WO2020124406A1 - 一种双面曝光的对准装置、方法及设备 - Google Patents

一种双面曝光的对准装置、方法及设备 Download PDF

Info

Publication number
WO2020124406A1
WO2020124406A1 PCT/CN2018/121967 CN2018121967W WO2020124406A1 WO 2020124406 A1 WO2020124406 A1 WO 2020124406A1 CN 2018121967 W CN2018121967 W CN 2018121967W WO 2020124406 A1 WO2020124406 A1 WO 2020124406A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
marking
exposed
sample
positioning
Prior art date
Application number
PCT/CN2018/121967
Other languages
English (en)
French (fr)
Inventor
傅志伟
Original Assignee
江苏影速集成电路装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏影速集成电路装备股份有限公司 filed Critical 江苏影速集成电路装备股份有限公司
Priority to PCT/CN2018/121967 priority Critical patent/WO2020124406A1/zh
Priority to KR1020217014949A priority patent/KR102667209B1/ko
Priority to SG11202106554WA priority patent/SG11202106554WA/en
Priority to JP2021513258A priority patent/JP7203959B2/ja
Publication of WO2020124406A1 publication Critical patent/WO2020124406A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2032Simultaneous exposure of the front side and the backside
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation

Definitions

  • the invention relates to an alignment device, method and equipment for double-sided exposure, belonging to the technical field of printed circuit boards.
  • Laser direct writing (laser direct imaging, LDI) exposure machine needs to accurately align the two sides of the printed circuit board (Printed Circuit Board, PCB) when producing the inner circuit board, to ensure the accurate alignment of the graphics on both sides of the PCB.
  • PCB printed Circuit Board
  • two marks are usually marked by laser marking for precise alignment of the inner PCB board.
  • the two exposure marks are marked by laser marking on the non-exposed area of the other side edge of the PCB board through the mark exposure diaphragm
  • calculate the rotation and translation of the PCB through the two mark coordinates of the laser mark on the PCB board and the aperture coordinates of the two marks, thus completing the accurate alignment of the graphics on both sides of the PCB.
  • the mark exposure diaphragm is fixed on the metal vacuum chuck.
  • the side length of the vacuum chuck is ⁇ 500mm.
  • the metal vacuum chuck will expand and contract due to the temperature.
  • the vacuum degree inside the cavity reaches -20kpa when the vacuum is sucked to the PCB board.
  • the whole body of the vacuum chuck deforms under the pressure of 20kpa, and the deformation It is an irregular and nonlinear deformation. Due to thermal expansion and contraction and vacuum adsorption, the vacuum chuck will deform, so the position of the mark exposure diaphragm installed on the edge of the chuck also changes.
  • the mark exposure diaphragm is covered by the PCB that needs to be exposed, and it cannot be calibrated simultaneously or in real time. Therefore, the existing mark exposure diaphragm is positioned in such a way that the mark exposure diaphragm is calibrated at a certain time interval Calibration positioning, if the vacuum suction cup expands or shrinks or deforms during the calibration interval, the position of the mark exposure diaphragm changes, so the traditional positioning method cannot simultaneously or real-time mark exposure diaphragm during continuous exposure of the PCB board accurate locating.
  • the present invention provides a double-sided exposure alignment device, Method and exposure apparatus including alignment device for double-sided exposure.
  • the first object of the present invention is to provide an alignment device for double-sided exposure, which includes:
  • Positioning marks, marking marks and position acquisition devices are Positioning marks, marking marks and position acquisition devices
  • the positioning mark is used to determine the position of the marking mark in real time, so as to determine the position of the exposure pattern of the sample to be exposed according to the position of the marking mark;
  • the marking mark is used to mark the exposed sample
  • the position acquiring device is used to acquire the position information of the positioning mark in real time.
  • the relative position change of the positioning mark and the marking mark is less than a predetermined value, and the predetermined value is set according to the alignment accuracy required when the sample to be exposed is exposed on both sides.
  • the distance between the positioning mark and the marking mark is less than 20 mm and/or connected by a deformation-resistant material.
  • the device further includes:
  • a sample carrying device and a marking device are used to carry the sample to be exposed; the marking device is used to mark the sample to be exposed by the marking mark;
  • the marking mark is located on the sample carrying device.
  • the marking mark is located at an edge portion of the sample carrying device.
  • the marking marks correspond one-to-one with the positioning marks; the positioning marks are used to determine the positions of the marking marks corresponding thereto.
  • a second object of the present invention is to provide an alignment method for double-sided exposure.
  • the method is applied to the alignment device for double-sided exposure described above.
  • the method includes:
  • the method before exposing one side of the sample to be exposed, the method further includes:
  • the middle mark is used to determine the exposure pattern of the side s position.
  • the method before marking the other side of the sample to be exposed by marking, the method further includes:
  • the sample to be exposed is overlaid on the marking mark and cannot cover the positioning mark corresponding to the selected marking mark.
  • the aligning and exposing the other side of the sample according to the position information of the marking mark includes:
  • the other side of the sample to be exposed is exposed according to the position of the exposure pattern of the other side of the sample to be exposed determined in real time.
  • the third object of the present invention is an exposure apparatus including the above-mentioned alignment apparatus for double-sided exposure.
  • an alignment device for double-sided exposure including positioning marks, marking marks and position acquiring devices
  • a suitable marking mark is selected according to the size of the sample to be exposed and obtained by position
  • the device obtains the position information of the positioning mark corresponding to the selected marking mark, and then obtains the position information of the marking mark, so as to determine the amount of change of the position of the marking mark relative to the predetermined position when the exposure sample is exposed, according to the amount of change
  • Real-time adjustment of the position of the exposure pattern on the other side of the predetermined sample to be exposed solves the problem of inaccurate exposure alignment caused by the fact that the prior art cannot perform real-time positioning of the marking mark, and improves the double-sided alignment of the sample to be exposed Precision.
  • the distance between the positioning mark and the marking mark is less than 20mm and/or the connection is made through anti-deformation material, which ensures that the relative position change of the two during exposure is less than the preset set according to the alignment accuracy required when the sample to be exposed is exposed Value, thereby improving the accuracy of the double-sided alignment of the sample to be exposed; before the exposure of each sample to be exposed, the position information of the positioning mark is obtained by the position acquisition device, and then the position information of the marking mark is obtained to determine The amount of change of the position of the marking mark relative to the predetermined position during exposure of the exposed sample is adjusted in real time according to the amount of change to the position of the exposure pattern of the other side of the predetermined sample to be exposed, thereby improving the accuracy of double-sided alignment of the sample to be exposed.
  • Embodiment 1 is a schematic diagram of an alignment device for double-sided exposure provided by Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an alignment device for double-sided exposure provided by Embodiments 2 and 3 of the present invention
  • FIG. 3 is a schematic diagram of the position of the positioning mark and the marking mark at the lower part of the edge of the material suction cup in the embodiment of the invention
  • FIG. 4 is a schematic diagram of the position of the positioning mark and the marking mark on one side and the lower part of the edge of the material suction cup in the embodiment of the present invention
  • FIG. 5 is a schematic view of the position of the sample to be exposed when placed on a carrier chuck for exposure
  • FIG. 6 is a schematic diagram of an exposure apparatus including an alignment device for double-sided exposure provided by Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of the front position of the positioning mark and the marking mark in the present invention, where 1 is the marking mark and 3 is the positioning mark;
  • 8 is a cross-sectional view of the positional relationship between the 405 laser source, marking marks and positioning marks in the present invention, where 1 is the marking mark, 3 is the positioning mark, 4 is the lens, 5 is the 405 laser, and 6 is the laser controller;
  • FIG. 9 is a schematic view of the connection between the positioning mark and the marking mark through the anti-deformation material in the embodiment of the present invention, where 1 is the marking mark, 2 is the anti-deformation material, and 3 is the positioning mark;
  • FIG. 10 is a schematic diagram of placing a sample to be exposed in the exposure method for double-sided exposure provided by Embodiment 5 of the present invention.
  • FIG. 11 is a schematic diagram of an exposure process of a sample to be exposed in the exposure method for double-sided exposure provided by Embodiment 5 of the present invention.
  • the alignment accuracy of the front and back sides of the non-porous PCB inner layer is required to be within 10 ⁇ m, but due to factors that affect this alignment accuracy, the repeated positioning accuracy of the system shaft system, the accuracy of the material suction cup system and Image processing accuracy, in which the loading chuck system is due to the following two reasons: (1) the main body of the chuck is made of aluminum alloy, which has the characteristics of thermal expansion and contraction with the change of temperature; (2) the chuck needs to be carried out on the PCB board Vacuum adsorption, and vacuum adsorption will cause the deformation of the suction cup, so the load-carrying suction cup system will have a great influence on the positioning accuracy of the front and back sides of the non-porous PCB inner layer; in practical applications, the thermal expansion coefficient of aluminum alloy is 23 ⁇ m /°C.m, when the temperature fluctuates at ⁇ 2°C, and the size of the suction cup is 650mm (width) * 850mm (length), the edge deformation is respectively
  • the main body of the loading chuck is 650mm (width) * 850mm (length) * 23mm (thickness) aluminum alloy parts, and there is a vacuum chamber in the middle, the degree of vacuum inside the chamber when vacuuming Reaching -20kpa, the whole suction cup of the load is subjected to an air pressure of 20kpa, which causes irregular and nonlinear deformation of the main body of the suction cup; through actual testing, the amount of deformation is about 5 ⁇ m, although it does not exceed the index of 10 ⁇ m, it has contributed to the accuracy of system alignment 50%, the impact is relatively large.
  • the PCB board is covered on the mark hole, so the currently commonly used method is to compensate for the deformation of the suction cup caused by the change of the temperature of the suction cup body and vacuum suction caused by the periodic calibration and positioning. This method cannot be real-time. Determine the amount of deformation of the suction cup body.
  • This embodiment provides an alignment device for double-sided exposure.
  • the device includes:
  • the positioning mark 11 is used to determine the position of the marking mark 12 in real time, so as to determine the position of the exposure pattern of the sample to be exposed according to the position of the marking mark 12;
  • the marking mark 12 is used to mark the exposed sample
  • the position acquiring device 13 is used to acquire the position information of the positioning mark in real time.
  • the embodiment of the present invention provides an alignment device for double-sided exposure, including positioning marks, marking marks, and position acquiring devices.
  • the position acquiring devices obtain position information of the positioning marks in real time, thereby obtaining real-time position information of the marking marks. Then, according to the real-time position information of the marking mark, the other side of the exposed sample is aligned and exposed, which solves the problem that the existing technology cannot accurately position the marking mark in real time and causes exposure misalignment, which has improved The effect of the accuracy of the double-sided alignment of the sample to be exposed.
  • the apparatus includes:
  • the positioning mark 11 is used to determine the position of the marking mark 12 in real time, so as to determine the position of the exposure pattern of the sample to be exposed according to the position of the marking mark 12;
  • the marking mark 12 is used to mark the exposed sample
  • the position obtaining device 13 is used to obtain the position information of the positioning mark in real time;
  • the relative position change of the positioning mark 11 and the marking mark 12 is less than a predetermined value, which is set according to the required alignment accuracy when the sample to be exposed is exposed on both sides; the distance between the positioning mark 11 and the marking mark 12 Less than 20mm and/or connected by anti-deformation materials;
  • the sample carrying device 14 is used to carry the sample to be exposed;
  • the marking device 15 is used to mark the sample to be exposed through the marking mark 12;
  • the marking mark 12 is located on the sample carrier 14.
  • the sample to be exposed is a PCB board
  • the sample carrying device is a material suction cup for carrying and fixing the PCB board.
  • the material suction cup is made of aluminum alloy material
  • the marking mark 12 is a marking hole on the material suction cup.
  • the position acquisition device 13 is a CCD camera
  • the marking device 15 is a 405 laser source for example.
  • the positioning mark may be a positioning hole on the loading cup, the distance between the positioning hole and the marking hole is less than 20mm, or it may be a marker connected to the marking hole through an anti-deformation material, such as As shown in Figure 9; as long as the relative position change between the positioning mark and the marking hole during the work is less than a predetermined value, the predetermined value is set according to the alignment accuracy required when the PCB board is exposed on both sides;
  • the predetermined value is set to 2 ⁇ m. If the positioning mark is a positioning hole on the carrier chuck, then set the positioning hole and the marking hole.
  • the thermal expansion coefficient of the aluminum alloy is 23 ⁇ m/°C.m according to the material of the suction cup, and the temperature fluctuation range during exposure is ⁇ 2°C, then the positioning hole and the marking hole
  • the positioning mark is a marker connected to the marking hole through the anti-deformation material, since the deformation-resistant material is less affected by temperature, the relative position change of the positioning mark and the marking hole can be ignored.
  • Yingang, marble, and ceramics can be used for deformation-resistant materials. These materials are less affected by temperature.
  • the thermal expansion coefficient of Yingang is 0.8 ⁇ m/°C/m
  • the thermal expansion coefficient of ceramics is 7 ⁇ m/°C/m, even if the length of the anti-deformation material connecting the positioning mark and the marking hole is up to 100mm, it is within the temperature change range of ⁇ 2°C, the anti-deformation material
  • the distance between the positioning mark and the marking hole is 20mm
  • 5*4*0.02 0.4
  • the distance between the positioning mark and the marking mark can be set to any value less than 20 mm.
  • the position information of the positioning mark obtained by the CCD camera is used to determine the position information of the marking hole according to the position information of the positioning mark obtained by the CCD camera when exposing the other side of the PCB board.
  • the position information determines the position of the exposure pattern on the other side of the PCB, and then the exposure is performed.
  • side A and side B the two sides of the PCB board are denoted as side A and side B respectively;
  • the initial calibration position of the marking hole recorded in the system is recorded as The initial calibration position of the positioning mark is recorded as When exposing a PCB board, the real-time position of the positioning mark is recorded as The position change of the positioning mark obtained by the CCD camera relative to the initial position recorded in the system is:
  • the height of the PCB board is recorded as H, and the X edge of the board is marked as X bottom ;
  • the desired position of the marking hole on the B surface is
  • the embodiment of the present invention provides an alignment device for double-sided exposure, including positioning marks, marking marks, and position acquiring devices.
  • the position acquiring devices obtain position information of the positioning marks in real time, thereby obtaining real-time position information of the marking marks. Then, according to the real-time position information of the marking mark, the other side of the sample to be exposed is aligned and exposed, which solves the problem that the existing technology cannot accurately position the marking mark in real time and the exposure is misaligned.
  • the distance from the marking mark is less than 20mm and/or connected by anti-deformation material, which ensures that the relative position change of the two during exposure is less than the predetermined value set according to the alignment accuracy required when the sample to be exposed is exposed, thus The effect of improving the accuracy of double-sided alignment of the sample to be exposed is improved.
  • the marking mark and the positioning mark can be in one-to-one correspondence, and the positioning mark is used to determine the position of the corresponding marking mark; it can also be one-to-many; for example, one marking mark corresponds to two or more
  • the positioning mark comprehensively determines the position information of the marking mark, or a plurality of marking marks may correspond to a positioning mark, and the positioning mark may determine the positions of the plurality of marking marks.
  • the apparatus includes:
  • the positioning mark 11 is used to determine the position of the marking mark 12 in real time, so as to determine the position of the exposure pattern of the sample to be exposed according to the position of the marking mark 12;
  • the marking mark 12 is used to mark the exposed sample
  • the position obtaining device 13 is used to obtain the position information of the positioning mark in real time;
  • the relative position change of the positioning mark 11 and the marking mark 12 is less than a predetermined value, which is set according to the alignment accuracy required when the sample to be exposed is exposed on both sides; the distance between the positioning mark 11 and the marking mark 12 Less than 20mm and/or connected by anti-deformation materials;
  • the sample carrying device 14 is used to carry the sample to be exposed;
  • the marking device 15 is used to mark the sample to be exposed through the marking mark 12;
  • the marking mark 12 is located on the sample carrier 14.
  • the sample to be exposed is a PCB board
  • the sample carrying device is a material suction cup for carrying and fixing the PCB board.
  • the material suction cup is made of aluminum alloy material
  • the marking mark 12 is a marking hole on the material suction cup.
  • the position acquisition device 13 is a CCD camera
  • the marking device 15 is a 405 laser source for example.
  • the positioning mark may be a positioning hole on the suction cup of the object, the distance between the positioning hole and the marking hole is less than 20 mm, or it may be a marker connected to the marking hole through an anti-deformation material, as long as Satisfy that the relative position change between the positioning mark and the marking hole during the working process is less than a predetermined value, which is set according to the alignment accuracy required when the PCB board is exposed on both sides;
  • the predetermined value is set to 2 ⁇ m. If the positioning mark is a positioning hole on the carrier chuck, then set the positioning hole and the marking hole.
  • the distance between the two is less than 20mm, then during the exposure of the PCB board, the thermal expansion coefficient of the aluminum alloy is 23 ⁇ m/°C.m according to the material of the suction cup, and the temperature fluctuation range during exposure is ⁇ 2°C, then the positioning hole and marking
  • the positioning mark is a marker connected to the marking hole through the deformation-resistant material, since the deformation-resistant material is less affected by temperature, the amount of change in the relative position of the positioning mark and the marking hole can be ignored.
  • Yingang, marble, and ceramics can be used for deformation-resistant materials. These materials are less affected by temperature.
  • the thermal expansion coefficient of Yingang is 0.8 ⁇ m/°C/m
  • the thermal expansion coefficient of ceramics is 7 ⁇ m/°C/m, even if the length of the anti-deformation material connecting the positioning mark and the marking hole is up to 100mm, it is within the temperature change range of ⁇ 2°C, the anti-deformation material
  • the distance between the positioning mark and the marking hole is 10mm
  • 5*4*0.02 0.4
  • the distance between the positioning mark and the marking mark can be set to any value less than 20 mm.
  • the marking marks are selected according to the size of the PCB board; as shown in FIGS. 3, 4 and 5, any marking marks are selected according to the size of the PCB board.
  • the marking mark can be located at any position on the suction cup.
  • the position information of the positioning mark obtained by the CCD camera is used to determine the position information of the marking hole according to the position information of the positioning mark obtained by the CCD camera when exposing the other side of the PCB board.
  • the position information determines the position of the exposure pattern on the other side of the PCB, and then the exposure is performed.
  • side A and side B the two sides of the PCB board are denoted as side A and side B respectively;
  • the initial calibration position of the marking hole recorded in the system is recorded as The initial calibration position of the positioning mark is recorded as When exposing a PCB board, the real-time position of the positioning mark is recorded as The position change of the positioning mark obtained by the CCD camera relative to the initial position recorded in the system is:
  • the height of the PCB board is recorded as H, and the X edge of the board is marked as X bottom ;
  • the desired position of the marking hole on the B surface is
  • the embodiment of the present invention provides an alignment device for double-sided exposure, including positioning marks, marking marks, and a position acquiring device.
  • the position information of the positioning marks is acquired by the position acquiring device, and then Obtain the position information of the marking mark, so as to determine the amount of change of the position of the marking mark relative to the predetermined position when the exposure sample is exposed, and adjust the position of the exposure pattern of the other side of the predetermined sample to be exposed in real time according to the change, which solves
  • the problem of inaccurate exposure alignment caused by real-time positioning of the marking mark cannot be realized in real time, which improves the accuracy of double-sided alignment of the sample to be exposed.
  • the distance between the positioning mark and the marking mark is less than 20mm and/or the connection is made through anti-deformation material, which ensures that the relative position change of the two during exposure is less than the preset set according to the alignment accuracy required when the sample to be exposed is exposed Value, thereby improving the accuracy of the double-sided alignment of the sample to be exposed; before the exposure of each sample to be exposed, the position information of the positioning mark is obtained by the position acquisition device, and then the position information of the marking mark is obtained to determine The amount of change of the position of the marking mark relative to the predetermined position during exposure of the exposed sample is adjusted in real time according to the amount of change to the position of the exposure pattern of the other side of the predetermined sample to be exposed, thereby improving the accuracy of double-sided alignment of the sample to be exposed.
  • This embodiment provides an exposure apparatus including an alignment device for double-sided exposure.
  • the device includes:
  • the positioning mark 11 is used to determine the position of the marking mark 12 in real time, so as to determine the position of the exposure pattern of the sample to be exposed according to the position of the marking mark 12;
  • the marking mark 12 is used to mark the exposed sample
  • the position obtaining device 13 is used to obtain the position information of the positioning mark in real time;
  • the exposure device 16 is used to expose the sample to be exposed
  • the relative position change of the positioning mark 11 and the marking mark 12 is less than a predetermined value, which is set according to the alignment accuracy required when the sample to be exposed is exposed on both sides; the distance between the positioning mark 11 and the marking mark 12 Less than 20mm and/or connected by anti-deformation materials;
  • the sample carrying device 14 is used to carry the sample to be exposed;
  • the marking device 15 is used to mark the sample to be exposed through the marking mark 12;
  • the marking mark 12 is located on the sample carrier 14.
  • the sample to be exposed is a PCB board
  • the sample carrying device is a material suction cup for carrying and fixing the PCB board.
  • the material suction cup is made of aluminum alloy material
  • the marking mark 12 is a marking hole on the material suction cup.
  • the position acquisition device 13 is a CCD camera
  • the marking device 15 is a 405 laser source for example.
  • the positioning mark may be a positioning hole on the loading cup, the distance between the positioning hole and the marking hole is less than 20mm, or it may be a marker connected to the marking hole through an anti-deformation material, as long as Satisfy that the relative position change between the positioning mark and the marking hole during the working process is less than a predetermined value, which is set according to the alignment accuracy required when the PCB board is exposed on both sides;
  • the predetermined value is set to 2 ⁇ m. If the positioning mark is a positioning hole on the carrier chuck, then set the positioning hole and the marking hole.
  • the thermal expansion coefficient of the aluminum alloy is 23 ⁇ m/°C.m according to the material of the suction cup, and the temperature fluctuation range during exposure is ⁇ 2°C, then the positioning hole and the marking hole
  • the positioning mark is a marker connected to the marking hole through the deformation-resistant material, since the deformation-resistant material is less affected by temperature, the amount of change in the relative position of the positioning mark and the marking hole can be ignored.
  • Yingang, marble, and ceramics can be used for deformation-resistant materials. These materials are less affected by temperature.
  • the thermal expansion coefficient of Yingang is 0.8 ⁇ m/°C/m
  • the thermal expansion coefficient of ceramics is 7 ⁇ m/°C/m, even if the length of the anti-deformation material connecting the positioning mark and the marking hole is up to 100mm, it is within the temperature change range of ⁇ 2°C, the anti-deformation material
  • the distance between the positioning mark and the marking hole is 10mm
  • 5*4*0.02 0.4
  • the distance between the positioning mark and the marking mark can be set to any value less than 20 mm.
  • the position information of the positioning mark obtained by the CCD camera is used to determine the position information of the marking hole according to the position information of the positioning mark obtained by the CCD camera when exposing the other side of the PCB board.
  • the position information determines the position of the exposure pattern on the other side of the PCB, and then the exposure is performed.
  • side A and side B the two sides of the PCB board are denoted as side A and side B respectively;
  • the initial calibration position of the marking hole recorded in the system is recorded as The initial calibration position of the positioning mark is recorded as When exposing a PCB board, the real-time position of the positioning mark is recorded as The position change of the positioning mark obtained by the CCD camera relative to the initial position recorded in the system is:
  • the height of the PCB board is recorded as H, and the X edge of the board is marked as X bottom ;
  • the desired position of the marking hole on the B surface is
  • the present invention can ensure the accurate positioning of the front and back sides of the non-porous PCB inner layer within 10 ⁇ m under the premise that the system shaft system repeated positioning accuracy reaches 1 ⁇ m and the image processing accuracy reaches 1 ⁇ m.
  • the embodiment of the present invention provides an alignment device for double-sided exposure, including a positioning mark, a marking mark and a position acquisition device, and before each piece of the sample to be exposed is exposed, an appropriate marking mark is selected according to the size of the sample to be exposed , Obtain the position information of the positioning mark corresponding to the selected marking mark through the position obtaining device, and then obtain the position information of the marking mark, so as to determine the change amount of the position of the marking mark relative to the predetermined position when the exposure sample is exposed, The position of the exposure pattern on the other side of the sample to be exposed is adjusted in real time according to the amount of change, which solves the problem of inaccurate exposure alignment caused by the fact that the prior art cannot perform real-time positioning of the marking mark, and improves the double Accuracy of face alignment.
  • the distance between the positioning mark and the marking mark is less than 20mm and/or the connection is made through anti-deformation material, which ensures that the relative position change of the two during exposure is less than the preset set according to the alignment accuracy required when the sample to be exposed is exposed Value, thereby improving the accuracy of the double-sided alignment of the sample to be exposed; before the exposure of each sample to be exposed, the position information of the positioning mark is obtained by the position acquisition device, and then the position information of the marking mark is obtained to determine The amount of change of the position of the marking mark relative to the predetermined position during exposure of the exposed sample is adjusted in real time according to the amount of change to the position of the exposure pattern of the other side of the predetermined sample to be exposed, thereby improving the accuracy of double-sided alignment of the sample to be exposed.
  • This embodiment provides an exposure method for double-sided exposure, see FIGS. 10 and 11.
  • the substrate 20 to be exposed is placed on the sample carrier 14, and at the same time, the position acquiring device 13 acquires the position information of the selected positioning mark 11.
  • the position information of the selected positioning mark 11 is acquired, and the positioning mark 21 is exposed on the substrate 20 to be exposed using the exposure device 16, so that the positioning mark 21 and the marking mark 12 are printed
  • the mark establishes a one-to-one correspondence relationship, and at the same time positioning Mark 21 is used to expose the graphic position positioning mark on the front side of the exposure substrate, and the mark 12 is printed to expose the graphic position positioning mark on the back side of the exposure substrate, so the two-sided graphics can be established Precise positional relationship.
  • side A and side B the two sides of the PCB board are denoted as side A and side B respectively;
  • the initial calibration position of the marking hole recorded in the system is recorded as The initial calibration position of the positioning mark is recorded as When exposing a PCB board, the real-time position of the positioning mark is recorded as The position change of the positioning mark obtained by the CCD camera relative to the initial position recorded in the system is:
  • Exposure device 16 uses the theoretical value of the marker position on the A side The positioning mark 21 as the middle mark is exposed, and the positioning mark 21 is used to determine the graphic position of the exposed substrate A when exposed;
  • the height of the PCB board is recorded as H, and the X edge of the board is marked as X bottom ;
  • the desired position of the marking hole on the B surface is
  • the present invention can ensure the accurate positioning of the front and back sides of the non-porous PCB inner layer within 10 ⁇ m under the premise that the system shaft system repeated positioning accuracy reaches 1 ⁇ m and the image processing accuracy reaches 1 ⁇ m.
  • Some steps in the embodiments of the present invention may be implemented by software, and corresponding software programs may be stored in a readable storage medium, such as an optical disk or a hard disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种双面曝光的对准装置、方法及设备,属于印刷线路板技术领域。对准装置包括:定位标记(11)、打标标记(12)和位置获取装置(13),在每一件待曝光样品曝光之前都通过位置获取装置(13)获取定位标记(11)的位置信息,从而获知定位标记(11)的在实际生产中的位置变化量,由于打标标记(12)和定位标记(11)的相对位置不变,所以即获知到打标标记(12)在实际生产中的位置变化量,根据该位置变化量实时调整待曝光样品的另一面曝光图形的位置,解决了现有技术无法实时对打标标记(12)进行实时定位而引起的曝光对位不准的问题,提高了待曝光样品双面对准的精度。

Description

一种双面曝光的对准装置、方法及设备 技术领域
本发明涉及一种双面曝光的对准装置、方法及设备,属于印刷线路板技术领域。
背景技术
激光直写(laser direct imaging,LDI)曝光机在生产内层线路板时,需要对印刷电路板(Printed Circuit Board,PCB)两面图像进行精确对准,以保证PCB板两面图形的精确对位。
在生产过程中,通常采用激光打标的方式自主标记两个mark进行内层PCB板的精确对位。在真空吸盘的底部有mark曝光光阑,进行内层PCB板第一面的曝光印刷时,通过mark曝光光阑在PCB板的另一面边缘的非曝光区域以激光打标的方式标记两个mark;翻板后,通过PCB板面上激光标记的2个mark坐标和打出这两个mark的光阑坐标计算出PCB的旋转和平移,从而完成PCB两面图形的精确对位,由此可知,如要完成内层PCB板的精确对位,需要精确定位mark曝光光阑的位置。
但mark曝光光阑是固定在金属真空吸盘上,真空吸盘的边长≥500mm,随着生产的进行,如机台内部温度发生较大变化,金属的真空吸盘受温度的影响发生热胀冷缩,而且,真空吸盘中间有真空腔体,在抽真空对PCB板进行吸附时腔体内部的真空度达到-20kpa,真空吸盘整体在受到20kpa的气压力下真空吸盘的主体发生变形,且该变形是无规律非线性的变形,由于热胀冷缩和真空吸附都会导致真空吸盘发生形变,所以安装在吸盘边缘的mark曝光光阑的位置也发生变化。由于曝光时,mark曝光光阑被所需要曝光的PCB覆盖,无法对其进行同时或实时标定,因此现有mark曝光光阑的定位方式是,每间隔一定时间,标定时对mark曝光光阑进行校准定位,如果在校准间隔时间内,真空吸盘发生涨缩或变形,则mark曝光光阑的位置发生变化,所以传统的定位方法无法对mark曝光光阑在PCB板连续曝光时进行同时或实时的精确定位。
发明内容
为了解决目前存在的在校准间隔时间内真空吸盘发生涨缩或变形引起mark曝光光阑的位置发生变化而导致的对位不准的问题,本发明提供了一种双面曝光的对准装置、方法及包括双面曝光的对准装置的曝光设备。
本发明的第一个目的是提供了一种双面曝光的对准装置,所述装置包括:
定位标记、打标标记和位置获取装置;
所述定位标记用于实时确定所述打标标记的位置,从而根据所述打标标记的位置确定待 曝光样品的曝光图形位置;
所述打标标记用于对待曝光样品进行打标;
所述位置获取装置用于实时获取所述定位标记的位置信息。
可选的,所述定位标记和所述打标标记的相对位置变化量小于预定值,所述预定值根据所述待曝光样品进行双面曝光时所要求的对准精度设定。
可选的,所述定位标记和所述打标标记的距离小于20mm和/或通过抗变形材料连接。
可选的,所述装置还包括:
样品承载装置和打标装置;所述样品承载装置用于承载所述待曝光样品;所述打标装置用于通过所述打标标记对所述待曝光样品进行打标;
所述打标标记位于所述样品承载装置上。
可选的,所述打标标记位于所述样品承载装置的边缘部分。
可选的,所述打标标记与所述定位标记一一对应;所述定位标记用于确定与之对应的打标标记的位置。
本发明的第二个目的是提供了一种双面曝光的对准方法,所述方法应用于上述双面曝光的对准装置中,所述方法包括:
对待曝光样品的一面进行曝光;
通过打标标记对所述待曝光样品的另一面进行标记;
实时获取定位标记的位置信息;
根据实时获取到的所述定位标记的位置信息确定所述打标标记的位置信息;
根据所述打标标记的位置信息对样品另一面进行对准曝光。
可选的,所述对待曝光样品的一面进行曝光之前,还包括:
实时获取对待曝光样品的一面进行曝光时定位标记的位置信息,并根据获取到的定位标记的位置信息在待曝光样品的一面曝光出中间标志,所述中间标志用于确定其所在面的曝光图形的位置。
可选的,所述通过打标标记对所述待曝光样品的另一面进行标记之前,还包括:
根据所述待曝光样品的大小选取至少两个打标标记;
将所述待曝光样品覆盖在所述打标标记之上且不能覆盖所选取的打标标记对应的定位标记。
可选的,所述根据所述打标标记的位置信息对样品另一面进行对准曝光包括:
根据所述打标标记的位置信息实时确定所述待曝光样品另一面的曝光图形的位置;
根据实时确定的所述待曝光样品另一面的曝光图形的位置对所述待曝光样品的另一面进行曝光。
本发明的第三个目的是一种曝光设备,所述曝光设备包括上述双面曝光的对准装置。
本发明有益效果是:
通过提供一种双面曝光的对准装置,包括定位标记、打标标记和位置获取装置,在每一件待曝光样品曝光之前都根据待曝光样品的大小选取合适的打标标记,通过位置获取装置获取所选取的打标标记对应的定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,解决了现有技术无法实时对打标标记进行实时定位而引起的曝光对位不准的问题,提高了待曝光样品双面对准的精度。通过定位标记和打标标记的距离小于20mm和/或通过抗变形材料进行连接,保证了二者在曝光过程中相对位置变化量小于根据待曝光样品曝光时所要求的对准精度设定的预定值,从而提高了待曝光样品双面对准的精度的效果;在每一件待曝光样品曝光之前都通过位置获取装置获取定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,提高待曝光样品双面对准的精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的双面曝光的对准装置示意图;
图2是本发明实施例二和三提供的双面曝光的对准装置示意图;
图3是本发明实施例中定位标记与打标标记位于载物吸盘边缘下部的位置示意图;
图4是本发明实施例中定位标记与打标标记位于载物吸盘边缘一侧及下部的位置示意图;
图5是待曝光样品放置于载物吸盘上进行曝光时的位置示意图;
图6是本发明实施例四提供的包括双面曝光的对准装置的曝光设备的示意图;
图7是本发明中定位标记与打标标记的正面位置示意图,其中1为打标标记、3为定位标记;
图8是本发明中405激光源与打标标记及定位标记的位置关系剖面图,其中,1为打标 标记、3为定位标记、4为镜片、5为405激光、6为激光控制器;
图9是本发明实施例中定位标记与打标标记通过抗变形材料连接示意图,其中1为打标标记、2为抗变形材料、3为定位标记;
图10为本发明实施例五提供的双面曝光的曝光方法中待曝光样品的放置示意图;
图11为本发明实施例五提供的双面曝光的曝光方法中待曝光样品曝光过程示意图。
具体实施方式
工业化生产过程中,PCB内层无孔板的正反两面的对位精度要求在10μm以内,但是由于影响这一对位精度的因素有系统轴系的重复定位精度、载物吸盘系统的精度及图像处理精度,其中载物吸盘系统由于以下两个原因:(1)吸盘主体采用金属材料铝合金,随温度的变化而存在热胀冷缩的特性;(2)载物吸盘需要对PCB板进行真空吸附,而真空吸附会导致吸盘的变形,所以导致载物吸盘系统对PCB内层无孔板的正反两面的对位精度造成非常大的影响;实际应用中,铝合金的热膨胀系数是23μm/℃.m,温度波动在±2℃,载物吸盘的尺寸在650mm(宽)*850mm(长)大小时,其边缘变形分别为
23*4*0.85=78.2μm(长);23*4*0.65=59.8μm(宽);
即吸盘主体在温度波动±2℃的情况下,宽度方向变化59.8μm,长度方向变化78.2μm。随着温度的波动正反两面的对位精度会发生改变,远远超出10μm的指标。
而在对PCB板进行真空吸附时,载物吸盘主体是650mm(宽)*850mm(长)*23mm(厚)的铝合金零件,并且中间有真空腔体,抽真空时腔体内部的真空度达到-20kpa,载物吸盘整体在受到20kpa的气压力下导致吸盘主体发生无规律非线性的变形;通过实际测试,变形量在5μm左右,虽然没有超出10μm的指标但是对系统对位精度已经贡献50%,造成的影响也比较大。
对于上述原因(1),有建议选用热膨胀系数低的材料,例如殷钢,大理石,碳化硅,等,但是这些材料加工难度大,大理石、碳化硅容易碎,且成本是铝合金的5-10倍。所以无法考虑这些材料。
而上述原因(2)由于吸盘主体的变形是无规律非线性的,所以无法寻找其变化规律,也无法解决。
由于在生产过程中,PCB板是覆盖在mark孔上的,所以目前普遍使用的方式是通过定期校准定位的方式来补偿吸盘主体跟随温度的变化和真空吸附导致吸盘的变形,这种方法无法实时确定载物吸盘主体的变形量。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本实施例提供一种双面曝光的对准装置,参见图1,所述装置包括:
定位标记11、打标标记12和位置获取装置13;
定位标记11用于实时确定所述打标标记12的位置,从而根据打标标记12的位置确定待曝光样品的曝光图形位置;
打标标记12用于对待曝光样品进行打标;
位置获取装置13用于实时获取所述定位标记的位置信息。
本发明实施例通过提供一种双面曝光的对准装置,包括定位标记、打标标记和位置获取装置,通过位置获取装置实时获取定位标记的位置信息,从而获取到打标标记的实时位置信息,继而根据打标标记的实时位置信息对待曝光样品的另一面进行对准曝光,解决了现有技术无法实时对打标标记进行精确的定位而引起的曝光对位不准的问题,达到了提高待曝光样品双面对准的精度的效果。
实施例二
本实施例提供一种双面曝光的对准装置及方法,参见图2,所述装置包括:
定位标记11、打标标记12、位置获取装置13、样品承载装置14和打标装置15;
定位标记11用于实时确定打标标记12的位置,从而根据打标标记12的位置确定待曝光样品的曝光图形位置;
打标标记12用于对待曝光样品进行打标;
位置获取装置13用于实时获取所述定位标记的位置信息;
其中,定位标记11和打标标记12的相对位置变化量小于预定值,该预定值根据待曝光样品进行双面曝光时所要求的对准精度设定;定位标记11和打标标记12的距离小于20mm和/或通过抗变形材料连接;
样品承载装置14用于承载待曝光样品;打标装置15用于通过打标标记12对待曝光样品进行打标;
打标标记12位于样品承载装置14上。
本实施例以待曝光样品为PCB板、样品承载装置为承载并固定PCB板的载物吸盘、载 物吸盘由铝合金材料制成,打标标记12为位于载物吸盘上的打标孔,位置获取装置13为CCD相机,打标装置15为405激光源为例进行说明。
具体的,当PCB板放置于载物吸盘上时,覆盖在打标孔上,以便405激光源对PCB板朝向该方向的一面进行打标,保证PCB板没有覆盖定位标记,以便CCD相机获取定位标记的位置信息,该定位标记可以是位于载物吸盘上的一个定位孔,该定位孔与打标孔的距离小于20mm,也可以是一个和打标孔通过抗变形材料连接的标记物,如图9所示;只要满足工作过程中定位标记与打标孔之间的相对位置变化量小于一个预定值,该预定值根据PCB板进行双面曝光时要求的对准精度进行设定;
比如,要求PCB板的正反两面的对准精确在10μm以内,那么设定该预定值为2μm,若该定位标记为位于载物吸盘上的定位孔,那么设置该定位孔与打标孔之间的距离小于20mm,那么在PCB板曝光过程中,根据载物吸盘的制作材料铝合金的热膨胀系数23μm/℃.m,曝光过程中温度波动范围±2℃,那么该定位孔与打标孔的相对位置变化量为23*4*0.02=1.8μm<2μm,并且由于铝合金局部的刚性大于整体刚性,所以在定位孔与打标孔之间的距离较小时,其所受真空影响很小,可以忽略不计;通过实际测试,该定位孔与打标孔的相对位置变化量满足小于预定值2μm的标准。
同样,若定位标记为通过抗变形材料与打标孔进行连接的标志物,那么由于抗变形材料受温度影响很小,所述该定位标记与打标孔的相对位置变化量可以忽略不计。
实际应用中,抗变形材料可采用殷钢、大理石、陶瓷热膨胀等系数较小的材料,这些材料受温度影响很小,比如,殷钢的热膨胀系数为0.8μm/℃/m,大理石的热膨胀系数为5μm/℃/m,陶瓷的热膨胀系数为7μm/℃/m,即便连接定位标记和打标孔的抗变形材料的长度长达100mm,其在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.1=0.32μm、5*4*0.1=2μm、7*4*0.1=2.8μm,而且实际应用中,根本不会使得该抗变形材料长达100mm,比如上述定位标记和打标孔之间的距离为20mm,则在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.02=0.064μm、5*4*0.02=0.4μm、7*4*0.02=0.56μm,所以该定位标记与打标孔的相对位置变化量可以忽略不计。
为达到更高的对准精度要求,可以设置定位标记与打标标记的距离小于20mm以下的任意数值。
曝光过程中,CCD相机获取到的定位标记的位置信息,在对PCB板另一面进行曝光时,根据CCD相机获取到的定位标记的位置信息确定打标孔的位置信息,从而根据打标孔的位置信息确定PCB板另一面的曝光图形的位置,继而进行曝光。
为描述方便,将PCB板的两面分别记为A面和B面;
比如,系统中记录的打标孔初始标定位置记为
Figure PCTCN2018121967-appb-000001
定位标记初始标定位置记为
Figure PCTCN2018121967-appb-000002
在曝光某PCB板时,定位标记实时位置记为
Figure PCTCN2018121967-appb-000003
CCD相机获取到定位标记相对于系统中记录的初始位置的位置变化为:
Figure PCTCN2018121967-appb-000004
Figure PCTCN2018121967-appb-000005
由于定位标记与打标孔的相对位置变化量可以忽略不计,所以可知,打标孔的位置变化也为:
Figure PCTCN2018121967-appb-000006
Figure PCTCN2018121967-appb-000007
打标孔在B面标记位置的理论值记为
Figure PCTCN2018121967-appb-000008
上下翻板时,PCB板板高记为H,板底边X坐标记为X bottom
根据上述打标孔在B面标记位置的理论值得到打标孔在B面的期望位置为
Figure PCTCN2018121967-appb-000009
Figure PCTCN2018121967-appb-000010
翻板之后实际在B面捕捉到的打标孔位置
Figure PCTCN2018121967-appb-000011
对准结果
Figure PCTCN2018121967-appb-000012
曝光图形A面位置
Figure PCTCN2018121967-appb-000013
经过Y镜像得到
Figure PCTCN2018121967-appb-000014
即B面图形位置为
Figure PCTCN2018121967-appb-000015
本发明实施例通过提供一种双面曝光的对准装置,包括定位标记、打标标记和位置获取装置,通过位置获取装置实时获取定位标记的位置信息,从而获取到打标标记的实时位置信息,继而根据打标标记的实时位置信息对待曝光样品的另一面进行对准曝光,解决了现有技术无法实时对打标标记进行精确的定位而引起的曝光对位不准的问题,通过定位标记和打标标记的距离小于20mm和/或通过抗变形材料进行连接,保证了二者在曝光过程中相对位置变化量小于根据待曝光样品曝光时所要求的对准精度设定的预定值,从而提高了待曝光样品双面对准的精度的效果。
在实际曝光过程中,打标标记与定位标记可以为一一对应,定位标记用于确定与之对应的打标标记的位置;也可以一对多;比如一个打标标记对应两个及以上的定位标记,综合确定该打标标记的位置信息,也可以多个打标标记对应一个定位标记,该定位标记对应确定上 述多个打标标记的位置。
本发明下述实施例三和实施例四以打标标记与定位标记为一一对应关系进行说明,打标标记与定位标记位置关系如图7所示。
实施例三
本实施例提供一种双面曝光的对准装置及方法,参见图2,所述装置包括:
定位标记11、打标标记12、位置获取装置13、样品承载装置14和打标装置15;
定位标记11用于实时确定打标标记12的位置,从而根据打标标记12的位置确定待曝光样品的曝光图形位置;
打标标记12用于对待曝光样品进行打标;
位置获取装置13用于实时获取所述定位标记的位置信息;
其中,定位标记11和打标标记12的相对位置变化量小于预定值,该预定值根据待曝光样品进行双面曝光时所要求的对准精度设定;定位标记11和打标标记12的距离小于20mm和/或通过抗变形材料连接;
样品承载装置14用于承载待曝光样品;打标装置15用于通过打标标记12对待曝光样品进行打标;
打标标记12位于样品承载装置14上。
本实施例以待曝光样品为PCB板、样品承载装置为承载并固定PCB板的载物吸盘、载物吸盘由铝合金材料制成,打标标记12为位于载物吸盘上的打标孔,位置获取装置13为CCD相机,打标装置15为405激光源为例进行说明。
打标装置405激光源与打标标记及定位标记的位置关系剖面图如图8所示;
具体的,当PCB板放置于载物吸盘上时,覆盖在打标孔上,以便405激光源对PCB板朝向该方向的一面进行打标,保证PCB板没有覆盖定位标记,以便CCD相机获取定位标记的位置信息,该定位标记可以是位于载物吸盘上的一个定位孔,该定位孔与打标孔的距离小于20mm,也可以是一个和打标孔通过抗变形材料连接的标记物,只要满足工作过程中定位标记与打标孔之间的相对位置变化量小于一个预定值,该预定值根据PCB板进行双面曝光时要求的对准精度进行设定;
比如,要求PCB板的正反两面的对准精确在10μm以内,那么设定该预定值为2μm,若该定位标记为位于载物吸盘上的定位孔,那么设置该定位孔与打标孔之间的距离小于20mm,那么在PCB板曝光过程中,根据载物吸盘的制作材料铝合金的热膨胀系数23μ m/℃.m,曝光过程中温度波动范围±2℃,那么该定位孔与打标孔的相对位置变化量为23*4*0.02=1.8μm<2μm,并且由于铝合金局部的刚性大于整体刚性,所以在定位孔与打标孔之间的距离较小时,其所受真空影响很小,可以忽略不计;通过实际测试,该定位孔与打标孔的相对位置变化量满足小于预定值2μm的标准。
同样,若定位标记为通过抗变形材料与打标孔进行连接的标志物,那么由于抗变形材料受温度影响很小,所述该定位标记与打标孔的相对位置变化量可以忽略不计。
实际应用中,抗变形材料可采用殷钢、大理石、陶瓷热膨胀等系数较小的材料,这些材料受温度影响很小,比如,殷钢的热膨胀系数为0.8μm/℃/m,大理石的热膨胀系数为5μm/℃/m,陶瓷的热膨胀系数为7μm/℃/m,即便连接定位标记和打标孔的抗变形材料的长度长达100mm,其在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.1=0.32μm、5*4*0.1=2μm、7*4*0.1=2.8μm,而且实际应用中,根本不会使得该抗变形材料长达100mm,比如上述定位标记和打标孔之间的距离为10mm,则在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.02=0.064μm、5*4*0.02=0.4μm、7*4*0.02=0.56μm,所以该定位标记与打标孔的相对位置变化量可以忽略不计。
为达到更高的对准精度要求,可以设置定位标记与打标标记的距离小于20mm以下的任意数值。
曝光过程中,根据PCB板的大小选取打标标记;如图3、图4和图5所示,根据PCB板的大小选取任意的打标标记。
该打标标记可以位于载物吸盘的任意位置。
曝光过程中,CCD相机获取到的定位标记的位置信息,在对PCB板另一面进行曝光时,根据CCD相机获取到的定位标记的位置信息确定打标孔的位置信息,从而根据打标孔的位置信息确定PCB板另一面的曝光图形的位置,继而进行曝光。
为描述方便,将PCB板的两面分别记为A面和B面;
比如,系统中记录的打标孔初始标定位置记为
Figure PCTCN2018121967-appb-000016
定位标记初始标定位置记为
Figure PCTCN2018121967-appb-000017
在曝光某PCB板时,定位标记实时位置记为
Figure PCTCN2018121967-appb-000018
CCD相机获取到定位标记相对于系统中记录的初始位置的位置变化为:
Figure PCTCN2018121967-appb-000019
Figure PCTCN2018121967-appb-000020
由于定位标记与打标孔的相对位置变化量可以忽略不计,所以可知,打标孔的位置变化也为:
Figure PCTCN2018121967-appb-000021
Figure PCTCN2018121967-appb-000022
打标孔在B面标记位置的理论值记为
Figure PCTCN2018121967-appb-000023
上下翻板时,PCB板板高记为H,板底边X坐标记为X bottom
根据上述打标孔在B面标记位置的理论值得到打标孔在B面的期望位置为
Figure PCTCN2018121967-appb-000024
Figure PCTCN2018121967-appb-000025
翻板之后实际在B面捕捉到的打标孔位置
Figure PCTCN2018121967-appb-000026
对准结果
Figure PCTCN2018121967-appb-000027
曝光图形A面位置
Figure PCTCN2018121967-appb-000028
经过Y镜像得到
Figure PCTCN2018121967-appb-000029
即B面图形位置为
Figure PCTCN2018121967-appb-000030
本发明实施例通过提供一种双面曝光的对准装置,包括定位标记、打标标记和位置获取装置,在每一件待曝光样品曝光之前都通过位置获取装置获取定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,解决了现有技术无法实时对打标标记进行实时定位而引起的曝光对位不准的问题,提高了待曝光样品双面对准的精度。通过定位标记和打标标记的距离小于20mm和/或通过抗变形材料进行连接,保证了二者在曝光过程中相对位置变化量小于根据待曝光样品曝光时所要求的对准精度设定的预定值,从而提高了待曝光样品双面对准的精度的效果;在每一件待曝光样品曝光之前都通过位置获取装置获取定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,提高待曝光样品双面对准的精度。
实施例四
本实施例提供包括双面曝光的对准装置的曝光设备,参见图6,所述装置包括:
定位标记11、打标标记12、位置获取装置13、样品承载装置14、打标装置15和曝光设备16;
定位标记11用于实时确定打标标记12的位置,从而根据打标标记12的位置确定待曝光样品的曝光图形位置;
打标标记12用于对待曝光样品进行打标;
位置获取装置13用于实时获取所述定位标记的位置信息;
曝光设备16用于对待曝光样品进行曝光;
其中,定位标记11和打标标记12的相对位置变化量小于预定值,该预定值根据待曝光样品进行双面曝光时所要求的对准精度设定;定位标记11和打标标记12的距离小于20mm和/或通过抗变形材料连接;
样品承载装置14用于承载待曝光样品;打标装置15用于通过打标标记12对待曝光样品进行打标;
打标标记12位于样品承载装置14上。
本实施例以待曝光样品为PCB板、样品承载装置为承载并固定PCB板的载物吸盘、载物吸盘由铝合金材料制成,打标标记12为位于载物吸盘上的打标孔,位置获取装置13为CCD相机,打标装置15为405激光源为例进行说明。
具体的,当PCB板放置于载物吸盘上时,覆盖在打标孔上,以便405激光源对PCB板朝向该方向的一面进行打标,保证PCB板没有覆盖定位标记,以便CCD相机获取定位标记的位置信息,该定位标记可以是位于载物吸盘上的一个定位孔,该定位孔与打标孔的距离小于20mm,也可以是一个和打标孔通过抗变形材料连接的标记物,只要满足工作过程中定位标记与打标孔之间的相对位置变化量小于一个预定值,该预定值根据PCB板进行双面曝光时要求的对准精度进行设定;
比如,要求PCB板的正反两面的对准精确在10μm以内,那么设定该预定值为2μm,若该定位标记为位于载物吸盘上的定位孔,那么设置该定位孔与打标孔之间的距离小于20mm,那么在PCB板曝光过程中,根据载物吸盘的制作材料铝合金的热膨胀系数23μm/℃.m,曝光过程中温度波动范围±2℃,那么该定位孔与打标孔的相对位置变化量为23*4*0.02=1.8μm<2μm,并且由于铝合金局部的刚性大于整体刚性,所以在定位孔与打标孔之间的距离较小时,其所受真空影响很小,可以忽略不计;通过实际测试,该定位孔与打标孔的相对位置变化量满足小于预定值2μm的标准。
同样,若定位标记为通过抗变形材料与打标孔进行连接的标志物,那么由于抗变形材料受温度影响很小,所述该定位标记与打标孔的相对位置变化量可以忽略不计。
实际应用中,抗变形材料可采用殷钢、大理石、陶瓷热膨胀等系数较小的材料,这些材料受温度影响很小,比如,殷钢的热膨胀系数为0.8μm/℃/m,大理石的热膨胀系数为5μm/℃/m,陶瓷的热膨胀系数为7μm/℃/m,即便连接定位标记和打标孔的抗变形材料的长度长达100mm,其在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.1=0.32μm、5*4*0.1=2μm、7*4*0.1=2.8μm,而且实际应用中,根本不会使得该抗变形材料长达100mm, 比如上述定位标记和打标孔之间的距离为10mm,则在±2℃的温度变化范围内,抗变形材料的形变量分别为0.8*4*0.02=0.064μm、5*4*0.02=0.4μm、7*4*0.02=0.56μm,所以该定位标记与打标孔的相对位置变化量可以忽略不计。
为达到更高的对准精度要求,可以设置定位标记与打标标记的距离小于20mm以下的任意数值。
曝光过程中,将PCB板放置在载物吸盘上进行曝光时,根据PCB板的大小选取至少两个打标标记;打标标记位于载物吸盘的边缘部分任意部分,如图3、图4和图5所示。
将PCB板覆盖在打标标孔之上且不能覆盖所选取的打标标孔对应的定位标记。
曝光过程中,CCD相机获取到的定位标记的位置信息,在对PCB板另一面进行曝光时,根据CCD相机获取到的定位标记的位置信息确定打标孔的位置信息,从而根据打标孔的位置信息确定PCB板另一面的曝光图形的位置,继而进行曝光。
为描述方便,将PCB板的两面分别记为A面和B面;
比如,系统中记录的打标孔初始标定位置记为
Figure PCTCN2018121967-appb-000031
定位标记初始标定位置记为
Figure PCTCN2018121967-appb-000032
在曝光某PCB板时,定位标记实时位置记为
Figure PCTCN2018121967-appb-000033
CCD相机获取到定位标记相对于系统中记录的初始位置的位置变化为:
Figure PCTCN2018121967-appb-000034
Figure PCTCN2018121967-appb-000035
由于定位标记与打标孔的相对位置变化量可以忽略不计,所以可知,打标孔的位置变化也为:
Figure PCTCN2018121967-appb-000036
Figure PCTCN2018121967-appb-000037
打标孔在B面标记位置的理论值记为
Figure PCTCN2018121967-appb-000038
上下翻板时,PCB板板高记为H,板底边X坐标记为X bottom
根据上述打标孔在B面标记位置的理论值得到打标孔在B面的期望位置为
Figure PCTCN2018121967-appb-000039
Figure PCTCN2018121967-appb-000040
翻板之后实际在B面捕捉到的打标孔位置
Figure PCTCN2018121967-appb-000041
对准结果
Figure PCTCN2018121967-appb-000042
曝光图形A面位置
Figure PCTCN2018121967-appb-000043
经过Y镜像得到
Figure PCTCN2018121967-appb-000044
即B面图形位置为
Figure PCTCN2018121967-appb-000045
经实际测试,本发明在系统轴系重复定位精度达到1μm,图像处理精度达到1μm的前提下,能够保证PCB内层无孔板的正反两面的精确定位在10μm以内。
本发明实施例通过提供一种双面曝光的对准装置,包括定位标记、打标标记和位置获取装置,在每一件待曝光样品曝光之前都根据待曝光样品的大小选取合适的打标标记,通过位置获取装置获取所选取的打标标记对应的定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,解决了现有技术无法实时对打标标记进行实时定位而引起的曝光对位不准的问题,提高了待曝光样品双面对准的精度。通过定位标记和打标标记的距离小于20mm和/或通过抗变形材料进行连接,保证了二者在曝光过程中相对位置变化量小于根据待曝光样品曝光时所要求的对准精度设定的预定值,从而提高了待曝光样品双面对准的精度的效果;在每一件待曝光样品曝光之前都通过位置获取装置获取定位标记的位置信息,继而获取到打标标记的位置信息,从而确定该曝光样品曝光时打标标记的位置相对于既定位置的变化量,根据该变化量实时调整既定的待曝光样品的另一面曝光图形的位置,提高待曝光样品双面对准的精度。
实施例五
本实施例提供一种双面曝光的曝光方法,参见图10和图11。
如图10所示,将待曝光基板20放置于样品承载装置14上,同时位置获取装置13获取选定的定位标记11的位置信息。
如图11所示,根据位置获取装置13获取选定的定位标记11的位置信息,使用曝光设备16在待曝光基板20上曝光出定位Mark 21,使定位Mark 21与打标标记12所打印的标记建立一一对应关系,同时定位Mark 21用于曝光基板正面曝光时的图形位置定位标记,打标标记12所打印标记用于曝光基板反面曝光时的图形位置定位标记,因此两面图形可建立起精确的位置关系。
为描述方便,将PCB板的两面分别记为A面和B面;
比如,系统中记录的打标孔初始标定位置记为
Figure PCTCN2018121967-appb-000046
定位标记初始标定位置记为
Figure PCTCN2018121967-appb-000047
在曝光某PCB板时,定位标记实时位置记为
Figure PCTCN2018121967-appb-000048
CCD相机获取到定位标记相对于系统中记录的初始位置的位置变化为:
Figure PCTCN2018121967-appb-000049
Figure PCTCN2018121967-appb-000050
由于定位标记与打标孔的相对位置变化量可以忽略不计,所以可知,打标孔的位置变化也为:
Figure PCTCN2018121967-appb-000051
Figure PCTCN2018121967-appb-000052
打标孔在B面标记位置的理论值记为
Figure PCTCN2018121967-appb-000053
曝光装置16在A面使用标记位置理论值
Figure PCTCN2018121967-appb-000054
曝光出作为中间标记的定位Mark 21,定位Mark 21用于确定曝光基板A面曝光时的图形位置;
上下翻板时,PCB板板高记为H,板底边X坐标记为X bottom
根据上述打标孔在B面标记位置的理论值得到打标孔在B面的期望位置为
Figure PCTCN2018121967-appb-000055
Figure PCTCN2018121967-appb-000056
翻板之后实际在B面捕捉到的打标孔位置
Figure PCTCN2018121967-appb-000057
对准结果
Figure PCTCN2018121967-appb-000058
曝光图形A面位置
Figure PCTCN2018121967-appb-000059
经过Y镜像得到
Figure PCTCN2018121967-appb-000060
即B面图形位置为
Figure PCTCN2018121967-appb-000061
经实际测试,本发明在系统轴系重复定位精度达到1μm,图像处理精度达到1μm的前提下,能够保证PCB内层无孔板的正反两面的精确定位在10μm以内。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种双面曝光的对准装置,其特征在于,所述装置包括:
    定位标记、打标标记和位置获取装置;
    所述定位标记用于实时确定所述打标标记的位置,从而根据所述打标标记的位置确定待曝光样品的曝光图形位置;
    所述打标标记用于对待曝光样品进行打标;
    所述位置获取装置用于实时获取所述定位标记的位置信息。
  2. 根据权利要求1所述的装置,其特征在于,所述定位标记和所述打标标记的相对位置变化量小于预定值,所述预定值根据所述待曝光样品进行双面曝光时所要求的对准精度设定。
  3. 根据权利要求1所述的装置,其特征在于,所述定位标记和所述打标标记的距离小于20mm和/或通过抗变形材料连接。
  4. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    样品承载装置和打标装置;所述样品承载装置用于承载所述待曝光样品;所述打标装置用于通过所述打标标记对所述待曝光样品进行打标;
    所述打标标记位于所述样品承载装置上。
  5. 根据权利要求4所述的装置,其特征在于,所述打标标记位于所述样品承载装置的边缘部分。
  6. 一种双面曝光的对准方法,其特征在于,所述方法应用于上述双面曝光的对准装置中,所述方法包括:
    对待曝光样品的一面进行曝光;
    通过打标标记对所述待曝光样品的另一面进行标记;
    实时获取定位标记的位置信息;
    根据实时获取到的所述定位标记的位置信息确定所述打标标记的位置信息;
    根据所述打标标记的位置信息对待曝光样品另一面进行对准曝光。
  7. 根据权利要求6所述的方法,其特征在于,所述对待曝光样品的一面进行曝光之前,还包括:
    实时获取对待曝光样品的一面进行曝光时定位标记的位置信息,并根据获取到的定位标记的位置信息在待曝光样品的一面曝光出中间标志,所述中间标志用于确定其所在面的曝光图形的位置。
  8. 根据权利要求7所述的方法,其特征在于,所述通过打标标记对所述待曝光样品的另一面进行标记之前,还包括:
    根据所述待曝光样品的大小选取至少两个打标标记;
    将所述待曝光样品覆盖在所述打标标记之上且不能覆盖所选取的打标标记对应的定位标记。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述打标标记的位置信息对待曝光样品另一面进行对准曝光包括:
    根据所述打标标记的位置信息实时确定所述待曝光样品另一面的曝光图形的位置;
    根据实时确定的所述待曝光样品另一面的曝光图形的位置对所述待曝光样品的另一面进行曝光。
  10. 一种曝光设备,其特征在于,所述曝光设备包括权利要求1~5任一所述的双面曝光的对准装置。
PCT/CN2018/121967 2018-12-19 2018-12-19 一种双面曝光的对准装置、方法及设备 WO2020124406A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/121967 WO2020124406A1 (zh) 2018-12-19 2018-12-19 一种双面曝光的对准装置、方法及设备
KR1020217014949A KR102667209B1 (ko) 2018-12-19 2018-12-19 양면 노광의 정렬장치, 방법 및 기기
SG11202106554WA SG11202106554WA (en) 2018-12-19 2018-12-19 Alignment device, method and equipment for double-sided exposure
JP2021513258A JP7203959B2 (ja) 2018-12-19 2018-12-19 両面露光のアライメント装置、方法、及び設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121967 WO2020124406A1 (zh) 2018-12-19 2018-12-19 一种双面曝光的对准装置、方法及设备

Publications (1)

Publication Number Publication Date
WO2020124406A1 true WO2020124406A1 (zh) 2020-06-25

Family

ID=71102342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121967 WO2020124406A1 (zh) 2018-12-19 2018-12-19 一种双面曝光的对准装置、方法及设备

Country Status (4)

Country Link
JP (1) JP7203959B2 (zh)
KR (1) KR102667209B1 (zh)
SG (1) SG11202106554WA (zh)
WO (1) WO2020124406A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037625A1 (en) * 2000-09-27 2002-03-28 Kabushiki Kaisha Toshiba Method of producing exposure mask
CN102681360A (zh) * 2012-04-24 2012-09-19 合肥芯硕半导体有限公司 激光成像系统中实现电路板两面曝光图形对准的对位方法
CN102890428A (zh) * 2012-09-18 2013-01-23 天津芯硕精密机械有限公司 一种实现pcb板两面曝光图形对准的方法
CN103529660A (zh) * 2013-10-29 2014-01-22 天津芯硕精密机械有限公司 一种多光路曝光设备的内层对位装置
CN206348594U (zh) * 2016-12-31 2017-07-21 合肥芯碁微电子装备有限公司 一种直写光刻系统中用于内层电路板对位的打标装置
CN206557530U (zh) * 2017-01-24 2017-10-13 苏州微影激光技术有限公司 一种曝光内层板的对位标定装置及应用其的曝光机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250232A (ja) 1999-02-25 2000-09-14 Ono Sokki Co Ltd パターン形成装置
JP2003149825A (ja) 2001-11-13 2003-05-21 Hitachi Ltd 平面型表示装置の製造方法
JP5813556B2 (ja) * 2012-03-30 2015-11-17 株式会社アドテックエンジニアリング 露光描画装置、プログラム及び露光描画方法
JP6465591B2 (ja) * 2014-08-27 2019-02-06 株式会社オーク製作所 描画装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037625A1 (en) * 2000-09-27 2002-03-28 Kabushiki Kaisha Toshiba Method of producing exposure mask
CN102681360A (zh) * 2012-04-24 2012-09-19 合肥芯硕半导体有限公司 激光成像系统中实现电路板两面曝光图形对准的对位方法
CN102890428A (zh) * 2012-09-18 2013-01-23 天津芯硕精密机械有限公司 一种实现pcb板两面曝光图形对准的方法
CN103529660A (zh) * 2013-10-29 2014-01-22 天津芯硕精密机械有限公司 一种多光路曝光设备的内层对位装置
CN206348594U (zh) * 2016-12-31 2017-07-21 合肥芯碁微电子装备有限公司 一种直写光刻系统中用于内层电路板对位的打标装置
CN206557530U (zh) * 2017-01-24 2017-10-13 苏州微影激光技术有限公司 一种曝光内层板的对位标定装置及应用其的曝光机

Also Published As

Publication number Publication date
SG11202106554WA (en) 2021-07-29
KR102667209B1 (ko) 2024-05-17
KR20210076114A (ko) 2021-06-23
JP7203959B2 (ja) 2023-01-13
JP2022511304A (ja) 2022-01-31

Similar Documents

Publication Publication Date Title
JP3500124B2 (ja) 電気的な構成群の製作装置に設けられた保持装置の移動距離及び/又は角度位置を校正するための方法及び装置並びに校正基板
CN113240674A (zh) 基于三维点云和二维图像融合的共面度检测方法
CN102248288A (zh) 一种fpc板插头识别定位方法
CN104407502A (zh) 一种激光直接成像设备生产内层无孔电路板的方法
CN113467194B (zh) 环境温度补偿方法、对位装置以及直写成像光刻设备
CN106735869B (zh) 用于数控加工设备的激光视觉非接触式定位方法
TW202011125A (zh) 層壓設備以及層壓方法
WO2020124406A1 (zh) 一种双面曝光的对准装置、方法及设备
TW202004931A (zh) 用於校準組件安裝設備的方法
JP3276537B2 (ja) チップボンディング装置およびそれにおけるキャリブレーション方法
JP2022550776A (ja) センサ組立体
US7584072B2 (en) Method for determining correction values for the measured values of positions of structures on a substrate
TWI717668B (zh) 一種雙面曝光的對準裝置、方法及設備
CN109613803B (zh) 一种双面曝光的对准装置、方法及设备
JP4705969B2 (ja) 可撓性材料の付着方法
KR20080023350A (ko) 노광방법 및 노광장치
JP5948102B2 (ja) 転写装置および転写方法
WO2014119434A1 (ja) 実装方法および実装装置
JP3180004B2 (ja) 露光フィルムの整合方法及び整合装置
CN204262587U (zh) 一种高精度晶圆背刻对中系统的校正装置
CN113245712A (zh) 一种激光光点位置校正方法及芯片规模晶圆级标记设备
CN104259655A (zh) 一种高精度晶圆背刻对中系统的校正方法及装置
US12025490B2 (en) Sensor arrangement
CN217360551U (zh) 一种双面光刻的光刻系统
JP2921129B2 (ja) 撮像装置の校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217014949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943697

Country of ref document: EP

Kind code of ref document: A1