WO2020124409A1 - 图像传感器的信号采集方法和信号采集电路 - Google Patents

图像传感器的信号采集方法和信号采集电路 Download PDF

Info

Publication number
WO2020124409A1
WO2020124409A1 PCT/CN2018/121977 CN2018121977W WO2020124409A1 WO 2020124409 A1 WO2020124409 A1 WO 2020124409A1 CN 2018121977 W CN2018121977 W CN 2018121977W WO 2020124409 A1 WO2020124409 A1 WO 2020124409A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
photodiode
signal acquisition
frame
pixels
Prior art date
Application number
PCT/CN2018/121977
Other languages
English (en)
French (fr)
Inventor
凌严
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Priority to US15/733,328 priority Critical patent/US10939063B2/en
Priority to PCT/CN2018/121977 priority patent/WO2020124409A1/zh
Publication of WO2020124409A1 publication Critical patent/WO2020124409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction

Definitions

  • the invention relates to the technical field of image sensors, in particular to a signal acquisition method and a signal acquisition circuit of an image sensor.
  • An image sensor is a sensor device that uses the photoelectric conversion function of a photoelectric device to convert the light image on the photosensitive surface into an electrical signal in a proportional relationship with the light image.
  • an optical fingerprint sensor is generally composed of a pixel array, a control line (also referred to as a drive line), a scan line (also referred to as a signal readout line), and the like.
  • a control line also referred to as a drive line
  • a scan line also referred to as a signal readout line
  • each pixel in the pixel array has a photoelectric device to realize the conversion of the optical signal to the electrical signal.
  • the existing photoelectric devices used in image sensors are usually photo-diodes.
  • the image sensor is used for signal Before collection, there will be useless charge on each pixel. Therefore, before the signal acquisition is actually performed, the pixels of the image sensor need to be cleared.
  • the processing logic of the existing signal acquisition method when the pixel is cleared needs to be improved.
  • the technical problem solved by the present invention is to provide a more efficient signal collection method, so as to shorten the signal collection period and obtain a better clearing effect.
  • an embodiment of the present invention provides a signal acquisition method for an image sensor.
  • the image sensor includes a plurality of pixels arranged in an array, and each of the pixels includes a photodiode.
  • the signal acquisition method includes: In each signal collection period, the multiple pixels are collected line by line, the signal collection period includes at least one reset frame and at least one clear frame, wherein, in each reset frame, the The photodiode of each of the pixels is applied with a forward bias; in each of the clear frames, the photodiode of each of the pixels is applied with a reverse bias.
  • the absolute value of the reverse bias applied to the photodiode in different clear frames in the same signal collection period is the same or different.
  • the at least one clear frame includes at least one first clear frame and at least one second clear frame, wherein the absolute value of the reverse bias applied to the photodiode in each first clear frame , Greater than the absolute value of the reverse bias applied to the photodiode in each second clear frame.
  • the at least one first clear frame is located before the at least one second clear frame in time sequence.
  • the absolute value of the reverse bias applied to the photodiode in each first clear frame is the reverse bias applied to the photodiode in each second clear frame 1 to 3 times the absolute value.
  • the signal collection period further includes: a signal readout frame, and within the signal readout frame, a reverse bias is applied to the photodiode of each pixel that is collected.
  • signal acquisition is performed for the plurality of pixels line by line, and the collected signal value of each photodiode is stored.
  • the absolute value of the reverse bias applied to the photodiode in the signal readout frame is not greater than the absolute value of the reverse bias applied to the photodiode in the clear frame.
  • the signal acquisition for the plurality of pixels line by line within each signal collection period includes: during each of the signal collection periods, discarding the at least one reset frame and at least one clear frame The signal value of each photodiode collected in
  • each photodiode is connected to a switching device, and the other end of each photodiode is connected to a common electrode.
  • Applying a forward bias to the photodiode means controlling the common electrode.
  • the potential is a positive potential
  • applying a reverse bias to the photodiode means controlling the potential of the common electrode to be a negative potential.
  • An embodiment of the present invention also provides a signal acquisition circuit of an image sensor.
  • the image sensor includes: a plurality of pixels arranged in an array, and a plurality of data lines and a plurality of scan lines, wherein, in each column of the pixels, Each pixel is connected to the same data line through a pixel switch, and in each row of pixels, the pixel switch connected to each pixel is connected to the same scan line;
  • the signal acquisition circuit It includes: a scanning line control unit, which is coupled to the plurality of scanning lines, and in each signal collection period, the scanning line control unit controls the plurality of pixels to be turned on row by row; a signal readout unit , The signal readout unit is coupled to the plurality of data lines, and in each signal collection period, the signal readout unit reads the electrical signal of the pixel that is turned on through the data line; the signal
  • the acquisition circuit further includes: a bias control unit coupled to the common electrode. During each of the signal acquisition periods, the bias control unit is adapted to use the above signal acquisition
  • An embodiment of the present invention provides a signal acquisition method for an image sensor.
  • the image sensor includes a plurality of pixels arranged in an array, and each of the pixels includes a photodiode.
  • the signal acquisition method includes: during each signal acquisition period In each of the pixels, signal acquisition is performed row by row, and the signal acquisition period includes at least one reset frame and at least one clear frame, wherein, in each reset frame, each pixel that is acquired
  • the photodiode of is applied with a forward bias; within each of the clear frames, a reverse bias is applied to the photodiode of each of the pixels that are collected.
  • the reset frame it can be equivalent to irradiating each photodiode with strong light, thereby adjusting the initial state of each photodiode to be consistent through the reset frame, eliminating historical light, ambient light, and device differences of each photodiode itself Effect on residual charge. Further, by clearing the frame, it is ensured that the charges generated by each photodiode in the reset frame can be effectively cleared. Therefore, through the cooperation of the reset frame and the clear frame, the image acquisition accuracy of the image sensor can be improved, and the consistency of the images acquired every time can be ensured.
  • the at least one clear frame includes at least one first clear frame and at least one second clear frame, wherein the absolute value of the reverse bias voltage applied to the photodiode in each first clear frame is greater than The absolute value of the reverse bias applied to the photodiode in each of the second clear frames. Therefore, based on the first clearing frame, the clearing speed can be accelerated, the signal collection period can be shortened, and the imaging speed of the image sensor can be increased. Further, based on the second clear frame, it can better ensure that the residual charge in the photodiode is discharged.
  • FIG. 1 is a schematic diagram of a signal acquisition circuit of an image sensor in the prior art
  • FIG. 2 is a schematic diagram of the pixel array in FIG. 1;
  • Figure 3 shows the corresponding timing diagram when the signal acquisition circuit in Figure 2 adopts the existing signal acquisition method
  • FIG. 5 is a flowchart of an image sensor signal acquisition method according to an embodiment of the present invention.
  • FIG. 6 is a corresponding timing diagram when the signal acquisition method shown in FIG. 5 is used;
  • FIG. 7 is another timing diagram corresponding to the signal acquisition method shown in FIG. 5;
  • FIG. 8 is a schematic diagram of a signal acquisition circuit of an image sensor according to an embodiment of the invention.
  • the processing logic of the existing signal acquisition method when performing the clear operation on the pixel needs to be improved.
  • the signal acquisition circuit 1 of the image sensor may include a pixel array 10, a scan line control circuit 15 and a signal readout chip 16 (Readout IC, ROIC for short).
  • the pixel array 10 has a plurality of data lines 11 and a plurality of scanning lines 12, the data lines 11 and the scanning lines 12 define a grid arranged in an array, and the area where the grid is located has pixels 13 correspondingly.
  • the pixel 13 includes at least one pixel switch 131 and at least one photosensitive device 132.
  • the pixel switch 131 is usually a thin film transistor (Thin Film Transistor, TFT for short) device, and the photosensitive device 132 is used to collect externally input optical signals and convert them into electrical signals, and then store them in the corresponding pixels 13.
  • TFT Thin Film Transistor
  • each pixel 13 includes a pixel switch 131 and a photosensitive device 132 as an example.
  • the photosensitive device 132 is a photodiode.
  • the photodiodes include PIN junction amorphous silicon photodiodes, PN junction amorphous silicon photodiodes, PIN junction low temperature polycrystalline silicon photodiodes, PN junction low temperature polycrystalline silicon photodiodes, PIN junction organic photodiodes, or PN junction organic photodiodes.
  • the scan line 12 can control the opening and closing of the pixel switches 131 in each row, the data line 11 is connected to the drain (or source) of the pixel switches 131 in each column; one end of the photosensitive device 132 is connected The source (or drain) of the pixel switch 131 and the other end of the photosensitive device 132 are connected to a common electrode 17.
  • a reverse bias is applied to the photosensitive device 132 through the common electrode 17.
  • the electrical signal in the photosensitive device 132 in the reverse bias state can be conducted to the coupled data line 11, and then through the data line 11 Transmission to the signal readout chip 16 realizes signal acquisition.
  • the scanning line 12 is controlled by a peripheral driving circuit such as a scanning line control circuit 15 to realize row-by-row turning on of the pixel switch 131, and the signal reading chip 16 reads out the pixels 13 of the turned-on row in each column signal of.
  • a peripheral driving circuit such as a scanning line control circuit 15 to realize row-by-row turning on of the pixel switch 131, and the signal reading chip 16 reads out the pixels 13 of the turned-on row in each column signal of.
  • FIG. 3 shows the corresponding drive timing diagram when the signal acquisition circuit in FIG. 2 adopts the existing signal acquisition method (the drive timing includes the drive timing of the scan line 12 and the drive timing of the signal readout chip 16), and each scan line 12 (FIG. 3
  • the scanning line 12c shown is not shown in FIG. 2)
  • the pixel array 10 is controlled to be turned on line by line in the timing shown in FIG.
  • the driving time of the scanning line 12a is before the driving time of the scanning line 12b
  • the driving time of the scanning line 12b is before the driving time of the scanning line 12c.
  • the signal readout chip 16 corresponds to the signal acquisition line by line.
  • Each channel of the signal readout chip 16 is connected to the data line 11, so the potential value of each data line 11 is set by the signal readout chip 16.
  • the potential value of the common electrode in FIG. 3 is the potential value applied to the common electrode 17 in FIG. 2.
  • the difference between the potential value of the common electrode 17 and the potential value of each data line 11 determines the value of the upper bias voltage applied to each photodiode 132.
  • the anode of the photodiode 132 is connected to the common electrode 17, and the cathode of the photodiode 132 is connected to each pixel switch 131 respectively.
  • the pixels of each row are turned on, when the potential value of the common electrode 17 is higher than the potential value of each data line 11, a positive voltage is applied to the photodiode 132, that is, it is in a forward bias.
  • a negative voltage is applied to the photodiode 132, that is, a reverse bias.
  • each pixel 13 (such as the photosensitive device 132 and the electrode) will have useless charge . Therefore, each pixel 13 needs to be cleared before the signal is collected.
  • each signal collection cycle of the existing signal collection method includes: a clear frame and a signal readout frame.
  • the timing of the clear frame and the signal read frame is exactly the same, the difference between the two is that in the clear frame, after the signal of each pixel 13 is read, the data will not be retained and will be discarded directly.
  • the line-by-line opening of the clear frame reads the residual signal of the pixel 13 and clears it.
  • the interval between the time that each row of pixels 13 is turned on in the clear frame and the signal readout frame is the exposure time of each row of pixels 13. It can be seen that the start and end points of the exposure time of each row of pixels 13 are different, but the length of time is the same.
  • FIG. 4 takes the scanning line 12a as an example, which requires Continuous emptying of multiple frames can discharge the charge in the photosensitive device 132 of the row coupled with the scanning line 12a, and then start the actual image acquisition operation within the signal readout frame.
  • the phenomenon that the residual signal in the pixel 13 is uncertain may occur. Specifically, if the ambient light is strong, the electric charge in the photosensitive device 132 remains much, and if the ambient light is weak, the electric charge in the photosensitive device 132 remains little.
  • an embodiment of the present invention provides a signal collection method for an image sensor.
  • the image sensor includes a plurality of pixels arranged in an array, and each of the pixels includes a photodiode.
  • the signal collection The method includes: acquiring signals of the plurality of pixels line by line within each signal collection period, the signal collection period includes at least one reset frame and at least one clear frame, wherein, in each of the reset frames, A forward bias is applied to the photodiode of each of the pixels collected; and a reverse bias is applied to the photodiode of each of the pixels collected in each of the clear frames.
  • the reset frame it can be equivalent to irradiating each photodiode with strong light, so that the initial state of each photodiode is adjusted to be consistent (that is, the signals are more consistent) through the reset frame, eliminating historical illumination, ambient light, and various The effect of the photodiode's own device differences on the residual charge. Further, by clearing the frame, it is ensured that the charges generated by each photodiode in the reset frame can be effectively cleared (at least a large part of the charge is cleared). Therefore, through the cooperation of the reset frame and the clear frame, the image acquisition accuracy of the image sensor can be improved, and the consistency of the images acquired every time can be ensured.
  • FIG. 5 is a flowchart of a signal acquisition method of an image sensor according to an embodiment of the present invention
  • FIG. 6 is a corresponding timing diagram when the signal acquisition method shown in FIG. 5 is used.
  • the image sensor may include a plurality of pixels arranged in an array.
  • the image sensor may include a plurality of pixels arranged in an array.
  • the specific structure of the pixels reference may be made to the specific description about the pixels 13 in FIG. 2.
  • the photosensitive device of the pixel is a photodiode.
  • the photodiodes include PIN junction amorphous silicon photodiodes, PN junction amorphous silicon photodiodes, PIN junction low temperature polycrystalline silicon photodiodes, PN junction low temperature polycrystalline silicon photodiodes, PIN junction organic photodiodes, or PN junction organic photodiodes.
  • the image sensor may be an optical fingerprint sensor.
  • the signal acquisition method described in this embodiment may include the following steps:
  • Step S101 In each signal collection period, signal acquisition is performed for the plurality of pixels line by line.
  • the signal collection period may include at least one reset frame and at least one clear frame, where step S101 may include:
  • Step S1011 within each of the reset frames, a forward bias is applied to the collected photodiode of each pixel;
  • step S1012 in each of the clear frames, a reverse bias is applied to the photodiode of each pixel that is collected.
  • the signal collection period may further include: a signal readout frame.
  • the step S101 may further include:
  • step S1013 a reverse bias voltage is applied to the collected photodiode of each pixel within the signal readout frame.
  • each of the signal acquisition periods may include at least one reset frame, at least one clear frame, and one signal readout frame.
  • the absolute value of the reverse bias applied in step S1012 may be equal to the absolute value of the reverse bias applied in step S1013.
  • the absolute value of the reverse bias applied in step S1012 and step S1013 may also be different.
  • the step S101 may further include: retaining the signal value of each photodiode collected in the signal readout frame in each of the signal collection periods; discarding the The signal value of each photodiode collected in at least one reset frame and at least one clear frame. That is, the signals collected in step S1011 and step S1012 will be discarded, and the signals collected in step S1013 will be stored.
  • each photodiode is connected to a switching device (ie, the pixel switch 131 shown in FIG. 2 ), each The other end of the photodiode is connected to the common electrode 17 in common.
  • a switching device ie, the pixel switch 131 shown in FIG. 2
  • the application of forward bias to the photodiode in this embodiment refers to: controlling the potential of the common electrode 17 to be a positive potential, that is, by setting the potential of the common electrode 17 to a potential value V1( V1>0, and V1>potential of the data line), wherein the data line may be the data line 11 shown in FIG. 2, so that the potential of the common electrode 17 is higher than the potential of the data line 11, so that the photodiode
  • the bias voltage is a positive bias voltage (positive voltage).
  • the application of reverse bias to the photodiode in this embodiment refers to: controlling the potential of the common electrode 17 to a negative position, that is, by setting the potential of the common electrode 17 to a potential value V0 ( V0 ⁇ 0, and V0 ⁇ potential of the data line 11), so that the potential of the common electrode 17 is lower than the potential of the data line 11, so that the bias voltage of the photodiode is a reverse bias voltage (negative voltage).
  • the reset frame it can be equivalent to illuminating each photodiode with strong light, so that the initial state of each photodiode can be adjusted uniformly through the reset frame, eliminating historical light, ambient light, and device differences of each photodiode itself Effect on residual charge. Further, by clearing the frame, it is ensured that the charge generated by each photodiode in the reset frame can be effectively cleared (at least most of the charge is cleared). Therefore, through the cooperation of the reset frame and the clear frame, the image acquisition accuracy of the image sensor can be improved, and the consistency of the images acquired every time can be ensured.
  • the potential value V0 of the reverse bias applied to the photodiode may be Are the same.
  • the absolute value of the reverse bias applied to the photodiode in each clear frame may be equal to the reverse bias applied to the photodiode in the signal readout frame Absolute value (
  • the reverse bias applied to the photodiode when there are multiple frames of the clear frame, during the same signal collection period, in different clear frames, the reverse bias applied to the photodiode The absolute value can be different.
  • the at least one clearing frame may include at least one first clearing frame and at least one second clearing frame, wherein the potential of the common electrode 17 is set in each of the first clearing frames as For the potential value V2 (V2 ⁇ potential of the data line 11), the potential of the common electrode 17 is set to the potential value V0 (V2 ⁇ V0 ⁇ potential of the data line 11) in each second clear frame. Therefore, the absolute value (
  • the number of frames of the first clearing frame may be multiple, so as to obtain a better clearing effect in a short time.
  • the at least one first clear frame may be located before the at least one second clear frame in timing.
  • ) in each of the first clearing frames may be every second clearing frame 1 to 3 times the absolute value (
  • the absolute value of the reverse bias applied to the photodiode in the signal readout frame is not greater than the absolute value of the reverse bias applied to the photodiode in the clear frame.
  • ) of the reverse bias applied to the photodiode in the signal readout frame may be equal to the reverse applied to the photodiode in the second clear frame
  • ) is smaller than the absolute value of the reverse bias voltage (
  • FIG. 8 is a schematic diagram of a signal acquisition circuit of an image sensor according to an embodiment of the invention.
  • the specific structure of the image sensor can refer to the related description in FIG. 2.
  • the image sensor may include: a plurality of pixels 13 arranged in an array, and a plurality of data lines 11 and a plurality of scanning lines 12, wherein, in each column of the pixels 13, each of the pixels 13 passes A pixel switch 131 is connected to the same data line 11. In each row of the pixels 13, the pixel switch 131 connected to each pixel 13 is connected to the same scan line 12.
  • the signal collection circuit 2 may include: a scanning line control unit 25, which is coupled to the plurality of scanning lines 12, and in each signal collection period, the scanning line control unit 25 The multiple pixels 13 are controlled to be turned on line by line.
  • the signal acquisition circuit 2 may further include a signal readout unit 26, which is coupled to the plurality of data lines 11, and in each signal acquisition period, the signal readout unit 26 The signal of the turned-on pixel 13 is read through the data line 11.
  • the signal reading unit 26 may be a signal reading chip.
  • the signal acquisition circuit 2 may further include: a bias control unit 27, and the bias control unit 27 and the photodiode of each pixel of the plurality of pixels 13 (that is, the photosensitive device 132 shown in FIG. 2 ) Coupling, in each of the signal collection periods, the bias control unit 27 is adapted to apply a positive direction to the collected photodiode of each pixel 13 using the signal collection method shown in FIGS. 5 to 7 described above Bias or reverse bias.
  • the bias control unit 27 is adapted to control the potential of the common electrode 17 shown in FIG. 2 to change to the potential value V1.
  • the bias control unit 27 is adapted to control the potential of the common electrode 17 to change to a potential value V2.
  • the bias control unit 27 is adapted to control the potential of the common electrode 17 to change to a potential value V0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种图像传感器的信号采集方法和信号采集电路,所述图像传感器包括阵列排布的多个像素,每一所述像素包括一个光电二极管,所述信号采集方法包括:在每一信号采集周期内,对所述多个像素逐行进行信号采集,所述信号采集周期包括至少一个复位帧和至少一个清空帧,其中,在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。所述方法能够在缩短信号采集周期的同时,确保较优的清空效果,并消除环境光对成像的影响。

Description

图像传感器的信号采集方法和信号采集电路 技术领域
本发明涉及图像传感器技术领域,具体地涉及一种图像传感器的信号采集方法和信号采集电路。
背景技术
图像传感器(image sensor)是一种利用光电器件的光电转换功能,将感光面上的光像转换为与光像成相应比例关系的电信号的传感器件。
以光学指纹传感器为例,通常由像素阵列、控制线(也可称为驱动线)、扫描线(也可称为信号读出线)等构成。其中,像素阵列中的每一像素均具有光电器件,以实现光信号到电信号的转换。
现有应用于图像传感器的光电器件通常为光电二极管(Photo-Diode),但是,由于光电二极管自身暗电流、图像传感器所处采集环境的环境光等多方因素的影响,在开始使用图像传感器进行信号采集之前,各像素上均会存在无用的电荷。因而,在实际进行信号采集之前,需要对图像传感器的各像素进行清空处理。
现有的信号采集方法在对像素进行清空操作时的处理逻辑有待改进。
发明内容
本发明解决的技术问题是提供一种更高效的信号采集方法,以在缩短信号采集周期的同时,得到较优的清空效果。
为解决上述技术问题,本发明实施例提供一种图像传感器的信号采集方法,所述图像传感器包括阵列排布的多个像素,每一所述像素包括一个光电二极管,所述信号采集方法包括:在每一信号采集周期 内,对所述多个像素逐行进行信号采集,所述信号采集周期包括至少一个复位帧和至少一个清空帧,其中,在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
可选的,在同一所述信号采集周期内,不同的清空帧中,向所述光电二极管施加的反向偏压的绝对值相同或不同。
可选的,所述至少一个清空帧包括至少一个第一清空帧和至少一个第二清空帧,其中,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值,大于在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值。
可选的,在同一所述信号采集周期内,所述至少一个第一清空帧在时序上位于所述至少一个第二清空帧之前。
可选的,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值,为在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值的1至3倍。
可选的,所述信号采集周期还包括:信号读出帧,在所述信号读出帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
可选的,在所述信号读出帧内,对所述多个像素逐行进行信号采集,并且存储采集到的每一所述光电二极管的信号值。
可选的,在所述信号读出帧内向所述光电二极管施加的反向偏压的绝对值,不大于在所述清空帧内向所述光电二极管施加的反向偏压的绝对值。
可选的,所述在每一信号采集周期内,对所述多个像素逐行进行信号采集包括:在每一所述信号采集周期内,丢弃在所述至少一个复位帧和至少一个清空帧内采集到的每一所述光电二极管的信号值。
可选的,每一所述光电二极管的一端分别连接一开关器件,每一 所述光电二极管的另一端共同连接公共电极,向所述光电二极管施加正向偏压是指控制所述公共电极的电位为正电位,向所述光电二极管施加反向偏压是指控制所述公共电极的电位为负电位。
本发明实施例还提供一种图像传感器的信号采集电路,所述图像传感器包括:阵列排布的多个像素,以及多条数据线和多条扫描线,其中,在每列所述像素中,每一所述像素通过一像素开关连接同一条所述数据线,在每行所述像素中,每一所述像素所连接的所述像素开关连接同一条所述扫描线;所述信号采集电路包括:扫描线控制单元,所述扫描线控制单元与所述多条扫描线耦合,在每一信号采集周期内,所述扫描线控制单元控制所述多个像素逐行开启;信号读出单元,所述信号读出单元与所述多条数据线耦合,在每一信号采集周期内,所述信号读出单元通过所述数据线读取被开启的所述像素的电信号;所述信号采集电路还包括:偏压控制单元,所述偏压控制单元与所述公共电极耦合,在每一所述信号采集周期内,所述偏压控制单元适于采用上述信号采集方法向被采集的每一所述像素的光电二极管施加正向偏压或反向偏压。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种图像传感器的信号采集方法,所述图像传感器包括阵列排布的多个像素,每一所述像素包括一个光电二极管,所述信号采集方法包括:在每一信号采集周期内,对所述多个像素逐行进行信号采集,所述信号采集周期包括至少一个复位帧和至少一个清空帧,其中,在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
由此,能够在缩短信号采集周期的同时,确保较优的清空效果,并消除环境光对成像的影响。具体地,在所述复位帧内,可以等效于用强光照射各光电二极管,从而通过复位帧将各光电二极管的初始状态调节一致,消除历史光照、环境光以及各光电二极管自身的器件差 异对残留电荷的影响。进一步,通过清空帧确保各光电二极管在复位帧内产生的电荷能够被有效清空。由此,通过复位帧和清空帧的配合,能够提高所述图像传感器的图像采集精准度,确保每次采集到的图像的一致性。
进一步,所述至少一个清空帧包括至少一个第一清空帧和至少一个第二清空帧,其中,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值,大于在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值。由此,基于第一清空帧可以加快清空速度,缩短信号采集周期,提高图像传感器的成像速度。进一步,基于第二清空帧可以更好地确保光电二极管内的残留电荷被释放干净。
附图说明
图1是现有技术的一种图像传感器的信号采集电路的示意图;
图2是图1中像素阵列的示意图;
图3显示了图2中信号采集电路采用现有信号采集方法时对应的时序图;
图4是现有技术的一种图像传感器的信号采集方法的时序图;
图5是本发明实施例的一种图像传感器的信号采集方法的流程图;
图6是采用图5所示信号采集方法时对应的时序图;
图7是采用图5所示信号采集方法时对应的另一种时序图;
图8是本发明实施例的一种图像传感器的信号采集电路的示意图。
具体实施方式
如背景技术所言,现有的信号采集方法在对像素进行清空操作时的处理逻辑有待改进。
具体而言,参考图1和图2,图像传感器的信号采集电路1可以包括像素阵列10、扫描线控制电路15和信号读出芯片16(Readout IC,简称ROIC)。其中,所述像素阵列10中具有多条数据线11和多条扫描线12,数据线11和扫描线12限定出一个个阵列排布的网格,网格所在区域对应具有像素13。
进一步地,所述像素13包括至少一个像素开关131,以及至少一个感光器件132。其中,所述像素开关131通常为薄膜晶体管(Thin Film Transistor,简称TFT)器件,感光器件132用于收集外部输入的光信号并转化为电信号,然后存储在对应的像素13中。图2中以每一像素13包含一个像素开关131和一个感光器件132为例进行展示。
图2中,所述感光器件132为光电二极管。所述光电二极管包括PIN结非晶硅光电二极管,PN结非晶硅光电二极管,PIN结低温多晶硅光电二极管,PN结低温多晶硅光电二极管,PIN结有机物光电二极管,或PN结有机物光电二极管等。
具体地,所述扫描线12可以控制每一行的像素开关131的开启和关闭,所述数据线11连接每一列的像素开关131的漏极(或源极);所述感光器件132的一端连接所述像素开关131的源极(或漏极),所述感光器件132的另一端共同连接至一公共电极17。
在进行信号采集时,通过所述公共电极17向所述感光器件132施加反向偏压。
当所述像素开关131在耦合的扫描线12的控制下导通时,反向偏压状态下的所述感光器件132中的电信号可以传导到耦合的数据线11上,进而通过数据线11传输至信号读出芯片16实现信号采集。
进一步地,所述扫描线12由外围的驱动电路如扫描线控制电路15控制,来实现像素开关131的逐行开启,由所述信号读出芯片16读出每一列中被开启行的像素13的信号。
图3显示了图2中信号采集电路采用现有信号采集方法时对应的 驱动时序图(驱动时序包括扫描线12的驱动时序和信号读出芯片16的驱动时序),各扫描线12(图3示出中扫描线12c未在图2中示出)按图3所示的时序控制像素阵列10逐行导通。其中,扫描线12a的驱动时间在扫描线12b的驱动时间之前,扫描线12b的驱动时间在扫描线12c的驱动时间之前。而信号读出芯片16对应逐行进行信号采集。信号读出芯片16各通道连接到数据线11上,所以各数据线11的电位值由信号读出芯片16设定。图3中公共电极电位值即为图2中公共电极17上施加的电位值。各像素打开时,公共电极17的电位值和各数据线11的电位值之差就决定了施加在各光电二极管132的上偏压电压值。
如图2所示,一般应用中,光电二极管132的正极都连接到公共电极17,光电二极管132的负极分别连接到各像素开关131。当各行像素被打开时,当公共电极17的电位值高于各数据线11的电位值时,光电二极管132就被施加正电压,即处于正向偏压。当各行像素被打开时,当公共电极17的电位值低于各数据线11的电位值时,光电二极管132就被施加负电压,即处于反向偏压。
一般设计中,为了简化芯片设计,降低电路噪音,信号读出芯片16各输入通道的电位处于一个固定值,从而设置数据线11的电位处于一个固定值。所以就需要通过设定公共电极17的电位值来确定各像素中光电二极管132被施加的偏压值。即光电二极管132的偏压=公共电极17电位值-数据线11的电位值。
在实际应用中,由于光电二极管的漏电(暗电流),以及环境光的入射,在开始使用图像传感器进行图像采集时,各像素13(如感光器件132里和电极上)均会存在无用的电荷。因而,需要在每次采集信号前,对各像素13做清空处理。
具体地,现有信号采集方法的每一信号采集周期都包括:一个清空帧和一个信号读出帧。其中,清空帧和信号读出帧的时序完全一样,两者区别在于:在清空帧内,各像素13的信号读出后,数据不会保 留,直接丢弃。由此,通过清空帧的逐行打开,把像素13的残留的信号读出,实现清空。
每一行像素13在清空帧和信号读出帧里被打开的时间的间隔,就是每一行像素13的曝光时间。可见,每行像素13的曝光时间的开始和结束点不同,但是时间长度是一样的。
本申请发明人经过分析发现,采用图1至图3示出的信号采集方法时,如果像素13内本身残留的信号较多,感光器件132处于饱和状态,图4以扫描线12a为例,需要连续多帧清空帧才能把扫描线12a耦合的那一行感光器件132中的电荷释放干净,然后再在信号读出帧内开始真正的采图操作。
由于在实际使用中,无法确定图像传感器所处环境的环境光的强弱。所以无法确定清空帧的具体帧数,也就无法确保各像素13内的信号能够被彻底清空。
若清空帧的帧数设置的偏少,就会出现像素13内残留信号不确定的现象。具体而言,如果环境光强,则感光器件132中的电荷就残留的多,如果环境光弱,则感光器件132中的电荷就残留的少。
更为严重的是,在开始采集之前,如果有些像素13被强光照射,信号残留很多,而有些像素13被弱光照射,信号残留比较少。这样的话,如果清空帧数设置的偏少,会出现各像素13残留信号不均匀的现象,会严重影响最后的图像效果。
因而,为确保无论环境光的强弱均可以将像素13内的信号清空干净,现有的一个信号采集周期内就需要采用尽量多的清空帧,比如50帧,这样才能确保任何时候(无论环境光强还是环境光弱)感光器件132中的电荷都能尽量清空,或者说残留的电荷都比很少。
由于采用了增加清空帧的帧数的清空方式,导致现有信号采集方法的采集周期整体偏长。
为了缩短信号采集周期,同时保证清空效果,本发明实施例提供 图像传感器的信号采集方法,所述图像传感器包括阵列排布的多个像素,每一所述像素包括一个光电二极管,所述信号采集方法包括:在每一信号采集周期内,对所述多个像素逐行进行信号采集,所述信号采集周期包括至少一个复位帧和至少一个清空帧,其中,在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
由此,能够在缩短信号采集周期的同时,确保较优的清空效果,并消除环境光对成像的影响。具体地,在所述复位帧内,可以等效于用强光照射各光电二极管,从而通过复位帧将各光电二极管的初始状态调节一致(即信号比较一致),消除历史光照、环境光以及各光电二极管自身的器件差异对残留电荷的影响。进一步,通过清空帧确保各光电二极管在复位帧内产生的电荷能够被有效清空(至少很大一部分电荷被清空)。由此,通过复位帧和清空帧的配合,能够提高所述图像传感器的图像采集精准度,确保每次采集到的图像的一致性。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图5是本发明实施例的一种图像传感器的信号采集方法的流程图,图6是采用图5所示信号采集方法时对应的时序图。
具体地,所述图像传感器可以包括阵列排布的多个像素,所述像素的具体结构可以参考图2中关于像素13的具体描述。
本实施例中,所述像素的感光器件为光电二极管。所述光电二极管包括PIN结非晶硅光电二极管,PN结非晶硅光电二极管,PIN结低温多晶硅光电二极管,PN结低温多晶硅光电二极管,PIN结有机物光电二极管,或PN结有机物光电二极管等。
优选地,所述图像传感器可以为光学指纹传感器。
更为具体地,本实施例所述信号采集方法可以包括如下步骤:
步骤S101,在每一信号采集周期内,对所述多个像素逐行进行信号采集,所述信号采集周期可以包括至少一个复位帧和至少一个清空帧,其中,所述步骤S101可以包括:
步骤S1011,在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;
步骤S1012,在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
进一步地,所述信号采集周期还可以包括:信号读出帧。
所述步骤S101还可以包括:
步骤S1013,在所述信号读出帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
进一步地,对于每一条扫描线,每一所述信号采集周期内可以包括至少一个复位帧、至少一个清空帧和一个信号读出帧。
在一个实施例中,在所述步骤S1012中施加的反向偏压的绝对值,可以等于在所述步骤S1013中施加的反向偏压的绝对值。
作为一个变化例,在所述步骤S1012和步骤S1013中施加的反向偏压的绝对值也可以是不相同的。
在一个实施例中,所述步骤S101还可以包括:在每一所述信号采集周期内,保留在所述信号读出帧内采集到的每一所述光电二极管的信号值;丢弃在所述至少一个复位帧和至少一个清空帧内采集到的每一所述光电二极管的信号值。也即,所述步骤S1011和步骤S1012中采集到的信号将被丢弃,所述步骤S1013中采集到的信号将被存储。
在一个实施例中,结合图6和图2,以感光器件132为光电二极管为例,每一所述光电二极管的一端分别连接一开关器件(即图2示出的像素开关131),每一所述光电二极管的另一端共同连接公共电 极17。
进一步地,本实施例所述向所述光电二极管施加正向偏压是指:控制所述公共电极17的电位为正电位,也即,通过设置所述公共电极17的电位为电位值V1(V1>0,且V1>数据线的电位),其中,数据线可以为图2所示数据线11,使得所述公共电极17的电位高于数据线11的电位,从而使得所述光电二极管的偏压为正偏压(正电压)。
进一步地,本实施例所述向所述光电二极管施加反向偏压是指:控制所述公共电极17的电位为负位,也即,通过设置所述公共电极17的电位为电位值V0(V0<0,且V0<数据线11的电位),使得所述公共电极17的电位低于数据线11的电位,从而使得所述光电二极管的偏压为反偏压(负电压)。
由此,能够在缩短信号采集周期的同时,确保较优的清空效果,并消除环境光对成像的影响。具体地,在所述复位帧内,可以等效于用强光照射各光电二极管,从而通过复位帧将各光电二极管的初始状态调节一致,消除历史光照、环境光以及各光电二极管自身的器件差异对残留电荷的影响。进一步,通过清空帧确保各光电二极管在复位帧内产生的电荷能够被有效清空(至少大部分电荷被清空)。由此,通过复位帧和清空帧的配合,能够提高所述图像传感器的图像采集精准度,确保每次采集到的图像的一致性。
在一个实施例中,当所述清空帧的帧数为多个时,在同一所述信号采集周期内,不同的清空帧中,向所述光电二极管施加的反向偏压的电位值V0可以是相同的。优选地,每一所述清空帧内向所述光电二极管施加的反向偏压的绝对值(|V0-数据线电位|),可以等于信号读出帧内向所述光电二极管施加的反向偏压的绝对值(|V0-数据线电位|)。
在本实施例的一个变化例中,当所述清空帧的帧数为多个时,在同一所述信号采集周期内,不同的清空帧中,向所述光电二极管施加的反向偏压的绝对值可以不相同。
具体地,参考图7,所述至少一个清空帧可以包括至少一个第一清空帧和至少一个第二清空帧,其中,在每一所述第一清空帧内设置所述公共电极17的电位为电位值V2(V2<数据线11的电位),在每一所述第二清空帧内设置所述公共电极17的电位为电位值V0(V2<V0<数据线11的电位)。所以,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值(|V2-数据线电位|),大于在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值(|V0-数据线电位|)。
由此,通过在第一清空帧内施加比正常进行信号采集时施加的电压值更大的反向偏压,可以快速清空光电二极管在复位帧内产生的大量电荷,从而更进一步缩短信号采集周期,提高图像传感器的成像速度。
进一步,基于第二清空帧可以更好地确保光电二极管内的残留电荷被最大程度地释放。
进一步地,所述第一清空帧的帧数可以为多个,以在短时间内得到更好的清空效果。
在一个实施例中,在同一所述信号采集周期内,所述至少一个第一清空帧在时序上可以位于所述至少一个第二清空帧之前。
在一个实施例中,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值(|V2-数据线电位|),可以为在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值(|V0-数据线电位|)的1至3倍。因而,所述第一清空帧也可以成为强清空帧,所述第二清空帧可以类似于现有技术中的清空帧。
在一个实施例中,在所述信号读出帧内向所述光电二极管施加的反向偏压的绝对值,不大于在所述清空帧内向所述光电二极管施加的反向偏压的绝对值。
例如,在所述信号读出帧内向所述光电二极管施加的反向偏压的 绝对值(|V0-数据线电位|),可以等于在所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值(|V0-数据线电位|),小于在所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值(|V2-数据线电位|)。
图8是本发明实施例的一种图像传感器的信号采集电路的示意图。
具体地,所述图像传感器的信号采集电路2中,所述图像传感器的具体结构可以参考图2中的相关描述。
具体地,所述图像传感器可以包括:阵列排布的多个像素13,以及多条数据线11和多条扫描线12,其中,在每列所述像素13中,每一所述像素13通过一像素开关131连接同一条所述数据线11,在每行所述像素13中,每一所述像素13所连接的所述像素开关131连接同一条所述扫描线12。
进一步地,所述信号采集电路2可以包括:扫描线控制单元25,所述扫描线控制单元25与所述多条扫描线12耦合,在每一信号采集周期内,所述扫描线控制单元25控制所述多个像素13逐行开启。
进一步地,所述信号采集电路2还可以包括信号读出单元26,所述信号读出单元26与所述多条数据线11耦合,在每一信号采集周期内,所述信号读出单元26通过所述数据线11读取被开启的所述像素13的信号。
优选地,所述信号读出单元26可以为信号读出芯片。
进一步地,所述信号采集电路2还可以包括:偏压控制单元27,所述偏压控制单元27与所述多个像素13中每一像素的光电二极管(即图2示出的感光器件132)耦合,在每一所述信号采集周期内,所述偏压控制单元27适于采用上述图5至图7所示信号采集方法向被采集的每一所述像素13的光电二极管施加正向偏压或反向偏压。
例如,在所述复位帧内,所述偏压控制单元27适于控制图2示 出的公共电极17的电位改变至电位值V1。
又例如,在所述第一清空帧内,所述偏压控制单元27适于控制所述公共电极17的电位改变至电位值V2。
再例如,在所述第二清空帧和信号读出帧内,所述偏压控制单元27适于控制所述公共电极17的电位改变至电位值V0。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (11)

  1. 一种图像传感器的信号采集方法,所述图像传感器包括阵列排布的多个像素,每一所述像素包括一个光电二极管,其特征在于,所述信号采集方法包括:
    在每一信号采集周期内,对所述多个像素逐行进行信号采集,所述信号采集周期包括至少一个复位帧和至少一个清空帧,其中,
    在每一所述复位帧内,向被采集的每一所述像素的光电二极管施加正向偏压;
    在每一所述清空帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
  2. 根据权利要求1所述的信号采集方法,其特征在于,在同一所述信号采集周期内,不同的清空帧中,向所述光电二极管施加的反向偏压的绝对值相同或不同。
  3. 根据权利要求2所述的信号采集方法,其特征在于,所述至少一个清空帧包括至少一个第一清空帧和至少一个第二清空帧,其中,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值,大于在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值。
  4. 根据权利要求3所述的信号采集方法,其特征在于,在同一所述信号采集周期内,所述至少一个第一清空帧在时序上位于所述至少一个第二清空帧之前。
  5. 根据权利要求3所述的信号采集方法,其特征在于,在每一所述第一清空帧内向所述光电二极管施加的反向偏压的绝对值,为在每一所述第二清空帧内向所述光电二极管施加的反向偏压的绝对值的1至3倍。
  6. 根据权利要求1所述的信号采集方法,其特征在于,所述信号采集周期还包括:
    信号读出帧,在所述信号读出帧内,向被采集的每一所述像素的光电二极管施加反向偏压。
  7. 根据权利要求6所述的信号采集方法,其特征在于,在所述信号读出帧内,对所述多个像素逐行进行信号采集,并且存储采集到的每一所述光电二极管的信号值。
  8. 根据权利要求6所述的信号采集方法,其特征在于,在所述信号读出帧内向所述光电二极管施加的反向偏压的绝对值,不大于在所述清空帧内向所述光电二极管施加的反向偏压的绝对值。
  9. 根据权利要求1至8中任一项所述的信号采集方法,其特征在于,所述在每一信号采集周期内,对所述多个像素逐行进行信号采集包括:
    在每一所述信号采集周期内,丢弃在所述至少一个复位帧和至少一个清空帧内采集到的每一所述光电二极管的信号值。
  10. 根据权利要求1至8中任一项所述的信号采集方法,其特征在于,每一所述光电二极管的一端分别连接一开关器件,每一所述光电二极管的另一端共同连接公共电极,向所述光电二极管施加正向偏压是指控制所述公共电极的电位为正电位,向所述光电二极管施加反向偏压是指控制所述公共电极的电位为负电位。
  11. 一种图像传感器的信号采集电路,所述图像传感器包括:
    阵列排布的多个像素,以及多条数据线和多条扫描线,其中,在每列所述像素中,每一所述像素通过一像素开关连接同一条所述数据线,在每行所述像素中,每一所述像素所连接的所述像素开关连接同一条所述扫描线;
    所述信号采集电路包括:
    扫描线控制单元,所述扫描线控制单元与所述多条扫描线耦合,在每一信号采集周期内,所述扫描线控制单元控制所述多个像素逐行开启;
    信号读出单元,所述信号读出单元与所述多条数据线耦合,在每一信号采集周期内,所述信号读出单元通过所述数据线读取被开启的所述像素的电信号;
    其特征在于,所述信号采集电路还包括:
    偏压控制单元,所述偏压控制单元与所述公共电极耦合,在每一所述信号采集周期内,所述偏压控制单元适于采用上述权利要求1至10中任一项所述信号采集方法向被采集的每一所述像素的光电二极管施加正向偏压或反向偏压。
PCT/CN2018/121977 2018-12-19 2018-12-19 图像传感器的信号采集方法和信号采集电路 WO2020124409A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/733,328 US10939063B2 (en) 2018-12-19 2018-12-19 Method and circuit for signal collection of image sensor
PCT/CN2018/121977 WO2020124409A1 (zh) 2018-12-19 2018-12-19 图像传感器的信号采集方法和信号采集电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121977 WO2020124409A1 (zh) 2018-12-19 2018-12-19 图像传感器的信号采集方法和信号采集电路

Publications (1)

Publication Number Publication Date
WO2020124409A1 true WO2020124409A1 (zh) 2020-06-25

Family

ID=71100585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121977 WO2020124409A1 (zh) 2018-12-19 2018-12-19 图像传感器的信号采集方法和信号采集电路

Country Status (2)

Country Link
US (1) US10939063B2 (zh)
WO (1) WO2020124409A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528806A (ja) * 2019-05-22 2022-06-15 神盾股▲ふん▼有限公司 指紋検出機能付き電子機器
CN113138695B (zh) * 2021-04-20 2024-03-15 京东方科技集团股份有限公司 一种探测基板及其信号采集方法、显示装置
CN114363538A (zh) * 2022-01-05 2022-04-15 京东方科技集团股份有限公司 图像采集控制方法、图像采集装置、计算机设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014502A2 (en) * 2011-07-25 2013-01-31 Aptina Imaging Corporation Image sensors with dark pixels for real-time verification of imaging systems
CN106231210A (zh) * 2016-08-23 2016-12-14 上海奕瑞光电子科技有限公司 一种x射线图像传感器及消除图像残影的方法
CN106308834A (zh) * 2016-08-23 2017-01-11 上海奕瑞光电子科技有限公司 一种x射线图像传感器及其消除图像残影的方法
WO2017149433A1 (en) * 2016-03-03 2017-09-08 Insightness Ag An event-based vision sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151530B2 (ja) * 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 イメージセンサ、カメラ、及び監視システム
CN111757025B (zh) * 2019-03-28 2022-11-18 群创光电股份有限公司 电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014502A2 (en) * 2011-07-25 2013-01-31 Aptina Imaging Corporation Image sensors with dark pixels for real-time verification of imaging systems
WO2017149433A1 (en) * 2016-03-03 2017-09-08 Insightness Ag An event-based vision sensor
CN106231210A (zh) * 2016-08-23 2016-12-14 上海奕瑞光电子科技有限公司 一种x射线图像传感器及消除图像残影的方法
CN106308834A (zh) * 2016-08-23 2017-01-11 上海奕瑞光电子科技有限公司 一种x射线图像传感器及其消除图像残影的方法

Also Published As

Publication number Publication date
US10939063B2 (en) 2021-03-02
US20200389612A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
CN109639990B (zh) 图像传感器的信号采集方法和信号采集电路
US10598546B2 (en) Detecting high intensity light in photo sensor
TWI685257B (zh) 圖像感測器、減少發光二極體閃爍的方法及成像系統
WO2020124409A1 (zh) 图像传感器的信号采集方法和信号采集电路
CN202395874U (zh) 固体摄像元件和电子装置
JP4164134B2 (ja) 撮像装置及び撮像方法
JP2004147102A (ja) 画像読み取り装置および画像読み取り方法
JP7297850B2 (ja) 動画のためのledフリッカ軽減
JP2013090207A5 (zh)
US20170078598A1 (en) Imaging apparatus and imaging method thereof using correlated double sampling
CN113556488A (zh) 图像传感器的信号采集方法及其信号采集电路
WO2017143742A1 (zh) Tft平板图像传感器的图像采集方法
JP4352057B2 (ja) 撮像装置
KR100595795B1 (ko) 화상 판독 장치 및 화상 판독 방법
JP3722352B2 (ja) フォトセンサシステム及びそのフォトセンサシステムにおけるフォトセンサの駆動制御方法
KR100526297B1 (ko) 광센서 시스템 및 그 구동 제어방법
JP4019250B2 (ja) フォトセンサシステム及びフォトセンサシステムにおけるフォトセンサの駆動制御方法
US20130020465A1 (en) Pixel, pixel array, image sensor including the same, and method for driving image sensor
WO2022061761A1 (zh) 图像传感器及其控制方法、搭载图像传感器的成像装置
CN104937922A (zh) 用于读取成像装置的方法
JP2006263483A (ja) 撮像装置
JP3963061B2 (ja) 画像読取装置及びその駆動制御方法
JP4019301B2 (ja) 2次元画像読取装置及びその駆動制御方法
JP3651660B2 (ja) フォトセンサシステム及びその駆動制御方法
EP3445040B1 (en) Detecting high intensity light in photo sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943752

Country of ref document: EP

Kind code of ref document: A1