provided on the left side surface portion 12a of the upper panel 12.
  • the ultrasonic cleaning device 50 is mainly used to perform the following cleaning operation: before the automatic washing machine 1 performs washing, remove the sebum dirt attached to the sleeve of the shirt, the neckline portion, the oil stain attached to the work clothes, etc., and the dirt locally attached to the object to be cleaned.
  • a water supply unit 60 for supplying tap water into the washing and dehydrating tub 22 is arranged at the rear of the upper panel 12.
  • the water supply unit 60 has a water supply valve 61.
  • the water inlet 61a of the water supply valve 61 is connected to a faucet. When the water supply valve 61 is opened, tap water from the faucet is supplied into the washing and dewatering tub 22 through the water supply path 62.
  • a drain unit 70 is provided on the outer bottom surface of the upper panel 12 at a position corresponding to the ultrasonic cleaning device 50.
  • the drain unit 70 includes a drain receiving portion 71 that receives drain from the ultrasonic cleaning device 50 and a hose 72 connected to the drain receiving portion 71.
  • the hose 72 is connected to the drain port 20a.
  • FIG. 2 is a perspective view of the ultrasonic cleaning device 50 and the left side surface portion 12a of the upper panel 12 before the ultrasonic cleaning device 50 is installed.
  • FIG. 3(a) is a perspective view of the ultrasonic cleaning device 50 and the upper panel 12 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position
  • FIG. 3(b) is the ultrasonic cleaning unit 100 and the water storage unit 200 in operation.
  • the ultrasonic cleaning device 50 includes an ultrasonic cleaning unit 100, a water storage unit 200, a main body 300, and a water supply tank 400.
  • the ultrasonic cleaning unit 100 has an ultrasonic generator 110 that generates ultrasonic waves.
  • the main body 300 holds the ultrasonic cleaning unit 100.
  • the water storage section 200 is located below the ultrasonic generating body 110, has a water storage tank 210 capable of storing water, and is attached to the main body section 300. By the user's detachment operation, the water storage unit 200 can be pulled forward from the main body unit 300 to be detached.
  • the water supply tank 400 is provided on the upper portion of the main body 300 and stores water to be supplied to the water storage tank 210.
  • the water stored in the water supply tank 400 and supplied to the water storage tank 210 is detergent-containing water.
  • water containing detergent is referred to as "washing water”.
  • the installation portion 80 includes an attachment portion 81 having a substantially bottomed cylindrical shape, and a storage portion 82 formed so that the left side surface portion 12 a is recessed toward the front of the attachment portion 81.
  • the attachment portion 81 has an accommodating portion 83 formed into a shape corresponding to the body portion 300 of the ultrasonic cleaning device 50.
  • a recess 84 slightly recessed from the surroundings is formed on the bottom surface of the housing section 83.
  • a circular drain hole 85 is formed on the bottom surface of the recess 84.
  • a horizontally long opening 86 connected to the housing 83 is formed in the lower portion on the front side of the attachment portion 81.
  • the ultrasonic cleaning device 50 is attached to the attachment portion 81 so that the body portion 300 is accommodated in the accommodation portion 83, and the water storage portion 200 protrudes to the outside of the attachment portion 81 through the opening 86.
  • the body part 300 is attached to the attachment part 81 with the water storage part 200 removed.
  • the water storage 200 is attached to the main body 300 through the opening 86, and the main body is attached to the attachment 81.
  • the ultrasonic cleaning device 50 is stored in the ultrasonic cleaning unit 100 and the water storage unit 200, that is, the ultrasonic generator 110 and the water storage tank 210. State of Department 82. At this time, the positions of the ultrasonic cleaning unit 100 and the water storage unit 200 are the standby positions.
  • the ultrasonic cleaning device 50 is switched to the inside of the inlet 14 of the upper panel 12 by the ultrasonic cleaning unit 100 and the water storage unit 200. Outstanding state. At this time, the positions of the ultrasonic cleaning unit 100 and the water storage unit 200 are operating positions.
  • FIG. 4 is a main cross-sectional view of the ultrasonic cleaning device 50, the left side surface portion 12a of the upper panel 12, and the drain unit 70 cut from the center of the main body 300.
  • FIG. FIG. 5 is a side cross-sectional view of the ultrasonic cleaning device 50 taken from the center of the main body 300.
  • 6 is a side cross-sectional view of the main part of the ultrasonic cleaning device 50 taken from the center of the ultrasonic cleaning unit 100.
  • 7(a) and (b) are main cross-sectional views of the ultrasonic cleaning section 100 with the upper member 150 of the housing 120 omitted. In (a) of FIG. 7, the ultrasonic cleaning unit 100 is cut away from the position of the LED 145 provided in the lower member 140, and in (b) of FIG. 7, the ultrasonic cleaning unit 100 is formed from the protrusion 147 of the lower member 140 and the recess 134 of the cover 130 The fitting part is cut open.
  • the ultrasonic cleaning unit 100 includes an ultrasonic generator 110, a housing 120, and a cover 130.
  • the exterior body 100a is composed of a housing 120 and a cover 130, and the ultrasound generator 110 is housed inside the exterior body 100a.
  • the ultrasonic generating body 110 includes an ultrasonic vibrator 111 and a vibration horn 112 coupled to the ultrasonic vibrator 111.
  • the vibration horn 112 is formed of a metal material having electrical conductivity, and has a shape tapered gradually toward the tip side.
  • the shape of the tip surface 112a of the vibration horn 112 is an elongated rectangle.
  • the ultrasonic wave generating body 110 generates ultrasonic waves from the tip of the vibration horn 112.
  • a flange 113 is formed on the upper end of the vibration horn 112.
  • a buffer 114 is attached to the ultrasonic generating body 110 so as to cover the flange 113.
  • the housing 120 is formed of a resin material, and has an arm shape that is long in the front-rear direction and whose tip portion 120a is bent downward.
  • An opening 121 is formed on the lower surface of the tip 120a.
  • the housing 120 is formed by combining a lower member 140 with an open upper surface and an upper member 150 with an open lower surface.
  • the upper member 150 is formed integrally with the case 500 constituting the main body 300.
  • the lower member 140 and the upper member 150 are provided with a lower mounting boss 141 and an upper mounting boss 151 for connecting them.
  • the lower mounting boss 141 and the upper mounting boss 151 are fastened by screws 161.
  • the top end 120 a of the housing 120 is formed by the lower member 140.
  • an installation portion 142 is provided above the opening 121, and mounting bosses 143 are provided in front of and behind the installation portion 142.
  • the lower member 140 is provided with a recess 144 in front of the opening 121.
  • the concave portion 144 is recessed upward so as to have a shape corresponding to the light receiving portion 133 of the cover 130.
  • LEDs 145 are arranged on the left and right (see (a) of FIG. 7 ).
  • the periphery of the opening 121 of the lower member 140 becomes an insertion opening 146 into which the lid 130 is fitted, and protrusions 147 are formed on the left and right sides of the insertion opening 146 (see (b) of FIG. 7 ).
  • the flange portion 113 of the ultrasonic generating body 110 covered by the buffer 114 is provided on the installation portion 142 of the housing 120.
  • a frame-shaped fixing plate 170 is attached above the flange 113.
  • the fixing plate 170 is fixed to the mounting boss 143 with screws 162.
  • the flange portion 113 is sandwiched between the installation portion 142 and the fixing plate 170, and the ultrasonic generating body 110 is fixed in the housing 120.
  • the portion on the tip side of the vibration horn 112 protrudes downward from the opening 121 of the housing 120.
  • the cover 130 is detachably attached to the top end portion 120a of the housing 120, and is covered with a portion of the vibration horn 112 of the ultrasonic wave generating body 110 exposed from the housing 120.
  • FIG. 8(a) is a perspective view of the cover 130
  • FIG. 8(b) is a bottom view of the cover 130.
  • FIG. 8(b) of FIG. 8 for convenience, the tip end surface 112 a of the vibration horn 112 is shown by a one-dot chain line.
  • the cover 130 has a structure in which the cover body 131, the guide portion 132, and the light-receiving portion 133 are integrally formed of a resin material having translucency.
  • the cover main body 131 has a cylindrical shape whose width in front, back, left, and right sides becomes narrower in three stages as it goes downward, and includes a top portion 131a having a substantially track-and-track shape, a middle portion 131b having a substantially square shape, and a lower portion 131c in a plan view.
  • concave portions 134 having a shape corresponding to the protrusions 147 of the housing 120 are formed on the left and right inner side surfaces.
  • the cover main body 131 covers the portion of the vibration horn 112 of the ultrasonic wave generator 110 on the distal end side such that the distal end portion is exposed.
  • the cover body 131 corresponds to the cover part of the present invention.
  • the guide portion 132 is provided in the center in the left-right direction of the front side surface of the cover body 131 so as to protrude forward, and has a flat shape in the left-right direction.
  • the width of the guide portion 132 in the left-right direction is slightly larger than the width of the vibration horn 112 of the ultrasonic generator 110 in the left-right direction.
  • the upper portion of the guide portion 132 has a shape matching the outer surface of the tip portion 120 a of the housing 120.
  • a lower surface of the guide portion 132 is provided with a guide surface 135 inclined horizontally downward and curved at the lower end to be horizontal. Furthermore, the lower end of the guide portion 132 is located below the lower end of the cover body 131.
  • the light receiving unit 133 is provided at the front upper end of the cover body 131.
  • the light-receiving portion 133 has a long dimension in the left-right direction, and is slightly curved along the front upper end portion of the cover body 131.
  • circular holes 136 corresponding to the LEDs 145 of the housing 120 are formed on the left and right sides.
  • the cover 130 is attached to the fitting opening 146 of the housing 120 from below.
  • the left and right protrusions 147 of the housing 120 are fitted into the left and right recesses 134 of the cover 130.
  • the protrusion 147 slightly protrudes outward from the inner surface of the upper portion 131a of the cover main body 131, and when attached, the upper portion 131a of the cover main body 131 touches the protrusion 147 and expands in the left-right direction to fit into the fitting opening 146.
  • FIG. 7( b ) the left and right protrusions 147 of the housing 120 are fitted into the left and right recesses 134 of the cover 130.
  • the protrusion 147 slightly protrudes outward from the inner surface of the upper portion 131a of the cover main body 131, and when attached, the upper portion 131a of the cover main body 131 touches the protrusion 147 and expands in the left-right direction to fit into the fitting opening 146.
  • the light-receiving portion 133 of the cover 130 fits into the recess 144 of the housing 120, and the left and right LEDs 145 of the recess 144 fit into the left-right holes 136 of the light receiving portion 133.
  • the two LEDs 145 are connected to the cover 130 which is the light receiving unit 133.
  • the left and right LEDs 145 emit light, this light is introduced into the inside of the cover 130 through the light receiving portion 133, so that the entire cover 130 emits light.
  • the tip portion of the vibration horn 112 of the ultrasonic generating body 110 is slightly exposed from the cover body 131.
  • the lower end of the guide portion 132 of the cover 130 is almost flush with the front end surface 112a of the vibration horn 112.
  • the guide surface 135 of the guide portion 132 is inclined so as to approach the vibration horn 112 as it approaches the water storage tank 210.
  • the position of the guide portion 132 coincides with the position of the tip portion of the vibration horn 112. .
  • the left and right side surfaces of the tip portion 120 a of the housing 120 are inclined so that the width of the tip portion 120 a becomes narrower as it goes downward.
  • the cover 130 also has a tapered shape whose left and right widths become narrower as it goes downward.
  • the position of the tip surface 112 a of the vibration horn 112 of the ultrasonic generating body 110 is slightly lower than the position of the upper surface of the water storage tank 210, and the top end of the vibration horn 112 enters the water storage tank 210 slightly. status.
  • FIG. 9(a) is a perspective view of the water storage unit 200
  • FIG. 9(b) is an AA' cross-sectional view of FIG. 9(a).
  • the water storage portion 200 is formed of a resin material, has a long dimension in the front-rear direction, and has a shape in which the rear portion is curved to the right. In addition, the front end and the rear end of the water storage section 200 have an arc shape.
  • a water storage tank 210 long in the front-rear direction is formed at the front of the water storage unit 200.
  • the water storage tank 210 has a mortar shape, and its inner peripheral surface is gradually inclined.
  • a circular water supply tank 220 is formed at the rear of the water storage 200.
  • the water supply tank 220 is connected to the water storage tank 210 through the water supply tank 230.
  • the bottom surfaces of the water storage tank 210 and the water supply tank 230 are gradually inclined toward the water supply tank 220.
  • a drain port 221 is formed in the center of the bottom surface of the water supply tank 220.
  • a protrusion 222 having a hole 222a is provided at the center of the drain 221. Both sides of the protrusion 222 are connected to the inner periphery of the drain port 221 by two ribs 223.
  • a cylindrical rib 201 surrounding the drain 221 is formed on the outer bottom surface of the water storage 200 so as to protrude downward.
  • the water supply tank 220 is provided with a drain mechanism 240 for draining through the drain port 221.
  • the drain mechanism 240 includes a valve body 241, an operating member 242, and a coil spring 243.
  • the valve body 241 is formed of an elastic material such as rubber, and closes the drain port 221 from below.
  • the operation member 242 is formed of a resin material, and includes a cylindrical hub portion 244 whose top surface portion is blocked, a cylindrical protrusion portion 245 protruding upward from the surface center of the top surface portion of the hub portion 244, and a top portion of the hub portion 244
  • a shaft portion 246 extending downward from the center of the back surface of the face portion, and four arm portions 247 extending in four directions from the peripheral surface portion of the hub portion 244.
  • the shaft portion 246 passes through the hole portion 222a of the protrusion 222 so as to be movable up and down.
  • a valve body 241 is attached to the lower end of the shaft 246.
  • each arm portion 247 extends substantially horizontally outward from the circumferential surface of the hub portion 244, it is bent substantially vertically to extend upward, and then further bent substantially vertically to extend substantially horizontally to the outside.
  • the coil spring 243 is arranged between the hub portion 244 of the operation member 242 and the two ribs 223. The coil spring 243 is in a compressed state, and the valve body 241 urges the operation member 242 in a direction to close the drain port 221.
  • the main body 300 includes a housing 500, a valve body switching mechanism 600, and a water tank switching mechanism 700.
  • the main body 300 is accommodated in the accommodating portion 83 provided in the attachment portion 81 of the upper panel 12.
  • the case 500 is formed of a resin material and has a cylindrical shape with a closed bottom portion and an open top portion.
  • an insertion port 501 is formed on the ultrasonic cleaning unit 100 side.
  • the insertion port 501 matches the opening 86 of the attachment portion 81.
  • a storage chamber 502 is provided deep in the insertion port 501.
  • the storage chamber 502 is composed of a peripheral wall 503 rising from the bottom surface of the housing 500 and a fixing plate 510 covering the upper surface of the peripheral wall 503.
  • the fixing plate 510 is fastened to a plurality of mounting bosses 504 provided on the peripheral wall 503 by screws (not shown).
  • the fixing plate 510 is provided with a circular opening 511 at the center. At the peripheral edge of the opening 511, two ribs 512 extending in the circumferential direction are provided at positions facing each other.
  • An opening 505 is formed in the bottom of the housing 500 inside the storage chamber 502.
  • the water supply tank 220 of the water storage unit 200 is accommodated in the storage chamber 502 through the insertion port 501.
  • the rib 201 on the outer bottom surface of the water storage section 200 fits into the opening 505.
  • a U-shaped slit 506 is formed around the opening 505 on the bottom surface of the housing 500.
  • the drain hole 85 of the storage section 83 is located directly below the drain port 221 of the water storage section 200 and the opening 505 of the case 500.
  • the drain hole 85 is connected to an inflow port 73 provided in the drain receiving portion 71 of the drain unit 70.
  • the valve body switching mechanism 600 is arranged inside the housing 500 and switches the position of the valve body 241 in such a manner that the valve body 241 of the drainage mechanism 240 is closed when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position When the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position, the valve body 241 is opened.
  • FIG. 10( a) and (b) are perspective views of the valve body switching mechanism 600 and the water storage 200.
  • FIG. 10(a) shows a state where the water storage unit 200 is located at the standby position
  • FIG. 10(b) shows a state where the water storage unit 200 is located at the operating position.
  • the valve body switching mechanism 600 includes a cam member 610 and a holding member 620 that holds and raises and lowers the cam member 610.
  • the cam member 610 and the holding member 620 are formed of a resin material.
  • the cam member 610 is formed in a substantially cylindrical shape.
  • the cam member 610 has a stepped portion 611 in the middle portion, and the outer diameter on the lower side of the stepped portion 611 becomes smaller.
  • two notch portions 612 are formed at mutually opposite positions on the lower side of the step portion 611.
  • the two notch portions 612 are respectively engaged with the ribs 512 of the corresponding fixing plate 510, whereby the cam member 610 is connected to the fixing plate 510 in such a manner that it cannot move in the circumferential direction with respect to the fixing plate 510 and can move in the vertical direction.
  • On the upper portion of the cam member 610 four shafts 613 protruding outward are formed at equal intervals on the outer peripheral surface. In a state where the water supply tank 220 of the water storage unit 200 is accommodated in the storage chamber 502 of the housing 500, the lower end of the cam member 610 contacts the four arm portions 247 of the operation member 242 disposed in the water supply tank 220.
  • the holding member 620 has a substantially cylindrical frame portion 621, and a disc-shaped holding portion 622 is integrally formed on the upper portion inside the frame portion 621.
  • the lower portion of the frame portion 621 opens a portion through which the water storage portion 200 passes.
  • mounting bosses 623 are provided at three places. The mounting boss 623 extends downward along the inner surface of the frame portion 621 and slightly protrudes from the lower end portion of the frame portion 621.
  • a circular opening 624 is formed in the center of the holding portion 622.
  • four lifting portions 625 are provided on the periphery of the opening 624.
  • each shaft 613 of the cam member 610 is arranged in the elevating portion 625.
  • the upper surface of the lifting portion 625 has a ramp shape in which the shaft 613 can go up and down when the cam member 610 moves in the circumferential direction.
  • cylindrical guide portions 626 extending upward are provided at four positions, and claw portions 627 protruding upward are provided on the rear side.
  • the holding portion 622 is provided with a detection hole 628 on the front side.
  • elliptical openings 507 curved in the circumferential direction are formed at three positions.
  • the three mounting bosses 623 of the holding member 620 pass through the corresponding openings 507 and are fixed to the bottom surface of the housing 83.
  • the holding member 620 cannot rotate with respect to the attachment portion 81, and the ultrasonic cleaning unit 100, the water storage portion 200, and the housing 500 can rotate with respect to the attachment portion 81 and holding member 620 between the standby position and the operating position.
  • the cam member 610 is connected to the fixed plate 510 of the housing 500 and therefore rotates together with the fixed plate 510.
  • the rotation range of the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 is determined by the circumferential length of the opening 507 of the housing 500.
  • the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 are in the standby position, one end of the opening 507 contacts the mounting boss 623.
  • the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 move to the operating position, the other end of the opening 507 comes into contact with the mounting boss 623, preventing further rotation.
  • the water tank switching mechanism 700 is arranged above the valve body switching mechanism 600.
  • the water tank switching mechanism 700 switches the position of the water supply water tank 400 between a water stop position where water is not discharged from the water supply water tank 400 and an outlet position where water is discharged from the water supply water tank 400.
  • the water stop position is above the water discharge position.
  • the water tank switching mechanism 700 does not rotate with respect to the attachment portion 81.
  • the water tank switching mechanism 700 includes an upper receiving member 710, a lower receiving member 720, a coil spring 730, and a locking device 740.
  • the upper receiving member 710 has a cylindrical shape corresponding to the shape of the water supply tank 400, and the upper and lower surfaces are open.
  • the lower receiving member 720 has a circular inverted dish shape with a central portion opened, and is fitted on the outer bottom surface of the upper receiving member 710.
  • the lower receiving member 720 is provided with guide holes 721 into which the four guide portions 626 of the holding member 620 are inserted. The lower receiving member 720 is guided by the guide portion 626 when moving up and down.
  • the coil spring 730 is disposed between the lower receiving member 720 and the stepped portion 611 of the cam member 610.
  • the coil spring 730 pushes up the upper receiving member 710 and the lower receiving member 720 to the water stop position by its elastic force.
  • the locking device 740 is mounted on the rear side of the lower receiving member 720 in a downward manner.
  • the claw portion 627 of the holding member 620 is located directly below the locking device 740.
  • the lock device 740 includes a lever 741 having holding pieces on both sides of the tip portion, a housing 742 through which the lever 741 enters and exits, and an alternate mechanism (not shown).
  • a sensor mounting portion 722 extending downward is provided at a position corresponding to the detection hole 628 of the holding member 620.
  • a reed switch 801 is mounted on the tip of the sensor mounting part 722.
  • a magnet 802 is attached to the fixing plate 510 of the housing 500. The reed switch 801 and the magnet 802 constitute a detection unit 800.
  • the magnet 802 of the fixed plate 510 is located at a position offset from the detection hole 628 of the holding member 620.
  • the ultrasonic cleaning unit 100 and the water storage unit 200 move to the operating position, Then it moves to directly below the detection hole 628.
  • the reed switch 801 is inserted into the detection hole 628.
  • the reception signal is output from the reed switch 801 to the control unit 16, and the control unit 16 can detect that the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water outlet position.
  • FIG. 11 is a longitudinal sectional view of the water supply tank 400.
  • the water supply tank 400 includes a tank body 410 and a cover 420.
  • the water tank body 410 and the cover 420 are formed of a resin material.
  • the cover 420 is provided with an on-off valve mechanism 430.
  • the water tank body 410 is a substantially cylindrical transparent container, and is formed by screwing the upper container 411 with the lower surface open and the lower container 412 with the upper surface open through the gasket 441 for water sealing.
  • the upper part of the water tank body 410 has a step, and the outer diameter becomes smaller on the lower side of the step.
  • a water inlet/outlet 413 is formed in the center of the bottom surface of the water tank body 410, and a cylindrical connection port 414 is provided around the inlet/outlet 413 so as to protrude downward.
  • the cover 420 is screwed to the connection port 414 and covers the entrance 413.
  • a gasket 442 for water sealing is sandwiched between the cover 420 and the connection port 414.
  • An outlet 421 is formed on the bottom surface of the cover 420.
  • a protrusion 422 having a hole 422a is provided in the center of the outlet 421. Both sides of the protrusion 422 are connected to the peripheral portion of the outlet 421 by two ribs 423.
  • the opening and closing valve mechanism 430 includes a valve body 431, a pin 432, and a coil spring 433.
  • the valve body 431 is formed of an elastic material such as rubber.
  • the pin 432 is formed of a metal material or a resin material, and passes through the hole 422a of the protrusion 422 so as to move up and down.
  • a valve body 431 is attached to the upper end of the pin 432.
  • the lower end portion of the pin 432 is larger than the outer diameter of other parts, and constitutes a flange portion 432a, and a coil spring 433 is arranged between the flange portion 432a and the protrusion 422.
  • the coil spring 433 is in a compressed state, the pin 432 is pressed downward by the coil spring 433, and the valve body 431 closes the outlet 421.
  • a cylindrical discharge port 424 is formed on the outer bottom surface of the cover 420 so as to surround the pin 432.
  • the outlet of the outlet portion 424 is the final outlet 401 of the water supply tank 400.
  • the water supply tank 400 is provided on the upper receiving member 710 of the tank switching mechanism 700 from above.
  • the discharge port portion 424 of the cover 420 is exposed downward from the lower surface opening of the upper receiving member 710 and enters the inside of the cam member 610.
  • washing operations in various operation modes are performed.
  • the washing process, the intermediate dehydration process, the rinsing process, and the final dehydration process are sequentially performed.
  • the pulsator 24 rotates in the right direction and the left direction with the water stored in the washing and dehydrating tub 22.
  • the rotation of the pulsator 24 generates a water flow in the washing and dewatering tub 22.
  • the laundry is washed by the generated water stream and the detergent contained in the water.
  • the laundry is rinsed by the generated water flow.
  • the washing dehydration tub 22 and the pulsator 24 integrally rotate at a high speed.
  • the laundry is dehydrated.
  • the cleaning operation of the ultrasonic cleaning device 50 is performed.
  • the object to be washed such as a shirt
  • the object to be washed partially contains stubborn dirt
  • the object to be washed is partially cleaned using the ultrasonic cleaning device 50 before washing.
  • the ultrasonic cleaning device 50 is in a state where the ultrasonic cleaning unit 100 and the water storage unit 200 are located at the standby position.
  • the water supply tank 400 is held at the water stop position by the tank switching mechanism 700.
  • the valve body 431 is closed, and the washing water is not discharged from the water supply tank 400.
  • the cam member 610 of the valve body switching mechanism 600 moves the lowermost point by positioning the four shafts 613 at the lowermost points of the corresponding lifting portions 625, respectively.
  • the operation member 242 of the drainage mechanism 240 is pushed downward by the cam member 610 to move the valve body 241 away from the drainage port 221, and the drainage port 221 is in an open state.
  • the user takes the water supply tank 400 to the outside and turns it over, and opens the lower container 412.
  • the user adds water and liquid detergent into the water supply tank 400, closes the lower container 412, and gently shakes the water supply tank 400 to mix the liquid detergent and water.
  • washing water is generated in the water supply tank 400.
  • the user throws the water supply tank 400 into the main body 300 again.
  • the user rotates the ultrasonic cleaning unit 100 and the water storage unit 200 toward the inlet 14 and moves the ultrasonic cleaning unit 100 and the water storage unit 200 to the operating position as shown in FIG. 3( b ). Then, the user pushes the water supply tank 400 downward. The water supply tank 400 descends and reaches the water outlet position. The water supply tank 400 is maintained at the water outlet position by the tank switching mechanism 700.
  • FIG. 12 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device 50 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water outlet position.
  • the operation member 242 of the drainage mechanism 240 is released from the pressing of the cam member 610, and is pushed up by the elastic force of the coil spring 243.
  • the valve body 241 closes the drain port 221, and the drain port 221 is in a closed state.
  • the washing water discharged from the water supply tank 400 is received by the water supply tank 220 and sent to the water storage tank 210 through the water supply tank 230.
  • the water level in the water supply tank 220 rises together with the water level in the water storage tank 210.
  • the air pressure in the water supply tank 400 is The balance of the air pressure keeps the valve body 431 open, and the water supply from the water supply tank 400 is stopped.
  • the user When washing water is stored in the water storage tank 210, the user places the dirt attachment portion of the object to be cleaned, such as the collar portion of the shirt, on the water storage tank 210, that is, the water storage tank 210 and the ultrasonic generator 110 from the front of the ultrasonic cleaning unit 100 Between the vibration horn 112.
  • the position of the guide portion 132 of the cover 130 and the position of the tip end portion of the vibration horn 112 of the ultrasonic generator 110 are aligned in the front-rear direction, and therefore, the guide portion 132 becomes a mark, so that the user It is easy to grasp the position of the tip of the vibration horn 112.
  • the user usually observes the ultrasonic cleaning device 50 provided on the upper panel 12 from diagonally above. Therefore, it is difficult to confirm the gap between the ultrasonic generator 110 and the water storage tank 210.
  • the user contacts dirt adhering portions such as collars and cuffs with the guide surface 135 of the guide portion 132 and moves downward and rearward along the guide surface 135 to reach the front end surface 112a of the vibration horn 112 s position.
  • the lower end of the guide portion 132 extends downward from the lower end of the cover body 131, and covers the front of the front end portion of the vibration horn 112 exposed from the cover body 131. Therefore, the dirt adhering portion guided by the guide portion 132 is less likely to be caught by the corner of the tip portion of the vibration horn 112, and damage or the like is less likely to occur.
  • the dirt attachment portion is positioned at an appropriate height position that is almost in contact with the tip surface 112a of the vibration horn 112, and is not too far from the tip surface 112a of the vibration horn 112.
  • the dirt adhering portion of the object to be cleaned is soaked with the washing water stored in the water storage tank 210, and the washing water that has penetrated into the object to be washed permeates the surface.
  • a thin water layer is formed on the surface of the object to be cleaned, and the vibration horn 112 is in contact with the water layer.
  • the user In order to start the cleaning operation, the user performs a predetermined start operation.
  • the control unit 16 When the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water discharge position, this state is detected by the detection unit 800, and the reed switch 801 of the detection unit 800 outputs an on signal to the control unit 16 . In this case, the control unit 16 energizes the ultrasonic transducer 111 to operate the ultrasonic generator 110. Thus, the cleaning operation is started.
  • the control unit 16 does not energize the ultrasound vibrator 111 and does not operate the ultrasound generator 110. Therefore, the cleaning operation will not be started when the cleaning operation is not ready.
  • the two LEDs 145 of the ultrasonic cleaning unit 100 are lit by the control unit 16.
  • the entire cover 130 emits light.
  • FIG. 13( a) to (c) are diagrams for explaining decontamination of the object to be cleaned by the ultrasonic cleaning device 50.
  • ultrasonic waves are generated from the tip of the vibration horn 112, and the ultrasonic vibration is transmitted to the cleaning water inside the object to be cleaned through the cleaning water around the vibration horn 112.
  • decompression and pressurization are alternately generated by the action of ultrasonic vibration, and a vacuum cavity is generated in a portion where the pressure becomes lower. That is, there are many cavities in the contaminated part of the object to be cleaned.
  • a shock wave is generated on the contaminated portion of the object to be cleaned.
  • This shock wave separates the dirt from the object to be cleaned.
  • the ultrasonic vibration from the vibration horn 112 generates a water flow from the inside of the object to be cleaned toward the water storage tank 210, and the dirt separated from the object to be cleaned is discharged to the water storage tank by the water flow Within 210.
  • convection is caused by the above-mentioned water flow, and therefore, dirt is easily peeled off from the object to be cleaned.
  • the dirt is easily peeled off from the object to be cleaned, and the dirt is not easily attached to the object to be cleaned. In this way, dirt is removed from the object to be cleaned.
  • the control unit 16 stops the operation of the ultrasonic generator 110 and ends the cleaning operation.
  • the ultrasonic vibration from the vibration horn 112 is effective It acts on the attached part of dirt and is easy to decontaminate.
  • the user gently presses the water supply tank 400 downward with his finger.
  • the locking device 740 disengages from the claw portion 627, and the water supply tank 400 moves to the water stop position together with the upper receiving member 710.
  • the pin 432 moves downward, the outlet 421 is blocked by the valve body 431, and the water supply from the water supply tank 400 is not performed.
  • the user turns the ultrasonic cleaning unit 100 and the water storage unit 200 to the installation unit 80 side, and moves the ultrasonic cleaning unit 100 and the water storage unit 200 to the standby position as shown in FIG. 3( a ).
  • the drain port 221 of the water storage unit 200 is opened at the standby position (see FIG. 4 ).
  • the water discharged from the drain port 221 is discharged to the drain port 20 a of the outer tub 20 through the drain receiving portion 71 of the drain unit 70 and the hose 72.
  • the user may want to discard the washing water remaining in the water supply tank 400 after the washing operation is completed.
  • the user can take out the water supply tank 400 from the main body 300 and take it to a waste place such as a washbasin, and remove the cover 420 to discharge the washing water of the water supply tank 400 to the waste place, such operation is troublesome.
  • the user can discard the washing water of the water supply tank 400 without removing the water supply tank 400 from the main body 300. Therefore, in a state where the ultrasonic cleaning unit 100 and the water storage unit 200 are at the standby position, the user pushes the water supply tank 400 located at the water stop position downward to reach the water discharge position.
  • Fig. 14 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device 50 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position and the water supply tank 400 is in the water outlet position.
  • the amount of movement of the pin 432 becomes smaller compared to when water is supplied to the water storage tank 210, so the gap between the valve body 431 and the outlet 421 becomes smaller, and the flow rate discharged from the outlet 401 becomes smaller.
  • the washing water discharged from the water supply tank 400 is received by the water supply tank 220 and discharged from the drain port 221 to flow to the drain unit 70.
  • the user can discard the washing water remaining in the water supply tank 400 without removing the water supply tank 400 from the main body 300.
  • the cover 130 can be attached to and detached from the housing 120, so that the user can remove the cover 130 from the housing 120 to clean the vibration horn 112.
  • the water storage tank 210 and the water supply tank 220 may be contaminated.
  • the water storage unit 200 can be attached to and detached from the main body 300, so that the user can remove the water storage unit 200 from the main body 300, and clean the water storage tank 210 and the water supply tank 220.
  • the water storage part 200 since the water storage part 200 is accommodated in the storage part 82 when it is in a standby position, the water storage part 200 cannot be detached from the body part 300. Therefore, when the user removes the water storage unit 200 from the main body unit 300, the user moves the water storage unit 200 to a position away from the storage unit 82, for example, an operation position.
  • the cover 130 covering the portion of the distal end side of the vibration horn 112 of the ultrasonic wave generator 110 is provided with the guide portion 132, so that the user can guide the object to be cleaned easily by the guide portion 132
  • the attached portion of dirt is placed between the top end surface 112a of the vibration horn 112 and the water storage tank 210.
  • the guide portion 132 is provided with the guide surface 135 inclined so as to be closer to the ultrasonic generating body 110 as it approaches the water storage tank 210, so that the user only needs to press the dirt adhered portion of the object to be guided to the guide On the surface 135 and along the guide surface 135, the top surface 112a of the vibration horn 112 and the water storage tank 210 can be reached.
  • the cover 130 is detachably attached to the housing 120, so that the user can detach the cover 130 to clean the portion on the tip side of the vibration horn 112 of the ultrasonic generating body 110.
  • the position of the guide portion 132 coincides with the position of the ultrasonic generating body 110, so the guide portion 132 becomes a mark, and the user can easily confirm The position of the ultrasonic generating body 110.
  • the lower end of the guide portion 132 is located below the lower end of the cover body 131, and therefore, the lower end portion of the guide portion 132 can cover the cover body 131 in the direction in which the dirt adhesion portion is guided by the guide portion 132 The tip portion of the exposed vibration horn 112. As a result, the dirt adhering portion guided by the guide portion 132 is less likely to be caught by the corner of the tip portion of the vibration horn 112, and damage or the like is less likely to occur.
  • the cover 130 is detachably attached to the housing 120.
  • the cover 130 and the housing 120 may be formed integrally.
  • the position of the lower end of the guide portion 132 is set substantially in the same plane as the position of the front end surface 112 a of the vibration horn 112.
  • the position of the lower end of the guide portion 132 may be slightly lower or slightly higher than the position of the front end surface 112a of the vibration horn 112.
  • the LED 145 is fitted into the hole 136.
  • the hole 136 is not formed in the light-receiving part 133 and the LED 145 contacts or comes close to the upper surface of the light-receiving part 133.
  • the ultrasonic cleaning device 50 is provided in the fully automatic washing machine 1.
  • the ultrasonic cleaning device 50 may be installed in a washing machine other than the fully automatic washing machine 1, for example, a drum washing machine.
  • the ultrasonic cleaning device 50 may be installed in, for example, a fully automatic integrated washing and drying machine having a drying function or a drum-type integrated washing and drying machine.
  • a washing tub is composed of an outer tub and a drum disposed in the outer tub.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

Disclosed is an ultrasonic cleaning device (50), wherein a user can easily place a dirty portion of laundry to be cleaned between a top end face (112a) of an ultrasonic wave generator (110) and a water storage tank (210). The ultrasonic cleaning device (50) comprises: the ultrasonic wave generator (110) for generating ultrasonic waves; the water storage tank (210) disposed below the ultrasonic wave generator (110) and used for storing water for soaking the laundry; and an outer mounted body (100a) for accommodating the ultrasonic wave generator (110). The outer mounted body (100a) comprises: a cover main body (131) for covering a portion at a top end side of the ultrasonic wave generator (110) in such a way that a top end portion (120a) of the ultrasonic wave generator is exposed; and a guide portion (132) arranged at a front side face of the cover main body (131) and used for guiding a dirty portion of the laundry to be cleaned between the top end face (112a) of the ultrasonic wave generator (110) and the water storage tank (210).

Description

超声波清洗装置及洗衣机Ultrasonic cleaning device and washing machine 技术领域Technical field
本发明涉及一种超声波清洗装置、以及具备该超声波清洗装置的洗衣机。The present invention relates to an ultrasonic cleaning device and a washing machine provided with the ultrasonic cleaning device.
背景技术Background technique
专利文献1中记载了一种在上面板的洗涤物投入口的周围,例如投入口的前侧配置有超声波清洗装置的洗衣机。超声波清洗装置具备可蓄水的贮水槽和位于贮水槽的正上方的具有超声波产生体的超声波产生单元。 Patent Literature 1 describes a washing machine in which an ultrasonic cleaning device is arranged around the laundry inlet of the upper panel, for example, in front of the inlet. The ultrasonic cleaning apparatus includes a water storage tank capable of storing water and an ultrasonic wave generating unit having an ultrasonic wave generating body located directly above the water storage tank.
超声波产生单元包括收容超声波产生体的外壳。外壳具有前后方向上长、其顶端部向下方突出那样的臂形状。在外壳的顶端部,在其顶端面形成有开口部,超声波产生体的顶端部从该开口部露出至贮水槽侧。The ultrasonic generating unit includes a housing that houses the ultrasonic generating body. The case has an arm shape that is long in the front-rear direction and whose tip portion protrudes downward. An opening is formed in the front end surface of the front end portion of the housing, and the front end portion of the ultrasonic generating body is exposed to the water storage tank side from the opening portion.
被清洗物的污垢附着部分以浸泡在蓄于贮水槽的水中的方式放置在超声波产生体的顶端面与贮水槽之间,开始清洗运转。由超声波产生体产生的超声波能量作用于被水浸透的污垢附着部分,使污垢剥离。The dirt adhering part of the object to be cleaned is placed between the top end surface of the ultrasonic generator and the water storage tank so as to be immersed in the water stored in the water storage tank, and the cleaning operation is started. The ultrasonic energy generated by the ultrasonic generating body acts on the dirt attachment portion soaked in water and peels the dirt.
在超声波清洗装置设置于上面板的情况下,用户在使用时一般从上方观察超声波清洗装置。这种情况下,用户难以确认超声波产生体的顶端面与贮水槽之间的间隙。因此,在这种状况下,可能会有如下问题:用户如何能容易地将污垢附着部分放置在超声波产生体的顶端面与贮水槽之间。When the ultrasonic cleaning device is provided on the upper panel, the user generally observes the ultrasonic cleaning device from above when using it. In this case, it is difficult for the user to confirm the gap between the tip surface of the ultrasonic generating body and the water storage tank. Therefore, in such a situation, there may be a problem of how the user can easily place the dirt attachment portion between the top end surface of the ultrasonic generating body and the water storage tank.
现有技术文献Existing technical literature
专利文献Patent Literature
专利文献1:日本特开2018-68435号公报Patent Document 1: Japanese Patent Application Publication No. 2018-68435
发明内容Summary of the invention
发明所要解决的问题Problems to be solved by the invention
本发明是鉴于该问题而完成的,其目的在于,提供一种用户能容易地将被清洗物的污垢附着部分放置在超声波产生体的顶端面与贮水槽之间的超声波清洗装置、以及具备该超声波清洗装置的洗衣机。The present invention has been made in view of this problem, and an object of the present invention is to provide an ultrasonic cleaning device in which a user can easily place a dirt adhering portion of an object to be cleaned between a tip surface of an ultrasonic generator and a water storage tank, and Washing machine with ultrasonic cleaning device.
用于解决问题的方案Solutions for solving problems
本发明的第一方案的超声波清洗装置具备:超声波产生体,产生超声波;贮水槽,配置在所述超声波产生体的下方,蓄留供被清洗物浸泡的水;以及外装体,收容所述超声波产生体。这里,所述外装体包括:覆盖部,将所述超声波产生体的顶端侧的部分以使其顶端部露出的方式覆盖;以及引导部,设置于所述覆盖部的侧面,将被清洗物的污垢附着部分引导至所述超声波产生体的顶端面与所述贮水槽之间。An ultrasonic cleaning apparatus according to a first aspect of the present invention includes: an ultrasonic generator that generates ultrasonic waves; a water storage tank that is disposed below the ultrasonic generator and stores water for soaking the object to be cleaned; and an exterior body that houses the ultrasonic waves Spawn. Here, the exterior body includes: a covering portion that covers a portion of the ultrasonic generating body on the distal end side so as to expose the distal end portion thereof; and a guide portion that is provided on a side surface of the covering portion to clean the object to be cleaned The dirt attachment portion is guided between the top end surface of the ultrasonic wave generating body and the water storage tank.
根据上述结构,通过由引导部引导,用户能将被清洗物的污垢附着部分容易地放置在超声波产生体的顶端面与贮水槽之间。According to the above configuration, by being guided by the guide portion, the user can easily place the dirt adhering portion of the object to be cleaned between the distal end surface of the ultrasonic generating body and the water storage tank.
在本方案的超声波清洗装置中,能在所述引导部设置引导面,该引导面以随着靠近所述贮水槽而靠近所述超声波产生体的方式倾斜,供所述污垢附着部分沿循。In the ultrasonic cleaning apparatus of this aspect, a guide surface can be provided in the guide portion, and the guide surface is inclined so as to approach the ultrasonic wave generating body as it approaches the water storage tank, and the dirt adhered portion follows.
根据上述结构,用户只需使被清洗物的污垢附着部分抵接引导面并沿循所述引导面,就能使其到达超声波产生体的顶端面与贮水槽之间。According to the above configuration, the user only needs to make the dirt adhering portion of the object to be cleaned contact the guide surface and follow the guide surface, so that it can reach between the tip surface of the ultrasonic generating body and the water storage tank.
在本方案的超声波清洗装置中,能采用如下结构,即,所述外装体包括:外壳,收容所述超声波产生体的所述顶端侧的部分之外的部分;以及盖,包括所述覆盖部和所述引导部,可拆装地装接于所述外壳。In the ultrasonic cleaning apparatus of this aspect, the structure can be adopted in which the exterior body includes: a housing that accommodates a portion other than the tip side portion of the ultrasonic generator; and a cover including the covering portion The guide portion is detachably attached to the housing.
根据上述结构,用户能将盖卸下,清理超声波产生体的顶端侧的部分。According to the above structure, the user can detach the cover and clean the portion on the tip side of the ultrasonic wave generating body.
在本方案的超声波清洗装置中,能采用如下结构,即,在与所述污垢附着部分被所述引导部引导的方向正交的方向上,所述引导部的位置与所述超声波产生体的位置一致。In the ultrasonic cleaning apparatus of this aspect, a structure can be adopted in which the position of the guide portion and the position of the ultrasonic generator are orthogonal to the direction in which the dirt adhesion portion is guided by the guide portion The location is consistent.
根据上述结构,引导部成为标记,用户容易确认超声波产生体的位置。According to the above configuration, the guide portion becomes a mark, and the user can easily confirm the position of the ultrasound generator.
在本方案的超声波清洗装置中,能采用如下结构,即,所述引导部的下端位于所述覆盖部的下端的下方。In the ultrasonic cleaning apparatus of this aspect, a structure can be adopted in which the lower end of the guide portion is located below the lower end of the covering portion.
根据上述结构,能通过引导部的下端部分,在污垢附着部分被引导部引导的方向上覆盖从覆盖部露出的超声波产生体的顶端部。由此,被引导部引导的污垢附着部分不容易被超声波产生体的顶端部的角部勾住,不容易发生损伤等。According to the above configuration, the lower end portion of the guide portion can cover the tip portion of the ultrasound generator exposed from the covering portion in the direction in which the dirt adhesion portion is guided by the guide portion. Thus, the dirt adhering portion guided by the guide portion is less likely to be caught by the corner of the tip portion of the ultrasound generator, and damage and the like are less likely to occur.
本发明的第二方案的洗衣机具备:洗涤桶,用于收容并洗涤洗涤物;上面板,具有向所述洗涤桶内投入洗涤物的投入口;以及第一方案的超声波清洗装置,装接于所述上面板。A washing machine according to a second aspect of the present invention includes: a washing tub for storing and washing laundry; an upper panel having an inlet for putting washing into the washing tub; and an ultrasonic cleaning device of the first aspect, attached to The upper panel.
根据上述结构,能起到与第一方案的超声波清洗装置相同的效果。According to the above structure, the same effect as the ultrasonic cleaning device of the first aspect can be achieved.
发明效果Effect of invention
根据本发明,能提供一种用户能容易地将被清洗物的污垢附着部分放置在超声波产生体的顶端面与贮水槽之间的超声波清洗装置、以及具备该超声波清洗装置的洗衣机。According to the present invention, it is possible to provide an ultrasonic cleaning device in which a user can easily place a dirt adhering portion of an object to be cleaned between the tip surface of an ultrasonic generator and a water storage tank, and a washing machine provided with the ultrasonic cleaning device.
本发明的效果以及意义通过以下所示的实施方式的说明会更加明了。不过,以下实施方式只是实施本发明时的一个示例,本发明不受以下实施方式中所记载内容的任何限制。The effect and significance of the present invention will be made clearer by the description of the embodiments shown below. However, the following embodiments are only examples when the present invention is implemented, and the present invention is not limited by the contents described in the following embodiments.
附图说明BRIEF DESCRIPTION
图1是实施方式的全自动洗衣机的侧剖图。Fig. 1 is a side sectional view of a fully automatic washing machine of an embodiment.
图2是实施方式的设置超声波清洗装置之前的超声波清洗装置以及上面板的左侧面部的立体图。2 is a perspective view of the left side portion of the ultrasonic cleaning device and the upper panel before the ultrasonic cleaning device of the embodiment is installed.
图3的(a)是实施方式的超声波清洗部和贮水部位于待机位置时的超声波清洗装置以及上面板的立体图,图3的(b)是实施方式的超声波清洗部和贮水部位于运转位置时的超声波清洗装置以及上面板的立体图。Fig. 3 (a) is a perspective view of the ultrasonic cleaning device and the upper panel when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the standby position, and Fig. 3 (b) is the ultrasonic cleaning unit and the water storage unit of the embodiment are in operation A perspective view of the ultrasonic cleaning device and the upper panel in position.
图4是实施方式的从主体部的中央位置剖开的超声波清洗装置、上面板的左侧面部以及排水单元的主剖图。4 is a main cross-sectional view of the ultrasonic cleaning device, the left side surface portion of the upper panel, and the drainage unit of the embodiment, taken from the center of the main body.
图5是实施方式的从主体部的中央位置剖开的超声波清洗装置的侧剖图。5 is a side cross-sectional view of the ultrasonic cleaning device taken from the center of the main body of the embodiment.
图6是从超声波清洗部的中央位置剖开的超声波清洗装置的主要部分的侧剖图。6 is a side cross-sectional view of the main part of the ultrasonic cleaning device taken from the center of the ultrasonic cleaning unit.
图7的(a)和(b)是实施方式的省略了外壳的上构件的超声波清洗部的主剖图。7( a) and (b) are main cross-sectional views of the ultrasonic cleaning section omitting the upper member of the housing according to the embodiment.
图8的(a)是实施方式的盖的立体图,图8的(b)是实施方式的盖的仰视图。FIG. 8(a) is a perspective view of the cover of the embodiment, and FIG. 8(b) is a bottom view of the cover of the embodiment.
图9的(a)是实施方式的贮水部的立体图,图9的(b)是图9的(a)的A-A′剖面图。FIG. 9(a) is a perspective view of the water storage portion of the embodiment, and FIG. 9(b) is an AA' cross-sectional view of FIG. 9(a).
图10的(a)和(b)是实施方式的阀体切换机构以及贮水部的立体图。10(a) and (b) are perspective views of the valve body switching mechanism and the water storage portion of the embodiment.
图11是实施方式的供水水箱的纵剖面图。11 is a longitudinal cross-sectional view of the water supply tank according to the embodiment.
图12是实施方式的超声波清洗部以及贮水部位于运转位置且供水水箱位于出水位置时的超声波清洗装置的周边部的主剖图。12 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning apparatus when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the operating position and the water supply tank is in the water outlet position.
图13的(a)至(c)是用于对由实施方式的超声波清洗装置进行的被清洗物去污进行说明的图。13 (a) to (c) are diagrams for explaining decontamination of an object to be cleaned by the ultrasonic cleaning device of the embodiment.
图14是实施方式的超声波清洗部以及贮水部位于待机位置且供水水箱位于出水位置时的超声波清洗装置的周边部的主剖图。14 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device when the ultrasonic cleaning unit and the water storage unit of the embodiment are in the standby position and the water supply tank is in the water discharge position.
附图标记说明DESCRIPTION OF REFERENCE NUMERALS
1:全自动洗衣机(洗衣机);12:上面板;14:投入口;20:外桶(洗涤桶);22:洗涤脱水桶(洗涤桶);50:超声波清洗装置;100:超声波清洗部;100a:外装体;110:超声波产生体;120:外壳;130:盖;131:盖主体(覆盖部)132:引导部;135:引导面;210:贮水槽。1: Automatic washing machine (washing machine); 12: Upper panel; 14: Input port; 20: Outer bucket (washing bucket); 22: Washing dehydration bucket (washing bucket); 50: Ultrasonic cleaning device; 100: Ultrasonic cleaning section; 100a: exterior body; 110: ultrasonic wave generator; 120: housing; 130: cover; 131: cover body (cover) 132: guide; 135: guide surface; 210: water tank.
具体实施方式detailed description
以下,参照附图,对本发明的超声波清洗装置以及洗衣机的一实施方式进行说明。Hereinafter, an embodiment of the ultrasonic cleaning device and the washing machine of the present invention will be described with reference to the drawings.
图1是本实施方式的全自动洗衣机1的侧剖图。FIG. 1 is a side sectional view of the fully automatic washing machine 1 of the present embodiment.
全自动洗衣机1具备构成外观的箱体10。箱体10包括上下表面敞开的方形 筒状的机身部11、覆盖机身部11的上表面的上面板12以及支承机身部11的脚台13。在上面板12形成有洗涤物的投入口14。投入口14由自由开闭的上盖15覆盖。在上面板12的前部,内部配置有控制部16。控制部16控制全自动洗衣机1的洗涤运转以及后述的超声波清洗装置50的清洗运转。The fully automatic washing machine 1 includes a cabinet 10 that constitutes an appearance. The cabinet 10 includes a rectangular tube-shaped body portion 11 whose upper and lower surfaces are open, an upper panel 12 covering the upper surface of the body portion 11, and a stand 13 supporting the body portion 11. The upper panel 12 is formed with a laundry inlet 14. The inlet 14 is covered by an upper cover 15 that can be opened and closed freely. A control unit 16 is arranged inside the front of the upper panel 12. The control unit 16 controls the washing operation of the fully automatic washing machine 1 and the washing operation of the ultrasonic cleaning device 50 described later.
在箱体10内,上表面开口的外桶20由具有防振装置的四根吊棒21弹性地悬挂支承。在外桶20内配置有上表面开口的洗涤脱水桶22。洗涤脱水桶22以沿铅垂方向延伸的旋转轴为中心进行旋转。在洗涤脱水桶22的内周面,遍及整周地形成有许多脱水孔22a。在洗涤脱水桶22的上部,设置有平衡环23。在洗涤脱水桶22的底部,配置有波轮24。在波轮24的表面,呈放射状地设置有多个叶片24a。需要说明的是,由外桶20和洗涤脱水桶22构成本发明的洗涤桶。In the box body 10, the outer tub 20 whose upper surface is open is elastically suspended and supported by four suspension bars 21 having vibration-proof devices. In the outer tub 20, a washing and dewatering tub 22 having an upper surface opened is disposed. The washing and dewatering tub 22 rotates around a rotation axis extending in the vertical direction. A large number of dehydration holes 22a are formed on the inner circumferential surface of the washing and dehydrating tub 22 over the entire circumference. On the upper part of the washing and dewatering tub 22, a balance ring 23 is provided. At the bottom of the washing and dewatering tub 22, a pulsator 24 is arranged. On the surface of the pulsator 24, a plurality of blades 24a are provided radially. It should be noted that the outer tub 20 and the washing and dewatering tub 22 constitute the washing tub of the present invention.
在外桶20的外底部,配置有产生驱动洗涤脱水桶22以及波轮24的转矩的驱动单元30。驱动单元30包括驱动马达31和传递机构部32。传递机构部32具有离合器构32a,通过由该离合机构32a进行的切换操作,在洗涤过程以及漂洗过程中,将驱动马达31的转矩仅传递给波轮24而仅使波轮24旋转,在脱水过程中,将驱动马达31的转矩传递给波轮24以及洗涤脱水桶22而使波轮24以及洗涤脱水桶22一体地旋转。At the outer bottom of the outer tub 20, a drive unit 30 that generates torque that drives the washing and dewatering tub 22 and the pulsator 24 is disposed. The drive unit 30 includes a drive motor 31 and a transmission mechanism 32. The transmission mechanism section 32 has a clutch mechanism 32a. By the switching operation by the clutch mechanism 32a, the torque of the drive motor 31 is transmitted to the pulsator 24 and only the pulsator 24 is rotated during the washing process and the rinsing process. During the dehydration process, the torque of the drive motor 31 is transmitted to the pulsator 24 and the washing and dehydrating tub 22 to rotate the pulsator 24 and the washing and dehydrating tub 22 integrally.
在外桶20的外底部形成有排水口部20a。在排水口部20a设置有排水阀40。排水阀40与排水软管41连接。当排水阀40打开时,蓄于洗涤脱水桶22以及外桶20的水通过排水软管41排出到机外。A drain port 20a is formed on the outer bottom of the outer tub 20. A drain valve 40 is provided in the drain port 20a. The drain valve 40 is connected to the drain hose 41. When the drain valve 40 is opened, the water stored in the washing and dehydrating tub 22 and the outer tub 20 is discharged to the outside of the machine through the drain hose 41.
在上面板12的左侧面部12a设置有超声波清洗装置50。超声波清洗装置50主要用于进行如下的清洗运转:在全自动洗衣机1进行洗涤之前,去除附着于衬衫的袖子、领口部分的皮脂污垢、附着于工作服的油污等局部附着于被清洗物的污垢。An ultrasonic cleaning device 50 is provided on the left side surface portion 12a of the upper panel 12. The ultrasonic cleaning device 50 is mainly used to perform the following cleaning operation: before the automatic washing machine 1 performs washing, remove the sebum dirt attached to the sleeve of the shirt, the neckline portion, the oil stain attached to the work clothes, etc., and the dirt locally attached to the object to be cleaned.
在上面板12的后部配置有用于向洗涤脱水桶22内供应自来水的供水单元60。供水单元60具有供水阀61。供水阀61的入水口61a与水龙头连接。当供水阀61打开时,来自水龙头的自来水通过供水路62被供应至洗涤脱水桶22内。A water supply unit 60 for supplying tap water into the washing and dehydrating tub 22 is arranged at the rear of the upper panel 12. The water supply unit 60 has a water supply valve 61. The water inlet 61a of the water supply valve 61 is connected to a faucet. When the water supply valve 61 is opened, tap water from the faucet is supplied into the washing and dewatering tub 22 through the water supply path 62.
在上面板12的外底面,在与超声波清洗装置50对应的位置设置有排水单元70。排水单元70包括承接来自超声波清洗装置50的排水的排水承接部71和 与排水承接部71连接的软管72。软管72与排水口部20a连接。A drain unit 70 is provided on the outer bottom surface of the upper panel 12 at a position corresponding to the ultrasonic cleaning device 50. The drain unit 70 includes a drain receiving portion 71 that receives drain from the ultrasonic cleaning device 50 and a hose 72 connected to the drain receiving portion 71. The hose 72 is connected to the drain port 20a.
图2是设置超声波清洗装置50之前的超声波清洗装置50以及上面板12的左侧面部12a的立体图。图3的(a)是超声波清洗部100和贮水部200位于待机位置时的超声波清洗装置50以及上面板12的立体图,图3的(b)是超声波清洗部100和贮水部200位于运转位置时的超声波清洗装置50以及上面板12的立体图。2 is a perspective view of the ultrasonic cleaning device 50 and the left side surface portion 12a of the upper panel 12 before the ultrasonic cleaning device 50 is installed. FIG. 3(a) is a perspective view of the ultrasonic cleaning device 50 and the upper panel 12 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position, and FIG. 3(b) is the ultrasonic cleaning unit 100 and the water storage unit 200 in operation. A perspective view of the ultrasonic cleaning device 50 and the upper panel 12 in the position.
超声波清洗装置50具备:超声波清洗部100、贮水部200、主体部300、以及供水水箱400。超声波清洗部100具有产生超声波的超声波产生体110。主体部300保持超声波清洗部100。贮水部200位于超声波产生体110的下方,具有可蓄水的贮水槽210,并装接于主体部300。通过用户的脱离操作,能将贮水部200从主体部300向前方拉出使其脱离。供水水箱400设置于主体部300的上部,蓄留要供应给贮水槽210的水。需要说明的是,本实施方式中,蓄于供水水箱400并供应给贮水槽210的水为含有洗涤剂的水。以下,将含有洗涤剂的水称为“清洗水”。The ultrasonic cleaning device 50 includes an ultrasonic cleaning unit 100, a water storage unit 200, a main body 300, and a water supply tank 400. The ultrasonic cleaning unit 100 has an ultrasonic generator 110 that generates ultrasonic waves. The main body 300 holds the ultrasonic cleaning unit 100. The water storage section 200 is located below the ultrasonic generating body 110, has a water storage tank 210 capable of storing water, and is attached to the main body section 300. By the user's detachment operation, the water storage unit 200 can be pulled forward from the main body unit 300 to be detached. The water supply tank 400 is provided on the upper portion of the main body 300 and stores water to be supplied to the water storage tank 210. In this embodiment, the water stored in the water supply tank 400 and supplied to the water storage tank 210 is detergent-containing water. Hereinafter, water containing detergent is referred to as "washing water".
在上面板12的左侧面部12a设有设置超声波清洗装置50的设置部80。设置部80包括具有大致有底圆筒状的装接部81、和形成为使左侧面部12a向装接部81的前方凹陷的收纳部82。装接部81具有形成为与超声波清洗装置50的主体部300对应的形状的收容部83。在收容部83的底面形成有比周围稍微凹陷的凹部84。在凹部84的底面形成有圆形的排水孔85。进而,在装接部81的前侧的下部形成有与收容部83相连的横长的开口部86。On the left side surface portion 12a of the upper panel 12, an installation portion 80 where the ultrasonic cleaning device 50 is installed is provided. The installation portion 80 includes an attachment portion 81 having a substantially bottomed cylindrical shape, and a storage portion 82 formed so that the left side surface portion 12 a is recessed toward the front of the attachment portion 81. The attachment portion 81 has an accommodating portion 83 formed into a shape corresponding to the body portion 300 of the ultrasonic cleaning device 50. A recess 84 slightly recessed from the surroundings is formed on the bottom surface of the housing section 83. A circular drain hole 85 is formed on the bottom surface of the recess 84. Furthermore, a horizontally long opening 86 connected to the housing 83 is formed in the lower portion on the front side of the attachment portion 81.
超声波清洗装置50以主体部300收容于收容部83的方式装接于装接部81,贮水部200通过开口部86向装接部81的外部突出。需要说明的是,本体部300在卸下贮水部200的状态下装接于装接部81。贮水部200通过开口部86装接于主体部300,该主体部装接在装接部81。The ultrasonic cleaning device 50 is attached to the attachment portion 81 so that the body portion 300 is accommodated in the accommodation portion 83, and the water storage portion 200 protrudes to the outside of the attachment portion 81 through the opening 86. In addition, the body part 300 is attached to the attachment part 81 with the water storage part 200 removed. The water storage 200 is attached to the main body 300 through the opening 86, and the main body is attached to the attachment 81.
如图3的(a)所示,在不使用超声波清洗装置50,不进行清洗运转时,超声波清洗装置50呈超声波清洗部100和贮水部200即超声波产生体110和贮水槽210收纳于收纳部82的状态。此时的超声波清洗部100和贮水部200的位置为待机位置。另一方面,如图3的(b)所示,在使用超声波洗净装置50进行清洗运转时,超声波清洗装置50切换为超声波清洗部100和贮水部200向上面 板12的投入口14的内侧突出的状态。此时的超声波清洗部100和贮水部200的位置为运转位置。As shown in FIG. 3( a ), when the ultrasonic cleaning device 50 is not used and the cleaning operation is not performed, the ultrasonic cleaning device 50 is stored in the ultrasonic cleaning unit 100 and the water storage unit 200, that is, the ultrasonic generator 110 and the water storage tank 210. State of Department 82. At this time, the positions of the ultrasonic cleaning unit 100 and the water storage unit 200 are the standby positions. On the other hand, as shown in FIG. 3( b ), when the ultrasonic cleaning device 50 is used for the cleaning operation, the ultrasonic cleaning device 50 is switched to the inside of the inlet 14 of the upper panel 12 by the ultrasonic cleaning unit 100 and the water storage unit 200. Outstanding state. At this time, the positions of the ultrasonic cleaning unit 100 and the water storage unit 200 are operating positions.
接着,对超声波清洗装置50的各个结构进行详细说明。Next, each configuration of the ultrasonic cleaning device 50 will be described in detail.
图4是从主体部300的中央位置剖开的超声波清洗装置50、上面板12的左侧面部12a以及排水单元70的主剖图。图5是从主体部300的中央位置剖开的超声波清洗装置50的侧剖图。图6是从超声波清洗部100的中央位置剖开的超声波清洗装置50的主要部分的侧剖图。图7的(a)和(b)是省略了外壳120的上构件150的超声波清洗部100的主剖图。图7的(a)中,超声波清洗部100从设置于下构件140的LED145的位置剖开,图7的(b)中,超声波清洗部100从下构件140的突起147与盖130的凹部134的嵌合部分剖开。4 is a main cross-sectional view of the ultrasonic cleaning device 50, the left side surface portion 12a of the upper panel 12, and the drain unit 70 cut from the center of the main body 300. FIG. FIG. 5 is a side cross-sectional view of the ultrasonic cleaning device 50 taken from the center of the main body 300. 6 is a side cross-sectional view of the main part of the ultrasonic cleaning device 50 taken from the center of the ultrasonic cleaning unit 100. 7(a) and (b) are main cross-sectional views of the ultrasonic cleaning section 100 with the upper member 150 of the housing 120 omitted. In (a) of FIG. 7, the ultrasonic cleaning unit 100 is cut away from the position of the LED 145 provided in the lower member 140, and in (b) of FIG. 7, the ultrasonic cleaning unit 100 is formed from the protrusion 147 of the lower member 140 and the recess 134 of the cover 130 The fitting part is cut open.
参照图5至图7的(b),超声波清洗部100具备:超声波产生体110、外壳120、以及盖130。外装体100a由外壳120和盖130构成,在该外装体100a的内部收容有超声波产生体110。5 to 7 (b), the ultrasonic cleaning unit 100 includes an ultrasonic generator 110, a housing 120, and a cover 130. The exterior body 100a is composed of a housing 120 and a cover 130, and the ultrasound generator 110 is housed inside the exterior body 100a.
超声波产生体110包括超声波振子111和结合至超声波振子111的振动变幅杆(horn)112。振动变幅杆112由具有导电性的金属材料形成,具有随着朝向顶端侧而逐渐变细的形状。振动变幅杆112的顶端面112a的形状为细长的长方形。超声波产生体110从振动变幅杆112的顶端产生超声波。在振动变幅杆112的上端部形成有凸缘部113。在超声波产生体110,以覆盖凸缘部113的方式装配有缓冲件114。The ultrasonic generating body 110 includes an ultrasonic vibrator 111 and a vibration horn 112 coupled to the ultrasonic vibrator 111. The vibration horn 112 is formed of a metal material having electrical conductivity, and has a shape tapered gradually toward the tip side. The shape of the tip surface 112a of the vibration horn 112 is an elongated rectangle. The ultrasonic wave generating body 110 generates ultrasonic waves from the tip of the vibration horn 112. A flange 113 is formed on the upper end of the vibration horn 112. A buffer 114 is attached to the ultrasonic generating body 110 so as to cover the flange 113.
外壳120由树脂材料形成,具有前后方向上长、其顶端部120a向下方弯曲的臂形状。在顶端部120a的下表面形成有开口部121。The housing 120 is formed of a resin material, and has an arm shape that is long in the front-rear direction and whose tip portion 120a is bent downward. An opening 121 is formed on the lower surface of the tip 120a.
外壳120通过将上表面敞开的下构件140和下表面敞开的上构件150组合而形成。上构件150与构成主体部300的壳体500一体形成。在下构件140和上构件150,设置有用于连接它们的下安装凸台141和上安装凸台151。,下安装凸台141和上安装凸台151通过螺钉161紧固。外壳120的顶端部120a由下构件140形成。The housing 120 is formed by combining a lower member 140 with an open upper surface and an upper member 150 with an open lower surface. The upper member 150 is formed integrally with the case 500 constituting the main body 300. The lower member 140 and the upper member 150 are provided with a lower mounting boss 141 and an upper mounting boss 151 for connecting them. The lower mounting boss 141 and the upper mounting boss 151 are fastened by screws 161. The top end 120 a of the housing 120 is formed by the lower member 140.
在下构件140,在开口部121的上方设置有设置部142,在设置部142的前方以及后方设置有安装凸台143。此外,在下构件140,在开口部121的前方设 置有凹部144。凹部144以呈与盖130的受光部133对应的形状的方式向上凹陷。在凹部144内,左右配置有LED145(参照图7(的a))。进而,下构件140的开口部121的周围成为供盖130嵌入的嵌入口部146,在嵌入口部146的左右侧面形成有突起147(参照图7的(b))。In the lower member 140, an installation portion 142 is provided above the opening 121, and mounting bosses 143 are provided in front of and behind the installation portion 142. In addition, the lower member 140 is provided with a recess 144 in front of the opening 121. The concave portion 144 is recessed upward so as to have a shape corresponding to the light receiving portion 133 of the cover 130. In the concave portion 144, LEDs 145 are arranged on the left and right (see (a) of FIG. 7 ). Furthermore, the periphery of the opening 121 of the lower member 140 becomes an insertion opening 146 into which the lid 130 is fitted, and protrusions 147 are formed on the left and right sides of the insertion opening 146 (see (b) of FIG. 7 ).
由缓冲件114覆盖的超声波产生体110的凸缘部113设置于外壳120的设置部142之上。在凸缘部113的上方装配有框状的固定板170。固定板170通过螺钉162固定于安装凸台143。凸缘部113夹在设置部142与固定板170之间,超声波产生体110固定于外壳120内。振动变幅杆112的顶端侧的部分从外壳120的开口部121向下方突出。The flange portion 113 of the ultrasonic generating body 110 covered by the buffer 114 is provided on the installation portion 142 of the housing 120. A frame-shaped fixing plate 170 is attached above the flange 113. The fixing plate 170 is fixed to the mounting boss 143 with screws 162. The flange portion 113 is sandwiched between the installation portion 142 and the fixing plate 170, and the ultrasonic generating body 110 is fixed in the housing 120. The portion on the tip side of the vibration horn 112 protrudes downward from the opening 121 of the housing 120.
盖130可拆装地装接于外壳120的顶端部120a,被超声波产生体110的振动变幅杆112的从外壳120露出的部分覆盖。The cover 130 is detachably attached to the top end portion 120a of the housing 120, and is covered with a portion of the vibration horn 112 of the ultrasonic wave generating body 110 exposed from the housing 120.
图8的(a)是盖130的立体图,图8的(b)是盖130的仰视图。需要说明的是,图8的(b)中,为了方便,振动变幅杆112的顶端面112a用单点划线示出。FIG. 8(a) is a perspective view of the cover 130, and FIG. 8(b) is a bottom view of the cover 130. FIG. In addition, in (b) of FIG. 8, for convenience, the tip end surface 112 a of the vibration horn 112 is shown by a one-dot chain line.
参照图8的(a)和(b),盖130具有如下结构,即,盖主体131、引导部132、以及受光部133由具有透光性的树脂材料一体形成。盖主体131具有前后左右的宽度随着朝向下方而分三段变窄的筒状,俯视时,包括大致田径跑道形状的上部131a和大致方形的中间部131b以及下部131c。在盖主体131的上部131a,在左右的内侧面形成有与外壳120的突起147对应的形状的凹部134。盖主体131将超声波产生体110的振动变幅杆112的顶端侧的部分以使其顶端部露出的方式覆盖。盖主体131相当于本发明的覆盖部。Referring to (a) and (b) of FIG. 8, the cover 130 has a structure in which the cover body 131, the guide portion 132, and the light-receiving portion 133 are integrally formed of a resin material having translucency. The cover main body 131 has a cylindrical shape whose width in front, back, left, and right sides becomes narrower in three stages as it goes downward, and includes a top portion 131a having a substantially track-and-track shape, a middle portion 131b having a substantially square shape, and a lower portion 131c in a plan view. On the upper portion 131a of the cover body 131, concave portions 134 having a shape corresponding to the protrusions 147 of the housing 120 are formed on the left and right inner side surfaces. The cover main body 131 covers the portion of the vibration horn 112 of the ultrasonic wave generator 110 on the distal end side such that the distal end portion is exposed. The cover body 131 corresponds to the cover part of the present invention.
引导部132以向前方突出的方式设置于盖主体131的前侧面的左右方向上的中央,具有左右方向上扁平的形状。引导部132的左右方向的宽度比超声波产生体110的振动变幅杆112的左右方向的宽度稍大。引导部132的上部具有与外壳120的顶端部120a的外表面相配合的形状。此外,在引导部132的下部设置有向后斜下方向倾斜并在下端部分弯曲而呈水平的引导面135。进而,引导部132的下端位于盖主体131的下端的下方。The guide portion 132 is provided in the center in the left-right direction of the front side surface of the cover body 131 so as to protrude forward, and has a flat shape in the left-right direction. The width of the guide portion 132 in the left-right direction is slightly larger than the width of the vibration horn 112 of the ultrasonic generator 110 in the left-right direction. The upper portion of the guide portion 132 has a shape matching the outer surface of the tip portion 120 a of the housing 120. In addition, a lower surface of the guide portion 132 is provided with a guide surface 135 inclined horizontally downward and curved at the lower end to be horizontal. Furthermore, the lower end of the guide portion 132 is located below the lower end of the cover body 131.
受光部133设置于盖主体131的前上端部。受光部133在左右方向上为长 尺寸,以沿着盖主体131的前上端部的方式稍微弯曲。在受光部133,在左右两侧形成有与外壳120的LED145对应的圆形的孔136。The light receiving unit 133 is provided at the front upper end of the cover body 131. The light-receiving portion 133 has a long dimension in the left-right direction, and is slightly curved along the front upper end portion of the cover body 131. In the light receiving portion 133, circular holes 136 corresponding to the LEDs 145 of the housing 120 are formed on the left and right sides.
返回图5至图7的(b),盖130从下方装接于外壳120的嵌入口部146。如图7的(b)所示,外壳120的左右突起147与盖130的左右凹部134嵌合。此时,突起147比盖主体131的上部131a的内侧面稍微向外侧突出,而装接时,盖主体131的上部131a触碰到突起147并向左右方向扩开,嵌入嵌入口部146。如图7的(a)所示,盖130的受光部133嵌入外壳120的凹部144,凹部144的左右的LED145嵌入受光部133的左右的孔136。由此,两个LED145与受光部133即盖130连接。当左右的LED145发光时,此光通过受光部133导入盖130的内部,从而整个盖130发光。Returning to (b) of FIGS. 5 to 7, the cover 130 is attached to the fitting opening 146 of the housing 120 from below. As shown in FIG. 7( b ), the left and right protrusions 147 of the housing 120 are fitted into the left and right recesses 134 of the cover 130. At this time, the protrusion 147 slightly protrudes outward from the inner surface of the upper portion 131a of the cover main body 131, and when attached, the upper portion 131a of the cover main body 131 touches the protrusion 147 and expands in the left-right direction to fit into the fitting opening 146. As shown in FIG. 7( a ), the light-receiving portion 133 of the cover 130 fits into the recess 144 of the housing 120, and the left and right LEDs 145 of the recess 144 fit into the left-right holes 136 of the light receiving portion 133. As a result, the two LEDs 145 are connected to the cover 130 which is the light receiving unit 133. When the left and right LEDs 145 emit light, this light is introduced into the inside of the cover 130 through the light receiving portion 133, so that the entire cover 130 emits light.
如图6所示,在盖130装接于外壳120的状态下,超声波产生体110的振动变幅杆112的顶端部稍微从盖主体131露出。此外,盖130的引导部132的下端与振动变幅杆112的顶端面112a几乎成一个平面。进而,引导部132的引导面135以随着靠近贮水槽210而靠近振动变幅杆112的方式倾斜。进而,如图8的(b)所示,在左右方向上,即在与超声波清洗部100的正面方向正交的方向上,引导部132的位置与振动变幅杆112的顶端部的位置一致。As shown in FIG. 6, in a state where the cover 130 is attached to the housing 120, the tip portion of the vibration horn 112 of the ultrasonic generating body 110 is slightly exposed from the cover body 131. In addition, the lower end of the guide portion 132 of the cover 130 is almost flush with the front end surface 112a of the vibration horn 112. Furthermore, the guide surface 135 of the guide portion 132 is inclined so as to approach the vibration horn 112 as it approaches the water storage tank 210. Furthermore, as shown in FIG. 8( b ), in the left-right direction, that is, in the direction orthogonal to the front direction of the ultrasonic cleaning unit 100, the position of the guide portion 132 coincides with the position of the tip portion of the vibration horn 112. .
如图7的(a)和(b)所示,外壳120的顶端部120a的左右的侧面以顶端部120a的宽度随着朝向下方而变窄的方式倾斜。此外,盖130也具有左右的宽度随着朝向下方而变窄的锥形形状。由此,用户通常能从斜上方看到设置于上面板12的超声波清洗装置50,这时,能容易地确认超声波产生体110的振动变幅杆112的顶端部的位置。As shown in (a) and (b) of FIG. 7, the left and right side surfaces of the tip portion 120 a of the housing 120 are inclined so that the width of the tip portion 120 a becomes narrower as it goes downward. In addition, the cover 130 also has a tapered shape whose left and right widths become narrower as it goes downward. As a result, the user can usually see the ultrasonic cleaning device 50 provided on the upper panel 12 obliquely from above. At this time, the position of the tip end of the vibration horn 112 of the ultrasonic generator 110 can be easily confirmed.
如图6所示,超声波产生体110的振动变幅杆112的顶端面112a的位置比贮水槽210的上表面的位置稍低,振动变幅杆112的顶端部呈稍微进入贮水槽210内的状态。As shown in FIG. 6, the position of the tip surface 112 a of the vibration horn 112 of the ultrasonic generating body 110 is slightly lower than the position of the upper surface of the water storage tank 210, and the top end of the vibration horn 112 enters the water storage tank 210 slightly. status.
图9的(a)是贮水部200的立体图,图9的(b)是图9的(a)的A-A′断面图。FIG. 9(a) is a perspective view of the water storage unit 200, and FIG. 9(b) is an AA' cross-sectional view of FIG. 9(a).
参照图9的(a)和(b),贮水部200由树脂材料形成,前后方向上为长尺寸,并具有后部向右侧弯曲的形状。此外,贮水部200的前端部以及后端部具 有圆弧状。在贮水部200的前部形成有前后方向上长的贮水槽210。贮水槽210具有研钵形状,其内周面缓缓地倾斜。在贮水部200的后部形成有圆形的供水槽220。供水槽220通过供水槽230与贮水槽210相连。贮水槽210的底面和供水槽230的底面朝向供水槽220缓缓地倾斜。Referring to (a) and (b) of FIG. 9, the water storage portion 200 is formed of a resin material, has a long dimension in the front-rear direction, and has a shape in which the rear portion is curved to the right. In addition, the front end and the rear end of the water storage section 200 have an arc shape. A water storage tank 210 long in the front-rear direction is formed at the front of the water storage unit 200. The water storage tank 210 has a mortar shape, and its inner peripheral surface is gradually inclined. A circular water supply tank 220 is formed at the rear of the water storage 200. The water supply tank 220 is connected to the water storage tank 210 through the water supply tank 230. The bottom surfaces of the water storage tank 210 and the water supply tank 230 are gradually inclined toward the water supply tank 220.
在供水槽220的底面,在中央部形成有排水口221。在排水口221的中央部设置有具有孔部222a的凸起222。凸起222的两侧通过两个肋223与排水口221的内周缘连结。包围排水口221的圆筒状的肋201以向下方突出的方式形成于贮水部200的外底面。A drain port 221 is formed in the center of the bottom surface of the water supply tank 220. A protrusion 222 having a hole 222a is provided at the center of the drain 221. Both sides of the protrusion 222 are connected to the inner periphery of the drain port 221 by two ribs 223. A cylindrical rib 201 surrounding the drain 221 is formed on the outer bottom surface of the water storage 200 so as to protrude downward.
在供水槽220,设置有用于通过排水口221进行排水的排水机构240。排水机构240包括阀体241、操作构件242、以及螺旋弹簧243。The water supply tank 220 is provided with a drain mechanism 240 for draining through the drain port 221. The drain mechanism 240 includes a valve body 241, an operating member 242, and a coil spring 243.
阀体241由橡胶等弹性材料形成,从下方闭塞排水口221。操作构件242由树脂材料形成,包括顶面部被堵住的圆筒状的轮毂部244、从轮毂部244的顶面部的表面中央向上方突出的圆柱状的突起部245、从轮毂部244的顶面部的背面中央向下方延伸的轴部246、以及从轮毂部244的周面部向四个方向伸出的四个臂部247。轴部246可上下移动地穿过凸起222的孔部222a。在轴部246的下端部装配有阀体241。各个臂部247从轮毂部244的周面向外侧大致水平地伸出之后,大致垂直地折曲而向上方延伸,然后进一步地大致垂直地折曲而向外侧大致水平地延伸。螺旋弹簧243配置于操作构件242的轮毂部244与两个肋223之间。螺旋弹簧243处于压缩状态,阀体241向闭塞排水口221的方向对操作构件242施力。The valve body 241 is formed of an elastic material such as rubber, and closes the drain port 221 from below. The operation member 242 is formed of a resin material, and includes a cylindrical hub portion 244 whose top surface portion is blocked, a cylindrical protrusion portion 245 protruding upward from the surface center of the top surface portion of the hub portion 244, and a top portion of the hub portion 244 A shaft portion 246 extending downward from the center of the back surface of the face portion, and four arm portions 247 extending in four directions from the peripheral surface portion of the hub portion 244. The shaft portion 246 passes through the hole portion 222a of the protrusion 222 so as to be movable up and down. A valve body 241 is attached to the lower end of the shaft 246. After each arm portion 247 extends substantially horizontally outward from the circumferential surface of the hub portion 244, it is bent substantially vertically to extend upward, and then further bent substantially vertically to extend substantially horizontally to the outside. The coil spring 243 is arranged between the hub portion 244 of the operation member 242 and the two ribs 223. The coil spring 243 is in a compressed state, and the valve body 241 urges the operation member 242 in a direction to close the drain port 221.
参照图4和图5,主体部300包括:壳体500、阀体切换机构600、以及水箱切换机构700。主体部300收容于设置在上面板12的装接部81的收容部83。4 and 5, the main body 300 includes a housing 500, a valve body switching mechanism 600, and a water tank switching mechanism 700. The main body 300 is accommodated in the accommodating portion 83 provided in the attachment portion 81 of the upper panel 12.
壳体500由树脂材料形成,具有底面部闭塞、顶面部敞开的圆筒形状。在壳体500的下部,在超声波清洗部100侧形成有插入口501。插入口501与装接部81的开口部86相匹配。在壳体500的内部,在插入口501的深处设置有收容室502。收容室502由从壳体500的底面部立起的周面壁503、和覆盖周面壁503的上表面的固定板510构成。固定板510由未图示的螺钉紧固在设置于周面壁503的多个安装凸台504。在固定板510,在中央部设置有圆形的开口部511。在开口部511的周缘部,在相互对置的位置设置有沿周向延伸的两个肋512。The case 500 is formed of a resin material and has a cylindrical shape with a closed bottom portion and an open top portion. In the lower part of the housing 500, an insertion port 501 is formed on the ultrasonic cleaning unit 100 side. The insertion port 501 matches the opening 86 of the attachment portion 81. Inside the housing 500, a storage chamber 502 is provided deep in the insertion port 501. The storage chamber 502 is composed of a peripheral wall 503 rising from the bottom surface of the housing 500 and a fixing plate 510 covering the upper surface of the peripheral wall 503. The fixing plate 510 is fastened to a plurality of mounting bosses 504 provided on the peripheral wall 503 by screws (not shown). The fixing plate 510 is provided with a circular opening 511 at the center. At the peripheral edge of the opening 511, two ribs 512 extending in the circumferential direction are provided at positions facing each other.
在壳体500的底面部,在收容室502的内部形成有开口部505。贮水部200的供水槽220通过插入口501收容于收容室502内。当供水槽220收容于收容室502内时,贮水部200的外底面的肋201嵌入开口部505。在壳体500的底面部,在开口部505的周围部分形成有U字状的狭缝506,当贮水部200进出收容室502时,包括开口部505的狭缝506的内侧部分能被肋201推着向下方挠曲。挠曲的部分进入收容部83的凹部84内。An opening 505 is formed in the bottom of the housing 500 inside the storage chamber 502. The water supply tank 220 of the water storage unit 200 is accommodated in the storage chamber 502 through the insertion port 501. When the water supply tank 220 is accommodated in the accommodating chamber 502, the rib 201 on the outer bottom surface of the water storage section 200 fits into the opening 505. A U-shaped slit 506 is formed around the opening 505 on the bottom surface of the housing 500. When the water storage unit 200 enters and exits the storage chamber 502, the inner portion of the slit 506 including the opening 505 can be ribbed 201 pushes and flexes downward. The bent portion enters the recess 84 of the receiving portion 83.
收容部83的排水孔85位于贮水部200的排水口221以及壳体500的开口部505的正下方。在排水孔85,连接有设置于排水单元70的排水承接部71的流入口73。The drain hole 85 of the storage section 83 is located directly below the drain port 221 of the water storage section 200 and the opening 505 of the case 500. The drain hole 85 is connected to an inflow port 73 provided in the drain receiving portion 71 of the drain unit 70.
阀体切换机构600配置在壳体500的内部,并以如下的方式切换阀体241的位置:在超声波清洗部100和贮水部200位于运转位置时使排水机构240的阀体241呈关闭状态,在超声波清洗部100和贮水部200位于待机位置时使阀体241呈打开状态。The valve body switching mechanism 600 is arranged inside the housing 500 and switches the position of the valve body 241 in such a manner that the valve body 241 of the drainage mechanism 240 is closed when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position When the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position, the valve body 241 is opened.
图10的(a)和(b)是阀体切换机构600以及贮水部200的立体图。图10的(a)表示贮水部200位于待机位置的状态,图10的(b)表示贮水部200位于运转位置的状态。10( a) and (b) are perspective views of the valve body switching mechanism 600 and the water storage 200. FIG. 10(a) shows a state where the water storage unit 200 is located at the standby position, and FIG. 10(b) shows a state where the water storage unit 200 is located at the operating position.
参照图4、图5、图10的(a)和(b),阀体切换机构600包括凸轮构件610和保持凸轮构件610并使其升降的保持构件620。凸轮构件610以及保持构件620由树脂材料形成。Referring to FIGS. 4, 5, and 10 (a) and (b ), the valve body switching mechanism 600 includes a cam member 610 and a holding member 620 that holds and raises and lowers the cam member 610. The cam member 610 and the holding member 620 are formed of a resin material.
凸轮构件610形成为大致圆筒状。凸轮构件610在中间部分具有台阶部611,台阶部611下侧的外径变小。在凸轮构件610,在台阶部611的下侧的相互对置的位置形成有两个缺口部612。这两个缺口部612分别与对应的固定板510的肋512卡合,由此,凸轮构件610以相对于该固定板510不能沿周向移动而能向上下方向移动的方式与固定板510连结。在凸轮构件610的上部,在外周面等间隔地形成有向外侧突出的四个轴613。在贮水部200的供水槽220收容于壳体500的收容室502内的状态下,凸轮构件610的下端与配置在供水槽220的操作构件242的四个臂部247接触。The cam member 610 is formed in a substantially cylindrical shape. The cam member 610 has a stepped portion 611 in the middle portion, and the outer diameter on the lower side of the stepped portion 611 becomes smaller. In the cam member 610, two notch portions 612 are formed at mutually opposite positions on the lower side of the step portion 611. The two notch portions 612 are respectively engaged with the ribs 512 of the corresponding fixing plate 510, whereby the cam member 610 is connected to the fixing plate 510 in such a manner that it cannot move in the circumferential direction with respect to the fixing plate 510 and can move in the vertical direction. . On the upper portion of the cam member 610, four shafts 613 protruding outward are formed at equal intervals on the outer peripheral surface. In a state where the water supply tank 220 of the water storage unit 200 is accommodated in the storage chamber 502 of the housing 500, the lower end of the cam member 610 contacts the four arm portions 247 of the operation member 242 disposed in the water supply tank 220.
保持构件620具有大致圆筒状的框架部621,在框架部621的内部的上部一 体地形成有圆板状的保持部622。框架部621的下部开口出供贮水部200通过的部分。在保持部622的下表面,在三处设置有安装凸台623。安装凸台623沿框架部621的内表面向下方延伸,并从框架部621的下端部稍微突出。The holding member 620 has a substantially cylindrical frame portion 621, and a disc-shaped holding portion 622 is integrally formed on the upper portion inside the frame portion 621. The lower portion of the frame portion 621 opens a portion through which the water storage portion 200 passes. On the lower surface of the holding portion 622, mounting bosses 623 are provided at three places. The mounting boss 623 extends downward along the inner surface of the frame portion 621 and slightly protrudes from the lower end portion of the frame portion 621.
在保持部622的中央部形成有圆形的开口部624。在保持部622的上表面,在开口部624的周缘设置有四个升降部625。当凸轮构件610插入开口部624时,凸轮构件610的各个轴613配置于升降部625。升降部625的上表面具有当凸轮构件610向周向移动时轴613能上行下行的坡道形状。此外,在保持部622的上表面,在四个位置设置有向上方延伸的圆筒状的引导部626,并在后侧设置有向上方突出的爪部627。进而,在保持部622,在前侧设置有检测孔628。A circular opening 624 is formed in the center of the holding portion 622. On the upper surface of the holding portion 622, four lifting portions 625 are provided on the periphery of the opening 624. When the cam member 610 is inserted into the opening 624, each shaft 613 of the cam member 610 is arranged in the elevating portion 625. The upper surface of the lifting portion 625 has a ramp shape in which the shaft 613 can go up and down when the cam member 610 moves in the circumferential direction. In addition, on the upper surface of the holding portion 622, cylindrical guide portions 626 extending upward are provided at four positions, and claw portions 627 protruding upward are provided on the rear side. Furthermore, the holding portion 622 is provided with a detection hole 628 on the front side.
在壳体500的底面部,在三个位置形成有沿着周向弯曲的椭圆形的开口部507。保持构件620的三个安装凸台623分别穿过对应的开口部507,固定于收容部83的底面。由此,保持构件620相对于装接部81不能转动,超声波清洗部100、贮水部200以及壳体500能相对于装接部81以及保持构件620在待机位置与运转位置之间转动。此外,凸轮构件610与壳体500的固定板510连结,因此,与固定板510一起转动。On the bottom surface of the housing 500, elliptical openings 507 curved in the circumferential direction are formed at three positions. The three mounting bosses 623 of the holding member 620 pass through the corresponding openings 507 and are fixed to the bottom surface of the housing 83. As a result, the holding member 620 cannot rotate with respect to the attachment portion 81, and the ultrasonic cleaning unit 100, the water storage portion 200, and the housing 500 can rotate with respect to the attachment portion 81 and holding member 620 between the standby position and the operating position. In addition, the cam member 610 is connected to the fixed plate 510 of the housing 500 and therefore rotates together with the fixed plate 510.
超声波清洗部100、贮水部200以及壳体500的转动范围由壳体500的开口部507的周向的长度决定。当超声波清洗部100、贮水部200以及壳体500位于待机位置时,开口部507的一端与安装凸台623接触。当超声波清洗部100、贮水部200以及壳体500移动至运转位置时,开口部507的另一端与安装凸台623接触,阻止进一步的转动。The rotation range of the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 is determined by the circumferential length of the opening 507 of the housing 500. When the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 are in the standby position, one end of the opening 507 contacts the mounting boss 623. When the ultrasonic cleaning unit 100, the water storage unit 200, and the housing 500 move to the operating position, the other end of the opening 507 comes into contact with the mounting boss 623, preventing further rotation.
在壳体500的内部,水箱切换机构700配置于阀体切换机构600的上方。水箱切换机构700在不从供水水箱400放水的止水位置、和从供水水箱400放水的出水位置之间切换供水水箱400的位置。在壳体500内,止水位置位于出水位置的上方。与阀体切换机构600相同,水箱切换机构700相对于装接部81也不转动。Inside the housing 500, the water tank switching mechanism 700 is arranged above the valve body switching mechanism 600. The water tank switching mechanism 700 switches the position of the water supply water tank 400 between a water stop position where water is not discharged from the water supply water tank 400 and an outlet position where water is discharged from the water supply water tank 400. In the housing 500, the water stop position is above the water discharge position. Like the valve body switching mechanism 600, the water tank switching mechanism 700 does not rotate with respect to the attachment portion 81.
参照图4以及图5,水箱切换机构700包括上承接构件710、下承接构件720、螺旋弹簧730、以及锁定装置740。上承接构件710具有与供水水箱400的形状对应的圆筒形状,上表面和下表面开口。下承接构件720具有中央部开口的圆形的倒碟形,并装配于上承接构件710的外底面。在下承接构件720设置有插 入保持构件620的四个引导部626的引导孔721。下承接构件720在上下移动时由引导部626引导。4 and 5, the water tank switching mechanism 700 includes an upper receiving member 710, a lower receiving member 720, a coil spring 730, and a locking device 740. The upper receiving member 710 has a cylindrical shape corresponding to the shape of the water supply tank 400, and the upper and lower surfaces are open. The lower receiving member 720 has a circular inverted dish shape with a central portion opened, and is fitted on the outer bottom surface of the upper receiving member 710. The lower receiving member 720 is provided with guide holes 721 into which the four guide portions 626 of the holding member 620 are inserted. The lower receiving member 720 is guided by the guide portion 626 when moving up and down.
螺旋弹簧730配置于下承接构件720与凸轮构件610的台阶部611之间。螺旋弹簧730借助其弹力将上承接构件710以及下承接构件720上推至止水位置。The coil spring 730 is disposed between the lower receiving member 720 and the stepped portion 611 of the cam member 610. The coil spring 730 pushes up the upper receiving member 710 and the lower receiving member 720 to the water stop position by its elastic force.
锁定装置740以朝下的方式装配于下承接构件720的后侧。保持构件620的爪部627位于锁定装置740的正下方。锁定装置740具备在顶端部的两侧具有保持片的杆741、供杆741出入的外壳742、以及未图示的交替机构。The locking device 740 is mounted on the rear side of the lower receiving member 720 in a downward manner. The claw portion 627 of the holding member 620 is located directly below the locking device 740. The lock device 740 includes a lever 741 having holding pieces on both sides of the tip portion, a housing 742 through which the lever 741 enters and exits, and an alternate mechanism (not shown).
当上承接构件710以及下承接构件720对抗螺旋弹簧730的弹性力被下推至出水位置时,锁定装置740的杆741的保持片从上方与保持构件620的爪部627抵接,杆741被爪部627推入外壳742的内部。爪部627被杆741的保持片从两侧抓住,并且杆741借助交替机构的作用保持于外壳742的内部。由此,爪部627不会从锁定装置740脱离,上承接构件710以及下承接构件720被锁定在出水位置。When the upper receiving member 710 and the lower receiving member 720 are pushed down to the water outlet position against the elastic force of the coil spring 730, the holding piece of the rod 741 of the locking device 740 abuts the claw portion 627 of the holding member 620 from above, and the rod 741 is The claw 627 is pushed into the inside of the housing 742. The claw portion 627 is grasped from both sides by the holding piece of the lever 741, and the lever 741 is held inside the housing 742 by the action of the alternating mechanism. As a result, the claw portion 627 does not disengage from the locking device 740, and the upper receiving member 710 and the lower receiving member 720 are locked at the water discharge position.
当杆741从该状态再一次被爪部627推入时,通过交替机构的作用解除保持,当推入力释放完时杆741的顶端部从外壳742突出,杆741的保持片放开。由此,爪部627从锁定装置740脱离。上承接构件710以及下承接构件720通过螺旋弹簧730的弹性力被上推向止水位置。When the lever 741 is pushed in again by the claw portion 627 from this state, the hold is released by the action of the alternating mechanism, and when the pushing force is released, the tip of the lever 741 protrudes from the housing 742, and the holding piece of the lever 741 is released. Thus, the claw portion 627 is disengaged from the locking device 740. The upper receiving member 710 and the lower receiving member 720 are pushed upward to the water stop position by the elastic force of the coil spring 730.
在下承接构件720的前侧,在与保持构件620的检测孔628对应的位置设置有向下方延伸的传感器装配部722。在传感器装配部722的顶端装配有舌簧开关801。另一方面,在壳体500的固定板510装配有磁铁802。由舌簧开关801和磁铁802构成检测部800。On the front side of the lower receiving member 720, a sensor mounting portion 722 extending downward is provided at a position corresponding to the detection hole 628 of the holding member 620. A reed switch 801 is mounted on the tip of the sensor mounting part 722. On the other hand, a magnet 802 is attached to the fixing plate 510 of the housing 500. The reed switch 801 and the magnet 802 constitute a detection unit 800.
固定板510的磁铁802在超声波清洗部100以及贮水部200位于待机位置时,位于与保持构件620的检测孔628错开的位置,当超声波清洗部100以及贮水部200移动至运转位置时,则移动至检测孔628的正下方。当上承接构件710以及下承接构件720即供水水箱400下降至出水位置时,舌簧开关801插入检测孔628。此时,如果超声波清洗部100以及贮水部200位于运转位置的话,则舌簧开关801接近磁铁802。由此,从舌簧开关801向控制部16输出接通信 号,控制部16能检测出超声波清洗部100以及贮水部200位于运转位置并且供水水箱400位于出水位置。When the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position, the magnet 802 of the fixed plate 510 is located at a position offset from the detection hole 628 of the holding member 620. When the ultrasonic cleaning unit 100 and the water storage unit 200 move to the operating position, Then it moves to directly below the detection hole 628. When the upper receiving member 710 and the lower receiving member 720, that is, the water supply tank 400 are lowered to the water outlet position, the reed switch 801 is inserted into the detection hole 628. At this time, if the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position, the reed switch 801 approaches the magnet 802. As a result, the reception signal is output from the reed switch 801 to the control unit 16, and the control unit 16 can detect that the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water outlet position.
图11是供水水箱400的纵剖面图。11 is a longitudinal sectional view of the water supply tank 400.
参照图11,供水水箱400包括水箱主体410和盖420。水箱主体410以及盖420由树脂材料形成。在盖420,具备开闭阀机构430。11, the water supply tank 400 includes a tank body 410 and a cover 420. The water tank body 410 and the cover 420 are formed of a resin material. The cover 420 is provided with an on-off valve mechanism 430.
水箱主体410为大致圆筒状的透明容器,通过使下表面开口的上容器411和上表面开口的下容器412夹着水封用的密封垫441以螺纹方式接合而形成。水箱主体410的上部具有台阶,外径在该台阶的下侧变小。在水箱主体410的底面部的中央形成有水的出入口413,在出入口413的周围,以向下方突出的方式设置有圆筒状的连接口部414。The water tank body 410 is a substantially cylindrical transparent container, and is formed by screwing the upper container 411 with the lower surface open and the lower container 412 with the upper surface open through the gasket 441 for water sealing. The upper part of the water tank body 410 has a step, and the outer diameter becomes smaller on the lower side of the step. A water inlet/outlet 413 is formed in the center of the bottom surface of the water tank body 410, and a cylindrical connection port 414 is provided around the inlet/outlet 413 so as to protrude downward.
盖420以螺纹方式装配于连接口部414,覆盖出入口413。在盖420与连接口部414之间夹持有水封用的密封垫442。在盖420的底面形成有流出口421。在流出口421的中央部设置有具有孔部422a的凸起422。凸起422的两侧通过两个肋423与流出口421的周缘部连结。The cover 420 is screwed to the connection port 414 and covers the entrance 413. A gasket 442 for water sealing is sandwiched between the cover 420 and the connection port 414. An outlet 421 is formed on the bottom surface of the cover 420. A protrusion 422 having a hole 422a is provided in the center of the outlet 421. Both sides of the protrusion 422 are connected to the peripheral portion of the outlet 421 by two ribs 423.
开闭阀机构430包括阀体431、销432、以及螺旋弹簧433。阀体431由橡胶等弹性材料形成。销432由金属材料、树脂材料形成,能上下移动地穿过凸起422的孔部422a。在销432的上端部装配有阀体431。销432的下端部比其他部位的外径大,构成凸缘部432a,在该凸缘部432a与凸起422之间配置有螺旋弹簧433。螺旋弹簧433处于压缩状态,销432被螺旋弹簧433向下方按压,阀体431闭塞流出口421。The opening and closing valve mechanism 430 includes a valve body 431, a pin 432, and a coil spring 433. The valve body 431 is formed of an elastic material such as rubber. The pin 432 is formed of a metal material or a resin material, and passes through the hole 422a of the protrusion 422 so as to move up and down. A valve body 431 is attached to the upper end of the pin 432. The lower end portion of the pin 432 is larger than the outer diameter of other parts, and constitutes a flange portion 432a, and a coil spring 433 is arranged between the flange portion 432a and the protrusion 422. The coil spring 433 is in a compressed state, the pin 432 is pressed downward by the coil spring 433, and the valve body 431 closes the outlet 421.
在盖420的外底面,以包围销432的方式形成有圆筒状的放出口部424。放出口部424的出口为供水水箱400的最终的水的放出口401。A cylindrical discharge port 424 is formed on the outer bottom surface of the cover 420 so as to surround the pin 432. The outlet of the outlet portion 424 is the final outlet 401 of the water supply tank 400.
如图4所示,供水水箱400从上方设置于水箱切换机构700的上承接构件710。盖420的放出口部424呈从上承接构件710的下表面开口向下方露出并进入凸轮构件610的内部的状态。As shown in FIG. 4, the water supply tank 400 is provided on the upper receiving member 710 of the tank switching mechanism 700 from above. The discharge port portion 424 of the cover 420 is exposed downward from the lower surface opening of the upper receiving member 710 and enters the inside of the cam member 610.
在全自动洗衣机1中,进行各种运转模式的洗涤运转。在洗涤运转中,按顺序执行洗涤过程、中间脱水过程、漂洗过程以及最终脱水过程。In the fully automatic washing machine 1, washing operations in various operation modes are performed. In the washing operation, the washing process, the intermediate dehydration process, the rinsing process, and the final dehydration process are sequentially performed.
在洗涤过程以及漂洗过程中,在洗涤脱水桶22内蓄水的状态下,波轮24 向右方向以及左方向旋转。通过波轮24的旋转,在洗涤脱水桶22内产生水流。在洗涤过程中,洗涤物通过产生的水流和水中所含的洗涤剂而被清洗。在漂洗过程中,洗涤物通过产生的水流而被漂洗。During the washing process and the rinsing process, the pulsator 24 rotates in the right direction and the left direction with the water stored in the washing and dehydrating tub 22. The rotation of the pulsator 24 generates a water flow in the washing and dewatering tub 22. During the washing process, the laundry is washed by the generated water stream and the detergent contained in the water. During the rinsing process, the laundry is rinsed by the generated water flow.
在中间脱水过程以及最终脱水过程中,洗涤脱水桶22以及波轮24一体地高速旋转。通过洗涤脱水桶22中产生的离心力的作用,洗涤物被脱水。In the intermediate dehydration process and the final dehydration process, the washing dehydration tub 22 and the pulsator 24 integrally rotate at a high speed. By the action of the centrifugal force generated in the washing and dewatering tub 22, the laundry is dehydrated.
进而,在全自动洗衣机1中,进行超声波清洗装置50的清洗运转。当用户洗涤衬衫等被清洗物时,该被清洗物局部含有顽固的污垢时,在洗涤之前使用超声波清洗装置50对被清洗物进行局部清洗。Furthermore, in the fully automatic washing machine 1, the cleaning operation of the ultrasonic cleaning device 50 is performed. When the user is washing the object to be washed, such as a shirt, and the object to be washed partially contains stubborn dirt, the object to be washed is partially cleaned using the ultrasonic cleaning device 50 before washing.
在尚未进行清洗运转时,如图3的(a)所示,超声波清洗装置50呈超声波清洗部100以及贮水部200位于待机位置的状态。此时,如图4所示,供水水箱400通过水箱切换机构700保持在止水位置。阀体431关闭,不会从供水水箱400放出清洗水。此外,如图10的(a)所示,阀体切换机构600的凸轮构件610通过使四个轴613分别位于对应的升降部625的最下点,从而移动至最下方。如图4所示,在贮水部200中,排水机构240的操作构件242被凸轮构件610推向下方而使阀体241离开排水口221,排水口221呈打开状态。When the cleaning operation has not been performed, as shown in FIG. 3( a ), the ultrasonic cleaning device 50 is in a state where the ultrasonic cleaning unit 100 and the water storage unit 200 are located at the standby position. At this time, as shown in FIG. 4, the water supply tank 400 is held at the water stop position by the tank switching mechanism 700. The valve body 431 is closed, and the washing water is not discharged from the water supply tank 400. In addition, as shown in FIG. 10( a ), the cam member 610 of the valve body switching mechanism 600 moves the lowermost point by positioning the four shafts 613 at the lowermost points of the corresponding lifting portions 625, respectively. As shown in FIG. 4, in the water storage unit 200, the operation member 242 of the drainage mechanism 240 is pushed downward by the cam member 610 to move the valve body 241 away from the drainage port 221, and the drainage port 221 is in an open state.
在进行清洗运转的情况下,供水水箱400内没有清洗水的话,用户将供水水箱400取出至外部并倒过来,打开下容器412。用户向供水水箱400内加入水和液体洗涤剂,关闭下容器412之后,轻轻摇动供水水箱400使液体洗涤剂与水混合。由此,在供水水箱400内生成清洗水。之后,用户将供水水箱400再次投入主体部300内。In the case of performing the washing operation, if there is no washing water in the water supply tank 400, the user takes the water supply tank 400 to the outside and turns it over, and opens the lower container 412. The user adds water and liquid detergent into the water supply tank 400, closes the lower container 412, and gently shakes the water supply tank 400 to mix the liquid detergent and water. Thus, washing water is generated in the water supply tank 400. After that, the user throws the water supply tank 400 into the main body 300 again.
进而,用户将超声波清洗部100以及贮水部200向投入口14侧转动,如图3的(b)所示,将超声波清洗部100以及贮水部200移动至运转位置。然后,用户将供水水箱400向下方推入。供水水箱400下降并到达出水位置。供水水箱400通过水箱切换机构700保持在出水位置。Furthermore, the user rotates the ultrasonic cleaning unit 100 and the water storage unit 200 toward the inlet 14 and moves the ultrasonic cleaning unit 100 and the water storage unit 200 to the operating position as shown in FIG. 3( b ). Then, the user pushes the water supply tank 400 downward. The water supply tank 400 descends and reaches the water outlet position. The water supply tank 400 is maintained at the water outlet position by the tank switching mechanism 700.
图12是超声波清洗部100以及贮水部200位于运转位置且供水水箱400位于出水位置时的超声波清洗装置50的周边部的主剖图。12 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device 50 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water outlet position.
如图12所示,当供水水箱400下降至出水位置时,供水水箱400的销432触碰到操作构件242的突起部245,对抗螺旋弹簧433的推压力被上推。由此, 阀体431离开流出口421从而流出口421打开,供水水箱400内的清洗水从放出口401放出。此时,如图10的(b)所示,阀体切换机构600的凸轮构件610通过使四个轴613分别位于对应的升降部625的最上点,从而移动至最上方。因此,在贮水部200中,排水机构240的操作构件242从凸轮构件610的推压中释放,通过螺旋弹簧243的弹力而被上推。由此,阀体241将排水口221闭塞,排水口221呈闭锁状态。As shown in FIG. 12, when the water supply tank 400 is lowered to the water discharge position, the pin 432 of the water supply tank 400 touches the protrusion 245 of the operation member 242 and is pushed up against the urging force of the coil spring 433. As a result, the valve body 431 leaves the outlet 421 and the outlet 421 is opened, and the washing water in the water supply tank 400 is discharged from the outlet 401. At this time, as shown in FIG. 10( b ), the cam member 610 of the valve body switching mechanism 600 moves the uppermost point by positioning the four shafts 613 at the uppermost points of the corresponding elevating portions 625, respectively. Therefore, in the water storage section 200, the operation member 242 of the drainage mechanism 240 is released from the pressing of the cam member 610, and is pushed up by the elastic force of the coil spring 243. As a result, the valve body 241 closes the drain port 221, and the drain port 221 is in a closed state.
从供水水箱400放出的清洗水由供水槽220承接,并通过供水槽230送至贮水槽210。当贮水槽210内蓄有清洗水时,供水槽220内的水位与贮水槽210内的水位一起上升。如图12的单点划线所示,当供水槽220内的水位上升至供水水箱400的放出口401的高度,放出口401被清洗水堵住时,通过供水水箱400内的气压与外部的气压的平衡,保持阀体431打开的状态,停止从供水水箱400供水。The washing water discharged from the water supply tank 400 is received by the water supply tank 220 and sent to the water storage tank 210 through the water supply tank 230. When washing water is stored in the water storage tank 210, the water level in the water supply tank 220 rises together with the water level in the water storage tank 210. As shown by the one-dot chain line in FIG. 12, when the water level in the water supply tank 220 rises to the height of the outlet 401 of the water supply tank 400, and the outlet 401 is blocked by the washing water, the air pressure in the water supply tank 400 is The balance of the air pressure keeps the valve body 431 open, and the water supply from the water supply tank 400 is stopped.
当贮水槽210内蓄有清洗水时,用户将被清洗物的污垢附着部分、例如衬衫的衣领部分从超声波清洗部100的正面方向放置于贮水槽210上即贮水槽210与超声波产生体110的振动变幅杆112之间。When washing water is stored in the water storage tank 210, the user places the dirt attachment portion of the object to be cleaned, such as the collar portion of the shirt, on the water storage tank 210, that is, the water storage tank 210 and the ultrasonic generator 110 from the front of the ultrasonic cleaning unit 100 Between the vibration horn 112.
这时,在超声波清洗部100中,盖130的引导部132的位置与超声波产生体110的振动变幅杆112的顶端部的位置在前后方向上一致,因此,引导部132成为标记,使得用户容易把握振动变幅杆112的顶端部的位置。另一方面,用户通常从斜上方观察设置于上面板12的超声波清洗装置50,因此,难以确认超声波产生体110与贮水槽210之间的间隙。At this time, in the ultrasonic cleaning unit 100, the position of the guide portion 132 of the cover 130 and the position of the tip end portion of the vibration horn 112 of the ultrasonic generator 110 are aligned in the front-rear direction, and therefore, the guide portion 132 becomes a mark, so that the user It is easy to grasp the position of the tip of the vibration horn 112. On the other hand, the user usually observes the ultrasonic cleaning device 50 provided on the upper panel 12 from diagonally above. Therefore, it is difficult to confirm the gap between the ultrasonic generator 110 and the water storage tank 210.
因此,如图6所示,用户将衣领、袖口等污垢附着部分与引导部132的引导面135接触,沿着引导面135向下方并且向后方移动,到达振动变幅杆112的顶端面112a的位置。此时,引导部132的下端比盖主体131的下端更向下方延伸,覆盖从盖主体131露出的振动变幅杆112的顶端部的正面。因此,被引导部132引导的污垢附着部分不容易被振动变幅杆112的顶端部的角部勾住,不容易发生损伤等。此外,通过引导部132的引导,污垢附着部分被定位在几乎与振动变幅杆112的顶端面112a接触的合适的高度位置,不会离振动变幅杆112的顶端面112a太远。Therefore, as shown in FIG. 6, the user contacts dirt adhering portions such as collars and cuffs with the guide surface 135 of the guide portion 132 and moves downward and rearward along the guide surface 135 to reach the front end surface 112a of the vibration horn 112 s position. At this time, the lower end of the guide portion 132 extends downward from the lower end of the cover body 131, and covers the front of the front end portion of the vibration horn 112 exposed from the cover body 131. Therefore, the dirt adhering portion guided by the guide portion 132 is less likely to be caught by the corner of the tip portion of the vibration horn 112, and damage or the like is less likely to occur. In addition, by the guidance of the guide portion 132, the dirt attachment portion is positioned at an appropriate height position that is almost in contact with the tip surface 112a of the vibration horn 112, and is not too far from the tip surface 112a of the vibration horn 112.
被清洗物的污垢附着部分被蓄于贮水槽210内的清洗水浸泡,浸透到被清 洗物的内部的清洗水渗出表面。在被清洗物的表面形成薄的水层,并呈振动变幅杆112与该水层接触的状态。需要说明的是,当被清洗物吸水而使得贮水槽210内的水位下降且供水槽220内的水位下降,供水水箱400的放出口401不被清洗水堵住时,从供水水箱400向供水槽220即贮水槽210内补给清洗水,直到放出口401再次被清洗水堵住。由此,贮水槽210内的水位即水量维持在适当的状态。The dirt adhering portion of the object to be cleaned is soaked with the washing water stored in the water storage tank 210, and the washing water that has penetrated into the object to be washed permeates the surface. A thin water layer is formed on the surface of the object to be cleaned, and the vibration horn 112 is in contact with the water layer. It should be noted that when the object to be cleaned absorbs water, the water level in the water storage tank 210 drops and the water level in the water supply tank 220 drops, and the outlet 401 of the water supply tank 400 is not blocked by the cleaning water, from the water supply tank 400 to the water supply tank 220 is the replenishment of the washing water in the water storage tank 210 until the discharge port 401 is blocked again by the washing water. Thereby, the water level in the water storage tank 210, that is, the amount of water is maintained in an appropriate state.
为了开始清洗运转,用户进行规定的开始操作。In order to start the cleaning operation, the user performs a predetermined start operation.
在超声波清洗部100以及贮水部200位于运转位置并且供水水箱400位于出水位置的情况下,该状态被检测部800检测到,从检测部800的舌簧开关801向控制部16输出接通信号。这种情况下,控制部16向超声波振子111进行通电使超声波产生体110工作。由此,开始清洗运转。When the ultrasonic cleaning unit 100 and the water storage unit 200 are in the operating position and the water supply tank 400 is in the water discharge position, this state is detected by the detection unit 800, and the reed switch 801 of the detection unit 800 outputs an on signal to the control unit 16 . In this case, the control unit 16 energizes the ultrasonic transducer 111 to operate the ultrasonic generator 110. Thus, the cleaning operation is started.
需要说明的是,至少在供水水箱400位于休止位置或超声波清洗部100以及贮水部200位于待机位置的情况下,即不从供水水箱400供应清洗水或供应了洗净水但从排水口221排出的情况下,不会从舌簧开关801输出接通信号。因此,控制部16不会对超声波振子111通电,不使超声波产生体110工作。因此,在清洗运转没有准备好的状态下,不会开始清洗运转。It should be noted that, at least when the water supply tank 400 is located at the rest position or the ultrasonic cleaning unit 100 and the water storage unit 200 are located at the standby position, that is, washing water is not supplied from the water supply tank 400 or washing water is supplied but from the drain port 221 In the case of discharge, the reed switch 801 does not output an on signal. Therefore, the control unit 16 does not energize the ultrasound vibrator 111 and does not operate the ultrasound generator 110. Therefore, the cleaning operation will not be started when the cleaning operation is not ready.
当清洗运转开始,超声波产生体110工作时,超声波清洗部100的两个LED145被控制部16点亮。由此,整个盖130发光。由此,用户能容易地了解到超声波产生体110正在工作即正在进行清洗运转。When the cleaning operation is started and the ultrasonic generator 110 is operated, the two LEDs 145 of the ultrasonic cleaning unit 100 are lit by the control unit 16. Thus, the entire cover 130 emits light. Thus, the user can easily understand that the ultrasonic generator 110 is working, that is, the cleaning operation is in progress.
图13的(a)至(c)是用于对由超声波清洗装置50进行的被清洗物的去污进行说明的图。13( a) to (c) are diagrams for explaining decontamination of the object to be cleaned by the ultrasonic cleaning device 50.
当超声波产生体110工作时,从振动变幅杆112的顶端产生超声波,超声波振动经由振动变幅杆112周围的清洗水传递至被清洗物内部的清洗水。如图13的(a)所示,在被清洗物的内部,通过超声波振动的作用,交替地产生减压和加压,在压力变低的部分产生真空的空腔。即,成为在被清洗物的受污部分存在许多空腔的状态。接着,如图13的(b)所示,当空腔部分的压力变高,空腔被该压力破坏而碎裂时,会对被清洗物的受污部分产生冲击波。通过该冲击波,污垢从被清洗物分离。如图13的(c)所示,来自振动变幅杆112的超声 波振动生成从被清洗物的内部朝向贮水槽210内的水流,通过该水流,从被清洗物分离出的污垢排出至贮水槽210内。在贮水槽210中,通过上述的水流产生对流,因此,容易使污垢从被清洗物剥离。进而,借助清洗水中所含的洗涤剂的作用,也容易使污垢从被清洗物剥离,而且,污垢不容易再附着于被清洗物。如此,从被清洗物中去除污垢。When the ultrasonic generating body 110 operates, ultrasonic waves are generated from the tip of the vibration horn 112, and the ultrasonic vibration is transmitted to the cleaning water inside the object to be cleaned through the cleaning water around the vibration horn 112. As shown in (a) of FIG. 13, inside the object to be cleaned, decompression and pressurization are alternately generated by the action of ultrasonic vibration, and a vacuum cavity is generated in a portion where the pressure becomes lower. That is, there are many cavities in the contaminated part of the object to be cleaned. Next, as shown in (b) of FIG. 13, when the pressure of the cavity portion becomes high and the cavity is broken by the pressure and fragmented, a shock wave is generated on the contaminated portion of the object to be cleaned. This shock wave separates the dirt from the object to be cleaned. As shown in FIG. 13(c), the ultrasonic vibration from the vibration horn 112 generates a water flow from the inside of the object to be cleaned toward the water storage tank 210, and the dirt separated from the object to be cleaned is discharged to the water storage tank by the water flow Within 210. In the water storage tank 210, convection is caused by the above-mentioned water flow, and therefore, dirt is easily peeled off from the object to be cleaned. Furthermore, due to the action of the detergent contained in the washing water, the dirt is easily peeled off from the object to be cleaned, and the dirt is not easily attached to the object to be cleaned. In this way, dirt is removed from the object to be cleaned.
当被清洗物的清洗完成时,用户为了结束清洗运转而进行规定的结束操作。通过控制部16停止超声波产生体110的工作,结束清洗运转。When the cleaning of the object to be cleaned is completed, the user performs a predetermined end operation to end the cleaning operation. The control unit 16 stops the operation of the ultrasonic generator 110 and ends the cleaning operation.
如图6中所说明的,通过使被清洗物的污垢附着部分放置得不会离超声波产生体110的振动变幅杆112的顶端面112a太远,使得来自振动变幅杆112的超声波振动有效地作用于污垢附着部分,容易去污。As illustrated in FIG. 6, by placing the dirt attachment portion of the object to be cleaned not too far from the top end surface 112 a of the vibration horn 112 of the ultrasonic generating body 110, the ultrasonic vibration from the vibration horn 112 is effective It acts on the attached part of dirt and is easy to decontaminate.
在不继续进行新的清洗运转的情况下,用户用手指轻轻向下方按压供水水箱400。当手指离开供水水箱400时,锁定装置740脱离爪部627,供水水箱400与上承接构件710一起移动至止水位置。销432向下方移动,流出口421被阀体431闭锁,呈不从供水水箱400进行供水的状态。When the new washing operation is not continued, the user gently presses the water supply tank 400 downward with his finger. When the finger leaves the water supply tank 400, the locking device 740 disengages from the claw portion 627, and the water supply tank 400 moves to the water stop position together with the upper receiving member 710. The pin 432 moves downward, the outlet 421 is blocked by the valve body 431, and the water supply from the water supply tank 400 is not performed.
然后,用户将超声波清洗部100以及贮水部200向设置部80侧转动,如图3的(a)所示,将超声波清洗部100以及贮水部200移动至待机位置。如上所述,贮水部200的排水口221在待机位置被打开(参照图4)。由此,蓄于贮水槽210以及供水槽220的清洗水通过排水口221排出。从排水口221排出的水通过排水单元70的排水承接部71以及软管72排出到外桶20的排水口部20a。Then, the user turns the ultrasonic cleaning unit 100 and the water storage unit 200 to the installation unit 80 side, and moves the ultrasonic cleaning unit 100 and the water storage unit 200 to the standby position as shown in FIG. 3( a ). As described above, the drain port 221 of the water storage unit 200 is opened at the standby position (see FIG. 4 ). Thus, the washing water stored in the water storage tank 210 and the water supply tank 220 is discharged through the drain port 221. The water discharged from the drain port 221 is discharged to the drain port 20 a of the outer tub 20 through the drain receiving portion 71 of the drain unit 70 and the hose 72.
有时,用户会想在清洗运转结束之后等时,将残留在供水水箱400的清洗水废弃。这种情况下,虽然用户能将供水水箱400从主体部300取出并拿到洗脸池等废弃场所,取下盖420将供水水箱400的清洗水排出到废弃场所,但是这样的操作比较麻烦。Sometimes, the user may want to discard the washing water remaining in the water supply tank 400 after the washing operation is completed. In this case, although the user can take out the water supply tank 400 from the main body 300 and take it to a waste place such as a washbasin, and remove the cover 420 to discharge the washing water of the water supply tank 400 to the waste place, such operation is troublesome.
在本实施方式中,用户无需将供水水箱400从主体部300取出就能将供水水箱400的清洗水废弃。因此,用户在超声波清洗部100以及贮水部200位于待机位置的状态下,将位于止水位置的供水水箱400向下方推,使其到达出水位置。In this embodiment, the user can discard the washing water of the water supply tank 400 without removing the water supply tank 400 from the main body 300. Therefore, in a state where the ultrasonic cleaning unit 100 and the water storage unit 200 are at the standby position, the user pushes the water supply tank 400 located at the water stop position downward to reach the water discharge position.
图14是超声波清洗部100以及贮水部200位于待机位置且供水水箱400位 于出水位置时的超声波清洗装置50的周边部的主剖图。Fig. 14 is a main cross-sectional view of the peripheral portion of the ultrasonic cleaning device 50 when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position and the water supply tank 400 is in the water outlet position.
如图14所示,当供水水箱400下降至出水位置时,供水水箱400的销432触碰到操作构件242的突起部245,对抗螺旋弹簧433的推压力被上推。由此,阀体431离开流出口421从而将流出口421打开,供水水箱400内的清洗水从放出口401放出。需要说明的是,在超声波洗净部100以及贮水部200位于待机位置时,操作构件242被凸轮构件610下推,因此,突起部245的位置比超声波清洗部100以及贮水部200位于运转位置时低。因此,与向贮水槽210供水时相比,销432的移动量变少,因此,阀体431与流出口421的间隙变小,从放出口401放出的流量变少。从供水水箱400放出的清洗水由供水槽220承接并从排水口221排出,流向排水单元70。As shown in FIG. 14, when the water supply tank 400 is lowered to the outlet position, the pin 432 of the water supply tank 400 touches the protrusion 245 of the operation member 242 and is pushed up against the urging force of the coil spring 433. As a result, the valve body 431 leaves the outlet 421 to open the outlet 421, and the washing water in the water supply tank 400 is discharged from the outlet 401. It should be noted that when the ultrasonic cleaning unit 100 and the water storage unit 200 are in the standby position, the operating member 242 is pushed down by the cam member 610. Therefore, the position of the protrusion 245 is in operation than the ultrasonic cleaning unit 100 and the water storage unit 200. The location is low. Therefore, the amount of movement of the pin 432 becomes smaller compared to when water is supplied to the water storage tank 210, so the gap between the valve body 431 and the outlet 421 becomes smaller, and the flow rate discharged from the outlet 401 becomes smaller. The washing water discharged from the water supply tank 400 is received by the water supply tank 220 and discharged from the drain port 221 to flow to the drain unit 70.
如此一来,用户无需将供水水箱400从主体部300卸下就能将残留在供水水箱400的清洗水废弃。In this way, the user can discard the washing water remaining in the water supply tank 400 without removing the water supply tank 400 from the main body 300.
在超声波清洗部100中,在反复进行清洗运转的过程中,污垢可能会从盖130的开口进入盖130内,在盖130的内部污垢附着在超声波产生体110的振动变幅杆112上。在本实施方式中,盖130能拆装于外壳120,因此,用户能将盖130从外壳120卸下,对振动变幅杆112进行清理。In the ultrasonic cleaning unit 100, during the repeated cleaning operation, dirt may enter the lid 130 from the opening of the lid 130, and the dirt may adhere to the vibration horn 112 of the ultrasound generator 110 inside the lid 130. In this embodiment, the cover 130 can be attached to and detached from the housing 120, so that the user can remove the cover 130 from the housing 120 to clean the vibration horn 112.
此外,在反复进行清洗运转的过程中,贮水槽210以及供水槽220可能会被弄脏。在本实施方式中,贮水部200能拆装于主体部300,因此,用户能从主体部300卸下贮水部200,对贮水槽210以及供水槽220进行清洗。需要说明的是,贮水部200在位于待机位置时收纳在收纳部82,因此,不能从主体部300卸下贮水部200。因此,用户在从主体部300卸下贮水部200时,将贮水部200移动至远离收纳部82的位置,例如运转位置。In addition, during the repeated washing operation, the water storage tank 210 and the water supply tank 220 may be contaminated. In this embodiment, the water storage unit 200 can be attached to and detached from the main body 300, so that the user can remove the water storage unit 200 from the main body 300, and clean the water storage tank 210 and the water supply tank 220. In addition, since the water storage part 200 is accommodated in the storage part 82 when it is in a standby position, the water storage part 200 cannot be detached from the body part 300. Therefore, when the user removes the water storage unit 200 from the main body unit 300, the user moves the water storage unit 200 to a position away from the storage unit 82, for example, an operation position.
<实施方式的效果><Effect of the embodiment>
以上,根据本实施方式,在覆盖超声波产生体110的振动变幅杆112的顶端侧的部分的盖130上设置有引导部132,因此,用户能通过引导部132引导,容易地将被清洗物的污垢附着部分放置在振动变幅杆112的顶端面112a与贮水槽210之间。As described above, according to the present embodiment, the cover 130 covering the portion of the distal end side of the vibration horn 112 of the ultrasonic wave generator 110 is provided with the guide portion 132, so that the user can guide the object to be cleaned easily by the guide portion 132 The attached portion of dirt is placed between the top end surface 112a of the vibration horn 112 and the water storage tank 210.
此外,根据本实施方式,在引导部132设置有以随着靠近贮水槽210而靠 近超声波产生体110的方式倾斜的引导面135,因此,用户只需将被清洗物的污垢附着部分抵到引导面135上并沿着引导面135,就能到达振动变幅杆112的顶端面112a与贮水槽210之间。In addition, according to the present embodiment, the guide portion 132 is provided with the guide surface 135 inclined so as to be closer to the ultrasonic generating body 110 as it approaches the water storage tank 210, so that the user only needs to press the dirt adhered portion of the object to be guided to the guide On the surface 135 and along the guide surface 135, the top surface 112a of the vibration horn 112 and the water storage tank 210 can be reached.
进而,根据本实施方式,盖130可拆装地装接于外壳120,因此,用户能将盖130卸下,清理超声波产生体110的振动变幅杆112的顶端侧的部分。Furthermore, according to the present embodiment, the cover 130 is detachably attached to the housing 120, so that the user can detach the cover 130 to clean the portion on the tip side of the vibration horn 112 of the ultrasonic generating body 110.
进而,根据本实施方式,在与污垢附着部分被引导部132引导的方向正交的方向上,引导部132的位置与超声波产生体110的位置一致,因此,引导部132成为标记,用户容易确认超声波产生体110的位置。Furthermore, according to the present embodiment, in the direction orthogonal to the direction in which the dirt adhering portion is guided by the guide portion 132, the position of the guide portion 132 coincides with the position of the ultrasonic generating body 110, so the guide portion 132 becomes a mark, and the user can easily confirm The position of the ultrasonic generating body 110.
进而,根据本实施方式,引导部132的下端位于盖主体131的下端的下方,因此,能通过引导部132的下端部分,在污垢附着部分被引导部132引导的方向上,覆盖从盖主体131露出的振动变幅杆112的顶端部。由此,被引导部132引导的污垢附着部分不容易被振动变幅杆112的顶端部的角部勾住,不容易发生损伤等。Furthermore, according to this embodiment, the lower end of the guide portion 132 is located below the lower end of the cover body 131, and therefore, the lower end portion of the guide portion 132 can cover the cover body 131 in the direction in which the dirt adhesion portion is guided by the guide portion 132 The tip portion of the exposed vibration horn 112. As a result, the dirt adhering portion guided by the guide portion 132 is less likely to be caught by the corner of the tip portion of the vibration horn 112, and damage or the like is less likely to occur.
以上,对本发明的实施方式进行了说明,但本发明并不受上述实施方式的任何限制,此外,本发明的实施方式除了上述之外还可以进行各种变更。In the above, the embodiments of the present invention have been described, but the present invention is not limited by the above-mentioned embodiments, and the embodiments of the present invention may be variously modified in addition to the above.
例如,在上述实施方式中,盖130可拆装地装接于外壳120。但是,也可以使盖130与外壳120一体地形成。For example, in the above embodiment, the cover 130 is detachably attached to the housing 120. However, the cover 130 and the housing 120 may be formed integrally.
此外,在上述实施方式中,引导部132的下端的位置设置为与振动变幅杆112的顶端面112a的位置大致成一个平面。但是,引导部132的下端的位置可以比振动变幅杆112的顶端面112a的位置略低,或者略高。In addition, in the above-described embodiment, the position of the lower end of the guide portion 132 is set substantially in the same plane as the position of the front end surface 112 a of the vibration horn 112. However, the position of the lower end of the guide portion 132 may be slightly lower or slightly higher than the position of the front end surface 112a of the vibration horn 112.
进而,在上述实施方式中,当盖130的受光部133设置有孔136且受光部133嵌入外壳120的凹部144时,LED145嵌入孔136。但是,也可以采用受光部133上不形成孔136、LED145接触或贴近受光部133的上表面的结构。Furthermore, in the above embodiment, when the light receiving portion 133 of the cover 130 is provided with the hole 136 and the light receiving portion 133 is fitted into the recess 144 of the housing 120, the LED 145 is fitted into the hole 136. However, it is also possible to adopt a structure in which the hole 136 is not formed in the light-receiving part 133 and the LED 145 contacts or comes close to the upper surface of the light-receiving part 133.
进而,在上述实施方式中,超声波清洗装置50设置于全自动洗衣机1。但是,也可以将超声波清洗装置50设置于全自动洗衣机1以外的洗衣机,例如滚筒洗衣机。此外,也可以将超声波清洗装置50设置于例如具有烘干功能的全自动洗干一体机、滚筒式洗干一体机。在滚筒洗衣机以及滚筒式洗干一体机中,由外桶和配置于外桶内的滚筒构成洗涤桶。Furthermore, in the above-described embodiment, the ultrasonic cleaning device 50 is provided in the fully automatic washing machine 1. However, the ultrasonic cleaning device 50 may be installed in a washing machine other than the fully automatic washing machine 1, for example, a drum washing machine. In addition, the ultrasonic cleaning device 50 may be installed in, for example, a fully automatic integrated washing and drying machine having a drying function or a drum-type integrated washing and drying machine. In a drum washing machine and a drum-type washer-dryer, a washing tub is composed of an outer tub and a drum disposed in the outer tub.
此外,本发明的实施方式能在技术方案所示的技术思想的范围内适当地进行各种变更。In addition, the embodiments of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the technical solutions.

Claims (6)

  1. 一种超声波清洗装置,其特征在于,具备:An ultrasonic cleaning device is characterized by:
    超声波产生体,产生超声波;Ultrasonic wave generating body, generating ultrasonic waves;
    贮水槽,配置于所述超声波产生体的下方,蓄留供被清洗物浸泡的水;以及A water storage tank, which is arranged below the ultrasonic generating body and stores water for soaking the object to be cleaned; and
    外装体,收容所述超声波产生体,The exterior body, which contains the ultrasonic generating body,
    所述外装体包括:The exterior body includes:
    覆盖部,将所述超声波产生体的顶端侧的部分以使其顶端部露出的方式覆盖;以及A covering portion that covers a portion of the ultrasonic generating body on the tip side such that the tip portion is exposed; and
    引导部,设置于所述覆盖部的侧面,将被清洗物的污垢附着部分引导至所述超声波产生体的顶端面与所述贮水槽之间。The guide portion is provided on the side surface of the covering portion, and guides the dirt adhering portion of the object to be cleaned between the distal end surface of the ultrasonic wave generating body and the water storage tank.
  2. 根据权利要求1所述的超声波清洗装置,其特征在于,The ultrasonic cleaning device according to claim 1, wherein
    在所述引导部设置有引导面,所述引导面以随着靠近所述贮水槽而靠近所述超声波产生体的方式倾斜,供所述污垢附着部分沿循。The guide portion is provided with a guide surface that is inclined so as to approach the ultrasonic wave generating body as it approaches the water storage tank, so that the dirt adhesion portion follows.
  3. 根据权利要求1或2所述的超声波清洗装置,其特征在于,The ultrasonic cleaning device according to claim 1 or 2, wherein
    所述外装体包括:The exterior body includes:
    外壳,收容所述超声波产生体的所述顶端侧的部分之外的部分;以及A housing that accommodates a portion other than the tip side portion of the ultrasound generator; and
    盖,包括所述覆盖部和所述引导部,可拆装地装接于所述外壳。The cover, including the cover portion and the guide portion, is detachably attached to the housing.
  4. 根据权利要求1至3的任一项所述的超声波清洗装置,其特征在于,The ultrasonic cleaning device according to any one of claims 1 to 3, characterized in that
    在与所述污垢附着部分被所述引导部引导的方向正交的方向上,所述引导部的位置与所述超声波产生体的位置一致。In the direction orthogonal to the direction in which the dirt adhesion portion is guided by the guide portion, the position of the guide portion coincides with the position of the ultrasonic wave generating body.
  5. 根据权利要求1至4的任一项所述的超声波清洗装置,其特征在于,The ultrasonic cleaning device according to any one of claims 1 to 4, characterized in that
    所述引导部的下端位于所述覆盖部的下端的下方。The lower end of the guide portion is located below the lower end of the cover portion.
  6. 一种洗衣机,其特征在于,具备:A washing machine characterized by:
    洗涤桶,用于收容并洗涤洗涤物;Washing bucket, used to contain and wash the laundry;
    上面板,具有向所述洗涤桶内投入洗涤物的投入口;以及An upper panel having an input port for inputting laundry into the washing tub; and
    权利要求1至5的任一项所述的超声波清洗装置,装接于所述上面板。The ultrasonic cleaning device according to any one of claims 1 to 5, is attached to the upper panel.
PCT/CN2019/095186 2018-12-21 2019-07-09 Ultrasonic cleaning device and washing machine WO2020124997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240278A JP7217881B2 (en) 2018-12-21 2018-12-21 Ultrasonic cleaner and washing machine
JP2018-240278 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020124997A1 true WO2020124997A1 (en) 2020-06-25

Family

ID=71100213

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/095186 WO2020124997A1 (en) 2018-12-21 2019-07-09 Ultrasonic cleaning device and washing machine
PCT/CN2019/122434 WO2020125394A1 (en) 2018-12-21 2019-12-02 Ultrasonic cleaning device and washing machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122434 WO2020125394A1 (en) 2018-12-21 2019-12-02 Ultrasonic cleaning device and washing machine

Country Status (3)

Country Link
JP (1) JP7217881B2 (en)
CN (1) CN113226576B (en)
WO (2) WO2020124997A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068695A1 (en) * 2020-10-16 2022-04-07 重庆海尔洗衣机有限公司 Top-loading laundry device
WO2023066273A1 (en) * 2021-10-21 2023-04-27 青岛海尔洗衣机有限公司 Cleaning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506374B2 (en) * 2020-06-29 2024-06-26 青島海爾洗衣机有限公司 washing machine
JP2024021677A (en) * 2022-08-04 2024-02-16 青島海爾洗衣机有限公司 washing machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024362A (en) * 1998-07-13 2000-01-25 Sharp Corp Washing apparatus for fabric
JP2000210494A (en) * 1999-01-25 2000-08-02 Sharp Corp Washing machine
JP2000317188A (en) * 1999-05-12 2000-11-21 Sharp Corp Washing machine with partial washing device
JP2001310165A (en) * 2000-04-28 2001-11-06 Kao Corp Ultrasonic washing apparatus
CN1692195A (en) * 2002-10-07 2005-11-02 夏普株式会社 Ultrasonic washing apparatus
WO2018157674A1 (en) * 2017-03-03 2018-09-07 青岛海尔洗衣机有限公司 Ultrasonic washing apparatus and dish washer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154973A (en) * 1984-02-24 1985-09-18 Techno Pack Ltd Conveying through ultrasonic washing apparatus
CN1116668A (en) * 1994-05-10 1996-02-14 Lg电子株式会社 Washing machine
JP3471240B2 (en) * 1999-01-21 2003-12-02 シャープ株式会社 Washing machine with partial washing device
TW457137B (en) * 1999-04-28 2001-10-01 Sharp Kk Washer having a partial washing apparatus
JP3739293B2 (en) * 2001-03-15 2006-01-25 シャープ株式会社 Washing machine
JP3753626B2 (en) * 2001-05-10 2006-03-08 シャープ株式会社 Cleaning device
JP3708029B2 (en) * 2001-06-01 2005-10-19 シャープ株式会社 Washing machine with partial washing device
JP2003117282A (en) * 2001-10-17 2003-04-22 Sharp Corp Ultrasonic cleaning device
CN100443036C (en) * 2003-02-25 2008-12-17 松下电工株式会社 Ultrasonic washing device
JP2005040148A (en) * 2003-05-26 2005-02-17 Sanyo Electric Co Ltd Washing machine
CN1715483A (en) * 2004-07-02 2006-01-04 财团法人工业技术研究院 Portable supersonic fabric cleaner
KR102280205B1 (en) * 2014-01-22 2021-07-22 삼성전자주식회사 Washing machine
CN106521861B (en) * 2015-09-14 2018-10-26 松下家电研究开发(杭州)有限公司 A kind of washing machine with ultrasonic wave function of washing clothes
CN105755727B (en) * 2016-04-06 2018-04-20 无锡小天鹅股份有限公司 Portable supersonic cleaning device
JP7273510B2 (en) * 2016-07-19 2023-05-15 シャープ株式会社 Washing machine
CN107869018B (en) * 2016-09-26 2020-12-01 青岛海尔洗涤电器有限公司 Washing machine with ultrasonic washing function
JP6941314B2 (en) * 2016-10-25 2021-09-29 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Ultrasonic cleaner and washing machine
CN108729096B (en) * 2017-04-25 2020-09-15 青岛胶南海尔洗衣机有限公司 Washing machine
CN207244243U (en) * 2017-07-17 2018-04-17 无锡小天鹅股份有限公司 Washing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024362A (en) * 1998-07-13 2000-01-25 Sharp Corp Washing apparatus for fabric
JP2000210494A (en) * 1999-01-25 2000-08-02 Sharp Corp Washing machine
JP2000317188A (en) * 1999-05-12 2000-11-21 Sharp Corp Washing machine with partial washing device
JP2001310165A (en) * 2000-04-28 2001-11-06 Kao Corp Ultrasonic washing apparatus
CN1692195A (en) * 2002-10-07 2005-11-02 夏普株式会社 Ultrasonic washing apparatus
WO2018157674A1 (en) * 2017-03-03 2018-09-07 青岛海尔洗衣机有限公司 Ultrasonic washing apparatus and dish washer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068695A1 (en) * 2020-10-16 2022-04-07 重庆海尔洗衣机有限公司 Top-loading laundry device
WO2023066273A1 (en) * 2021-10-21 2023-04-27 青岛海尔洗衣机有限公司 Cleaning device

Also Published As

Publication number Publication date
CN113226576A (en) 2021-08-06
WO2020125394A1 (en) 2020-06-25
JP7217881B2 (en) 2023-02-06
JP2020099545A (en) 2020-07-02
CN113226576B (en) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2020124997A1 (en) Ultrasonic cleaning device and washing machine
WO2020124967A1 (en) Ultrasonic cleaning device and washing machine
WO2021023014A1 (en) Ultrasonic cleaning device and washing machine
JP6941314B2 (en) Ultrasonic cleaner and washing machine
JP7190688B2 (en) ultrasonic cleaner
JP7133796B2 (en) Ultrasonic cleaner and washing machine
JP7175461B2 (en) ultrasonic cleaner
JP2019010619A (en) Ultrasonic cleaning device
JP6909464B2 (en) Ultrasonic cleaner and washing machine
JP2023095647A (en) washing machine
WO2022001221A1 (en) Ultrasonic cleaning device and washing machine
CN114207206B (en) Ultrasonic cleaning device and washing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900647

Country of ref document: EP

Kind code of ref document: A1