WO2020122349A1 - 천연가스 재액화 시스템 - Google Patents

천연가스 재액화 시스템 Download PDF

Info

Publication number
WO2020122349A1
WO2020122349A1 PCT/KR2019/009765 KR2019009765W WO2020122349A1 WO 2020122349 A1 WO2020122349 A1 WO 2020122349A1 KR 2019009765 W KR2019009765 W KR 2019009765W WO 2020122349 A1 WO2020122349 A1 WO 2020122349A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
storage tank
line
evaporation gas
Prior art date
Application number
PCT/KR2019/009765
Other languages
English (en)
French (fr)
Inventor
윤상득
김세정
이용희
허정호
Original Assignee
주식회사 동화엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동화엔텍 filed Critical 주식회사 동화엔텍
Publication of WO2020122349A1 publication Critical patent/WO2020122349A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/038Treating the boil-off by recovery with expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the reliquefaction system is the key equipment.
  • the re-liquefaction system includes a complete re-liquefaction system (FRS) and a partial re-liquefaction system, and a partial re-liquefaction system (PRS) uses the evaporation gas to the engine to recover and re-liquefy the remaining evaporation gas. It is used a lot.
  • FFS complete re-liquefaction system
  • PRS partial re-liquefaction system
  • the evaporation gas is used to drive some engines, but the remaining evaporation gas is re-liquefied and recovered in a storage tank.
  • natural gas is used as a power source for the engine using evaporation gas and liquefied, and the engine driving amount changes according to the ship's operating speed, so the rate of re-liquefaction of the evaporation gas changes.
  • the rate of re-liquefaction of the evaporation gas changes.
  • the present invention is to solve the above problems, to increase the amount of re-liquefaction by cooling the evaporation gas to an extremely low temperature, and also to provide a natural gas reliquefaction system that enables re-liquefaction in a constant amount.
  • the present invention is a storage tank in which natural gas is stored;
  • a compression device for compressing the evaporation gas generated in the storage tank through a supply line and recovering the compressed evaporation gas to the storage tank through a recovery line;
  • a first heat exchanger installed to heat exchange between the supply line and the recovery line to primarily cool the evaporation gas of the recovery line;
  • a positive pressure valve installed between the first heat exchanger and the storage tank in the recovery line to reduce pressure; It provides a liquefied gas re-liquefaction system comprising a; second heat exchanger that is installed on the front or rear side of the positive pressure valve in the recovery line to cool the primary evaporated gas secondary by a cryogenic cooling circuit.
  • the cryogenic cooling circuit the refrigerant is nitrogen or methane gas and is configured to be circulated to the compressor, pump, expander, and the second heat exchanger, the pre-cooler heat exchange with the expander inlet line and the second heat exchanger discharge line It provides a liquefied gas re-liquefaction system characterized in that it is included.
  • the amount of re-liquefaction of the evaporated gas by the cryogenic cooling circuit can be increased to increase the recovery amount.
  • the circulating amount of the evaporating gas can be reduced, so that the compressor capacity for circulating the evaporating gas can be reduced.
  • the evaporation gas can be cooled by the cryogenic cooling circuit, it is possible to secure a constant amount of reliquefaction.
  • FIG. 1 is a flowchart of a liquefied gas reliquefaction system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart of a liquefied gas reliquefaction system according to a second embodiment of the present invention.
  • the present invention is a storage tank in which natural gas is stored;
  • a compression device for compressing the evaporation gas generated in the storage tank through a supply line and recovering the compressed evaporation gas to the storage tank through a recovery line;
  • a first heat exchanger installed to heat exchange between the supply line and the recovery line to primarily cool the evaporation gas of the recovery line;
  • a positive pressure valve installed between the first heat exchanger and the storage tank in the recovery line to reduce pressure; It provides a liquefied gas re-liquefaction system comprising a; second heat exchanger that is installed on the front or rear side of the positive pressure valve in the recovery line to cool the primary evaporated gas secondary by a cryogenic cooling circuit.
  • the cryogenic cooling circuit the refrigerant is nitrogen or methane gas and is configured to be circulated to the compressor, pump, expander, and the second heat exchanger, the pre-cooler heat exchange with the expander inlet line and the second heat exchanger discharge line It provides a liquefied gas re-liquefaction system characterized in that it is included.
  • FIG. 1 is a flowchart of a liquefied gas reliquefaction system according to a first embodiment of the present invention.
  • the natural gas stored in the storage tank Natural Gas
  • evaporated gas Bit Off Gas
  • A/E, M/E Engine
  • unused evaporated gas is re-liquefied to recover the natural
  • It relates to a gas re-liquefaction system, and is largely made up of a storage tank 100, a compression device 200, a first heat exchanger 300, a positive pressure valve 400, and a second heat exchanger 500.
  • the second heat exchanger 500 and the cooling circuit 600 for supplying the refrigerant.
  • Natural gas is stored in the storage tank 100, and the storage tank 100 is connected through a compression device 200 and a supply line 200. Natural gas generates some evaporation gas due to natural factors and is about -120°C.
  • the compression device 200 compresses the evaporation gas introduced from the storage tank 100 through the supply line L1 and compresses the evaporation gas into the storage tank 100 through the recovery line L2. Let it be recovered.
  • the compression device 200 is continuously connected to the compressor 220 and the pump 240 to compress the evaporated gas to be sent out, so that some of them are supplied to the engines (A/E, M/E), and the storage tank It is connected to (100) and can be recovered.
  • the first heat exchanger 300 is installed so that the supply line (L1) and the recovery line (L2) are heat-exchanged to primarily cool the evaporated gas discharged from the recovery line (L2).
  • the boil-off gas of the supply line L1 is changed from about -120°C to 20°C, and heat-exchanged at a temperature usable for the engine, and the recovery line L2 is compressed by the compression device 200.
  • the evaporated gas discharged through it is first cooled to about -80°C to -100°C at 40°C.
  • the positive pressure valve 400 is installed between the first heat exchanger 300 and the storage tank 100 in the recovery line L2 to reduce pressure.
  • the positive pressure valve 400 drops the pressure and temperature of the evaporation gas.
  • the second heat exchanger 500 is installed on the front or rear side of the positive pressure valve 400 in the recovery line L2 to cool the evaporated gas that is first cooled by the cryogenic cooling circuit 600 to the second. .
  • the second heat exchanger 500 was installed to be installed on the front side of the positive pressure valve 400.
  • the cryogenic cooling circuit 600 uses nitrogen (Nitrogen) or methane gas, and is circulated to a compressor 620, a pump 640, an expander 660, and the second heat exchanger 500. It is configured, the expander 660, the inlet line and the second heat exchanger 500, the discharge line is pre-cooler 680 that is in heat exchange with the included.
  • the reason why the refrigerant in the cryogenic cooling circuit 600 uses nitrogen or methane gas is because it can be operated at a lower temperature than natural gas. So, the cryogenic cooling circuit 600 is installed to drop the evaporated gas from about -80 °C to -100 °C about -160 °C or more.
  • the temperature of the evaporation gas is lowered to the second heat exchanger 500 by the cryogenic cooling circuit 600 to supply the constant pressure valve 400, it is possible to minimize the vaporization after passing through the constant pressure valve 400.
  • the amount of reliquefaction increases. Since the positive pressure valve 400 decompresses from a high pressure to a low pressure, the temperature decreases due to adiabatic expansion and some evaporation gas vaporizes. have.
  • the boil-off gas flows into the liquid storage tank 100 through the gas-liquid separator 700 immediately before flowing into the storage tank 100, and the gas is sent back to the supply line L1.
  • FIG. 2 is a flowchart of a liquefied gas reliquefaction system according to a second embodiment of the present invention.
  • the storage tank 100, the compression device 200, the first heat exchanger 300, the positive pressure valve 400, and the second heat exchanger 500 are made as in the first embodiment.
  • the second heat exchanger 500 and the cooling circuit 600 for supplying refrigerant to the second heat exchanger 500 are identical, and thus detailed description will be omitted.
  • the base 500 is to be installed on the rear side of the positive pressure valve 400.
  • the amount of vaporization generated by applying the cryogenic cooling circuit 600 circulated with the second heat exchanger 500 is re-liquefied to enable recovery.
  • the evaporated gas recovered through the first heat exchanger 300 is dropped from -80°C to -120°C to -100°C to -135°C by a positive pressure valve 400, and then passed through the second heat exchanger 500 It will drop to -155°C.
  • an additional static pressure valve 800 is installed at the rear end of the second heat exchanger 500 to further reduce pressure and temperature.
  • the amount of re-liquefaction of the evaporated gas can be increased to the second heat exchanger 500 by the cryogenic cooling circuit 600 through the above-described first and second embodiments, and accordingly, the circulating amount of the evaporated gas Can be reduced. Reducing the amount circulated can reduce the compressor capacity and minimize the compressor size.
  • the cryogenic cooling circuit Since the insufficient cooling heat can be sufficiently compensated by the 600, the reliquefaction rate according to the ship's operating speed is increased, and there is an advantage of being able to secure a constant reliquefaction amount according to the long-term configuration.
  • the amount of circulating boil-off gas can be reduced, thereby reducing the compressor capacity for circulating boil-off gas, thereby contributing to downsizing of components including the compressor.

Abstract

본 발명은 천연가스에서 발생하는 증발가스를 초저온냉각에 의해 재액화 양을 늘릴 수 있는 천연가스 재액화 시스템에 관한 기술이다. 본 발명은 천연가스가 저장되는 저장탱크; 상기 저장탱크에 발생되는 증발가스를 공급라인을 통해 압축시키고 압축된 증발가스를 회수라인을 통해 상기 저장탱크로 회수되게 하는 압축장치; 상기 공급라인과 상기 회수라인이 열교환되게 설치되어 상기 회수라인의 증발가스를 1차 냉각시키는 제1열교환기; 상기 회수라인에서 상기 제1열교환기와 상기 저장탱크 사이에 설치되어 감압하는 정압밸브; 상기 회수라인에서 상기 정압밸브 전측 또는 후측에 설치되고 초저온 냉각회로에 의해 1차 냉각된 증발가스를 2차로 냉각시키는 제2열교환기;가 포함되는 것을 특징으로 하는 액화가스 재액화 시스템을 제공한다.

Description

천연가스 재액화 시스템
본 발명은 천연가스 재액화 시스템에 관한 것으로, 천연가스에서 발생하는 증발가스를 초저온냉각에 의해 재액화하는 양을 늘릴 수 있는 천연가스 재액화 시스템에 관한 기술이다.
천연가스 추진 선박은 재액화 장치가 핵심 장비이다. 재액화 장치로는 완전재액화시스템(FRS)과 부분 재액화 시스템이 있으며, 부분 재액화 시스템(PRS, Partial Re-Liquefaction System)은 증발가스를 엔진에 사용 후 남은 증발가스를 회수하여 재액화 하는데 많이 사용된다.
여기서 PRS는 기화된 증발가스를 재액화시켜 저장탱크로 회수할 때 추가적인 냉매 압축기를 사용하지 않고 증발가스 자체를 냉매로 사용하여 재액화 하는 기술로 운영비를 절감할 수 있는 효과적인 시스템이다.
LNG선박은 기체인 천연가스(Natural Gas)를 -160℃ 이하의 온도에서 액화된 상태로 저장 및 운송하게 되며, 운항 천연가스의 일부가 열에 의해 자연 기화되어 증발가스가 발생하게 된다. 증발가스는 일부 엔진 구동에 사용되지만 남는 증발가스는 재액화하고 저장탱크로 회수한다.
한편, 천연가스는 증발가스를 이용해 엔진의 동력원으로 사용하고 액화시켜 재회수하게 되는데, 선박의 운항 속도에 따라 엔진 구동량이 변화게 되므로 그에 따른 증발가스의 재액화 비율이 변화게 되며, 특히 일정속도 이하로 운항할 때에는 재액화 효과가 발생하지 않는 문제점이 있다.
따라서, 증발가스의 재액화하는 양을 늘려서 효율을 높이고, 또한 선박의 운항속도에 관계없이 일정한 양으로 재액화 가능하게 하여 전체 시스템의 안정성을 확보할 수 있는 기술이 요구되고 있다.
본 발명은 상기의 문제를 해결하기 위한 것으로, 증발가스를 초저온으로 냉각하여 재액화되는 양을 늘리고, 또한 일정한 양으로 재액화 가능하게 하는 천연가스 재액화 시스템을 제공하고자 한다.
상기의 과제를 해결하기 위해 본 발명은 천연가스가 저장되는 저장탱크; 상기 저장탱크에 발생되는 증발가스를 공급라인을 통해 압축시키고 압축된 증발가스를 회수라인을 통해 상기 저장탱크로 회수되게 하는 압축장치; 상기 공급라인과 상기 회수라인이 열교환되게 설치되어 상기 회수라인의 증발가스를 1차 냉각시키는 제1열교환기; 상기 회수라인에서 상기 제1열교환기와 상기 저장탱크 사이에 설치되어 감압하는 정압밸브; 상기 회수라인에서 상기 정압밸브 전측 또는 후측에 설치되고 초저온 냉각회로에 의해 1차 냉각된 증발가스를 2차로 냉각시키는 제2열교환기;가 포함되는 것을 특징으로 하는 액화가스 재액화 시스템을 제공한다.
여기서, 상기 초저온 냉각회로는, 냉매는 질소 또는 메탄가스를 사용하며 컴프레셔, 펌프, 익스펜더, 상기 제2열교환기로 순환되게 구성되고, 상기 익스펜더 유입라인과 상기 제2열교환기 배출라인과 열교환되는 프리쿨러가 포함된 것을 특징으로 하는 액화가스 재액화 시스템을 제공한다.
본 과제의 해결 수단에 제공된 구성에 의하면, 다음과 같은 효과를 기대할 수 있다.
먼저, 초저온냉각회로에 의해 증발가스를 재액화되는 양을 늘려 회수량을 증가시킬 수 있다. 재액화되는 양이 증가함에 따라 증발가스 순환량을 감소시킬 수 있어 증발가스를 순환하기 위한 컴프레셔 용량을 작게할 수 있다.
그리고, 초저온 냉각회로에 의해 증발가스를 냉각시킬 수 있으므로 일정한 재액화 양 확보가 가능하다.
도 1은 본 발명의 제1실시예에 따른 액화가스 재액화 시스템의 흐름도이다.
도 2는 본 발명의 제2실시예에 따른 액화가스 재액화 시스템의 흐름도이다.
본 발명은 천연가스가 저장되는 저장탱크; 상기 저장탱크에 발생되는 증발가스를 공급라인을 통해 압축시키고 압축된 증발가스를 회수라인을 통해 상기 저장탱크로 회수되게 하는 압축장치; 상기 공급라인과 상기 회수라인이 열교환되게 설치되어 상기 회수라인의 증발가스를 1차 냉각시키는 제1열교환기; 상기 회수라인에서 상기 제1열교환기와 상기 저장탱크 사이에 설치되어 감압하는 정압밸브; 상기 회수라인에서 상기 정압밸브 전측 또는 후측에 설치되고 초저온 냉각회로에 의해 1차 냉각된 증발가스를 2차로 냉각시키는 제2열교환기;가 포함되는 것을 특징으로 하는 액화가스 재액화 시스템을 제공한다.
여기서, 상기 초저온 냉각회로는, 냉매는 질소 또는 메탄가스를 사용하며 컴프레셔, 펌프, 익스펜더, 상기 제2열교환기로 순환되게 구성되고, 상기 익스펜더 유입라인과 상기 제2열교환기 배출라인과 열교환되는 프리쿨러가 포함된 것을 특징으로 하는 액화가스 재액화 시스템을 제공한다.
이하에서는 본 발명의 실시예를 첨부한 도면을 참조하여 설명하고자 한다. 하기 설명 및 첨부 도면에 나타난 바는 본 발명의 전반적인 이해를 위해 제시된 것이므로 본 발명의 기술적 범위가 그것들에 한정되는 것은 아니다 그리고 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 구성 및 기능에 대한 상세한 설명은 생략하기로 한다.
도 1은 본 발명의 제1실시예에 따른 액화가스 재액화 시스템의 흐름도이다.
도 1을 참조하면, 저장탱크에 저장된 천연가스(Natural Gas)가 증발된 증발가스(Boil Off Gas)를 엔진(A/E, M/E)으로 일부 보내고 미사용 증발가스는 재액화시켜 회수하는 천연가스 재액화 시스템에 관한 것으로, 크게 저장탱크(100), 압축장치(200), 제1열교환기(300), 정압밸브(400) 및 제2열교환기(500)를 포함하여 이루어지며, 본 시스템에서는 제2열교환기(500)와 냉매를 공급하는 냉각회로(600)에 주 특징이 있다.
먼저, 저장탱크(100)는 천연가스가 저장되고, 저장탱크(100)는 압축장치(200)와 공급라인(200)을 통해 연결된다. 천연가스는 자연적 요인에 의해 일부 증발가스가 발생하게 되며 약 -120℃ 정도이다.
상기 압축장치(200)는 상기 저장탱크(100)에서 증발가스를 공급라인(L1)을 통해 유입된 증발가스를 압축시키고 압축된 증발가스를 회수라인(L2)을 통해 상기 저장탱크(100)로 회수되게 한다. 여기서, 상기 압축장치(200)는 컴프레셔(220), 펌프(240)로 연속 연결되어 증발가스를 압축하여 송출되게 하여 일부는 엔진(A/E, M/E)으로 공급하게 되고, 상기 저장탱크(100)와 연결되어 회수할 수 있게 된다.
상기 제1열교환기(300)는 상기 공급라인(L1)과 상기 회수라인(L2)이 열교환되게 설치되어 상기 회수라인(L2)에서 배출되는 증발가스를 1차 냉각되게 한다.
상기 제1열교환기(300)에 의해 공급라인(L1)의 증발가스는 약 -120℃에서 20℃로 되게 하여 엔진에 사용 가능한 온도로 열교환 되고, 압축장치(200)에서 회수라인(L2)을 통해 배출되는 증발가스는 40℃에서 약 -80℃ ~ -100℃가량 1차로 냉각되게 된다.
상기 정압밸브(400)는 상기 회수라인(L2)에서 상기 제1열교환기(300)와 상기 저장탱크(100) 사이에 설치되어 감압하게 된다. 여기서 정압밸브(400)는 증발가스의 압력과 온도를 떨어뜨리게 된다.
그리고, 제2열교환기(500)는 상기 회수라인(L2)에서 상기 정압밸브(400) 전측 또는 후측에 설치되고 초저온 냉각회로(600)에 의해 1차 냉각된 증발가스를 2차로 냉각시키도록 한다.
본 발명의 제1실시예에서는 상기 제2열교환기(500)를 상기 정압밸브(400) 전측에 설치되도록 실시하였다.
상기 초저온 냉각회로(600)는 냉매는 질소(Nitrogen) 또는 메탄가스(Methane Gas)를 사용하며 컴프레셔(620), 펌프(640), 익스펜더(660), 상기 제2열교환기(500)로 순환되게 구성되고, 상기 익스펜더(660) 유입라인과 상기 제2열교환기(500) 배출라인과 열교환되는 프리쿨러(680)가 포함된 것으로 실시한다.
여기서, 초저온 냉각회로(600)에서 냉매는 질소 또는 메탄가스를 사용하는 이유는 천연가스보다 더 낮은 온도에서 운전 가능하게 하기 때문이다. 그래서 상기 초저온 냉각회로(600)가 설치되어 증발가스를 약 -80℃ ~ -100℃에서 약 -160℃ 정도 또는 그 이상을 떨어뜨릴 수 있다.
즉, 초저온 냉각회로(600)에 의한 제2열교환기(500)로 증발가스의 온도를 낮추어 정압밸브(400)를 공급하게 되므로 정압밸브(400)를 통과 후 기화되는 것을 최소화할 수 있게 되어 결국 재액화되는 양이 증가하게 된다. 정압밸브(400)는 고압에서 저압으로 감압하므로 단열팽창으로 인하여 온도가 하강하고 일부 증발가스가 기화화는 현상이 발생하므로 정압밸브(400)의 전단의 온도를 최대한 낮춰 부분 기화 비율을 감소킬 수 있다.
그리고, 증발가스는 저장탱크(100)에 유입되기 직전에 기액분리기(700)를 거쳐 액체 저장탱크(100)로 유입되고, 기체는 다시 공급라인(L1)으로 보내지게 된다.
도 2는 본 발명의 제2실시예에 따른 액화가스 재액화 시스템의 흐름도이다.
도 2를 참조하면 앞서 실시한 제1실시예와 같이 저장탱크(100), 압축장치(200), 제1열교환기(300), 정압밸브(400) 및 제2열교환기(500)를 포함하여 이루어지며, 본 시스템에서는 제2열교환기(500)와 제2열교환기(500)에 냉매를 공급하는 냉각회로(600)로 구성되는 것은 동일하여 상세한 설명은 생략하기로 하고, 도 2에서는 제2열교환기(500)를 정압밸브(400)의 후측에 설치되도록 하였다.
여기서, 제2열교환기(500)와 순환되는 초저온 냉각회로(600)를 적용하여 발생되는 기화 량을 재액화하여 회수 가능하게 한다.
상기 제1열교환기(300)를 거쳐 회수되는 증발가스는 약 -80℃ ~ -120℃에서 정압밸브(400)에 의해 -100℃ ~ -135℃로 떨어지게 되며 제2열교환기(500)를 거쳐 -155℃로 떨어지게 된다. 그리고 상기 제2열교환기(500)의 후단에는 추가의 정압밸브(800)가 설치되어 압력과 온도를 더 낮출 수 있다.
따라서, 앞서 상술한 제1실시예와 제2실시예를 통해 초저온 냉각회로(600)에 의한 제2열교환기(500)로 증발가스의 재액화 양을 증가시킬 수 있고 그에 따라 증발가스의 순환 양을 감소시킬 수 있게 된다. 순환되는 양의 감소는 컴프레셔 용량을 감소하게 하고 컴프레서 크기를 최소화할 수 있다.
그리고, 종래에는 통상 제1열교환기(300)만 존재하여 선박 운항 속도에 따라 엔진 가동률이 다르므로 재액화율이 변화게 되고, 일정 속도 이하에서는 재액화 효과를 발생되지 않았으나, 본 발명에서는 초저온 냉각회로(600)에 의해 부족한 냉열을 충분히 보추할 수 있으므로 선박의 운항속도에 따른 재액화 율을 상승시키며 장기 구성에 따라 일정한 재액화량을 확보 가능하게 되는 이점이 있게 된다.
이상에서 설명한 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양하게 변경하여 실시할 수 있는 범위까지 특허청구범위의 보호범위에 속하는 것으로 보아야 할 것이다.
본 발명에 따르면 증발가스의 재액화되는 양이 증가함에 따라 증발가스 순환량을 감소시킬 수 있어 증발가스를 순환하기 위한 컴프레셔 용량을 작게할 수 있게 됨으로써, 컴프레셔를 비롯한 부품들의 다운사이징에 기여할 수 있다.
그리고, 초저온 냉각회로에 의해 증발가스를 냉각시켜 일정한 재액화 양의 확보가 가능하게 됨으로써, 전체 재액화 시스템의 안정성을 확보에 기여할 수 있다.

Claims (2)

  1. 천연가스가 저장되는 저장탱크;
    상기 저장탱크에 발생되는 증발가스를 공급라인을 통해 압축시키고 압축된 증발가스를 회수라인을 통해 상기 저장탱크로 회수되게 하는 압축장치;
    상기 공급라인과 상기 회수라인이 열교환되게 설치되어 상기 회수라인의 증발가스를 1차 냉각시키는 제1열교환기;
    상기 회수라인에서 상기 제1열교환기와 상기 저장탱크 사이에 설치되어 감압하는 정압밸브;
    상기 회수라인에서 상기 정압밸브 전측 또는 후측에 설치되고 초저온 냉각회로에 의해 1차 냉각된 증발가스를 2차로 냉각시키는 제2열교환기;가 포함되는 것을 특징으로 하는 액화가스 재액화 시스템.
  2. 제1항에 있어서,
    상기 초저온 냉각회로는,
    냉매는 질소 또는 메탄가스를 사용하며 컴프레셔, 펌프, 익스펜더, 상기 제2열교환기로 순환되게 구성되고, 상기 익스펜더 유입라인과 상기 제2열교환기 배출라인과 열교환되는 프리쿨러가 포함된 것을 특징으로 하는 액화가스 재액화 시스템.
PCT/KR2019/009765 2018-12-10 2019-08-07 천연가스 재액화 시스템 WO2020122349A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0157827 2018-12-10
KR1020180157827A KR20200070569A (ko) 2018-12-10 2018-12-10 천연가스 재액화 시스템

Publications (1)

Publication Number Publication Date
WO2020122349A1 true WO2020122349A1 (ko) 2020-06-18

Family

ID=71076072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009765 WO2020122349A1 (ko) 2018-12-10 2019-08-07 천연가스 재액화 시스템

Country Status (2)

Country Link
KR (1) KR20200070569A (ko)
WO (1) WO2020122349A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452415B1 (ko) * 2021-01-19 2022-10-07 대우조선해양 주식회사 선박용 재액화 시스템의 냉매 사이클 압력 조절 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857245A (en) * 1973-06-27 1974-12-31 J Jones Reliquefaction of boil off gas
KR20130031843A (ko) * 2010-09-30 2013-03-29 미츠비시 쥬고교 가부시키가이샤 보일 오프 가스 재액화 장치
KR101289212B1 (ko) * 2013-05-30 2013-07-29 현대중공업 주식회사 액화가스 처리 시스템
KR20150039427A (ko) * 2013-10-02 2015-04-10 현대중공업 주식회사 액화가스 처리 시스템
KR20180000195U (ko) * 2016-07-08 2018-01-17 대우조선해양 주식회사 선박용 증발가스 재액화 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996284B1 (ko) 2017-04-18 2019-10-01 대우조선해양 주식회사 선박의 증발가스 재액화 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857245A (en) * 1973-06-27 1974-12-31 J Jones Reliquefaction of boil off gas
KR20130031843A (ko) * 2010-09-30 2013-03-29 미츠비시 쥬고교 가부시키가이샤 보일 오프 가스 재액화 장치
KR101289212B1 (ko) * 2013-05-30 2013-07-29 현대중공업 주식회사 액화가스 처리 시스템
KR20150039427A (ko) * 2013-10-02 2015-04-10 현대중공업 주식회사 액화가스 처리 시스템
KR20180000195U (ko) * 2016-07-08 2018-01-17 대우조선해양 주식회사 선박용 증발가스 재액화 시스템

Also Published As

Publication number Publication date
KR20200070569A (ko) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2017082552A1 (ko) 선박
WO2017171172A1 (ko) 선박
WO2021015399A1 (ko) 선박의 연료가스 관리시스템
KR102176543B1 (ko) 선박의 증발가스 처리 시스템 및 방법
KR20210023540A (ko) 선박의 증발가스 재액화 시스템 및 방법
KR20170011685A (ko) 연료가스 공급시스템
KR20200056513A (ko) 선박의 증발가스 처리 시스템 및 방법
KR101742285B1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2020122349A1 (ko) 천연가스 재액화 시스템
WO2017171171A1 (ko) 선박
KR200493118Y1 (ko) 선박용 증발가스 재액화 시스템
KR101675879B1 (ko) 증발가스 재액화 장치 및 방법
KR20140146802A (ko) 액화천연가스 재기화 시스템 및 방법
KR20200145624A (ko) 선박의 증발가스 처리 시스템 및 방법
KR102584509B1 (ko) 연료가스 재액화 시스템
KR102066632B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
KR20170029228A (ko) 선박의 증발가스 재액화 장치
US20220186986A1 (en) Cooling system
KR101945473B1 (ko) 재액화 시스템
KR20210033093A (ko) 선박의 증발가스 처리 시스템 및 방법
KR20200125374A (ko) 선박의 증발가스 재액화 시스템 및 방법
KR102631166B1 (ko) 선박용 연료가스공급시스템
KR102632433B1 (ko) 선박용 연료가스공급시스템
KR102631167B1 (ko) 선박용 연료가스공급시스템
KR20150030938A (ko) 증발가스 재액화장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894499

Country of ref document: EP

Kind code of ref document: A1