WO2020121904A1 - 表示装置およびその製造方法 - Google Patents

表示装置およびその製造方法 Download PDF

Info

Publication number
WO2020121904A1
WO2020121904A1 PCT/JP2019/047334 JP2019047334W WO2020121904A1 WO 2020121904 A1 WO2020121904 A1 WO 2020121904A1 JP 2019047334 W JP2019047334 W JP 2019047334W WO 2020121904 A1 WO2020121904 A1 WO 2020121904A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
light emitting
display device
blue
green
Prior art date
Application number
PCT/JP2019/047334
Other languages
English (en)
French (fr)
Inventor
藤原 康文
雄 上野山
潤 舘林
修平 市川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2020559950A priority Critical patent/JP7454854B2/ja
Publication of WO2020121904A1 publication Critical patent/WO2020121904A1/ja
Priority to US17/343,239 priority patent/US20210296528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to a display device and a manufacturing method thereof, and more particularly to a display device such as a color display using a light emitting diode and a manufacturing method thereof.
  • LED Light Emitting Diode
  • a semiconductor element that constitutes an LED is mainly manufactured using a nitride semiconductor substrate on which a nitride semiconductor thin film such as gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) or the like is formed.
  • a nitride semiconductor thin film such as gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) or the like is formed.
  • a multiple quantum well structure MQW or MQWs
  • a PiN junction in which an intrinsic semiconductor layer to be a layer is formed is used (for example, Patent Document 1).
  • a display device composed of an inorganic LED composed of the above-mentioned nitride semiconductor film
  • individual LEDs having different wavelengths from red (R), green (G), and blue (B) are planarized on one substrate.
  • a plurality of LEDs arranged side by side and a driver IC that controls the color and brightness of each pixel as a display device are connected by wiring (for example, Patent Document 2). Therefore, the display device becomes a high cost, and the high definition is not sufficient.
  • the display device is configured by using the three types of LEDs of the conventional red LED, green LED, and blue LED.
  • the active layers are all made of GaN of a type containing indium (In) (hereinafter, also referred to as “InGaN”), and contain In.
  • InGaN indium
  • the size of the band gap is adjusted to realize R, G, and B light emission.
  • the active layer of the red LED is irradiated, it is absorbed by the active layer of the red LED and used for excitation. Therefore, it was found that the active layer of the red LED cannot be properly transmitted.
  • the red LED in the lowermost layer.
  • the value of x in the red LED represented by In x Ga 1-x N is about 0.35, which is better than that of the green LED and the blue LED.
  • the In ratio must be increased significantly. For this reason, the amount of the additional element becomes too large, the crystal of the active layer is largely distorted, and the surface is inevitably roughened.
  • the crystals of the green LED and the blue LED grow by inheriting the rough surface of the red LED, and thus the crystals are greatly disordered, resulting in crystallinity. It was found that the luminous efficiency is lowered due to the deterioration of
  • An object of the present invention is to provide a display device provided with a light emitting portion that can emit light.
  • the present inventor has developed a nitride semiconductor light emitting device that uses a nitride semiconductor obtained by adding europium (Eu) to GaN as an active layer for the first time in the world, and received great attention from engineers in the world.
  • a nitride semiconductor obtained by adding europium (Eu) to GaN as an active layer for the first time in the world, and received great attention from engineers in the world.
  • Eu europium
  • GaN:Eu as a material for red LEDs, is dramatically superior in light emitting function and extremely excellent in crystallinity. Therefore, by using GaN:Eu as a red LED and manufacturing it in the same substrate as the blue LED and the green LED in one reaction device in one process, a display device excellent in performance and cost can be obtained. Is expected to be possible.
  • In-containing green GaN and blue GaN had various problems and were regarded as materials that lacked practicality and were difficult to commercialize.
  • GaN:Eu has a structure and properties that are basically different from those of In-containing GaN, and conversely, this may compensate for the drawbacks of In-containing. We thought that it was small, but conducted various experiments.
  • In-containing green GaN and blue GaN were laminated in various combinations on red GaN:Eu.
  • the light of G and B having a short wavelength could be extracted without being absorbed by the active layer of the red LED having a small band gap.
  • the emission mechanism is not based on the interband transition, but is due to the electronic transition in the 4f shell of the electron in the Eu ion, that is, the ff transition.
  • GaN:Eu does not have the surface roughness like red In-containing GaN having a high In ratio, Since it has an extremely flat surface, it does not deteriorate the crystallinity of the In-containing green GaN and blue GaN laminated on the upper side, and both green GaN and blue GaN emit light at the same level as when they are single substances. It was confirmed that the function was demonstrated.
  • GaN:Eu has a flat surface unlike the In-containing LED.
  • the red LED using GaN:Eu as the active layer is laminated thereon.
  • the respective LEDs are laminated. I found that you can set the order freely.
  • Rare earth elements generally have a common property that splitting occurs in the 4f electron level due to the effect of spin-orbit interaction or crystal field, and the mechanism of light emission by the ff transition as described above is , Eu, it is theoretically possible to occur with other rare earth elements.
  • the rare earth elements are lanthanoids having properties very similar to each other, not only Eu but also other rare earth elements do not roughen the crystal when added to GaN. It can be expected that the stacking order can be freely selected.
  • GaN has been described as a nitride, but the nitride is basically a GaN-based nitride (including a mixed crystal of InGaN and AlGaN) such as AlN and InN other than GaN. It can be said that a similar phenomenon occurs in.
  • GaN:Eu is used as a red LED, and blue LED and green LED are stacked vertically on the same substrate to be manufactured.
  • GaN:Eu is used as a red LED, and blue LED and green LED are used. It was found that an excellent display device can be obtained even when the display devices are arranged side by side on the same substrate, as in the case of stacking them in the vertical direction. In the case of stacking in the vertical direction, the stacked LED grows while taking over the surface condition of the lower layer LED, so strict condition control is required for film formation, but in the case of horizontal arrangement, the film formation conditions Even if the control is slightly loosened, the effect is small, so that the manufacturing yield can be improved.
  • a plurality of types of PiN junction type light emitting diodes that emit light of different wavelengths are arranged on the same substrate, At least one type of the plurality of types of light emitting diodes is provided with a light emitting section having an active layer containing a rare earth element.
  • the invention according to claim 2 is The display device according to claim 1, wherein a light emitting diode having an active layer containing the rare earth element is used for at least a light emitting diode having the longest wavelength among the plurality of types of light emitting diodes.
  • the invention according to claim 3 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode,
  • the substrate is a gallium nitride substrate,
  • the display device according to claim 1 or 2 wherein the red diode includes a gallium nitride-based (GaN-based) active layer containing europium (Eu) as the rare earth element.
  • the invention according to claim 4 is The plurality of kinds of light emitting diodes are sequentially laminated on the surface of the substrate, 4.
  • the invention according to claim 5 is The display device according to claim 4, wherein the light emitting unit is laminated in the order of a red diode, a green diode, and a blue diode from the substrate side, or a red diode, a blue diode, and a green diode in this order. is there.
  • the invention according to claim 6 is 6.
  • the invention according to claim 7 is 7.
  • the invention according to claim 8 is In the case where the light emitting portion is laminated in order of the red diode, the green diode, and the blue diode from the substrate side, the interface between the red diode and the green diode, and the interface between the green diode and the blue diode.
  • the light emitting unit is laminated in the order of a red diode, a blue diode, and a green diode from the substrate side, an interface between the red diode and the blue diode, and an interface between the blue diode and the green diode.
  • a barrier layer formed of any of AlN, AlGaN, AlInN, and AlGaInN.
  • the invention according to claim 9 is In the case where the light emitting portion is laminated in order of the red diode, the green diode, and the blue diode from the substrate side, the interface between the red diode and the green diode, and the interface between the green diode and the blue diode.
  • the light emitting unit is laminated in the order of a red diode, a blue diode, and a green diode from the substrate side, an interface between the red diode and the blue diode, and an interface between the blue diode and the green diode.
  • a DBR structure in which AlInN and GaN are stacked, AlGaN and GaN are stacked, or AlGaInN and GaN are stacked is formed. is there.
  • the invention according to claim 10 is The display device according to any one of claims 1 to 3, wherein the plurality of types of light emitting diodes are arranged side by side on the surface of the substrate.
  • the invention according to claim 11 is 11.
  • the display device according to claim 10, wherein the plurality of types of light emitting diodes are composed of three types of light emitting diodes of a red diode, a green diode and a blue diode.
  • the invention according to claim 12 is 12.
  • the invention according to claim 13 is 13.
  • a multilayer wiring structure for forming an electric circuit is formed on the surface of the light emitting unit, and the multilayer wiring structure includes at least one active element.
  • a multilayer wiring structure for forming an electric circuit is formed on a surface of the light emitting portion, and the multilayer wiring structure is a passive matrix type structure including no active element.
  • the display device according to any one of 1.
  • the invention according to claim 16 is 10.
  • the invention according to claim 17 is A method for manufacturing a display device according to any one of claims 1 to 16, comprising: In the method of manufacturing a display device, the light emitting portions of the plurality of types of light emitting diodes are formed by using a metal organic chemical vapor deposition method.
  • the manufacturing cost does not increase in proportion to the number of pixels, and a plurality of types of light having different wavelengths with respect to the outside can be emitted at a high intensity at a desired ratio. It is possible to provide a display device including a light emitting unit capable of emitting light.
  • FIG. 6 is a schematic diagram showing a film forming process of a light emitting unit of a display device according to an embodiment of the present invention. It is a schematic diagram which shows the cross-sectional structure after it was set as the step structure of the light emitting part of 3 color LED vertical integration type. It is a figure explaining the barrier layer in the display concerning the present invention. It is a figure which shows the form after forming the electrode of the light emitting part of a 3 color LED vertical integration type
  • FIG. 6 is a schematic view showing a process of forming electrodes of a light emitting section of a display device according to another embodiment of the present invention. It is a schematic diagram which shows the formation process of the electrode of the display which concerns on other embodiment of this invention. It is a schematic diagram which shows an example of the film-forming process of the light emission part of the display which concerns on other one Embodiment of this invention.
  • FIG. 8 is a schematic diagram showing a process of forming electrodes of a display device according to still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a process of forming electrodes of a display device according to still another embodiment of the present invention. It is a schematic diagram which shows an example of the film-forming process of a light-emitting part. It is a schematic diagram of a display device having a multilayer wiring structure. It is a figure which shows an example of the circuit of a multilayer wiring structure. It is a figure which shows an example of the circuit of a multilayer wiring structure. It is a figure explaining application of the display concerning the present invention to HMD.
  • the display device of the present invention has a structure in which a plurality of LEDs that emit a plurality of types of light having different wavelengths are arranged on the same semiconductor substrate, and at least one of the plurality of types of light emitting diodes includes an active material containing a rare earth element. This is different from a display device using a conventional LED in that a light emitting unit using an LED having layers is provided.
  • a vertically integrated type in which a plurality of types of LEDs are stacked one by one on the same semiconductor substrate to form a pixel, and a pixel is formed by horizontally arranging in a plane.
  • a process of forming a light emitting portion for forming a pixel by using LEDs of three colors of R, G, and B will be described in the order of vertical integration type and horizontal integration type.
  • sapphire, a semiconductor substrate, and a nitride semiconductor of an LED are used as the base material
  • GaN is used as an example of the nitride constituting the base material.
  • the material is not limited to these. Absent. Examples include so-called GaN-based nitrides (including mixed crystals of InGaN and AlGaN) such as AlN and InN other than GaN-based.
  • FIG. 1 is a schematic view showing a process of forming a vertically integrated light emitting section.
  • (12) is a diagram showing a state after LEDs of three colors are stacked, and a buffer layer made of low-temperature GaN (LT-GaN) and a buffer layer on the sapphire substrate.
  • LT-GaN low-temperature GaN
  • a semiconductor substrate that is made up of non-doped GaN (u-GaN) layers that are stacked and provided to enhance the crystallinity of n-GaN.
  • u-GaN non-doped GaN
  • a red LED, a blue LED, and a green LED are stacked in that order from the substrate side.
  • red LEDs, blue LEDs, and green LEDs are stacked in this order from the substrate side. This arrangement is desirable from the viewpoint of crystallinity and surface flatness from the viewpoint of ease of stacking.
  • the stacking order of the blue LED and the green LED is not limited to this, and the red LED, the green LED and the blue LED may be arranged in this order.
  • the order of the red LED, the blue LED, and the green LED should be followed, and if stronger green light emission should be obtained, the red LED, the green LED, and the blue LED should be used. Good.
  • the manufacturing process when the order of the red LED, the green LED, and the blue LED is sufficient if the steps of the green LED and the blue LED in the step structure formation described below are interchanged.
  • Each LED is composed of a PiN junction in which n-GaN, an active layer, and p-GaN are stacked from the substrate side, and each active layer (i layer) is formed of GaN.Eu and InGaN/GaN. There is.
  • a low-temperature GaN layer is grown as a buffer layer (for example, 475° C.) on a sapphire substrate, and then an undoped GaN layer (for example, 1180° C.) is grown for about 0.5 to 5.0 ⁇ m.
  • Red LED formation A red LED structure having a GaN:Eu layer as a light emitting layer is produced by a metal organic vapor phase epitaxy (OMVPE) method. Specifically, an n-type GaN layer to which Si is added is grown on the undoped GaN layer by about 0.1 to 5.0 ⁇ m (eg, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • a GaN:Eu layer containing Eu is grown to a thickness of about 0.1 to 5.0 ⁇ m (for example, 960° C.). At this time, the Eu concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • a blue LED structure having an InGaN layer as a light emitting layer is formed on the surface of the sample prepared above by a metal organic vapor phase epitaxy method.
  • an Si-added n-type GaN layer is grown to a thickness of about 0.1 to 5.0 ⁇ m on the above layer (for example, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • the InN mole fraction is controlled to be about 0.1 to 15%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • a green LED structure having an InGaN layer as a light emitting layer is prepared by a metal organic vapor phase epitaxy method.
  • an n-type GaN layer to which Si is added is grown on the above layer by about 0.1 to 5.0 ⁇ m (for example, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • the Si source a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) and trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • the InN mole fraction is controlled to be about 15 to 40%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is adjusted to be about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Mg such as MgCp 2 as a Mg source is supplied to the sample surface in a gaseous state. As described above, the laminated body shown in (1) is formed.
  • the laminated body shown in (1) of FIG. 1 is formed.
  • the n-electrode is formed on the red LED, and the n-electrode and the p-electrode are formed on the blue LED and the green LED. Therefore, the laminated body is formed into a step structure so that the area of the red LED>the area of the blue LED>the area of the green LED. To do.
  • the ratio of the light emitting areas of the green LED, the blue LED, and the red LED is adjusted so that high quality white is formed when all three colors of R, G, and B are emitted.
  • the area ratio is determined on the basis of the external quantum efficiency of each LED and the standard visual acuity of human visual acuity.
  • the adjustment method here is not limited to the case of adjusting only the area ratio.
  • the amount of light emitted from the LED can be changed not only by the light emitting area but also by the voltage applied to the light emitting element (the light is emitted more strongly when a high voltage is applied) and the current (the light is emitted more strongly when a large current is applied). Therefore, even if the amount of emitted light does not reach the target amount of light in view of the area ratio, by applying a higher voltage and/or a higher current to the LEDs of that color than the LEDs of other colors, The light may be emitted, and as a result, the target light emission amount may be adjusted.
  • Etching is used to form the step structure and is performed by the following process.
  • the numbers below correspond to those in FIG.
  • the following steps are in order from the bottom, red LED, blue LED, and green LED.
  • Patterning of resist for green LED lower region (2) Dry etching to n layer of green LED (3) Resist stripping (4) Patterning of resist for blue LED upper electrode region (5) Dry etching to p layer of blue LED (6) Stripping of resist (7) Patterning of resist for blue LED lower electrode area (8) Dry etching to n layer of blue LED (9) Stripping of resist (10) Patterning of resist for red LED upper electrode area (11) Red LED Dry etching to the p layer of (12) Resist stripping (13) Patterning of the resist for red LED lower electrode region (14) Dry etching to n layer of the red LED (15) Stripping of resist
  • step structure is just an example, and is not limited if there are other approaches such as regrowth, selective growth, and substrate bonding technology.
  • Fig. 2 shows the cross-sectional structure of the vertically integrated light emitting part after the step structure. Note that the thickness of each layer shown in FIG. 2 is an example, and is not limited. 2, unlike FIG. 1, an AlGaN barrier layer is formed between each of the green, blue, and red LEDs. This is because when the electrodes are actually attached, the This is because it is preferable that the terminals are electrically insulated from the n-GaN.
  • the barrier layer is not limited to the AlGaN layer, and may be any barrier layer of AlN, AlInN, AlGaInN.
  • a barrier layer such as AlGaN is provided between P+-GaN in the lower part and n-GaN in the upper part, and in C and D to electrically insulate the terminals.
  • the specific thickness of the barrier layer is preferably about 1 nm to 1 ⁇ m (for example, 50 nm).
  • FIG. 4 shows an example of the form after the electrodes of the vertically integrated light emitting portion are formed.
  • (a) is a schematic view seen from the upper side
  • (b) is a schematic view of a cross section.
  • the area ratio of the blue LED, the green LED, and the red LED excluding the electrode forming portion is set to, for example, 1:1:6.
  • the thickness of one chip is 10 ⁇ m or less.
  • the step for taking out the electrodes is formed in an “L-shape” so that two sides of the square member are cut out when viewed from above (planar), but the present invention is not limited to this.
  • the "rectangular shape” may be cut out by cutting out only one side of the square member, or the "gate-like shape” may be cut out by cutting out three sides of the square member.
  • the cutouts of the one side, the two sides, and the three sides may be mixed to form the step.
  • etch back Etching until the upper part of the p-GaN of the red LED is exposed by dry etching of resin (referred to as etch back)
  • Patterning for forming electrodes on the n-layer of green, blue, and red LEDs (19) Resin etching (dry etching or wet etching) ⁇ n-type electrode formation (material that can make ohmic contact with normal n-GaN) As an example, TiAu: titanium/gold) ⁇ Lift-off process of electrode by peeling resist (20) Patterning for forming transparent electrode on p layer of green/blue/red LED (21) Etching of resin (dry etching or wet etching) ) ⁇ p-type electrode formation (ITO: indium, tin, lead) ⁇ lift-off process
  • the resin may be one that is transparent to visible light (RGB) (having no or little absorption in the visible light region) or one that reflects visible light. If light diffuses and leaks from the pixel side wall to the adjacent pixel, as in the case of the upper extraction type, interference may occur between adjacent pixels, which may cause blurring of the image. It is preferable to absorb visible light using a resin material that is opaque to visible light. (17) Dry etching of the resin etches back until the upper part of the p-GaN of the red LED is exposed.
  • a DBR structure that reflects only a specific wavelength by adding to the barrier layer or replacing the barrier layer as described above.
  • the efficiency of extracting light to the outside can be further improved by providing a (diffraction grating) to reflect the light emitted toward the back surface side and send the light toward the front surface side.
  • the red LED is configured.
  • the red LED is configured.
  • the red LED is configured.
  • the red light and the blue light are reflected by the barrier layer and the DBR structure and are emitted downward (toward the sapphire substrate), so the amount of emitted light is increased and the efficiency of extracting light to the outside is improved.
  • the DBR structure by alternately growing and stacking media having different refractive indexes, light can be interfered and reflected, and the light emission direction can be easily controlled.
  • the DBR structure acts as a diffraction grating, only the light of a specific wavelength can be reflected in the direction returning to the active layer, and the other light can be transmitted, so that the amount of light to be sent can be increased.
  • the light extraction efficiency can be improved.
  • a multilayer laminated film of AllnN (high refractive index)/GaN (low refractive index) is preferable.
  • AllnN and GaN are Each layer is grown such that it is well lattice matched and the generation of in-plane strain is controlled.
  • the thickness of each layer and the number of layers are appropriately determined according to the wavelength of the target light, but normally 10 to 30 pairs are preferably laminated, but more than 100 pairs may be laminated.
  • such a DBR structure is not limited to the AlInN/GaN laminated layer, and may be a multi-layer laminated film of AlGaN/GaN or AlGaInN/GaN.
  • the inventor of the present invention has a DBR structure that reflects red light (wavelength of 626 nm) by stacking 42 pairs of AllnN (52 nm)/GaN (85 nm) as one pair. It has been confirmed that a reflectance of 99.1% can be obtained. Note that such a laminated structure can be obtained, for example, by repeating growth of AllnN at 820° C. and GaN at 1030° C.
  • FIG. 8 shows another example of the form after the electrodes of the vertically integrated light emitting unit are formed.
  • an RGB stripe method can be used as shown in FIG. 8A, but as shown in FIG. 8B, only green exists in each pixel, and blue and red are present.
  • the shape of the sub-pixels is not limited to the rectangle as shown in FIG. 8A or 8B, and may be arranged in a honeycomb shape based on, for example, a hexagon. Similar to the case of the pen tile method, the apparent resolution can be increased even with the same number of pixels.
  • FIG. 8C shows an example in which one pixel is composed of three RGB sub-pixels
  • FIG. 8D shows an example in which the pen tile method is used.
  • the arrangement of the hexagonal pixels can be applied to a laterally integrated structure described later.
  • the layout when laying out a plurality of light emitting units, the layout may be arranged as it is vertically and horizontally, or the light emitting units may be arranged so as to be line-symmetrical vertically and horizontally.
  • each light emitting unit since each light emitting unit is electrically connected to the transistor that is a driving element, it is desirable that each light emitting unit be arranged according to the layout of the transistor. For this reason, when the layout of the plurality of transistors is line-symmetrically arranged vertically and horizontally, it is preferable that the light-emitting portion is also line-symmetrically vertically and horizontally.
  • the light-emitting section may be line-symmetrical only in the vertical relationship accordingly.
  • Only the left-right relationship may be arranged line-symmetrically.
  • FIG. 9 is a schematic diagram showing a configuration of a light emitting section and a connection between the light emitting section and an electric circuit board of a display device according to another embodiment of the present invention.
  • the example of a structure is shown.
  • LEDs of R, G, and B colors are laterally integrated on the same GaN substrate, and an insulator such as resin is embedded in the gap between the LEDs.
  • the LEDs of three colors of R, G, and B are arranged so that the n electrodes are common and the p electrodes are oriented in the same direction as the n electrodes.
  • the p-electrodes have the same height, and the p-electrodes of each LED emit light of three colors in one process by making the light-emitting portion upside down and face down as shown in FIG. 9B. It can be connected to an electric circuit board to be controlled.
  • the light emitting unit can be configured as shown in FIG. 10(a). That is, the n electrode is arranged on the same surface as the p electrode, and the n electrode and the n-type GaN are electrically connected. On the other hand, the electrodes corresponding to the n-electrode and the p-electrode are arranged on the circuit board at the same pitch as the pitch of the n-electrode and the p-electrode. As a result, the n-electrode and p-electrode of each LED are connected to an electric circuit board that controls the light emission of three-color LEDs in one process by turning the light-emitting portion upside down and facing down as shown in FIG. can do.
  • the ratio of the light emitting area of the green LED, the blue LED, and the red LED is set by the same method as in the vertically integrated type.
  • the laterally integrated light emitting unit in the manufacturing method 1 is formed by the following process.
  • the numbers below correspond to the numbers in FIG. 11.
  • the light emitting layer deteriorates due to a continuous high temperature process, and particularly in green LEDs requiring a high In concentration, the deterioration phenomenon is remarkable.
  • the light emitting portion is formed in the order of the red LED, the blue LED, and the green LED in ascending order.
  • a mask material that inhibits crystal growth of a GaN-based semiconductor is formed on a part of the surface of a sapphire substrate by using vapor deposition, sputtering, plasma CVD, or the like (eg, SiO 2 ). Or TiN).
  • red LED structure having a GaN:Eu layer as a light emitting layer is formed by a metalorganic vapor phase epitaxy method on the surface where the mask material prepared above does not exist. First, a low temperature GaN layer is grown as a buffer layer (for example, 475° C.), and then an undoped GaN layer (for example, 1180° C.) is grown for about 0.5 to 5.0 ⁇ m.
  • An Si-added n-type GaN layer is grown to a thickness of about 0.1 to 5.0 ⁇ m on the above layer (for example, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • a GaN:Eu layer containing Eu is grown to a thickness of about 0.1 to 5.0 ⁇ m (for example, 960° C.). At this time, the Eu concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • EuCp pm 2 , Eu(DPM) 3, or the like is used as the Eu raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • a blue LED structure having an InGaN layer as a light emitting layer is formed on the surface where the mask material prepared above does not exist, by a metal organic vapor phase epitaxy method.
  • a low temperature GaN layer is grown as a buffer layer (for example, 475° C.), and then a non-doped GaN layer (for example, 1180° C.) is grown for about 0.5 to 5.0 ⁇ m.
  • An Si-added n-type GaN layer is grown to a thickness of about 0.1 to 5.0 ⁇ m on the above layer (for example, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • the InN mole fraction is controlled to be about 0.1 to 15%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • a green LED structure having an InGaN layer as a light emitting layer is formed by a metal organic vapor phase epitaxy method on the surface where the mask material prepared above does not exist.
  • a low temperature GaN layer is grown as a buffer layer (for example, 475° C.), and then a non-doped GaN layer (for example, 1180° C.) is grown for about 0.5 to 5.0 ⁇ m.
  • An Si-added n-type GaN layer is grown to a thickness of about 0.1 to 5.0 ⁇ m on the above layer (for example, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • the InN mole fraction is controlled to be about 15 to 40%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • an electrode is formed. First, an n-electrode is formed by the process shown in FIG. 12, and then a p-electrode is formed by the process shown in FIG.
  • the n-electrode process number and the p-electrode formation process number are respectively referred to as the numbers in FIGS. 12 and 13.
  • n-electrode a material that can make ohmic contact with normal n-GaN. For example, TiAu: titanium/gold
  • Manufacturing method 2 A Formation of Light Emitting Portion
  • the laterally integrated light emitting portion in the manufacturing method 2 is formed by the following process.
  • the numbers below correspond to the numbers in FIG. (A) Substrate formation (1) First, a low-temperature GaN layer is grown on a sapphire substrate as a buffer layer (for example, 475° C.), and then an undoped GaN layer (for example, 1180° C.) is grown for about 0.5 to 5.0 ⁇ m. Let
  • n-type GaN layer to which Si is added is grown on the above layer by about 0.1 to 5.0 ⁇ m (eg, 1180° C.). At this time, the Si concentration is controlled to about 10 17 to 10 22 cm ⁇ 3 .
  • a raw material containing Si such as monomethylsilane (CH 3 SiH 3 ) or trimethylsilane ((CH 3 ) 3 SiH) is supplied to the sample surface in a gaseous state.
  • (C) Red LED formation A mask material that inhibits the crystal growth of the GaN-based semiconductor is formed on a part of the surface of the sample by using a vapor deposition method, a sputtering method, a plasma CVD method, or the like (for example, SiO 2 or TiN).
  • a red LED structure having a GaN:Eu layer as a light emitting layer is formed on the surface where the mask material prepared above does not exist by a metal organic vapor phase epitaxy method.
  • a GaN:Eu layer containing Eu is grown to a thickness of about 0.1 to 5.0 ⁇ m (for example, 960° C.). At this time, the Eu concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • the mask material prepared in (1) above is removed by chemical etching.
  • a mask material that inhibits the crystal growth of the GaN-based semiconductor is formed on a part of the sample surface by using a vapor deposition method, a sputtering method, a plasma CVD method or the like (for example, SiO 2 or TiN).
  • a blue LED structure having an InGaN layer as a light emitting layer is formed on the surface where the mask material prepared above does not exist by a metal organic vapor phase epitaxy method.
  • An InGaN quantum well structure is grown on the n-type GaN layer produced in (1) to about 1 to 1000 nm (for example, 715° C.). At this time, the InN mole fraction is controlled to be about 0.1 to 15%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • a green LED structure having an InGaN layer as a light emitting layer is formed by a metal organic vapor phase epitaxy method on the surface where the mask material prepared above does not exist.
  • an InGaN quantum well structure is grown to about 1 to 1000 nm (for example, 675° C.). At this time, the InN mole fraction is controlled to be about 15 to 40%.
  • Trimethyl indium (TMIn) or the like is used as the In raw material.
  • a Mg-added p-type GaN layer (or p-type AlGaN layer) is grown to a thickness of about 0.1 to 5000 nm (eg, 1050° C.) on the above layer. At this time, the Mg concentration is controlled to be about 10 17 to 10 22 cm ⁇ 3 .
  • a Mg source for example, a raw material containing Mg such as MgCp 2 is supplied to the sample surface in a gaseous state.
  • an electrode is formed. First, an n-electrode is formed by the process shown in FIG. 15, and then a p-electrode is formed by the process shown in FIG.
  • the n-electrode process number and the p-electrode formation process number are respectively referred to as the numbers in FIGS. 15 and 16.
  • GaN:Tb Tb-doped GaN
  • GaN:Tb has an element characteristic that the emission wavelength of Tb ions always shows a green color regardless of the addition amount, so that the emission wavelength is always stable regardless of the temperature change and the current injection amount, and a narrow band emission is obtained.
  • the Tb addition amount of GaN:Tb is set to 10 22 cm ⁇ 3 or more, the crystallinity of the GaN base material is significantly deteriorated, so it is preferable to control the Tb addition amount to less than 10 22 cm ⁇ 3 .
  • Tm-doped GaN can be used for the active layer of the blue LED.
  • TmGaN is preferable as a device characteristic because the emission of Tm ions always shows a blue color irrespective of the added amount, so that the emission wavelength is always stable irrespective of the temperature change and the current injection amount, and a narrow band emission is obtained.
  • the Tm addition amount of GaN:Tm is 10 22 cm ⁇ 3 or more, the crystallinity of the GaN base material is significantly deteriorated. Therefore, it is preferable to control the Tm addition amount to less than 10 22 cm ⁇ 3 .
  • a driving driver for driving the light emitting portion can be integrated into the display portion. It is possible. By forming the multi-layer wiring structure incorporating the driving driver, the driver mounting process can be simplified and the cost can be reduced. In addition, the mounting area can be reduced, and higher definition display can be achieved.
  • FIG. 17 is a schematic view of a display device having a multilayer wiring structure, and is (a) a top view and (b) a cross-sectional view.
  • 18 is a diagram showing an example of a circuit having a multi-layer wiring structure, and a portion surrounded by a broken line shows a portion used for forming the multi-layer wiring structure of FIG.
  • a transistor is incorporated as an active element in a circuit forming a multilayer wiring structure.
  • Low-temperature poly-Si TFTs used in thin film transistor liquid crystal displays are used for the transistors, and one is installed in each sub-pixel of the red diode, blue diode, and green diode, and the source electrode of the transistor and the LED of three colors Wiring is connected to each p-electrode (transparent electrode).
  • the n-type electrodes of the red diode, blue diode, and green diode of each pixel are connected by wiring so that they have a common potential.
  • the common potential wiring is formed in a lattice structure, but when the light is extracted from below, the front surface of the pixel may be covered in order to improve the reflectance of light.
  • the low temperature poly Si TFT is generally manufactured by the following method. First, (1) an SiO 2 film of an insulator is formed on the common potential wiring. (1) An amorphous Si film is formed on the SiO 2 film (glass substrate). When an amorphous Si film is formed by the P-CVD method, dehydrogenation annealing treatment for removing hydrogen in the Si film is performed, and then polycrystallized by excimer laser annealing. (2) Next, the polycrystalline Si film to be the channel part and the source/drain part is etched to form a gate insulating film. After that, an Al-based metal that is a gate metal film is formed. Then, the gate metal film is processed.
  • the side surface of the gate metal film is anodized to form an offset portion, and then the source/drain portions are heavily doped with impurities such as phosphorus and boron.
  • an interlayer insulating film is formed, contact holes are opened, and source/drain metal is further formed to form a poly-Si TFT.
  • the source electrode of the TFT and the p-electrode of the LED are connected by wiring, and the drain electrode is connected to the power supply line.
  • the step of continuously forming the driver for driving the light-emitting portion in the display portion is described; however, the present invention is not limited to this, and after forming the driving TFT substrate, the driver is connected to the light-emitting portion. It can also be realized. Further, the driving of each sub-pixel is formed by one TFT, but the driving is not limited to this, and it can be realized by a TFT substrate for more stable driving such as two or more TFTs and one capacitor.
  • the sub-pixel may be configured by one and one stabilizing capacitor. An example thereof is shown in FIG. Further, when the LED element structure itself has a sufficient capacitance component, it is not necessary to separately form a capacitance.
  • HMD head mounted display
  • FIG. 20 An example of this embodiment is shown in FIG. 20 and will be specifically described.
  • a lens is arranged between the projection surface and the panel, and the panel image is enlarged and displayed on the projection surface.
  • the panel position and the enlargement ratio of the lens are set so that a gap is not formed, and processing such as reduction and brightness correction is performed on an image in a necessary area such as a screen edge.
  • processing such as reduction and brightness correction is performed on an image in a necessary area such as a screen edge.
  • the image is magnified by the lens, and the tiled image can be viewed seamlessly, so that a sufficient immersive feeling can be obtained.
  • the invention of Appendix 1 is It is a display device having a structure in which a plurality of light emitting parts for emitting different wavelengths are formed on the same substrate, and at least one active layer of the light emitting parts contains a rare earth element.
  • the invention of Appendix 2 is 2.
  • the invention of Appendix 3 is 3.
  • the invention of Appendix 4 is 4.
  • the invention of Appendix 5 is 5.
  • the invention of Appendix 6 is 6.
  • the invention of Appendix 7 is A multilayer wiring structure for forming an electric circuit is formed on the flattened surface of the light emitting unit that emits a plurality of different wavelengths, and the multilayer wiring structure includes at least one active element.
  • the display device according to any one of Supplementary Notes 1 to 6.
  • the invention of Appendix 8 is The light emitting section for emitting a plurality of different wavelengths is composed of three types of light emitting diodes, a red diode, a green diode and a blue diode, The display device according to appendix 1, wherein each of the red diode, the green diode, and the blue diode is arranged side by side on the surface of the substrate.
  • the invention of Appendix 9 is 9.
  • the invention of Appendix 10 is 10.
  • the active layer is a gallium nitride (GaN) active layer containing europium (Eu).
  • the invention of Appendix 11 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode, 11.
  • GaN gallium nitride
  • the invention of Appendix 12 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode, 11.
  • the green diode includes a gallium nitride (GaN) active layer containing terbium (Tb) or erbium (Er) as the rare earth element, according to any one of appendices 1 to 10. Display device.
  • GaN gallium nitride
  • Tb terbium
  • Er erbium
  • the invention of Appendix 13 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode, 13.
  • GaN gallium nitride
  • the invention of Appendix 14 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode, 13.
  • GaN gallium nitride
  • Tm thulium
  • the invention of Appendix 15 is The plurality of kinds of light emitting diodes are composed of three kinds of light emitting diodes of a red diode, a green diode and a blue diode, 15.
  • the invention of Appendix 16 is 16.
  • the invention of Appendix 17 is A method of manufacturing a display device according to any one of appendices 1 to 16, A method of manufacturing a display device, wherein the plurality of types of light emitting diodes are arranged in parallel on the substrate and manufactured.
  • the invention of appendix 18 is A method of manufacturing a display device according to any one of appendices 1 to 16, A method of manufacturing a display device, characterized in that the plurality of types of light emitting diodes are stacked on the substrate to be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

画素数が増加した場合でも、画素数に比例して製造コストが上昇するということがなく、且つ外部に対して波長が異なる複数種類の光を、所望の比率で高い強度で発光することができる発光部を備えた表示装置を提供する。 互いに異なる波長の光を発光する複数種類のPiN接合型の発光ダイオードが、同一基板上に配置され、複数種類の発光ダイオードの少なくとも1種類が、希土類元素を含んだ活性層を有する発光部を備えている表示装置。複数種類の発光ダイオードが、基板の表面に順次積層されており、一の色にかかる発光層の少なくとも一部に重畳して他の色にかかる発光層が形成されている表示装置。複数種類の発光ダイオードは、基板の表面に横並びで配置されている表示装置。

Description

表示装置およびその製造方法
 本発明は、表示装置およびその製造方法に関し、より詳しくは、発光ダイオードを用いたカラーディスプレイ等の表示装置および、その製造方法に関する。
 近年、表示装置に発光ダイオード(LED:Light Emitting Diode)を用いて構成された発光デバイスが広く用いられるようになっている。特に、LEDは、各種表示装置、携帯電話をはじめ、液晶ディスプレイのバックライト、白色照明等に広く用いられており、特にプロジェクタ等に使用されるマイクロディスプレイへの応用が注目されている。
 LEDを構成する半導体素子は、主に窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)等の窒化物半導体薄膜が形成された窒化物半導体基板を用いて作製されている。また、発光効率を高めるため、発光部分の形成には、通常、多重量子井戸構造(MQW又はMQWs)が用いられており、多重量子井戸構造を用いてp型半導体とn型半導体の間に活性層となる真性半導体層を形成したPiN接合が用いられている(例えば、特許文献1)。
 従来、上記窒化物半導体膜で構成された無機LEDからなる表示装置では、赤色(R)、緑色(G)、青色(B)と波長が異なるそれぞれ単体のLEDを、一つの基板に平面状に並べて配置された複数のLEDと、表示装置としての各画素の色・輝度を制御するドライバICとを配線で接続し構成されていた(例えば、特許文献2)。このため、高コストの表示装置になり、高精細化も十分ではなかった。
 特に、ディスプレイのような高精細な表示画面が求められる場合には、画素数を多くしなければならず、画素数を多くしようとすると、画素数に比例してLEDのコストが増大し、同時にLEDを配置する作業のコストも増加し、飛躍的に高コストの表示装置とならざるを得なかった。
 そこで、R、G、B3色のLEDを同一半導体基板上に配置した構造にし、例えば、集積回路(LSI)のように一つのプロセスで多数の画素を形成することにより、上記の問題を解決することが可能となると考えられる。
特開2008-277865号公報 特開2013-122472号公報
 しかしながら、従来の赤色LED、緑色LED、青色LEDの3種類のLEDを用いて表示装置を構成した場合、以下の問題があることが分かった。
 即ち、従来のR、G、Bの3色のLEDは、活性層が何れもインジウム(In)を含む型のGaN(以下、「InGaN」とも記載する。)で形成されており、Inの含有量を変えることでバンドギャップの大きさを調整してR、G、Bの発光を実現している。このような3色のLEDを積層して画素を形成する場合、短波長の緑色および青色LEDを、発光方向に対して赤色LEDより下側に配置すると、緑色および青色LEDで発光された光が赤色LEDの活性層に照射されたときに、赤色LEDの活性層に吸収され、励起に使われる。このため、赤色LEDの活性層を適切に透過することができないことが分かった。
 そこで、赤色LEDを最下層に配置することが考えられるが、この場合には、InGa1-xNで示される赤色LEDにおけるxの値を0.35程度と、緑色LED、青色LEDよりInの比率を大幅に高くしなければならない。このため、添加元素の量が多くなり過ぎ、活性層の結晶に大きな歪が生じ、表面が荒れることが避けられない。このような赤色LED上に、緑色LEDおよび青色LEDを積層させた場合、緑色LEDおよび青色LEDの結晶は、赤色LEDの荒れた表面を受け継いで成長するため、結晶に大きな乱れが生じ、結晶性が悪化することにより発光効率が低下することが分かった。
 そこで、本発明は、画素数が増加した場合でも、画素数に比例して製造コストが上昇するということがなく、且つ外部に対して波長が異なる複数種類の光を、所望の比率で高い強度で発光することができる発光部を備えた表示装置を提供することを課題とする。
 上記のような状況下、本発明者は、GaNにユーロピウム(Eu)を添加した窒化物半導体を活性層とする窒化物半導体発光素子を世界に先がけて開発し、世界の技術者から大きな注目が寄せられている(例えば、特開2013-120847号公報)。
 GaN:Euは、赤色LED用材料として発光機能に飛躍的に優れていると共に、結晶性にも極めて優れている。このため、GaN:Euを赤色LEDとして使用し、一つの反応装置内で青色LED、緑色LEDと同一基板上に一つのプロセスで作製することにより、性能上も、コスト上も極めて優れた表示装置ができることが期待される。
 しかし、前記した通り、In含有型の緑色GaN、青色GaNについては、種々の問題があり、実用性に欠ける製品化が困難な材料として位置付けられていた。
 このため、In含有型のような欠点のない緑色LEDおよび青色LEDの開発が必要と考えられていた。
 このような状況下、本発明者は、GaN:Euは、In含有型のGaNとは基本的に異なる構造や性質を有するため、逆に、このことがIn含有型の欠点を補う可能性が少ないながらあると考え、種々の実験を行った。
 即ち、赤色GaN:Euに、In含有型の緑色GaNおよび青色GaNを種々の組合せで積層した。
 その結果、驚くべきことに極めて優れた発光機能を有する表示装置を得ることができた。
 具体的には、In含有型の緑色および青色のGaNを、発光方向に対して赤色のGaN:Euの下側に配置した場合でも、In含有型の赤色GaNのように緑色光や青色光が赤色のGaN:Euに吸収されることなく、赤色LEDを問題なく透過することが確認できた。
 このように、多くの技術者の予想に反して波長の短いGおよびBの光が、バンドギャップの小さい赤色LEDの活性層で吸収されることなく取り出すことができたのは、活性層をGaN:Euで形成した場合、発光のメカニズムがバンド間遷移に基づくものではなく、Euイオン内の電子の4f殻内での電子遷移、即ちf-f遷移によるものと考えられる。
 また、赤色GaN:Euを下側にして、その上に緑色GaNおよび青色GaNを積層させた場合でも、GaN:Euは、In比率の高い赤色のIn含有GaNのような表面の荒れがなく、極めて平坦な表面を有しているため、上側に積層したIn含有型の緑色GaNおよび青色GaNの結晶性を悪化させることがなく、緑色GaN、青色GaN共に、それぞれ単体のときと同程度の発光機能が発揮されることが確認できた。
 そして、上記の通りGaN:Euを活性層にした赤色LEDを下側にして、その上に緑色LEDおよび青色LEDを積層させた場合でも、GaN:EuはIn含有型LEDと異なり、表面が平坦であり、積層した緑色LEDおよび青色LEDの発光機能が低下せず、一方、緑色LED、青色LEDを下側にして、その上にGaN:Euを活性層に用いた赤色LEDを積層させた場合でも、赤色LEDのGaN:Eu活性層に吸収されることがなく、緑色LED、青色LEDの発光効率が低下しないため、R、G、B3色のLEDを積層させる際に、それぞれのLEDの積層順を自由に設定できることが分った。
 以上のようにGaN:Euによる赤色LEDの開発により、優れた表示装置が実現できることが分ったが、上記のことはGaN:Euに限られないと考えられる。
 希土類元素は、一般的にスピン-軌道相互作用や結晶場の効果により、4f電子準位に分裂が生じるという共通の性質を有しており、上記のようなf-f遷移による発光のメカニズムは、Euに限定されず他の希土類元素でも起きることが理論的に言える。
 また、希土類元素は、互いに良く似た性質を持つランタノイドであるため、Euに限らず他の希土類元素についても、GaNに添加したときに結晶が荒れることがなく、Euの場合と同様、LEDの積層順を自由に選べることが期待できる。
 また、上記においては、窒化物としてGaNについて説明したが、窒化物としては、GaN以外のAlN、InN等のいわゆるGaN系の窒化物(InGaNやAlGaNの混晶を含む)であっても基本的には同様の現象が生じると言うことができる。
 なお、上記では、GaN:Euを赤色LEDとして、青色LED、緑色LEDを同一基板上に縦方向に積層して作製するとして説明したが、GaN:Euを赤色LEDとして、青色LED、緑色LEDを同一基板上に横並びに配置して作製した場合でも、縦方向に積層した場合と同様に、優れた表示装置とできることが分かった。そして、縦方向に積層する場合には、積層されるLEDが下層のLEDの表面状態を引き継いで成長するため、成膜に際して厳しい条件管理が必要だが、横並びに配置する場合には、成膜条件の管理を若干緩やかにしても影響が少ないため、製造の歩留まりを向上させることができる。
 本発明は、上記の記載、並びに、後述する実施の形態の記載に基づくものであり、請求項1に記載の発明は、
 互いに異なる波長の光を発光する複数種類のPiN接合型の発光ダイオードが、同一基板上に配置され、
 前記複数種類の発光ダイオードの少なくとも1種類が、希土類元素を含んだ活性層を有する発光部を備えていることを特徴とする表示装置である。
 そして、請求項2に記載の発明は、
 前記複数種類の発光ダイオードのうち、少なくとも最も波長が長い発光ダイオードに、前記希土類元素を含む活性層を有する発光ダイオードが用いられていることを特徴とする請求項1に記載の表示装置である。
 そして、請求項3に記載の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記基板が窒化ガリウム基板であり、
 前記赤色ダイオードが、前記希土類元素としてユーロピウム(Eu)を含んだ窒化ガリウム系(GaN系)の活性層を備えていることを特徴とする請求項1または請求項2に記載の表示装置である。
 そして、請求項4に記載の発明は、
 前記複数種類の発光ダイオードが、前記基板の表面に順次積層されており、
 一の色にかかる発光層の少なくとも一部に重畳して他の色にかかる発光層が形成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の表示装置である。
 そして、請求項5に記載の発明は、
 前記発光部は、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に、または、赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されていることを特徴とする請求項4に記載の表示装置である。
 そして、請求項6に記載の発明は、
 前記発光部は、表面側に前記緑色ダイオード、青色ダイオードそれぞれの発光ダイオードに通電する電極を形成するための段差が形成された段差構造を有していることを特徴とする請求項5に記載の表示装置である。
 そして、請求項7に記載の発明は、
 前記段差によって形成された凹部が絶縁体で埋められ、前記発光部の表面が平坦化されていることを特徴とする請求項6に記載の表示装置である。
 そして、請求項8に記載の発明は、
 前記発光部が、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記緑色ダイオードとの界面、および、前記緑色ダイオードと前記青色ダイオードとの界面に、
 前記発光部が、前記基板側から赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記青色ダイオードとの界面、および、前記青色ダイオードと前記緑色ダイオードとの界面に、
 AlN、AlGaN、AlInN、AlGaInNのいずれかによって形成されたバリア層が設けられていることを特徴とする請求項4ないし請求項7のいずれか1項に記載の表示装置である。
 そして、請求項9に記載の発明は、
 前記発光部が、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記緑色ダイオードとの界面、および、前記緑色ダイオードと前記青色ダイオードとの界面に、
 前記発光部が、前記基板側から赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記青色ダイオードとの界面、および、前記青色ダイオードと前記緑色ダイオードとの界面に、
 AlInNおよびGaNが積層、AlGaNおよびGaNが積層、あるいはAlGaInNおよびGaNが積層されたDBR構造が形成されていることを特徴とする請求項4ないし請求項8のいずれか1項に記載の表示装置である。
 そして、請求項10に記載の発明は、
 前記複数種類の発光ダイオードは、前記基板の表面に横並びで配置されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の表示装置である。
 そして、請求項11に記載の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成されていることを特徴とする請求項10に記載の表示装置である。
 そして、請求項12に記載の発明は、
 前記複数種類の発光ダイオードの間の隙間が絶縁体で埋められ、前記発光部の表面が平坦化されていることを特徴とする請求項10または請求項11に記載の表示装置である。
 そして、請求項13に記載の発明は、
 前記絶縁体が、可視光透過性樹脂材料、可視光不透過性樹脂材料、可視光を反射する樹脂材料のいずれかで形成されていることを特徴とする請求項7または請求項12に記載の表示装置である。
 そして、請求項14に記載の発明は、
 前記発光部の表面上に電気回路を形成するための多層配線構造が形成され、前記多層配線構造に少なくとも1つの能動素子が含まれていることを特徴とする請求項1ないし請求項13のいずれか1項に記載の表示装置である。
 そして、請求項15に記載の発明は、
 前記発光部の表面上に電気回路を形成するための多層配線構造が形成され、前記多層配線構造が、能動素子を含まないパッシブマトリクス型構造であることを特徴とする請求項1ないし請求項13のいずれか1項に記載の表示装置である。
 そして、請求項16に記載の発明は、
 前記青色ダイオード、緑色ダイオード、赤色ダイオードが、ペンタイル状に配置されていることを特徴とする請求項5ないし請求項9のいずれか1項または請求項11に記載の表示装置である。
 そして、請求項17に記載の発明は、
 請求項1ないし請求項16のいずれか1項に記載の表示装置の製造方法であって、
 前記複数種類の発光ダイオードの発光部を有機金属気相成長法を用いて形成することを特徴とする表示装置の製造方法である。
 本発明によれば、画素数を増加した場合でも、画素数に比例して製造コストが上昇するということがなく、且つ外部に対して波長が異なる複数種類の光を、所望の比率で高い強度で発光することができる発光部を備えた表示装置を提供することができる。
本発明の一実施の形態に係る表示装置の発光部の成膜プロセスを示す模式図である。 3色LED縦集積型の発光部の段差構造にした後の断面構造を示す模式図である。 本発明に係る表示装置におけるバリア層を説明する図である。 3色LED縦集積型の発光部の電極を形成した後の形態を示す図であり、(a)は上側から見た模式図であり、(b)は断面の模式図である。 3色LED縦集積型の上側取り出しタイプの電極の形成電極の形成プロセスを説明する図である。 3色LED縦集積型の下側取り出しタイプの電極の形成電極の形成プロセスを説明する図である。 本発明に係る表示装置におけるDBR構造を説明する図である。 本発明に係る表示装置における発光部の配置例を示す図である。 本発明の他の一実施の形態に係る表示装置の発光部の構成および発光部と電気回路基板との接続方法の一例を示す模式図である。 本発明の他の一実施の形態に係る表示装置の発光部の構成および発光部と電気回路基板との接続方法の他の一例を示す模式図である。 本発明の他の一実施の形態に係る表示装置の発光部の成膜プロセスの一例を示す模式図である。 本発明の他の一実施の形態に係る表示装置の発光部の電極の形成プロセスを示す模式図である。 本発明の他の一実施の形態に係る表示装置の電極の形成プロセスを示す模式図である。 本発明のさらに他の一実施の形態に係る表示装置の発光部の成膜プロセスの一例を示す模式図である。 本発明のさらに他の一実施の形態に係る表示装置の電極の形成プロセスを示す模式図である。 本発明のさらに他の一実施の形態に係る表示装置の電極の形成プロセスを示す模式図である。発光部の成膜プロセスの一例を示す模式図である。 多層配線構造を備える表示装置の模式図である。 多層配線構造の回路の一例を示す図である。 多層配線構造の回路の一例を示す図である。 本発明に係る表示装置のHMDへの適用を説明する図である。
 以下、本発明を実施の形態に基づき、図面を用いて説明する。
 本発明の表示装置は、波長が異なる複数種類の光を発光するLEDを同一半導体基板上に複数個配置した構造を有し、且つ複数種類の発光ダイオードの少なくとも1種類に、希土類元素を含む活性層を有するLEDを用いた発光部を備えている点で従来のLEDを用いた表示装置と相違する。
 発光部の構造としては、同一半導体基板上に複数種類のLEDを種類ごとに、それぞれ1個ずつを積層させて画素を形成した縦集積型と、横並びで平面状に配置して画素を形成した横集積型の2種類がある。以下、R、G、B3色のLEDを用いて画素を形成する発光部の形成プロセスを縦集積型、横集積型の順に説明する。なお、以下においては、基材としてサファイア、半導体基板、およびLEDの窒化物半導体を、構成する窒化物として、GaNを例に挙げて説明するが、前記したように、これらに限定されるものではない。例として、GaN系以外のAlN、InN等のいわゆるGaN系以外の窒化物(InGaNやAlGaNの混晶を含む)も含まれる。
[1]縦集積型
A.発光部の構成
 図1は、縦集積型の発光部の形成プロセスを示す模式図である。図1において(12)は、3色のLEDを積層させた後の状態を示す図であって、サファイア基材上に、低温GaN(LT-GaN)から成るバッファー層と、バッファー層の上に積層され、n-GaNの結晶性を高めるために設けられた無添加GaN(u-GaN)層からなる半導体基板が設けられている。その上に、基板側から赤色LED、青色LED、緑色LEDの順で積層されている。
 なお、ここでは、基板側から赤色LED、青色LED、緑色LEDの順で積層する例を示している。このような並び方にするのは、結晶性及び表面の平坦性の点を鑑みて積層の容易さから望ましいからである。
 一方で、青色LED、緑色LEDの積層順はこれに限られず、赤色LED、緑色LED、青色LEDの順で並べるようにしても良い。このような並べ方にすると、青色LEDに対して効率の低い緑色LEDの発光面積を大きくすることが容易になり、緑色発光強度を得やすくなる。したがって、結晶性及び表面の平坦性の観点を重視する場合は、赤色LED、青色LED、緑色LEDの順とし、より強い緑色発光を得る場合には、赤色LED、緑色LED、青色LEDとすればよい。赤色LED、緑色LED、青色LEDの順とする場合の製造プロセスは、以下に示す段差構造形成における緑色LEDの工程と青色LEDの工程を入れ替えれば足りる。
 各LEDは、それぞれ基板側からn-GaN、活性層、p-GaNが積層されたPiN接合で構成されており、各活性層(i層)は、GaN・Eu、InGaN/GaNで形成されている。
B.発光部の形成
1.基板の形成
 まず、サファイア基材上に低温GaN層をバッファー層として成長(例えば475℃)させた後、無添加GaN層(例えば1180℃)を0.5~5.0μm程度成長させる。
2.赤色LED形成
 GaN:Eu層を発光層とする赤色LED構造を、有機金属気相エピタキシー(OMVPE)法により作製する。具体的には、無添加GaN層上に、Siを添加したn型GaN層を、0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としては、モノメチルシラン(CHSiH)やトリメチルシラン((CHSiH)などのSiを含む原料を、試料表面にガス状に供給する。
 上記の層上に、Euを添加したGaN:Eu層を、0.1~5.0μm程度成長させる(例えば960℃)。この際、Eu濃度を1017~1022cm-3程度となるように制御する。Eu原料としてはEuCppm2やEu(DPM)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えば、MgCp等のMgを含む原料を試料表面にガス状に供給する。
3.青色LED形成
 上記で作製した試料表面上に、InGaN層を発光層とする青色LED構造を有機金属気相エピタキシー法により作製する。
 具体的には、上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としては、モノメチルシラン(CHSiH)や、トリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
 上記の層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば715℃)。この際、InNモル分率は0.1~15%程度となるように制御する。In原料としては、トリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えば、MgCp等のMgを含む原料を試料表面にガス状に供給する。
4.緑色LED形成
 上記で作製した試料表面上に、InGaN層を発光層とする緑色LED構造を、有機金属気相エピタキシー法により作製する。
 技術的には、上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としては、モノメチルシラン(CHSiH)、トリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
 上記の層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば675℃)。この際、InNモル分率は15~40%程度となるように制御する。In原料としてはトリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように調整する。Mg源としてMgCp等のMgを含む原料を試料表面にガス状に供給する。以上により(1)に示す積層体を形成する。
5.段差構造形成
 上記により、図1の(1)で示す積層体が形成される。次に、赤色LEDにn電極を、青色LEDおよび緑色LEDにn電極とp電極を形成するため、赤色LEDの面積>青色LEDの面積>緑色LEDの面積となるように積層体を段差構造とする。この際、R、G、Bの3色全てを発光させたときに質の高い白色が形成されるように、緑色LED、青色LED、赤色LEDの発光面積の比を調整する。面積比は各LEDの外部量子効率と、人の明視標準比視感度とに基づいて決定する。
 ただし、ここでの調整方法は、面積比のみで調整する場合に限らない。LEDの発光量は、発光面積のみならず、発光素子に加える電圧(高電圧を印加すればそれだけ強く発光する)や電流(大電流を印加すればそれだけ強く発光する)によっても変化させることができるから、仮に、面積比から見て狙いの発光量に至らなかった場合であっても、その色のLEDに、他の色のLEDよりも高電圧及び/又は高電流を印加することで、強く発光させ、その結果として狙いの発光量に調整するようにしても良い。
 段差構造の形成にはエッチングが用いられ、以下のプロセスで行われる。なお、下記の番号は、図1の番号と対応している。以下の工程は、下から順に赤色LED、青色LED、緑色LEDの順である。
(1)緑色LED下部領域用レジストのパターニング
(2)緑色LEDのn層までドライエッチング
(3)レジスト剥離
(4)青色LED上部電極領域用レジストのパターニング
(5)青色LEDのp層までドライエッチング
(6)レジスト剥離
(7)青色LED下部電極領域用レジストのパターニング
(8)青色LEDのn層までドライエッチング
(9)レジスト剥離
(10)赤色LED上部電極領域用レジストのパターニング
(11)赤色LEDのp層までドライエッチング
(12)レジスト剥離
(13)赤色LED下部電極領域用レジストのパターニング
(14)赤色LEDのn層までドライエッチング
(15)レジスト剥離
 なお、以上の段差構造を作製するプロセスフローは、あくまで一例であり、再成長・選択成長・基板貼り合わせ技術など、他にアプローチがあればこの限りではない。
 図2に縦集積型の発光部の段差構造にした後の断面構造を示す。なお、図2に記載の各層の厚みは一例であって、限定されるものではない。そして、図2では、図1と異なり、緑色、青色、赤色LEDの各々の間にAlGaNのバリア層が形成されているが、これは、実際に電極が取付けられた際、p-GaNと上部のn-GaNとの端子間が電気的に絶縁されていることが好ましいことを考慮したものである。なお、バリア層としては、AlGaN層に限定されず、AlN、AlInN、AlGaInN、いずれかのバリア層であってもよい。
 即ち、図3に示すように、各LEDのn-GaNとP+-GaNとを接続すると、隣接するLEDの電極(下部のP+-GaN/上部のn-GaN)間のA、Bに、寄生pn接合が形成されてリーク電流が発生する場合がある。このようなリーク電流の発生を抑制するために、下部のP+-GaNと上部のn-GaNとの間、C、Dに、AlGaNなどのバリア層を設けて、端子間を電気的に絶縁させることが好ましい。なお、具体的なバリア層の厚みとしては、1nm~1μm程度(例えば50nm)が好ましい。
 また、図4に縦集積型の発光部の電極を形成した後の形態の一例を示す。なお、(a)は上側から見た模式図であり、(b)は断面の模式図である。青色LED、緑色LED、赤色LEDの電極形成部分を除く面積比は、例えば1:1:6に設定される。また、チップ1個の厚みは10μm以下である。
 なお、図4では、電極取り出しのための段差を上側から(平面的に)見て、正方形の部材のうちの2辺を切り出すような形で「L字状」に形成したが、これに限られないことは言うまでもない。たとえば、正方形の部材のうちの1辺のみを切り出すような形で「短冊状」に切り出しても良いし、正方形の部材のうちの3辺を切り出すような形で「門構え状」に切り出しても良いし、これら1辺、2辺、3辺の切り出しを混在させて段差を形成しても良い。
C.電極の形成
1.上側取り出しタイプ
 上側取り出しタイプ、即ち、光を緑色LED側から取り出す場合、以下のプロセスで電極を形成する。下記の番号は、図5の番号と対応している。
(16)スピンオングラスやビスベンゾシクロブテン、あるいはポリジメチルシロキサンなど、最初は液体だが熱や露光による化学反応で固化するような樹脂を用いて図1の(15)の構造を埋め込み・平坦化する。樹脂の条件としては、可視光(RGB)に対して透過性があるもの(可視光領域での吸収が無いもの、あるいは少ないもの)を用いる。上記材料は可視光に対して吸収が無いもの、あるいは少ないものであるが、上記条件を満たす樹脂であればそれらも含まれる。なお、画素側壁から隣接画素へ光が拡散して漏れると、隣り合った画素間で干渉が起こって、画像のぼけが発生するおそれがあるため、このような場合には、上記樹脂として、可視光不透過性の樹脂材料を用いて、可視光を吸収することが好ましい。
(17)樹脂のドライエッチングにより赤色LEDのp-GaN上部が露出するまでエッチング(エッチバックと呼ぶ)
(18)緑色・青色・赤色LEDのn層への電極形成のためのパターニング
(19)樹脂のエッチング(ドライエッチングまたはウェットエッチング)→n型電極形成(通常のn-GaNにオーミックコンタクトが取れる材料。例としてTiAu:チタン・金)→レジスト剥離による電極のリフトオフプロセス
(20)緑色・青色・赤色LEDのp層への透明電極形成のためのパターニング
(21)樹脂のエッチング(ドライエッチングまたはウェットエッチング)→p型電極形成(ITO:インジウム・スズ・鉛)→レジスト剥離による透明電極のリフトオフプロセス
2.下側取り出しタイプ
 下側取り出しタイプ、即ち、光を基板側から取り出す場合、以下のプロセスで電極を形成する。なお、下記の番号は、図6の番号と対応している。基本的には、上側取り出しタイプと同じプロセスを用いるが、光を上側へ取り出す必要がないため、p側コンタクト電極として透明電極の代わりに金属電極を用いている点が異なる。
(16)スピンオングラスやビスベンゾシクロブテン、あるいはポリジメチルシロキサンなど、最初は液体だが熱や露光などによる化学反応で固化するような絶縁性の樹脂を用いて図1の(15)の構造を埋め込み・平坦化する。樹脂の条件としては、可視光(RGB)に対して透過性があるもの(可視光領域での吸収が無い、あるいは少ないもの)または可視光を反射するものでもよい。なお、画素側壁から隣接画素へ光が拡散して漏れると、上側取り出しタイプの場合と同様に、隣り合った画素間で干渉が起こって、画像のぼけが発生するおそれがあるため、上記樹脂として、可視光不透過性の樹脂材料を用いて、可視光を吸収することが好ましい。
(17)樹脂のドライエッチングにより、赤色LEDのp-GaN上部が、露出するまでエッチバック
(18)緑色・青色・赤色LEDのn層への電極形成のためのパターニング
(19)樹脂のエッチング(ドライエッチングまたはウェットエッチング)→n型電極形成(通常のn-GaNにオーミックコンタクトが取れる材料、例としてTiAu:チタン・金)→レジスト剥離による電極のリフトオフプロセス
(20)緑色・青色・赤色LEDのp層への電極形成のためのパターニング
(21)樹脂のエッチング(ドライエッチングまたはウェットエッチング)→p型電極形成(通常のp-GaNにオーミックコンタクトが取れる材料。例としてCrAu:クロム・金)→レジスト剥離による金属電極のリフトオフプロセス
 なお、縦集積型で下側取り出しタイプの場合、図7(a)に示すように、上記したバリア層に追加、またはバリア層と交換する形で、特定の波長のみを反射するようなDBR構造(回折格子)を設けて、裏面側へ向けて発せられた光を反射させて表面側に向けて送り出すことによっても、外部への光取り出し効率をより向上させることができる。
 具体的な一例として、下方向(サファイア基材方向)に光を取り出すために、サファイア基材の主面側から順に、赤色LED、青色LED、緑色LEDが形成されている場合、赤色LEDを構成する最上層のp-GaN層と青色LEDを構成する最下層のn-GaNとの間(D)、および、青色LEDを構成する最上層のp-GaN層と緑色LEDを構成する最下層のn-GaNとの間(C)に、バリア層に追加あるいはバリア層と交換する形で、赤色や青色を反射するDBR構造を設ける。
 これにより、赤色光や青色光のそれぞれが、バリア層やDBR構造において反射され下方向(サファイア基材方向)に向けて送り出されるため、送り出される光量が増加し、外部への光取り出し効率を向上させることができる。
 即ち、DBR構造は、屈折率が異なる媒質を交互に成長させて積層することにより、光を干渉させて反射させることができ、光の出射方向を容易に制御することができる。そして、このように、DBR構造が回折格子として働くことにより、特定の波長の光だけを活性層に戻る方向に反射させ、その他の光は透過させることができるため、送り出される光量を増加させて、光取り出し効率を向上させることができる。
 なお、具体的なDBR構造としては、例えば、図7(b)に示すように、AllnN(高屈折率)/GaN(低屈折率)の多層積層膜が好ましく、このとき、AllnNとGaNとが十分に格子整合して、面内歪みの発生が制御されるように、各層を成長させる。各層の厚みおよび積層数は、対象となる光の波長に対応して適宜決定されるが、通常は、10~30ペア積層することが好ましいが、100ペアを超える積層であってもよい。そして、このようなDBR構造は、AlInN/GaNの積層に限定されず、AlGaN/GaNやAlGaInN/GaNの多層積層膜であってもよい。なお、本発明者は、図7(c)に示すように、赤色(波長626nm)を反射させるDBR構造として、AllnN(52nm)/GaN(85nm)を1ペアとして、42ペア積層することにより、99.1%の反射率が得られることを確認している。なお、このような積層構造は、例えば、820℃でのAllnN、1030℃でのGaNの成長を繰り返すことにより得ることができる。
 また、サファイア基材面方向へ光を取り出す場合において、サファイア基材の主面上に凹凸加工を施して、最表面上に微細な凹凸を形成した場合にも、その凹凸により、サファイア基材主面から送り出される光量が増加するため、外部への光取り出し効率を向上させることができる。なお、この凹凸加工は、前記したバリア層やDBR構造と併用してもよい。
 図8に縦集積型の発光部の電極を形成した後の形態の別の例を示す。サブ画素の構成としては、図8(a)に示すように、RGBストライプ方式を用いることもできるが、図8(b)に示すように、緑色だけが毎画素に存在し、青色と赤色とが空間的に交互に配置されたペンタイル方式を採用してもよい。そして、このようなペンタイル方式を採用することにより、同じ画素数であっても、見かけの解像度を上げることができる。
 また、サブ画素の形状についても、図8(a)や図8(b)のような長方形に限られるものではなく、例えば、六角形を基本とするハニカム状に配置されていてもよく、上記したペンタイル方式の場合と同様に、同じ画素数であっても、見かけの解像度を上げることができる。このようなハニカム状配置の例として、図8(c)に、RGBの3つのサブ画素から1つの画素を構成した例を、図8(d)に、ペンタイル方式で構成した例を示す。なお、この六角形の画素の配置は、後述する横集積型の構造に対しても適用することができる。
 また、複数の発光部をレイアウトする場合、上下左右にそのままの配置でレイアウトする場合の他、上下左右に線対称にしながらに配置するようにしても良い。後述するとおり、各発光部は駆動素子であるトランジスタと電気的に接続されることになるため、トランジスタのレイアウト配置に合わせた配置になっていることが望ましい。このため、複数のトランジスタのレイアウト配置が、上下左右に線対称にしながらに配置している場合には、発光部も上下左右に線対称にしながらに配置すると良い。また、複数のトランジスタのレイアウト配置が、上下の関係のみ線対称としたり、左右の関係のみ線対称にしながら配置している場合には、それにあわせて、発光部も上下の関係のみ線対称としたり、左右の関係のみ線対称として配置すればよい。
[2]横集積型
A.発光部の構成
 図9は本発明の他の一実施の形態に係る表示装置の発光部の構成および発光部と電気回路基板との接続を示す模式図であり、3色LEDの横集積型の構成の一例を示している。図9(a)に示すように、R、G、B3色のLEDが、同一のGaN基板上に、横並びに集積され、LED間の隙間には樹脂等の絶縁体が埋め込まれている。また、R、G、B3色のLEDは、n電極を共通にしてp電極同士、n電極同士が同じ方向に向くように配置されている。また、p電極の高さが揃えられており、図9(b)に示すように発光部を上下逆さにしてフェースダウンすることで各LEDのp電極を1プロセスで3色のLEDの発光を制御する電気回路基板に接続することができる。
 また、発光部を図10(a)のように構成することもできる。即ち、n電極をp電極と同一面上に配置し、n電極とn型GaNと導通させる。一方、回路基板上にn電極、p電極のそれぞれに対応する電極をn電極、p電極のピッチと同じピッチで配置する。これにより、図10(b)に示すように発光部を上下逆さにしてフェースダウンすることで各LEDのn電極、p電極を1プロセスで3色のLEDの発光を制御する電気回路基板に接続することができる。
 また、緑色LED、青色LED 、赤色LEDの発光面積の比は、縦集積型の場合と同じ方法で設定される。
B.発光部の形成
1.製法1
 製法1における横集積型の発光部は、以下のプロセスで形成する。なお、下記の番号は、図11の番号と対応している。ただし、Inを含む青色LEDおよび緑色LEDでは、継続的な高温プロセスによって発光層が劣化することが知られており、とくに高In濃度を要する緑色LEDでは、劣化現象が顕著であるため、In濃度の低い順に、赤色LED、青色LED、緑色LEDの順に発光部を形成する。
(a)基板の形成
(1)サファイア基材の表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する(例えばSiOやTiNなど)。
(b)赤色LEDの形成
(2)上記で作製したマスク材料が存在しない表面上に、GaN:Eu層を発光層とする赤色LED構造を有機金属気相エピタキシー法により作製する。
 まず、低温GaN層をバッファー層として成長(例えば475℃)させた後、無添加GaN層(例えば1180℃)を0.5~5.0μm程度成長させる。
 上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としてはモノメチルシラン(CHSiH)や、トリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
 上記の層上に、Euを添加したGaN:Eu層を0.1~5.0μm程度成長させる(例えば960℃)。この際、Eu濃度を1017~1022cm-3程度となるように制御する。Eu原料としては、EuCppm やEu(DPM)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(c)青色LED形成  
(3)上記の(1)で作製したマスク材料を化学的エッチングによって除去した後、試料表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する。(例えばSiOやTiNなど)
(4)上記で作製したマスク材料が存在しない表面上に、InGaN層を発光層とする青色LED構造を有機金属気相エピタキシー法により作製する。
 まず、低温GaN層をバッファー層として成長(例えば475℃)後、無添加GaN層(例えば1180℃)を0.5~5.0μm程度成長させる。
 上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としてはモノメチルシラン(CHSiH)や、トリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
 上記の層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば715℃)。この際、InNモル分率は0.1~15%程度となるように制御する。In原料としてはトリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(d)緑色LED形成
(5)上記の(3)で作製したマスク材料を化学的エッチングによって除去した後、試料表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する(例えばSiOやTiNなど)。
(6)上記で作製したマスク材料が存在しない表面上に、InGaN層を発光層とする緑色LED構造を有機金属気相エピタキシー法により作製する。
 まず、低温GaN層をバッファー層として成長(例えば475℃)後、無添加GaN層(例えば1180℃)を0.5~5.0μm程度成長させる。
 上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としてはモノメチルシラン(CHSiH)やトリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
 上記の層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば675℃)。この際InNモル分率は15~40%程度となるように制御する。In原料としてはトリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(7)上記の(5)で作製したマスク材料を化学的エッチングによって除去する。なお、(2)(4)(6)順序は入れ替わっても構わない。
C.電極の形成
 次に、電極を形成する。先ず図12に示すプロセスでn電極を形成した後、図13に示すプロセスでp電極を形成する。なお、n電極プロセスの番号、p電極形成プロセスの番号は、それぞれ図12、図13の番号と符号している。
(a)n電極の形成
(8)3色LEDそれぞれのn層領域用のレジストのパターニング
(9)3色LEDそれぞれのn層までドライエッチング
(10)レジスト剥離
(11)樹脂埋め込み。スピンオングラスやビスベンゾシクロブテン、あるいはポリジメチルシロキサンなど、最初は液体だが熱や露光などの化学反応で固化するような樹脂を用いて図12の(11)の構造を埋め込み・平坦化する。樹脂の条件としては、可視光(RGB)に対して透過性があるもの(可視光領域での吸収が無いもの、あるいは少ないもの)を用いる。
(12)樹脂のドライエッチングにより3色EDそれぞれのp-GaN上部が露出するまでエッチバック
(13)3色LEDのそれぞれのn電極形成のためのパターニング
(14)樹脂のエッチング(ドライエッチングまたはウェットエッチング)
(15)n電極形成(通常のn-GaNにオーミックコンタクトが取れる材料。例としてTiAu:チタン・金)
(16)レジスト剥離による電極のリフトオフプロセス
(b)p電極の形成
(17)3色LEDそれぞれのp電極形成用のマスク形成
(18)p電極形成(通常のp-GaNにオーミックコンタクトが取れる材料。例としてCrAu:クロム・金)
(19)レジスト剥離による電極のリフトオフプロセス(完成)
2.製法2
A.発光部の形成
 製法2における横集積型の発光部は、以下のプロセスで形成する。なお、下記の番号は、図14の番号と対応している。
(a)基板の形成
(1)まず、サファイア基材上に低温GaN層をバッファー層として成長(例えば475℃)後、無添加GaN層(例えば1180℃)を0.5~5.0μm程度成長させる。
(b)n型GaN層形成
 上記の層上に、Siを添加したn型GaN層を0.1~5.0μm程度成長させる(例えば1180℃)。このとき、Si濃度を1017~1022cm-3程度に制御する。Si源としてはモノメチルシラン(CHSiH)やトリメチルシラン((CHSiH)などのSiを含む原料を試料表面にガス状に供給する。
(c)赤色LED形成
 試料の表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する(例えばSiOやTiNなど)。
(2)上記で作製したマスク材料が存在しない表面上に、GaN:Eu層を発光層とする赤色LED構造を有機金属気相エピタキシー法により作製する。(1)で作製したn型GaN層上に、Euを添加したGaN:Eu層を0.1~5.0μm程度成長させる(例えば960℃)。この際、Eu濃度を1017~1022cm-3程度となるように制御する。Eu原料としてはEuCppm2やEu(DPM)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(d)青色LED形成
(3)上記の(1)で作製したマスク材料を化学的エッチングによって除去する。
(4)試料表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する(例えばSiOやTiNなど)。
(5)上記で作製したマスク材料が存在しない表面上に、InGaN層を発光層とする青色LED構造を有機金属気相エピタキシー法により作製する。(1)で作製したn型GaN層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば715℃)。この際、InNモル分率は0.1~15%程度となるように制御する。In原料としてはトリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(e)緑色LED形成
(6)上記の(4)で作製したマスク材料を化学的エッチングによって除去する。
(7)試料表面の一部に蒸着法、スパッタリング法、プラズマCVD法などを用いて、GaN系半導体の結晶成長を阻害するマスク材料を形成する(例えばSiOやTiNなど)。
(8)上記で作製したマスク材料が存在しない表面上に、InGaN層を発光層とする緑色LED構造を有機金属気相エピタキシー法により作製する。(1)で作製したn型GaN層上に、InGaN量子井戸構造を1~1000nm程度成長させる(例えば675℃)。この際、InNモル分率は15~40%程度となるように制御する。In原料としてはトリメチルインジウム(TMIn)等を用いる。
 上記の層上に、Mgを添加したp型GaN層(あるいはp型AlGaN層)を0.1~5000nm程度成長させる(例えば1050℃)。このとき、Mg濃度を1017~1022cm-3程度となるように制御する。Mg源として、例えばMgCp等のMgを含む原料を試料表面にガス状に供給する。
(9)上記の(7)で作製したマスク材料を化学的エッチングによって除去する。なお、(2)(5)(8)の順序は入れ替わっても構わない。
B.電極の形成
 次に、電極を形成する。先ず図15に示すプロセスでn電極を形成した後、図16に示すプロセスでp電極を形成する。なお、n電極プロセスの番号、p電極形成プロセスの番号は、それぞれ図15、図16の番号と符号している。
(a)n電極の形成
(10)3色LEDに共通のn層領域用のレジストのパターニング
(11)n層までドライエッチング
(12)レジスト剥離
(13)樹脂埋め込み。スピンオングラスやビスベンゾシクロブテン、あるいはポリジメチルシロキサンなど、最初は液体だが熱や露光などの化学反応で固化するような樹脂を用いて図12の(11)の構造を埋め込み・平坦化する。樹脂の条件としては、可視光(RGB)に対して透過性があるもの(可視光領域での吸収が無いもの、あるいは少ないもの)を用いる。
(14)樹脂のドライエッチングにより3色EDそれぞれのp-GaN上部が露出するまでエッチバック
(15)n電極形成用のマスク形成
(16)樹脂のエッチング(ドライエッチングまたはウェットエッチング)
(17)n電極形成(通常のn-GaNにオーミックコンタクトが取れる材料。例としてTiAu:チタン・金)
(18)レジスト剥離による電極のリフトオフプロセス
(b)p電極の形成
(19)3色LEDそれぞれのp電極形成用のマスク形成
(20)p電極形成(通常のp-GaNにオーミックコンタクトが取れる材料。例としてCrAu:クロム・金)
(21)レジスト剥離による電極のリフトオフプロセス(完成)
 上記の方法では、緑色LEDおよび青色LED双方の活性層の形成にInGaNを用いたが、緑色LEDの活性層にTb添加GaN(GaN:Tb)を用いることもできる。GaN:Tbは、添加量によらずTbイオンの発光が常に緑色を示すため、温度変化や電流注入量によらず発光波長が常に安定し、かつ狭帯域の発光が得られることから素子特性として好ましい。また、GaN:TbのTb添加量を1022cm-3以上にした場合、GaN母材の結晶性が著しく劣化するため、Tb添加量を1022cm-3未満に制御することが好ましい。
 また、青色LEDの活性層にTm添加GaN(GaN:Tm)を用いることもできる。TmGaNは、添加量によらずTmイオンの発光が常に青色を示すため、温度変化や電流注入量によらず発光波長が常に安定し、かつ狭帯域の発光が得られることから素子特性として好ましい。また、GaN:TmのTm添加量を1022cm-3以上にした場合、GaN母材の結晶性が著しく劣化するため、Tm添加量を1022cm-3未満に制御することが好ましい。
[4]多層配線構造の形成
 本実施の形態の表示装置は、前記のように発光部の表面が平坦化されているため、発光部を駆動させる駆動用ドライバを表示部に一体に組込むことが可能である。駆動用ドライバを組み込んだ多層配線構造を形成することにより、ドライバの実装工程を簡略化することができ、低コスト化を図ることができる。また、実装エリアを縮小することができ、さらに表示の高精細化が可能となる。
 図17は多層配線構造を備える表示装置の模式図であり、(a)上面図、(b)断面図である。また図18は多層配線構造の回路の一例を示す図であり、破線で囲った部分は、図17の多層配線構造の形成に用いられた部分を示している。多層配線構造を形成する回路には能動素子としてトランジスタが組み込まれている。トランジスタには、薄膜トランジスタ液晶ディスプレイに用いられている低温ポリSi TFTが用いられ、赤色ダイオード、青色ダイオード、緑色ダイオードのそれぞれとのサブ画素に1つ設置され、前記トランジスタのソース電極と3色のLEDそれぞれのp電極(透明電極)に配線で接続される。
 また、各画素の赤色ダイオード、青色ダイオード、緑色ダイオードのn型電極は、配線で共通の電位になるように接続されている。上から光を取り出す場合は、前記共通電位の配線は格子構造に形成するが、光を下から取り出す場合は、光の反射率を向上させるために画素前面を覆っても良い。
 なお、低温ポリSi TFTは一般的に以下の方法で製造される。まず、(1)前記共通電位の配線の上に絶縁体のSiO膜を形成する。(1)前記SiO膜上(ガラス基板上)にアモルファスSi膜を成膜する。そしてP-CVD法によりアモルファスSi膜を成膜した場合には、Si膜中の水素を除去する脱水素アニール処理を行い、その後エキシマレーザアニールにより多結晶化する。(2)次にチャネル部、ソース・ドレイン部となる多結晶Si膜をエッチング加工し、ゲート絶縁膜を形成する。この後ゲートメタル膜であるAl系メタルを成膜する。そしてゲートメタル膜を加工する。(3)この後,ゲートメタル膜側面を陽極酸化し、オフセット部を形成し、この後ソース・ドレイン部にリンやボロンの不純物を高濃度ドーピングする。(4)この後、層間絶縁膜を形成し、コンタクトホールを開口し、更にソース・ドレインメタル形成を行い、ポリSi TFTを形成する。各サブ画素においてTFTのソース電極とLEDのp電極が配線で接続され、ドレイン電極は、電源ラインに接続される。
 本実施の形態では、発光部を駆動させる駆動用ドライバを表示部に連続的に形成する工程を示したが、それに限るものでなく、駆動用のTFT基板を形成した後、発光部と接続することでも実現できる。また、各サブ画素の駆動が1つのTFTで形成されていたが、それに限ったものでなく、2つ以上のTFTと1つのコンデンサなどより安定駆動のためのTFT基板でも実現できる。
 なお、さらに簡単な構成にすることを目的として、タイリング形式で1つのパネルの走査線数が少ない場合には、トランジスタ(TFT)を設けずに、緑色、青色、赤色、各LEDのいずれか一つと、安定化用のキャパシタ一つとでサブ画素を構成してもよい。その一例を図19に示す。また、LED素子構造自体が十分な容量成分を有している場合には、別途容量を形成する必要はない。
 そして、本実施の形態に基づいてヘッドマウントディスプレイ(HMD)などを構成させる場合、一般的には、複数のパネルを敷き詰めて構成することが必要となるが、この場合、パネル間にはどうしても周辺回路の部分や、パネル間の空隙が存在するため、その部分は映像を表示することができず枠として目立ってしまい、十分な没入感が得られない。
 そこで、大型のタイリングディスプレイでは、レンズと画像補正により目立たなくする方法が考案されているが、正面からディスプレイを見た場合には枠が目立たないものの、斜め方向からではどうしても枠部分が見えてしまうという問題がある。
 これに対して、本実施の形態においては、HMDに適用したとき、映像の視聴がディスプレイ画面に対して正対した位置でしか視聴できないようにして、この問題を解決している。図20に、本実施の形態の一例を示し、具体的に説明する。図20に示すように、本実施の形態においては、投影面とパネルとの間にレンズを配置し、パネル映像を拡大して投影面に表示しているが、この時、パネル間の映像に隙間ができないように、パネル位置とレンズの拡大倍率を設定すると共に、画面端部など必要領域の映像に縮小や輝度補正などの処理を行う。これにより、映像がレンズで拡大され、タイリングした状態での映像をシームレスに見ることができるため、十分な没入感を得ることができる。
(付記)
 以上の発明は一般化することができるため、本発明には、以下の発明も含まれる。
 付記1の発明は、
 同一基板に複数の異なる波長を発光する発光部が形成され、少なくとも一つの前記発光部の活性層に希土類元素が含まれている構造を有することを特徴とする表示装置である。
 付記2の発明は、
 前記複数の異なる波長を発光する発光部が、波長の長い順番に前記基板に近接して積層された構造を有すること特徴とする付記1に記載の表示装置である。
 付記3の発明は、
 前記複数の異なる波長を発光する発光部の少なくとも波長の最も長い発光部の活性層に希土類元素が含まれていることを特徴とする付記1または付記2に記載の表示装置である。
 付記4の発明は、
 前記複数の異なる波長を発光する発光部の波長の長い発光部の発光面積が、最も大きいことを特徴とする付記1ないし付記3のいずれか1つに記載の表示装置である。
 付記5の発明は、
 前記複数の異なる波長を発光する発光部が、電流を流す電極を形成するために段差構造を有することを特徴とする付記1ないし付記4のいずれか1つに記載の表示装置である。
 付記6の発明は、
 前記複数の異なる波長を発光する発光部が、段差構造の表面を平坦化するための絶縁体を有することを特徴とする付記1ないし付記5のいずれか1つに記載の表示装置である。
 付記7の発明は、
 前記複数の異なる波長を発光する発光部の平坦化された表面上に、電気回路を形成するための多層配線構造を形成し、前記多層配線構造に少なくとも1つの能動素子が含まれていることを特徴とする付記1ないし付記6のいずれか1つに記載の表示装置である。
 付記8の発明は、
 前記複数の異なる波長を発光する発光部が、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記赤色ダイオード、緑色ダイオード、および青色ダイオードのそれぞれが、前記基板の表面に横並びで配置されていることを特徴とする付記1に記載の表示装置である。
 付記9の発明は、
 横並びに配置された前記赤色ダイオード、緑色ダイオード、および青色ダイオードの間の隙間が絶縁体で埋められ、前記発光部の表面が平坦化されていることを特徴とする付記8に記載の表示装置である。
 付記10の発明は、
 前記活性層が、ユーロピウム(Eu)を含んだ窒化ガリウム(GaN)の活性層であることを特徴とする付記1ないし付記9のいずれか1つに記載の表示装置である。
 付記11の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記緑色ダイオードが、インジウム(In)を含んだ窒化ガリウム(GaN)活性層を備えていることを特徴とする付記1ないし付記10のいずれか1つに記載の表示装置である。
 付記12の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記緑色ダイオードが、前記希土類元素としてテルビウム(Tb)、あるいはエルビウム(Er)を含んだ窒化ガリウム(GaN)活性層を備えていることを特徴とする付記1ないし付記10のいずれか1つに記載の表示装置である。
 付記13の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記青色ダイオードが、インジウム(In)を含んだ窒化ガリウム(GaN)活性層を備えていることを特徴とする付記1ないし付記12のいずれか1つに記載の表示装置である。
 付記14の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記青色ダイオードは、ツリウム(Tm)を含む窒化ガリウム(GaN)活性層を備えていることを特徴とする付記1ないし付記12のいずれか1つに記載の表示装置である。
 付記15の発明は、
 前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
 前記基板上に、前記赤色ダイオード、緑色ダイオード、および青色ダイオードが、ハニカム状に配置されていることを特徴とする付記1ないし付記14のいずれか1つに記載の表示装置である。
 付記16の発明は、
 前記基板側に光を取り出すように構成されており、前記基板の主面上に微細な凹凸加工が施されていることを特徴とする付記1ないし付記15のいずれか1つに記載の表示装置である。
 付記17の発明は、
 付記1ないし付記16のいずれか1つに記載の表示装置の製造方法であって、
 前記複数種類の発光ダイオードを、前記基板上に並列に配置して製造することを特徴とする表示装置の製造方法である。
 付記18の発明は、
 付記1ないし付記16のいずれか1つに記載の表示装置の製造方法であって、
 前記複数種類の発光ダイオードを、前記基板上に積層して製造することを特徴とする表示装置の製造方法である。
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。

Claims (17)

  1.  互いに異なる波長の光を発光する複数種類のPiN接合型の発光ダイオードが、同一基板上に配置され、
     前記複数種類の発光ダイオードの少なくとも1種類が、希土類元素を含んだ活性層を有する発光部を備えていることを特徴とする表示装置。
  2.  前記複数種類の発光ダイオードのうち、少なくとも最も波長が長い発光ダイオードに、前記希土類元素を含む活性層を有する発光ダイオードが用いられていることを特徴とする請求項1に記載の表示装置。
  3.  前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成され、
     前記基板が窒化ガリウム基板であり、
     前記赤色ダイオードが、前記希土類元素としてユーロピウム(Eu)を含んだ窒化ガリウム系(GaN系)の活性層を備えていることを特徴とする請求項1または請求項2に記載の表示装置。
  4.  前記複数種類の発光ダイオードが、前記基板の表面に順次積層されており、
     一の色にかかる発光層の少なくとも一部に重畳して他の色にかかる発光層が形成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の表示装置。
  5.  前記発光部は、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に、または、赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されていることを特徴とする請求項4に記載の表示装置。
  6.  前記発光部は、表面側に前記緑色ダイオード、青色ダイオードそれぞれの発光ダイオードに通電する電極を形成するための段差が形成された段差構造を有していることを特徴とする請求項5に記載の表示装置。
  7.  前記段差によって形成された凹部が絶縁体で埋められ、前記発光部の表面が平坦化されていることを特徴とする請求項6に記載の表示装置。
  8.  前記発光部が、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記緑色ダイオードとの界面、および、前記緑色ダイオードと前記青色ダイオードとの界面に、
     前記発光部が、前記基板側から赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記青色ダイオードとの界面、および、前記青色ダイオードと前記緑色ダイオードとの界面に、
     AlN、AlGaN、AlInN、AlGaInNのいずれかによって形成されたバリア層が設けられていることを特徴とする請求項4ないし請求項7のいずれか1項に記載の表示装置。
  9.  前記発光部が、前記基板側から赤色ダイオード、緑色ダイオード、青色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記緑色ダイオードとの界面、および、前記緑色ダイオードと前記青色ダイオードとの界面に、
     前記発光部が、前記基板側から赤色ダイオード、青色ダイオード、緑色ダイオードの順に積層されている場合には、前記赤色ダイオードと前記青色ダイオードとの界面、および、前記青色ダイオードと前記緑色ダイオードとの界面に、
     AlInNおよびGaNが積層、AlGaNおよびGaNが積層、あるいはAlGaInNおよびGaNが積層されたDBR構造が形成されていることを特徴とする請求項4ないし請求項8のいずれか1項に記載の表示装置。
  10.  前記複数種類の発光ダイオードは、前記基板の表面に横並びで配置されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の表示装置。
  11.  前記複数種類の発光ダイオードが、赤色ダイオード、緑色ダイオードおよび青色ダイオードの3種類の発光ダイオードから構成されていることを特徴とする請求項10に記載の表示装置。
  12.  前記複数種類の発光ダイオードの間の隙間が絶縁体で埋められ、前記発光部の表面が平坦化されていることを特徴とする請求項10または請求項11に記載の表示装置。
  13.  前記絶縁体が、可視光透過性樹脂材料、可視光不透過性樹脂材料、可視光を反射する樹脂材料のいずれかで形成されていることを特徴とする請求項7または請求項12に記載の表示装置。
  14.  前記発光部の表面上に電気回路を形成するための多層配線構造が形成され、前記多層配線構造に少なくとも1つの能動素子が含まれていることを特徴とする請求項1ないし請求項13のいずれか1項に記載の表示装置。
  15.  前記発光部の表面上に電気回路を形成するための多層配線構造が形成され、前記多層配線構造が、能動素子を含まないパッシブマトリクス型構造であることを特徴とする請求項1ないし請求項13のいずれか1項に記載の表示装置。
  16.  前記青色ダイオード、緑色ダイオード、赤色ダイオードが、ペンタイル状に配置されていることを特徴とする請求項5ないし請求項9のいずれか1項または請求項11に記載の表示装置。
  17.  請求項1ないし請求項16のいずれか1項に記載の表示装置の製造方法であって、
     前記複数種類の発光ダイオードの発光部を有機金属気相成長法を用いて形成することを特徴とする表示装置の製造方法。
PCT/JP2019/047334 2018-12-14 2019-12-04 表示装置およびその製造方法 WO2020121904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020559950A JP7454854B2 (ja) 2018-12-14 2019-12-04 表示装置およびその製造方法
US17/343,239 US20210296528A1 (en) 2018-12-14 2021-06-09 Display device and method of manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-234965 2018-12-14
JP2018234965 2018-12-14
JP2019145022 2019-08-07
JP2019-145022 2019-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/343,239 Continuation US20210296528A1 (en) 2018-12-14 2021-06-09 Display device and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2020121904A1 true WO2020121904A1 (ja) 2020-06-18

Family

ID=71076016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047334 WO2020121904A1 (ja) 2018-12-14 2019-12-04 表示装置およびその製造方法

Country Status (3)

Country Link
US (1) US20210296528A1 (ja)
JP (1) JP7454854B2 (ja)
WO (1) WO2020121904A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802869A (zh) * 2021-03-19 2021-05-14 中国科学院长春光学精密机械与物理研究所 单片集成氮化物发光波长可调节的白光led及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149164B2 (ja) * 2018-11-02 2022-10-06 株式会社ジャパンディスプレイ 表示装置
US11637219B2 (en) * 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
KR20220018374A (ko) * 2020-08-06 2022-02-15 엘지디스플레이 주식회사 발광 소자 및 웨이퍼

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174566A (ja) * 1997-08-29 1999-03-16 Mitsubishi Materials Corp 多色発光素子
JP2004055742A (ja) * 2002-07-18 2004-02-19 Sanyo Electric Co Ltd 発光素子及びそれを備えた発光素子アレイ
JP2008263127A (ja) * 2007-04-13 2008-10-30 Toshiba Corp Led装置
WO2010128643A1 (ja) * 2009-05-07 2010-11-11 国立大学法人大阪大学 赤色発光半導体素子および赤色発光半導体素子の製造方法
US20120193689A1 (en) * 2011-02-01 2012-08-02 Park Kyung-Bae Pixel of a multi-stacked cmos image sensor and method of manufacturing the same
WO2012127801A1 (ja) * 2011-03-18 2012-09-27 国立大学法人山口大学 多波長発光素子及びその製造方法
JP2013120848A (ja) * 2011-12-07 2013-06-17 Osaka Univ 赤色発光半導体素子とその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910023B2 (ja) * 1993-12-24 1999-06-23 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2003332619A (ja) * 2003-06-09 2003-11-21 Toyoda Gosei Co Ltd 半導体発光素子
JP2005072323A (ja) * 2003-08-26 2005-03-17 Oki Data Corp 半導体装置
US7605531B1 (en) * 2005-10-25 2009-10-20 Translucent, Inc. Full color display including LEDs with rare earth active areas and different radiative transistions
KR101404143B1 (ko) * 2007-10-12 2014-06-05 에이전시 포 사이언스, 테크놀로지 앤드 리서치 인이 함유되지 않은 레드 및 화이트 질소 기반 led 제조
JP2009152297A (ja) * 2007-12-19 2009-07-09 Rohm Co Ltd 半導体発光装置
JP2011134854A (ja) * 2009-12-24 2011-07-07 Kyocera Corp 発光素子、ならびにこれを備える光モジュールおよび画像装置
JP2011159671A (ja) * 2010-01-29 2011-08-18 Oki Data Corp 半導体発光装置および画像表示装置
JP6331389B2 (ja) * 2013-12-27 2018-05-30 日亜化学工業株式会社 発光装置
CN107003256B (zh) * 2014-12-05 2021-04-20 索尼半导体解决方案公司 多层配线板、显示装置以及电子装置
CN105405943A (zh) * 2015-05-21 2016-03-16 美科米尚技术有限公司 微型发光二极管
JP6485503B2 (ja) * 2017-08-01 2019-03-20 日亜化学工業株式会社 発光装置の製造方法
JP7183576B2 (ja) 2018-05-31 2022-12-06 住友電気工業株式会社 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174566A (ja) * 1997-08-29 1999-03-16 Mitsubishi Materials Corp 多色発光素子
JP2004055742A (ja) * 2002-07-18 2004-02-19 Sanyo Electric Co Ltd 発光素子及びそれを備えた発光素子アレイ
JP2008263127A (ja) * 2007-04-13 2008-10-30 Toshiba Corp Led装置
WO2010128643A1 (ja) * 2009-05-07 2010-11-11 国立大学法人大阪大学 赤色発光半導体素子および赤色発光半導体素子の製造方法
US20120193689A1 (en) * 2011-02-01 2012-08-02 Park Kyung-Bae Pixel of a multi-stacked cmos image sensor and method of manufacturing the same
WO2012127801A1 (ja) * 2011-03-18 2012-09-27 国立大学法人山口大学 多波長発光素子及びその製造方法
JP2013120848A (ja) * 2011-12-07 2013-06-17 Osaka Univ 赤色発光半導体素子とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802869A (zh) * 2021-03-19 2021-05-14 中国科学院长春光学精密机械与物理研究所 单片集成氮化物发光波长可调节的白光led及制备方法

Also Published As

Publication number Publication date
JP7454854B2 (ja) 2024-03-25
US20210296528A1 (en) 2021-09-23
JPWO2020121904A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US11705479B2 (en) Display apparatus and method of manufacturing the same
WO2020121904A1 (ja) 表示装置およびその製造方法
KR102509877B1 (ko) 마이크로 led 표시 패널 및 그 제조 방법
KR102613051B1 (ko) 고해상도 디스플레이 장치
WO2020100302A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100300A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100294A1 (ja) マイクロledデバイスおよびその製造方法
WO2020115851A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100292A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100293A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100295A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100301A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100291A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100298A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100303A1 (ja) マイクロledデバイスおよびその製造方法
KR20170124048A (ko) 발광소자 및 이를 포함하는 표시장치
JP2013055170A (ja) 自発光ディスプレイおよび自発光ディスプレイの製造方法
WO2020136846A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100290A1 (ja) マイクロledデバイスおよびその製造方法
KR20210085523A (ko) 표시장치
WO2020100299A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100296A1 (ja) マイクロledデバイスおよびその製造方法
WO2020255347A1 (ja) マイクロledデバイスおよびその製造方法
WO2020255348A1 (ja) マイクロledデバイスおよびその製造方法
WO2020100297A1 (ja) マイクロledデバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897309

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020559950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897309

Country of ref document: EP

Kind code of ref document: A1