WO2020121597A1 - 自律航行型海洋ブイとこれを用いた海洋情報システム - Google Patents

自律航行型海洋ブイとこれを用いた海洋情報システム Download PDF

Info

Publication number
WO2020121597A1
WO2020121597A1 PCT/JP2019/032310 JP2019032310W WO2020121597A1 WO 2020121597 A1 WO2020121597 A1 WO 2020121597A1 JP 2019032310 W JP2019032310 W JP 2019032310W WO 2020121597 A1 WO2020121597 A1 WO 2020121597A1
Authority
WO
WIPO (PCT)
Prior art keywords
buoy
unit
autonomous navigation
sea
buoy body
Prior art date
Application number
PCT/JP2019/032310
Other languages
English (en)
French (fr)
Inventor
功 金鹿
Original Assignee
有限会社金鹿哲学承継塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社金鹿哲学承継塾 filed Critical 有限会社金鹿哲学承継塾
Priority to US16/757,731 priority Critical patent/US20220185436A1/en
Priority to PCT/JP2019/032310 priority patent/WO2020121597A1/ja
Publication of WO2020121597A1 publication Critical patent/WO2020121597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/06Floatable closed containers with accommodation for one or more persons inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/02Lifeboats, life-rafts or the like, specially adapted for life-saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/06Floatable closed containers with accommodation for one or more persons inside
    • B63C9/065Floatable closed containers with accommodation for one or more persons inside for one person
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/44Steering or slowing-down by extensible flaps or the like
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C2009/0017Life-saving in water characterised by making use of satellite radio beacon positioning systems, e.g. the Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/02Lifeboats, life-rafts or the like, specially adapted for life-saving
    • B63C9/03Lifeboats, life-rafts or the like, specially adapted for life-saving enclosed
    • B63C2009/035Enclosed lifeboats, or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships

Definitions

  • the present invention relates to an autonomous navigation type marine buoy that automatically goes to a rescue place in an emergency in an emergency while autonomously monitoring a predetermined range on the sea.
  • Patent Document 1 discloses a wave power type autonomous navigation type water vehicle.
  • This vehicle includes a float floating on the surface of the sea, a swimmer sinking in the sea, and a linking line connecting the float and the swimmer.
  • the swimmer has a plurality of fins that interact with the water to produce propulsion.
  • the vehicle also includes various sensors that detect changes in the observable situation and communication devices that report the situation.
  • Patent Document 2 discloses a self-propelled life-saving vehicle.
  • This lifesaving vehicle includes a disk-shaped hollow main body, and a pair of jet motors that are provided on side portions of the main body that face each other in the radial direction and that generate a jet flow that propels the vehicle.
  • This life-saving vehicle is equipped with a self-propelling function, so that a person in need of rescue can be quickly and efficiently transported from a disaster area to a safe place.
  • Patent Document 3 proposes a rescue system for guiding a rescue boat to a destination where a victim is present. This system automatically selects the rescue boat closest to the victim from among the registered rescue boats sailing on the sea, and automatically transmits the bearing and distance to the victim to the rescue boat as information.
  • the rescue boat is equipped with a processing device that issues a start command.
  • JP 2012-046178 Japanese Patent Publication No. 2013-531578 Japanese Patent Laid-Open No. 9-304506
  • the water vehicle of Patent Document 1 does not have the function of monitoring the state in the sea and Shanghai and the rescue function of the victim, and the lifesaving vehicle of Patent Document 2 does not have the function of observing the weather at normal times.
  • the rescue system of Patent Document 3 although the rescue boat is remotely controlled by the central processing unit, the rescue boat does not autonomously go to the rescue.
  • the present invention has been made in view of such circumstances, and in order to solve the above-mentioned problems, while functioning as a monitoring buoy, an autonomous navigation type marine buoy that autonomously rescues a victim when a distress signal is received, and The purpose is to provide a rescue system for victims using the buoy.
  • an autonomous navigation type ocean buoy has a function of autonomously maintaining a navigation or fixed position on the ocean with an exploration unit under the sea or under the sea.
  • the autonomous navigation type marine buoy according to one aspect of the present invention, A buoy body consisting of a floating body, At least one internal sensor provided on the buoy body; A detection unit that receives a GPS signal and information from the internal sensor; A marine exploration department that explores the sea, An underwater exploration department that explores the sea A determination unit that creates a navigation plan for the buoy body along a target route set based on the position information and nautical chart information of the buoy body detected by the detection unit, A propulsion unit for propelling the buoy body, A navigation control unit that controls the drive of the propulsion unit so that the buoy body travels according to the navigation plan generated by the determination unit; A power generation unit that generates electricity using natural energy, A power storage unit that stores the electricity generated by the power generation unit and supplies the electricity to a necessary place in the buoy body, A communication unit that communicates with the outside, An emergency signal unit that receives a distress signal and identifies the transmission position of the distress signal, An evacuation room for victims to evacuate from the outside, An autonomous navigation mode in which autonomous navigation is performed to a
  • the autonomous navigation type marine buoy having the above-mentioned configuration has a function of autonomously sailing to a destination and maintaining a fixed position on the ocean based on GPS signals, internal sensor information and nautical chart information. It has a function to autonomously rescue victims.
  • a distress signal is transmitted automatically or manually. This signal is transmitted in a predetermined format and includes a call sign of the ship in distress, distress position information obtained from the GPS receiver, clock information, and the like.
  • the autonomous navigation type ocean buoy creates a navigation route from itself to the distress position, and autonomously goes to the rescue position for the victim without waiting for a command from the outside.
  • the self-propelled marine buoy with the above configuration is equipped with an evacuation room in which victims can temporarily stay. As a result, the victim can be evacuated to a safe place.
  • the marine information system is characterized by including a plurality of the above-mentioned autonomous navigation type marine buoys arranged in a grid in a fixed body of water.
  • the autonomous navigation type ocean buoy for the area where the autonomous navigation type ocean buoy is placed, monitoring the sea/underwater, grasping weather/sea condition information, constructing a salvage network, and constructing a wireless communication network.
  • monitoring the sea/underwater grasping weather/sea condition information, constructing a salvage network, and constructing a wireless communication network.
  • autonomous navigation type ocean buoys are placed at equal intervals of 50 km in Japan's exclusive economic zone, about 2000 units will be placed. Then, it becomes possible to monitor the sea/underwater, grasp the weather/sea condition information, construct a rescue network, and construct a wireless communication network for all areas within Japan's exclusive economic zone.
  • an autonomous navigation type marine buoy that functions as a surveillance buoy and autonomously rescues a victim when a distress signal is received, and a victim rescue system using the buoy.
  • FIG. 1 is a perspective view of an autonomous navigation type marine buoy according to an embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the steering principle of an autonomous navigation type marine buoy.
  • FIG. 2B is a diagram for explaining the steering principle of the autonomous navigation type marine buoy.
  • FIG. 2C is a diagram for explaining the steering principle of the autonomous navigation type marine buoy.
  • FIG. 2D is a diagram for explaining the steering principle of the autonomous navigation type marine buoy.
  • FIG. 3A is a diagram for explaining the principle of holding a fixed position of an autonomous navigation type ocean buoy.
  • FIG. 3B is a diagram for explaining the principle of holding the fixed position of the autonomous navigation type ocean buoy.
  • FIG. 3C is a diagram for explaining the principle of holding the fixed position of the autonomous navigation type ocean buoy.
  • FIG. 3A is a diagram for explaining the principle of holding a fixed position of an autonomous navigation type ocean buoy.
  • FIG. 3B is a diagram for explaining the principle of holding the fixed position of the autonomous navigation type ocean buoy.
  • FIG. 3D is a diagram for explaining the principle of holding the fixed position of the autonomous navigation type ocean buoy.
  • FIG. 3E is a diagram for explaining the principle of holding the fixed position of the autonomous navigation type ocean buoy.
  • FIG. 4 is a block diagram showing the overall configuration of a control system of an autonomous navigation type ocean buoy.
  • FIG. 5 is a diagram showing a control flow of the autonomous navigation type ocean buoy.
  • FIG. 6 is a diagram showing a state in which a plurality of autonomous navigation type ocean buoys are arranged in the exclusive economic zone of Japan.
  • FIG. 7: is a figure for demonstrating the rescue operation of an autonomous navigation type ocean buoy.
  • FIG. 1 to 3 show an autonomous navigation type marine buoy 1 according to one embodiment of the present invention.
  • FIG. 1 is a perspective view of the autonomous navigation type marine buoy 1 according to one embodiment of the present invention
  • FIG. 2A. 2D are diagrams for explaining the steering principle of the autonomous navigation type marine buoy 1
  • FIGS. 3A to 3E are diagrams for explaining the principle of maintaining the fixed position of the autonomous navigation type marine buoy 1.
  • an autonomous navigation type marine buoy 1 includes a buoy body 2 made of a floating body.
  • the buoy body 2 has a form in which halved eggs of different sizes are joined.
  • the upper part of the half-oval shape and the lower part of the half-oval shape larger than the upper part are joined at the joining part.
  • the buoyancy of the buoy body 2 is designed so that the joint is held above sea level.
  • the victim can board the joint and enter the evacuation chamber 4A inside from the evacuation chamber entrance 4 provided at the upper rear of the buoy body 2.
  • a transparent window 6 is provided in the evacuation room 4A, and a person evacuated to the evacuation room 4A can see the sea through the transparent window 6.
  • the autonomous navigation type marine buoy 1 includes a communication unit 70 provided at the outer front of the buoy body 2 that appears on the sea, a solar power generation panel 64 provided on the buoy body 2, and a ceiling portion of the buoy body 2.
  • the marine exploration unit 20 and the detection unit 10 are provided.
  • the autonomous navigation type marine buoy 1 includes a communication unit 70 provided on the upper portion of the buoy body 2, a solar power generation panel 64, a detection unit 10, and a marine exploration unit 20.
  • the communication unit 70 is equipped with a required radio wave transmitter/receiver.
  • a cylindrical movable wing support portion 510 is provided at the bottom of the buoy body 2.
  • a left movable blade 502, a right movable blade 504, a front movable blade 506, and a rear movable blade 508 are provided around the movable blade support portion 510. These movable blades 502, 504, 506 and 508 can rotate about their respective rotation axes.
  • a sea elephant observation section 90 and an underwater exploration section 30 are provided at the lower end of the movable wing support section 510.
  • the sea condition observation section 90 is equipped with wave height, water temperature, flow direction, and flow velocity measurement sensors.
  • the underwater exploration unit 30 is equipped with an underwater camera 32 capable of shooting 360 degrees and a sonar 34.
  • FIGS. 2A to 2D are views of the autonomous navigation type marine buoy 1 as seen from above, showing a steady state (FIG. 2A), a straight line (FIG. 2B), a left turn (FIG. 2C) and a right turn (FIG. 2D). Has been done.
  • the left movable wing 502, the right movable wing 504, the front movable wing 506, and the rear movable wing 508 face the vertical direction.
  • the principle of holding the fixed position will be described later.
  • the autonomous navigation type ocean buoy 1 can navigate to the destination while minimizing the resistance of seawater.
  • FIGS. 3A to 3E the principle of maintaining the fixed position of the autonomous navigation type ocean buoy 1 will be described.
  • the autonomous voyage buoy 1 arrives at the destination by autonomous navigation, the autonomous voyage buoy 1 enters the fixed position holding mode and continues monitoring or observation while holding its own position at the fixed position autonomously.
  • 3A to 3E are views of the autonomous navigation ocean buoy 1 viewed from the side, showing a state where the wave descends from the top of the wave (FIG. 3A) to the bottom of the wave (FIG. 3B) and then returns to the top of the wave (FIG. 3E) again.
  • FIGS. 3A to 3E the principle of maintaining the fixed position of the autonomous navigation type ocean buoy 1 will be described.
  • the sea surface 900 with waves is the highest compared to the sea surface 902 without waves.
  • the left movable wing 502 and the right movable wing 504 (not shown) are oriented in the vertical direction.
  • the sea surface 900 when there is a wave as it is (FIG. 3B) drops at the same position on the horizontal plane, the sea surface 902 when there is no wave and the sea surface 900 when there is a wave as compared with (FIG. 3A). It falls twice the difference in wave height from.
  • the autonomous navigation type ocean buoy 1 starts to rise again, but at this time, the left movable wing 502 and the right movable wing 504 are tilted backward from the vertical direction. Then, due to the resistance of the water flow at the time of ascent, the autonomous navigation type marine buoy 1 ascends toward the front and moves slightly ahead of the position (Fig. 3A) before the final effect. After that, this operation is repeated to hold the fixed position.
  • This fixed position holding operation is realized by driving the steering motor 56 using the electric power generated by the solar power generation panel 64 as an energy source, and energy consumption is controlled by the angle control of the movable blades 502, 504, 506, 508. Only a little because of. However, if it is difficult to maintain the fixed position only with this mechanism due to bad weather, etc., the propulsion mechanism such as a screw is separately driven from the propulsion drive source to make the autonomous navigation type marine buoy 1 navigate to the fixed position.
  • FIG. 4 is a block diagram showing the overall configuration of the control system of the autonomous navigation type marine buoy 1.
  • the autonomous navigation type marine buoy 1 includes an emergency signal unit 72, a detection unit 10, a threatening unit 15, a storage unit for the nautical chart information 40, a communication unit 70, and a weather observation unit 80.
  • the marine exploration unit 20, the oceanographic observation unit 90, the underwater exploration unit 30, the determination unit 50, the navigation control unit 52, the propulsion unit 54, the power generation unit 60, and the power storage unit 62 are provided.
  • the determination unit 50 and the navigation control unit 52 configure the control device 5 that controls the operation of the autonomous navigation type marine buoy 1.
  • the control device 5 is composed of at least one computer, and each computer has a processor, a volatile and non-volatile memory, an I/O interface, and the like. In the control device 5, each function is realized by the processor performing arithmetic processing using the volatile memory based on the program stored in the non-volatile memory.
  • the emergency signal unit 72 receives a distress signal from the distressed person.
  • the detection unit 10 is equipped with a GPS signal receiver 12 and an internal sensor 14, and acquires its own position information.
  • the intimidating unit 15 uses the speaker 17 and the lighting device 19 to intimidate an intruder detected by the marine exploration unit 20 or the underwater exploration unit 30.
  • the nautical chart information 40 includes ocean current data, electronic nautical chart data, seabed topography data, and the like.
  • the communication unit 70 communicates with the outside.
  • the communication unit 70 is equipped with an AIS (automatic ship identification device) and is configured to receive ship-specific data such as an identification code, ship name, position, course, ship speed, and destination from a distressed ship. Good. Further, the communication unit 70 preferably has a function as a wireless relay base station.
  • the meteorological observation unit 80 measures wind speed 82, solar radiation 83, relative humidity 84, temperature 85, rainfall 86, and atmospheric pressure 87.
  • the offshore exploration unit 20 explores the state on the sea.
  • the marine exploration unit 20 may be composed of a marine camera 22 (video camera) capable of photographing 360 degrees, a radar 24, and the like.
  • the sea condition observation unit 90 measures a wave height 92, a water temperature 94, a flow direction 96, and a flow velocity 98.
  • the underwater exploration unit 30 monitors underwater.
  • the underwater exploration unit 30 may be configured by an underwater camera 32 (video camera) capable of shooting 360 degrees, a sonar 34, and the like.
  • the underwater exploration unit 30 may include a gravimeter (not shown) and a magnetometer (not shown) capable of exploring various marine mineral resources such as a seafloor hydrothermal deposit and a cobalt-rich crust existing underground.
  • the gravimeter measures the gravity at the point where the buoy body 2 is located, examines the geology under the seafloor, and recognizes the difference and distribution of substances existing under the seafloor from the change in gravity.
  • the magnetometer detects the magnetic anomaly at that point and recognizes the difference and distribution of substances.
  • the judgment unit 50 creates a navigation plan for the buoy body 2 along a target route set based on the position information of the buoy body 2 detected by the detection unit 10 and the nautical chart information 40.
  • the navigation control unit 52 controls the drive of the propulsion unit 54 so that the buoy body 2 travels according to the navigation plan generated by the determination unit 50.
  • the propulsion unit 54 propels the buoy body 2 by the steering motor 56 and the propulsion drive source 58 according to a command from the navigation control unit 52.
  • the propulsion unit 54 includes a rudder for controlling the sailing direction of the buoy body 2, a steering motor 56 for operating the mechanism of the movable wings 502, 504, 506, 508, a screw for propelling the buoy body 2, and a water.
  • a propulsion drive source 58 for driving the jet may be included.
  • the propulsion drive source 58 may be a motor or a fuel engine.
  • the power generation unit 60 uses natural energy to generate power.
  • the power storage unit 62 stores the excess electric energy generated by the power generation unit 60 and supplements the electric energy shortage in the power generation unit 60.
  • Each of these functional units is connected by an information transmission path, and required electric power is supplied from the power generation unit 60 and the power storage unit 62 to each functional unit.
  • Energy consumed by the autonomous navigation type ocean buoy 1 is supplied from a power generation unit 60 that performs natural energy power generation and a power storage unit 62 that stores electricity generated by the power generation unit 60.
  • the surplus electricity of the power generation unit 60 is stored in the power storage unit 62 and the power generation unit 60 cannot generate power, or when the electricity of the power generation unit 60 is insufficient, electricity is supplied from the power storage unit 62.
  • Solar power generation or wave power generation is used as the power generation method.
  • a fuel generator may be preliminarily equipped to generate electricity urgently when natural energy generation is impossible. At this time, the minimum required fuel such as gasoline and light oil is stored in the buoy body 2.
  • FIG. 5 is a diagram showing a control flow of the autonomous navigation type ocean buoy 1.
  • the navigation control unit 52 of the autonomous navigation type ocean buoy 1 has a plurality of control modes including a remote control mode and a local control mode.
  • the communication unit 70 of the autonomous navigation type marine buoy 1 can receive a command from the outside, and remote control is performed from a predetermined place outside.
  • the remote control mode all functions of the autonomous navigation type ocean buoy 1 can be controlled from a predetermined external location.
  • the remote control mode it is possible to change the destination of navigation from the outside, or even to switch to the rescue mode even when the distance is outside the set relief distance to assist the victim.
  • Each of the remote control mode and the local control mode includes an autonomous navigation mode, a fixed position mode, and a rescue mode.
  • the autonomous navigation type marine buoy 1 in the autonomous navigation mode receives a GPS signal at the detection unit 10 to grasp its absolute position, and at the same time grasps its own progress state by a gyro sensor, an electronic compass, a speedometer, etc.
  • the determination unit 50 and the navigation control unit 52 control the propulsion unit 54 while performing the comparison calculation with the nautical chart information 40 stored in advance in the storage device, so that the automatic navigation is autonomously performed to the destination. It can be carried out.
  • the fixed position is maintained by repeating the position correction while performing the same comparison calculation as in the autonomous navigation mode.
  • the marine exploration unit 20 mounted on the buoy body 2 monitors the marine condition.
  • the underwater exploration unit 30 mounted on the buoy body 2 monitors the undersea condition.
  • the information captured by the offshore exploration unit 20 and the undersea exploration unit 30 may be transmitted to the outside via the communication unit 70.
  • autonomous navigation type ocean buoy 1 it is possible to autonomously navigate to the destination, using the destination as the distress signal transmission position, as in the autonomous navigation mode.
  • the control device 5 when starting the control in step 100, the control device 5 first determines in step 102 whether the control mode is the remote control mode. When the control mode is the remote control mode, the autonomous navigation type marine buoy 1 is remotely controlled from a predetermined external location. If the control mode is not the remote control mode, the control device 5 starts the control of the autonomous navigation type marine buoy 1 in the local control mode in step 104.
  • step 106 When the local control mode is started, it is determined in step 106 whether there is a distress signal. If there is no distress signal, in step 300, the autonomous navigation mode is entered. In the autonomous navigation mode, the destination setting process is performed in step 302, and the autonomous navigation program of the subroutine is executed from step 402.
  • the control device 5 (judgment unit 50) acquires the current position of itself using the information detected by the detection unit 10 in step 402, and calculates the direction and distance from the current position to the destination in step 404 as needed. And make a navigation plan. Then, in step 406, the control device 5 (the navigation control unit 52) causes the buoy body 2 to travel to the destination according to the navigation plan. Next, the control device 5 determines in step 304 whether or not the destination has been reached, and if not yet reached, the processes from step 402 to step 304 are repeated until the destination is reached.
  • control device 5 stops the navigation of the autonomous navigation type ocean buoy 1 and shifts to the fixed position mode in step 308. If the control device 5 shifts to the fixed position mode in step 308, then the control device 5 measures the current position of itself using the information detected by the detection unit 10 in step 310.
  • step 312 the control device 5 calculates the distance between the current position and the destination, and in step 314, if the distance is larger than the preset allowable distance, the autonomous navigation program is executed again, and the autonomous navigation type is executed. Ocean buoy 1 navigates to the destination. If the distance between the current position and the destination is smaller than the allowable distance in step 314, the control device 5 returns to step 310 and repeats the fixed position mode processing.
  • the above is the description of the control flow in the autonomous navigation mode and the fixed position mode.
  • step 106 the control when there is a distress signal in step 106 will be described.
  • the control device 5 receives the distress position in step 200
  • the control device 5 measures its own current position in step 202.
  • the control device 5 calculates the distance from the current position to the distress position in step 204.
  • the rescue mode of step 208 is entered.
  • the control device 5 When the rescue mode is set in step 208, the control device 5 resets the distress position to the destination in step 210 and executes the autonomous navigation program of the subroutine. Thereafter, the processing of steps 402 to 406 is as described above.
  • step 212 If it is determined in step 212 that the destination has been reached, the control device 5 stops the navigation of the autonomous navigation type ocean buoy 1 and shifts to the fixed position mode of step 318. After that, the same control as in the autonomous navigation mode is repeated, and the autonomous navigation type marine buoy 1 holds the fixed position.
  • FIG. 6 is a view showing a state in which a plurality of autonomous navigation type ocean buoys 1 are arranged in a grid pattern within the exclusive economic zone of Japan
  • FIG. 7 explains a rescue operation of the autonomous navigation type ocean buoy as the ocean information system 100.
  • the ocean information system 100 includes about 2000 autonomous navigation type ocean buoys 1 arranged at intervals of approximately 50 km in an area of the exclusive economic zone 600 set around Japan. According to this ocean information system 100, it is possible to monitor the sea/underwater, grasp the weather/sea condition information, construct a marine rescue network, and construct a wireless communication network for the entire range within the exclusive economic zone of Japan.
  • Each autonomous navigation type marine buoy 1 has the communication unit 70 as described above, and can transmit/receive information to/from the server 101 provided at a predetermined position. Information captured by each autonomous navigation type ocean buoy 1 (for example, weather/sea condition information) is transmitted to the server 101 in real time. That is, the information captured by each autonomous navigation type ocean buoy 1 can be grasped in real time at a predetermined location.
  • FIG. 7 is an enlarged view of a part of FIG. Eight autonomous marine buoys 1A to 1H are arranged around the distress ship 710.
  • the autonomous navigation type marine buoy 1A, the autonomous navigation type marine buoy 1B, and the autonomous navigation type marine buoy 1C are located within the rescue setting distance 700.
  • the autonomous navigation type marine buoy 1D, the autonomous navigation type marine buoy 1E, the autonomous navigation type marine buoy 1F, the autonomous navigation type marine buoy 1G, and the autonomous navigation type marine buoy 1H are located outside the rescue setting distance 700.
  • the rescue setting distance 700 is set appropriately.
  • the distress vessel 710 is transmitting a distress signal 720, which is received by all autonomous navigational marine buoys 1A-1H.
  • the control device 5 calculates the distance between itself and the position of the distress ship 710, and if the distance is smaller than the preset rescue setting distance 700, the control device 5 autonomously operates.
  • the autonomous navigation type ocean buoy 1 is controlled so as to head to the rescue position for rescue. That is, the autonomous navigation type marine buoy 1A, the autonomous navigation type marine buoy 1B, and the autonomous navigation type marine buoy 1C located within the rescue setting distance 700 from the distressed vessel 710 autonomously head toward the rescue of the distressed vessel 710. .
  • the position of the distress ship 710 is the distress signal transmission position.
  • the control mode of the required number of autonomous navigation type ocean buoys 1 is forcibly switched to the remote control mode and the rescue mode by remote control from a central control device (not shown) provided at a predetermined location. ..
  • the autonomous navigation type marine buoy 1 switched to the rescue mode starts navigation toward the position of the distress ship 710.
  • the remote control mode has priority over the local control mode.
  • these autonomous navigation type marine buoys 1 can also be used as evacuation sites for disaster victims.
  • the autonomous navigation type marine buoy 1 can search for a distressed ship, a victim, and a drifting object using the functions of the marine exploration unit 20 and the underwater exploration unit 30.
  • the autonomous navigation type marine buoy 1 has a buoy body 2 made of a floating body, at least one internal sensor 14 provided on the buoy body 2, a GPS signal, and information of the internal sensor 14. Is set on the basis of the position information of the buoy body 2 and the chart information 40 detected by the detection unit 10.
  • the determination unit 50 that creates a navigation plan for the buoy body 2 along the target route, the propulsion unit 54 that promotes the buoy body 2, and the buoy body 2 that promotes navigation according to the navigation plan generated by the determination unit 50
  • a navigation control unit 52 that controls the drive of the unit 54, a power generation unit 60 that generates power by natural energy, and a power storage unit 62 that stores the electricity generated by the power generation unit 60 and supplies the electricity to necessary locations inside the buoy body 2.
  • a communication unit 70 that communicates with the outside, an emergency signal unit 72 that receives a distress signal and identifies the distress signal transmission position, and an evacuation room 4A that accommodates the victim. Then, the autonomous navigation type marine buoy 1 receives the distress signal and the autonomous navigation mode in which it autonomously navigates to the set sea position, the fixed position mode in which it autonomously holds the fixed position at the set sea position. And a rescue mode for autonomous navigation to the distress signal transmission position on the sea.
  • the autonomous navigation type marine buoy 1 having the above-mentioned configuration has the function of autonomously sailing to a destination on the ocean and maintaining a fixed position on the basis of the GPS signal, the information of the internal sensor 14 and the nautical chart information 40. It has a function to autonomously rescue the victims of an accident.
  • a distress signal is transmitted automatically or manually. This signal is transmitted in a predetermined format and includes a call sign of the ship in distress, distress position information obtained from the GPS receiver, clock information, and the like.
  • the autonomous navigation type ocean buoy 1 goes into rescue mode, automatically creates a navigation route from itself to the distress position, and autonomously goes to the distress position without waiting for a command from the outside. Head to the rescue. It is even more effective to place multiple autonomous navigational marine buoys 1 at locations where many marine accidents occur.
  • the self-propelled marine buoy 1 with the above configuration is equipped with an evacuation room 4A in which a victim can temporarily stay.
  • the entrance 4 to the evacuation chamber 4A may be provided in the upper part of the buoy body 2. After moving to the buoy body 2, the victim enters the evacuation room 4A by opening the entrance 4 of the evacuation room 4A.
  • the evacuation room 4A be provided with the minimum supplies necessary for humans to live for several days, such as food and drink, bedding, and a simple toilet.
  • the buoy body 2 may be provided with a transparent window 6 through which the outside can be seen from the evacuation chamber 4A.
  • the autonomous navigation type marine buoy 1 autonomously transmits the distress signal on the condition that the emergency signal unit 72 is within a predetermined distance from the distress signal transmission position. It is configured to go to the rescue position.
  • the autonomous navigation marine buoy 1 having the above-described configuration receives the position information of the distressed ship 710 by the communication unit 70, the distance from itself to the distressed position is calculated, and the distance is smaller than the preset rescue setting distance 700. In this case, the rescue mode is entered, and the victim is autonomously rescued to the distress position without waiting for a command from the outside. Accordingly, when a plurality of autonomous navigation type marine buoys 1 are arranged, it is possible to avoid the phenomenon that all the autonomous navigation type marine buoys 1 that have received the distress signal are heading for rescue.
  • the autonomous navigation type marine buoy 1 further includes a plurality of rotatable thin plate-shaped movable blades 502, 504, 506, 508 provided outside the buoy body 2 under the sea.
  • the extending direction of the rotation axis of at least one movable blade is the same as the traveling direction of the buoy body 2, and the navigation control unit 52 controls the rotation angles of the plurality of movable blades 502, 504, 506, 508,
  • the buoy body 2 is configured to be held in a fixed position by vertical movement of the buoy body 2.
  • the absolute position of the buoy body 2 moves up and down due to the waves.
  • the movable wings 502, 504, 506, 508 in the sea also rise in the sea when the sea level rises and descend in the sea when the sea level falls.
  • the position of the buoy body 2 can be changed by controlling the angles of the movable wings 502, 504, 506, 508.
  • the buoy body 2 can be held at a fixed position. Further, by holding the movable blade having a rotating shaft extending in the same direction as the traveling direction of the buoy body 2 vertically, it is possible to ensure straightness when navigating to the destination.
  • the autonomous navigation type marine buoy 1 is a thin plate-shaped first rotatably provided on the right side of the buoy body 2 around the first rotation shaft 504a orthogonal to the traveling direction of the buoy body 2.
  • a thin plate-shaped third movable blade 506 rotatably provided on the front side of the buoy body 2 about a third rotating shaft 506a parallel to the traveling direction of the buoy body 4 and a fourth movable blade 506 parallel to the traveling direction of the buoy body 2
  • a thin plate-shaped fourth movable blade 508 rotatably provided on the front side of the buoy body 2 around the rotation shaft 508a.
  • the forward direction is defined as the front
  • the opposite side to the front is defined as the left and right as viewed from
  • the autonomous navigation type marine buoy 1 having the above-mentioned configuration controls the traveling direction when sailing to the destination by the first movable wing 504 and the second movable wing 502 provided on the left and right of the buoy body 2.
  • the third movable blade 506 and the fourth movable blade 508 provided before and after the buoy body 2 are kept vertical, and the angle between the first movable blade 504 and the second movable blade 502 is controlled. This allows the buoy body 2 to bend left and right.
  • the first movable blade 504 is held in the vertical direction and the second movable blade 502 is held in the horizontal direction.
  • the autonomous navigation type ocean buoy 1 further includes a meteorological observation unit 80 for observing the weather and a sea condition observation unit 90 for observing the sea condition.
  • the meteorological observation unit 80 may include observation devices for wind direction/velocity, insolation, relative humidity, temperature, rainfall, and atmospheric pressure
  • the sea condition observation unit 90 may include observation devices for wave height, water temperature, current direction, and flow velocity. This observation information is stored in a storage device equipped in the buoy body 2 and is also transmitted to a predetermined location via the communication unit 70 for weather forecasts, economic operation of ships, other industries such as fishing, marine leisure, It may be used in the field of lifesaving.
  • the communication unit 70 sets a predetermined external location. It is configured to make a call.
  • the marine exploration unit 20 discovers a moving object such as a suspicious ship that has entered the surveillance area, or when the undersea exploration unit 30 discovers a moving object such as a suspicious submarine that has entered the surveillance area.
  • a notification is made to a predetermined external location via the communication unit 70.
  • the found intruder can be identified by AIS.
  • automatic detection of a moving object by a video image of a camera can be realized by a known technique of setting a warning line on an image and performing image processing.
  • the above-mentioned autonomous navigation type marine buoy 1 is further provided with a threatening section 15, and when the marine exploration section 20 or the underwater exploration section 30 detects a moving object invading a certain area, the communication section 70 automatically outside.
  • the threatening section 15 may be configured to perform a threatening operation while reporting to a predetermined location.
  • the intimidation may be performed by a voice warning by the speaker 17, irradiation by the light device 19, or the like.
  • the intimidation may be performed only when the detected moving object is determined to be a suspicious ship by the AIS.
  • the communication unit 70 has a function as a wireless relay base station.
  • mobile phone calls on the sea are made by radio waves from coastal base stations and some shipboard base stations, but the areas covered by those base stations are limited, and it is practically far from the coast. Mobile phones cannot be used in remote areas. Although it is possible to make a call using a communication satellite at sea, it is not as convenient as a mobile phone on the ground. Also, in case of emergency, when a base station on the ground becomes unavailable, an experiment is being conducted to secure a communicable area by mounting a relay base station for mobile phones on a balloon or a drone.
  • the autonomous navigation type ocean buoy 1 with a function as a wireless relay base station and arranging it at a required location on the sea, a comfortable wireless communication environment can be constructed on the sea as well as on the ground. ..
  • a land-based radio base station becomes unusable in the event of a large-scale land disaster such as a large earthquake
  • the autonomous nautical buoys 1 that are navigating around the area are gathered on the coast to enable these autonomous buoys.
  • the navigation type ocean buoy 1 can complement the function as a radio base station for land communication.
  • the autonomous navigation type marine buoy 1 has a local control mode and a remote control mode that is remotely controlled from the outside, and the remote control mode has priority over the local control mode.
  • the autonomous navigation type marine buoy 1 located at a position farther than the rescue setting distance 700 from the distress ship 710 does not enter the rescue mode in the local control mode, but is remote.
  • the rescue mode can be compulsorily set to the rescue mode.
  • the marine information system 100 is characterized by including a plurality of autonomous navigation type marine buoys 1 arranged in a grid in a fixed water area.
  • the area where the autonomous navigation type marine buoy 1 is placed is monitored at sea/under the sea, the weather/sea condition information is grasped, the marine rescue network is constructed, and the wireless communication network is constructed. It is possible to build. For example, if the autonomous navigation type ocean buoys 1 are arranged at equal intervals of 50 km in the exclusive economic zone of Japan, about 2000 units will be arranged. By doing so, it becomes possible to monitor the sea/underwater, grasp the weather/sea condition information, build a rescue network, and build a wireless communication network for all areas within Japan's exclusive economic zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

自律航行型海洋ブイは、浮体からなるブイ本体と、内部センサと、GPS信号と内部センサの情報を受信する検知部と、海上を探査する海上探査部と、海中を探査する海中探査部と、ブイ本体の航行計画を作成する判断部と、ブイ本体を推進させる推進部と、航行計画に従ってブイ本体が航行するように推進部の駆動制御を行う航行制御部と、発電部と、蓄電部と、外部との通信を行う通信部と、遭難信号を受信して遭難信号の発信位置を特定する緊急信号部と、遭難者を収容する避難室とを備え、設定された海上位置まで自律航行を行う自律航行モードと、設定された海上位置で自律的に定位置を保持する定位置モードと、遭難信号を受信したときに海上の遭難信号の発信位置まで自律航行を行う救援モードとを有する。

Description

自律航行型海洋ブイとこれを用いた海洋情報システム
 本発明は、予め設定された海上の一定範囲を自律的に監視しながら緊急時には遭難場所へ自動で救援に向かう自律航行型海洋ブイに関する。
 地球の表面積の約7割を占めている海洋における観測は、観測範囲の広さと観測対象の複雑さから多くの観測データを必要とする。その上、船舶の航行、漁業、漂流物及び油等の船舶からの流出物の予測や海難事故時の救命といった場面においては、リアルタイムで気象・海象情報を把握することが重要となる。そこで、海洋調査範囲を拡大し、より多くの情報を取集するために、自律型海洋観測装置が導入されている。
 特許文献1には、波力式自律航行型ウォータビークルが開示されている。このビークルは、海面に浮かぶフロートと、海中に沈むスウィマと、フロートとスウィマとをつなぐ連係索とを備える。スウィマは、水と相互に影響して推進力を生成する複数のフィンを有する。また、このビークルは、観測可能な状況の変化を検出する各種のセンサや、状況を報告する通信装置を備える。
 また、海洋上で必要なものとして遭難事故時の遭難者救助手段がある。例えば、特許文献2には、自走式救命車両が開示されている。この救命車両は、円板形状の中空の本体と、この本体の径方向に対向する側部に設けられ車両を推進するジェット流を発生させる一対のジェットモータとを備える。この救命車両は、自己推進機能を搭載することにより、救助が必要な人を災害区域から安全な場所へ迅速かつ効率的に搬送することが可能である。
 さらに、特許文献3では、救援艇を遭難者のいる目的地まで誘導する救助システムが提案されている。このシステムは、予め登録された海上を航行する救援艇のうちから最も遭難者に近い救援艇を自動的に選択し、当該救援艇へ遭難者までの方位・距離を情報として自動送信し、該当する救援艇に発進指令を出す処理装置を備える。
特開2012-046178号広報 特表2013-531578号公報 特開平9-304506号公報
 ところで近年、外国籍の船舶による領海侵犯や排他的経済水域内における密漁の問題が頻発している。このような状況下においては、気象や海象の観測だけではなく、広い海域をまんべんなく自律的に監視でき、緊急時には遭難者の救援に向かうことのできる監視・救援の仕組みが必要とされる。
 しかし、特許文献1のウォータビークルには、海上海中の状態を監視する機能と遭難者の救助機能はなく、特許文献2の救命車両には、通常時の気象等の観測機能はない。また、特許文献3の救助システムは、中央の処理装置によって救援艇が遠隔制御されるものの、救援艇が自律的に救援に向かうものではない。
 本発明は、斯かる事情に鑑みてなされたものであり、上記課題を解決するために、監視ブイとして機能するとともに、遭難信号受信時には自律的に遭難者の救助に向かう自律航行型海洋ブイ及び当該ブイを用いた遭難者救援システムを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る自律航行型海洋ブイは、海上・海中の探査部を有し海洋上で自律的に航行又は定位置を保持する機能を備えることを特徴とする。
 即ち、本発明の一態様に係る自律航行型海洋ブイは、
浮体からなるブイ本体と、
前記ブイ本体に設けられた少なくとも1つの内部センサと、
GPS信号と前記内部センサの情報を受信する検知部と、
海上を探査する海上探査部と、
海中を探査する海中探査部と、
前記検知部より検出された前記ブイ本体の位置情報と海図情報に基づいて設定された目標ルートに沿って前記ブイ本体の航行計画を作成する判断部と、
前記ブイ本体を推進させる推進部と、
前記判断部により生成された前記航行計画に従って前記ブイ本体が航行するように前記推進部の駆動制御を行う航行制御部と、
自然エネルギーで発電する発電部と、
前記発電部で発電された電気を貯蔵し前記ブイ本体内の必要箇所へ電気を供給する蓄電部と、
外部との通信を行う通信部と、
遭難信号を受信して前記遭難信号の発信位置を特定する緊急信号部と、
遭難者が外部から避難するための避難室と、を備え、
前記航行計画に従って設定された海上位置まで自律航行を行う自律航行モードと、
前記設定された海上位置で自律的に定位置を保持する定位置モードと、
前記遭難信号を受信したときに海上の前記遭難信号の前記発信位置まで自律航行を行う救援モードと、を有することを特徴とする。
 上記構成の自律航行型海洋ブイは、GPS信号と内部センサの情報と海図情報とに基づいて海洋上で目的地までの自律的航行と定位置の保持を行う機能に加えて、海難事故時の遭難者を自律的に救援する機能を備えている。一般に、船舶が遭難すると、自動又は手動で遭難信号が送信される。この信号は所定のフォーマットで送信され、遭難した船舶のコールサイン、GPS受信機から得られる遭難位置情報、時計情報などが含まれている。自律航行型海洋ブイは、これらの情報を受信すると、自身から遭難位置までの航行ルートを作成して、外部からの指令を待たずに自律的に遭難位置まで遭難者の救援に向かう。
 そして、上記構成の自律航行型海洋ブイは、遭難者が一時的に滞在することができる避難室を備える。これにより、遭難者を安全な場所へ避難させることができる。
 また、本発明の一態様に係る海洋情報システムは、一定水域内に格子状に配置された複数基の前記自律航行型海洋ブイを備えることを特徴としている。
 上記構成の海洋情報システムによれば、自律航行型海洋ブイが配置された領域について、海上・海中の監視と、気象・海象情報の把握と、海難救助網の構築と、無線通信網の構築とが可能となる。例えば、日本の排他的経済水域内に自律航行型海洋ブイを50kmの等間隔で配置すれば、約2000基が配置される。そうすると日本の排他的経済水域内全ての範囲について海上・海中の監視と気象・海象情報の把握と海難救助網の構築と無線通信網の構築が可能となる。
 本発明によれば、監視ブイとして機能するとともに、遭難信号受信時には自律的に遭難者の救助に向かう自律航行型海洋ブイ及び当該ブイを用いた遭難者救援システムを提供することができる。
図1は、本発明の一実施形態に係る自律航行型海洋ブイの斜視図である。 図2Aは、自律航行型海洋ブイの操舵原理を説明するための図である。 図2Bは、自律航行型海洋ブイの操舵原理を説明するための図である。 図2Cは、自律航行型海洋ブイの操舵原理を説明するための図である。 図2Dは、自律航行型海洋ブイの操舵原理を説明するための図である。 図3Aは、自律航行型海洋ブイの定位置の保持原理を説明するための図である。 図3Bは、自律航行型海洋ブイの定位置の保持原理を説明するための図である。 図3Cは、自律航行型海洋ブイの定位置の保持原理を説明するための図である。 図3Dは、自律航行型海洋ブイの定位置の保持原理を説明するための図である。 図3Eは、自律航行型海洋ブイの定位置の保持原理を説明するための図である。 図4は、自律航行型海洋ブイの制御系統の全体構成を示すブロック図である。 図5は、自律航行型海洋ブイの制御フローを示す図である。 図6は、自律航行型海洋ブイを日本の排他的経済水域内に複数基配置した状態を示す図である。 図7は、自律航行型海洋ブイの救援動作を説明するための図である。
 本発明の実施の形態を、添付図面に基づいて以下に具体的に説明する。
 図1~図3は本発明の一実施形態に係る自律航行型海洋ブイ1を示すものであって、図1は本発明の一実施形態に係る自律航行型海洋ブイ1の斜視図、図2A~2Dは自律航行型海洋ブイ1の操舵原理を説明するための図、図3A~3Eは自律航行型海洋ブイ1の定位置の保持原理を説明するための図である。
 図1を参照すると、本実施形態に自律航行型海洋ブイ1は、浮体からなるブイ本体2を備える。ブイ本体2は、大きさの異なる半割卵を接合した形態を有する。半割卵形状の上部と、上部よりも大きな半割卵形状の下部とが、接合部で接合されている。ブイ本体2の浮力は接合部が海面より上の位置に保持されるように設計される。遭難者は、この接合部の上に搭乗して、ブイ本体2の上部後方に設けられた避難室入口4から内部の避難室4Aに入ることができる。避難室4Aには透明窓6が設けられており、避難室4Aに避難した遭難者は透明窓6を通じて海上を眺めることができる。
 自律航行型海洋ブイ1は、ブイ本体2のうち海上に現れる外部先頭に設けられた通信部70と、ブイ本体2の上部に設けられた太陽光発電パネル64と、ブイ本体2の天井部に設けられた海上探査部20及び検知部10とを備える。さらに、自律航行型海洋ブイ1は、ブイ本体2の上部に設けられた通信部70、太陽光発電パネル64、検知部10、及び、海上探査部20を備える。通信部70には、必要とされる電波の送受信器が装備される。
 ブイ本体2の下部には、円筒形の可動翼支持部510が設けられている。可動翼支持部510の周囲に左可動翼502、右可動翼504、前可動翼506、及び、後可動翼508が設けられている。これらの可動翼502,504,506,508は、各々の回転軸を中心として回転可能である。可動翼支持部510の下端には、海象観測部90と海中探査部30とが設けられている。海象観測部90には、波高、水温、流向、及び、流速の各計測センサが装備される。また、海中探査部30には、360度撮影可能な海中カメラ32、及び、ソナー34が装備される。
 続いて、図2A~2Dを参照して自律航行型海洋ブイ1の操舵原理を説明する。図2A~2Dは自律航行型海洋ブイ1を上から見た図で、定常時(図2A)、直進時(図2B)、左折時(図2C)、右折時(図2D)の状態が示されている。
 定常時(図2A)においては、左可動翼502、右可動翼504、前可動翼506、及び、後可動翼508は垂直方向を向いている。なお、定位置の保持原理については後述する。
 直進時(図2B)は、右可動翼504及び左可動翼502は水平方向を向いている。これにより、自律航行型海洋ブイ1は、海水の抵抗を最小にして目的地まで航行することができる。
 左折時(図2C)は、右可動翼504は水平方向を向き、左可動翼502は垂直方向を向いている。そうすると自律航行型海洋ブイ1の左側の海水の抵抗が増加して、自律航行型海洋ブイ1は左折する。
 右折時(図2D)も左折時(図2C)と方向が異なるが、原理は同様である。
 次に、図3A~3Eを参照して、自律航行型海洋ブイ1の定位置の保持原理を説明する。自律航行型海洋ブイ1は、自律航行により目的地に到着すると、定位置保持モードになり、自律的に自身の位置を定位置に保持しながら監視又は観測を継続する。図3A~3Eは、自律航行型海洋ブイ1を横から見た図で、波の上(図3A)から波の下(図3B)まで下がり、再度波の上(図3E)まで戻る状態が順に示されている。これらの図により、自律航行型海洋ブイ1の現在位置が定位置よりも僅かに後方にずれているときに、自律的に位置修正を行う原理が示されている。
 自律航行型海洋ブイ1が押し寄せる波の上にあるとき(図3A)は、波のあるときの海面900が波のないときの海面902と比べ最も高いときである。このとき左可動翼502及び右可動翼504(図示省略)は垂直方向を向いている。そして、そのまま波のあるときの海面900が下がったとき(図3B)は水平面上同じ位置で最も降下し、(図3A)と比較すると波のないときの海面902と波のあるときの海面900との波高差の2倍降下する。次の波が来たときに自律航行型海洋ブイ1は再度上昇を始めるが、このとき左可動翼502と右可動翼504を垂直方向から後方へ傾斜させる。そうすると上昇時の水流の抵抗で自律航行型海洋ブイ1は、前方に向かって上昇し、最終的に効果を始める前の位置(図3A)よりも僅かに前方に進む。以後この動作を繰り返して定位置を保持する。
 この定位置保持動作は、太陽光発電パネル64で発電された電力をエネルギー源として、操舵用モータ56を駆動させることで実現され、エネルギーの消費は可動翼502,504,506,508の角度制御のみのため僅かである。ただし、悪天候等でこの仕組みだけでは定位置保持が困難な場合は、別途推進駆動源からスクリュー等の推進機構を駆動させて、自律航行型海洋ブイ1を定位置まで航行させる。
 次に、図4を参照して自律航行型海洋ブイ1の機能的構成を説明する。図4は、自律航行型海洋ブイ1の制御系統の全体構成を示すブロック図である。
 図4に示すように、自律航行型海洋ブイ1は、緊急信号部72と、検知部10と、威嚇部15と、海図情報40の記憶部と、通信部70と、気象観測部80と、海上探査部20と、海象観測部90と、海中探査部30と、判断部50と、航行制御部52と、推進部54と、発電部60と、蓄電部62とを備える。判断部50及び航行制御部52は、自律航行型海洋ブイ1の動作を司る制御装置5を構成する。制御装置5は、少なくとも1つのコンピュータで構成され、各コンピュータはプロセッサ、揮発性及び不揮発性メモリ、及び、I/Oインターフェース等を有する。制御装置5では、不揮発性メモリに保存されたプログラムに基づいてプロセッサが揮発性メモリを用いて演算処理することで、各機能が実現される。
 緊急信号部72は、遭難者からの遭難信号を受信する。検知部10は、GPS信号受信器12及び内部センサ14を装備して、自身の位置情報を取得する。威嚇部15は、海上探査部20又は海中探査部30が検知した侵入者に対して、スピーカ17と灯光器19を用いて威嚇動作を行う。海図情報40には、海流データ・電子海図データ・海底地形データ等が含まれる。通信部70は、外部との通信を行う。通信部70は、AIS(船舶自動識別装置)を搭載し、遭難船からの識別符号、船名、位置、針路、船速、行き先などの船舶固有のデータを受信するように構成されていてもよい。さらに、通信部70は、無線の中継基地局としての機能を有することが望ましい。
 気象観測部80は、風向風速82・日射83・相対湿度84・気温85・雨量86・気圧87の計測を行う。海上探査部20は、海上の状態を探査する。海上探査部20は、360度撮影可能な海上カメラ22(ビデオカメラ)や、レーダ24などで構成されていてよい。海象観測部90は、波高92・水温94・流向96・流速98の計測を行う。海中探査部30は、海中を監視する。海中探査部30は、360度撮影可能な海中カメラ32(ビデオカメラ)やソナー34などで構成されていてよい。さらに、海中探査部30は海底地下に存在する海底熱水鉱床やコバルトリッチクラスト等の多様な海洋鉱物資源を探査できる重力計(図示省略)と磁力計(図示省略)を備えていてもよい。重力計は、ブイ本体2の位置する地点の重力を計測して海底下の地質を調べ、重力の変化から海底下に存在する物質の違いと分布を認識する。磁力計は、その地点での磁気異常を検知して、物質の違いと分布を認識する。
 判断部50は、検知部10より検出されたブイ本体2の位置情報と海図情報40とに基づいて設定された目標ルートに沿って、ブイ本体2の航行計画を作成する。航行制御部52は、判断部50により生成された航行計画に従ってブイ本体2が航行するように推進部54の駆動制御を行う。推進部54は、航行制御部52の指令によって操舵用モータ56と推進駆動源58とによりブイ本体2を推進させる。推進部54は、ブイ本体2の航行方向を制御するための舵や、可動翼502,504,506,508の機構を動作させる操舵用モータ56とブイ本体2を推進させるためのスクリューや、ウォータージェットを駆動させる推進駆動源58を備えていてよい。推進駆動源58はモータ又は燃料エンジンであってよい。
 発電部60は、自然エネルギーで発電をする。蓄電部62は、発電部60で発電されたうち余剰な電気エネルギーを蓄えるとともに、発電部60で不足する電気エネルギーを補足する。これらの各機能部は情報伝送路で結ばれており、また、各機能部へ発電部60と蓄電部62とから必要な電力が供給されている。自律航行型海洋ブイ1で消費されるエネルギーは、自然エネルギー発電を行う発電部60と発電部60で発生した電気を蓄える蓄電部62とから供給される。発電部60の余剰な電気が蓄電部62に貯蔵され、発電部60が発電できないとき又は発電部60の電気では不足するときは、蓄電部62から電気が供給される。発電方法は太陽光発電、波力発電が採用される。さらに、自然エネルギー発電が不可の場合に緊急的に発電するために予備的に燃料発電機を装備してもよい。このときは最低必要限のガソリン、軽油等の燃料をブイ本体2に貯蔵しておく。
 次に図5を参照して自律航行型海洋ブイ1の制御の流れを説明する。図5は、自律航行型海洋ブイ1の制御フローを示す図である。
 自律航行型海洋ブイ1の航行制御部52は、遠隔制御モード及びローカル制御モードの複数の制御モードを有する。自律航行型海洋ブイ1の通信部70では、外部からの指令を受信することができ、外部の所定箇所から遠隔制御が行われる。遠隔制御モードには自律航行型海洋ブイ1の全機能を外部の所定箇所から制御可能となる。遠隔制御モードでは、外部から航行の目的地を変更することや、救援設定距離外であっても救援モードに切り替えて遭難者の救援に向かわせることもできる。
 遠隔制御モード及びローカル制御モードの各々は、自律航行モード、定位置モード、及び、救援モードの各モードを含む。
 自律航行モードの自律航行型海洋ブイ1は、検知部10においてGPS信号を受信して自身の絶対位置を把握するとともに、ジャイロセンサ・電子コンパス・速度計等で自身の進行状態を把握して、記憶装置に予め記憶されている海図情報40との比較演算を判断部50で行いながら、判断部50と航行制御部52が推進部54を制御することによって、目的地まで自律的に自動航行を行うことができる。
 定位置モードの自律航行型海洋ブイ1では、自律航行モードと同様な比較演算を行いながら、位置補正を繰り返して定位置を保持する。このとき、ブイ本体2に搭載された海上探査部20が海上の状態監視を行う。さらに、ブイ本体2に搭載された海中探査部30が海中の状態監視を行う。海上探査部20と海中探査部30とが捉えた情報は、通信部70を経由して外部に送信されてよい。
 救援モードの自律航行型海洋ブイ1では、目的地を遭難信号の発信位置として、自律航行モードと同様に、目的地まで自律的に自動航行を行うことができる。
 図5に示すように、制御装置5は、ステップ100で制御を開始すると、先ずステップ102で、制御モードが遠隔制御モードか否かの判定を行う。制御モードが遠隔制御モードであれば、自律航行型海洋ブイ1は外部の所定の箇所から遠隔制御される。制御モードが遠隔制御モードでなければ、制御装置5は、ステップ104でローカル制御モードにて自律航行型海洋ブイ1の制御を開始する。
 ローカル制御モードが開始されると、ステップ106で遭難信号の有無が判断される。遭難信号がなければ、ステップ300で自律航行モードに移行される。自律航行モードでは、ステップ302で目的地の設定処理が行われ、ステップ402からサブルーチンの自律航行プログラムが実行される。
 制御装置5(判断部50)は、ステップ402で、検知部10で検知された情報を利用して自身の現在位置を取得し、ステップ404で現在位置から目的地までの方角・距離を随時計算して航行計画を作成する。そして、制御装置5(航行制御部52)は、ステップ406で、航行計画に従ってブイ本体2を目的地まで航行させる。次に、制御装置5は、ステップ304で目的地に到達したか否かの判断を行い、まだ到達していなければ到達するまでステップ402からステップ304までの処理が繰り返される。
 ステップ304で目的地に到達したと判断されれば、制御装置5は、自律航行型海洋ブイ1の航行を停止して、ステップ308で定位置モードに移行する。ステップ308で定位置モードに移行すれば、次に、制御装置5は、ステップ310で検知部10で検知された情報を利用して自身の現在位置を測位する。
 制御装置5は、ステップ312で、現在位置と目的地との距離を計算して、ステップ314でその距離が予め設定された許容距離よりも大きければ再度自律航行プログラムを実行して、自律航行型海洋ブイ1は目的地までの航行を行う。制御装置5は、ステップ314で現在位置と目的地との距離が許容距離よりも小さければステップ310に戻り、定位置モードの処理を繰り返す。以上が自律航行モードと定位置モードの制御の流れの説明である。
 次に、ステップ106で遭難信号が有った場合の制御を説明する。制御装置5は、ステップ200で遭難位置を受信すると、ステップ202で自身の現在位置を測位する。続いて、制御装置5は、ステップ204で現在位置から遭難位置までの距離を計算する。そして、ステップ206で現在位置から遭難位置までの距離が予め設定された救援設定距離700よりも小さい場合は、ステップ208の救援モードに移行される。
 ステップ208で救援モードになれば、制御装置5は、ステップ210で遭難位置を目的地に設定し直してサブルーチンの自律航行プラグラムを実行する。以後ステップ402~ステップ406の処理は前述のとおりである。
 ステップ212で目的地に到達したと判断されれば、制御装置5は、自律航行型海洋ブイ1の航行を停止して、ステップ318の定位置モードに移行する。以後は、自律航行モードと同じ制御が繰り返されて、自律航行型海洋ブイ1は定位置を保持する。
 最後に、図6と図7を参照して、本発明の一実施形態に係る海洋情報システム100を説明する。図6は、自律航行型海洋ブイ1を日本の排他的経済水域内に格子状に複数基配置した状態を示す図、図7は海洋情報システム100としての自律航行型海洋ブイの救援動作を説明するための図である。
 本実施形態に係る海洋情報システム100は、日本の周囲に設定された排他的経済水域600のエリア内に、ほぼ50km間隔で配置された約2000基の自律航行型海洋ブイ1を備える。この海洋情報システム100によれば、日本の排他的経済水域内全ての範囲について海上・海中の監視と気象・海象情報の把握と海難救助網の構築と無線通信網の構築が可能となる。各自律航行型海洋ブイ1は、前述のとおり通信部70を有し、所定の位置に設けられたサーバ101と情報の送受信が可能である。各自律航行型海洋ブイ1が捉えた情報(例えば、気象・海象情報など)は、リアルタイムでサーバ101へ送信される。つまり、各自律航行型海洋ブイ1が捉えた情報を、所定の箇所においてリアルタイムで把握可能である。
 次に図7を参照して、海洋情報システム100の救援動作について説明する。図7は図6の一部を拡大表示したものである。遭難船710の周囲に8基の自律航行型海洋ブイ1A~1Hが配置されている。自律航行型海洋ブイ1A、自律航行型海洋ブイ1B、及び、自律航行型海洋ブイ1Cは、救援設定距離700内に位置する。自律航行型海洋ブイ1D、自律航行型海洋ブイ1E、自律航行型海洋ブイ1F、自律航行型海洋ブイ1G、及び、自律航行型海洋ブイ1Hは、救援設定距離700外に位置する。救援設定距離700は、適宜設定される。
 遭難船710は遭難信号720を発信しており、この信号を全ての自律航行型海洋ブイ1A~1Hが受信している。各自律航行型海洋ブイ1A~1Hにおいて、制御装置5は、自身の位置と遭難船710の位置との距離算出を行い、その距離が予め設定された救援設定距離700よりも小さければ、自律的に遭難位置まで救援に向かうように自律航行型海洋ブイ1を制御する。即ち、遭難船710から救援設定距離700内に位置する自律航行型海洋ブイ1A、自律航行型海洋ブイ1B、及び、自律航行型海洋ブイ1Cが自律的に遭難船710の救援に向かうことになる。なお、遭難船710の位置は、遭難信号の発信位置である。
 遭難事故の規模が大きい場合には、救援に向かう自律航行型海洋ブイ1の基数を増加させる必要がある。このような場合は、所定の箇所に設けられた中央制御装置(図示略)から遠隔制御によって、必要基数の自律航行型海洋ブイ1の制御モードが強制的に遠隔制御モード且つ救援モードに切り替えられる。救援モードに切り替えられた自律航行型海洋ブイ1は、遭難船710の位置に向かって航行を開始する。自律航行型海洋ブイ1では、ローカル制御モードよりも遠隔制御モードが優先される。
 また、同様に陸上の大災害時には、周辺を航行中の自律航行型海洋ブイ1を沿岸に集めることで、これらの自律航行型海洋ブイ1を被災者の避難場所として使用することもできる。
 加えて、自律航行型海洋ブイ1では、海上探査部20と海中探査部30の機能を利用して、遭難船、遭難者、及び漂流物の捜索を行うこともできる。
 以上に説明したように、本実施形態の自律航行型海洋ブイ1は、浮体からなるブイ本体2と、ブイ本体2に設けられた少なくとも1つの内部センサ14と、GPS信号と内部センサ14の情報を受信する検知部10と、海上を探査する海上探査部20と、海中を探査する海中探査部30と、検知部10より検出されたブイ本体2の位置情報と海図情報40に基づいて設定された目標ルートに沿ってブイ本体2の航行計画を作成する判断部50と、ブイ本体2を推進させる推進部54と、判断部50により生成された航行計画に従ってブイ本体2が航行するように推進部54の駆動制御を行う航行制御部52と、自然エネルギーで発電する発電部60と、発電部60で発電された電気を貯蔵しブイ本体2内の必要箇所へ電気を供給する蓄電部62と、外部との通信を行う通信部70と、遭難信号を受信して遭難信号の発信位置を特定する緊急信号部72と、遭難者を収容する避難室4Aと、を備える。そして、自律航行型海洋ブイ1は、設定された海上位置まで自律航行を行う自律航行モードと、設定された海上位置で自律的に定位置を保持する定位置モードと、遭難信号を受信したときに海上の遭難信号の発信位置まで自律航行を行う救援モードと、を有する。
 上記構成の自律航行型海洋ブイ1は、GPS信号と内部センサ14の情報と海図情報40とに基づいて海洋上で目的地までの自律的航行と定位置の保持を行う機能に加えて、海難事故時の遭難者を自律的に救援する機能を備えている。一般に、船舶が遭難すると、自動又は手動で遭難信号が送信される。この信号は所定のフォーマットで送信され、遭難した船舶のコールサイン、GPS受信機から得られる遭難位置情報、時計情報などが含まれている。自律航行型海洋ブイ1は、これらの情報を受信すると救援モードとなり、自身から遭難位置までの航行ルートを自動的に作成して、外部からの指令を待たずに自律的に遭難位置まで遭難者の救援に向かう。海難事故の多発地点に自律航行型海洋ブイ1を複数配置すると、更に効果的である。
 そして、上記構成の自律航行型海洋ブイ1は、遭難者が一時的に滞在することができる避難室4Aを備える。避難室4Aへの入口4は、ブイ本体2上部に設けられていてよい。遭難者は、ブイ本体2に乗り移った後、避難室4Aの入口4を開けて避難室4A内に入る。避難室4Aには、飲食物、寝具、簡易トイレ等、人間が数日間居住するために必要な最低限の物資が備え付けられていることが望ましい。また、ブイ本体2に、避難室4Aから外部を展望できる透明窓6が設けられていててもよい。
 また、本実施形態に係る自律航行型海洋ブイ1は、緊急信号部72が遭難信号を受信すれば、遭難信号の発信位置から所定の距離内にあることを条件として自律的に遭難信号の発信位置まで救助に向かうように構成されている。
 上記構成の自律航行型海洋ブイ1は、通信部70により遭難船710の位置情報を受信すると自身から遭難位置までの距離を算出して、その距離が予め設定された救援設定距離700よりも小さい場合には、救援モードに入り、外部からの指令を待たずに自律的に遭難位置まで遭難者の救援に向かう。これにより自律航行型海洋ブイ1を複数配置した場合に、遭難信号を受信した全ての自律航行型海洋ブイ1が救援に向かうという現象を回避できる。
 また、本実施形態に係る自律航行型海洋ブイ1は、ブイ本体2の海中に位置する外部に設けられた回転可能な薄板状の複数の可動翼502,504,506,508を、更に備え、少なくとも一つの可動翼の回転軸の延伸方向がブイ本体2の進行方向と同一であり、航行制御部52が、複数の可動翼502,504,506,508の回転角を制御することで、波によるブイ本体2の上下運動によりブイ本体2を定位置に保持するように構成されている。
 上記構成の自律航行型海洋ブイ1において、ブイ本体2は波により絶対的な位置が上下動する。海中にある可動翼502,504,506,508も海面が上昇するときに海中を上昇し、海面が下降するときに海中を降下する。このとき可動翼502,504,506,508の角度を制御することで、ブイ本体2の位置を変化させることができる。可動翼502,504,506,508の角度制御を繰り返すことにより、ブイ本体2は定位置を保持することができる。また、ブイ本体2の進行方向と同一方向に延伸する回転軸を有する可動翼を垂直に保持することで、目的地へ航行するときの直進性確保が可能となる。
 また、本実施形態に係る自律航行型海洋ブイ1は、ブイ本体2の進行方向に直交する第1の回転軸504aを中心にブイ本体2の右側に回転可能に設けられた薄板状の第1の可動翼504と、ブイ本体2の進行方向に直交する第2の回転軸502aを中心にブイ本体2の左側に回転可能に設けられた薄板状の第2の可動翼502と、ブイ本体2の進行方向に並行する第3の回転軸506aを中心にブイ本体2の前側に回転可能に設けられた薄板状の第3の可動翼506と、ブイ本体2の進行方向に並行する第4の回転軸508aを中心にブイ本体2の前側に回転可能に設けられた薄板状の第4の可動翼508と、を備える。ここで、ブイ本体2から見て進行方向を前、前の反対側を後、ブイ本体2から見て左右が規定されている。
 上記構成の自律航行型海洋ブイ1は、ブイ本体2の左右に設けられた第1の可動翼504と第2の可動翼502とにより、目的地への航行の際に進行方向を制御することができる。また、ブイ本体2の前後に設けられた第3の可動翼506と第4の可動翼508とが垂直に保たれ、第1の可動翼504と第2の可動翼502の角度が制御されることによって、ブイ本体2は左右に曲がることができる。ブイ本体2が右に曲がるときは、第1の可動翼504が垂直方向に保持され、第2の可動翼502が水平方向に保持される。
 また、本実施形態に係る自律航行型海洋ブイ1は、気象を観測する気象観測部80と、海象を観測する海象観測部90とを、更に備える。
 このように気象観測部80と海象観測部90とを備えることで、海上と海中の自然現象を常時観測することができる。気象観測部80は、風向・風速、日射、相対湿度、気温、雨量、気圧の観測装置を備え、海象観測部90は、波高、水温、流向、流速の観測装置を備えていてよい。この観測情報は、ブイ本体2に装備された記憶装置に記憶されるとともに、通信部70を経由して所定箇所にも伝送され、気象予報や船舶の経済運行、漁業他の産業、マリンレジャー、救命の分野で利用されてよい。
 また、本実施形態に係る自律航行型海洋ブイ1は、海上探査部20又は海中探査部30が一定のエリア内に侵入した移動物体を検知したときに、通信部70が外部の所定の箇所に通報を行うように構成されている。
 これにより、海上探査部20が監視区域内に侵入した不審な船舶等の移動物体を発見したとき、又は海中探査部30が監視区域内に侵入した不審な潜水艦等の移動物体を発見したときは、通信部70を介して外部の所定の箇所に通報が行われる。発見した侵入者の判別はAISで行うことができる。また、海上探査部20及び海中探査部30において、カメラの映像による移動物体の自動検知は、画像上に警戒線を設定して画像処理を行う公知の技術で実現され得る。
 上記の自律航行型海洋ブイ1は、威嚇部15を更に備え、海上探査部20又は海中探査部30が一定のエリア内に侵入した移動物体を検知したときに、通信部70が自動的に外部の所定の箇所に通報を行うとともに、威嚇部15が威嚇動作を行うように構成されていてもよい。威嚇は、スピーカ17による音声警告、灯光器19による照射等によって行われてよい。威嚇は、検知した移動物体がAISにより不審な船舶と判定された場合にのみ行われてもよい。
 また、本実施形態に係る自律航行型海洋ブイ1は、通信部70が無線の中継基地局としての機能を有している。
 例えば、携帯電話の海上での通話は沿岸基地局と一部の船上基地局からの電波で行われているが、それらの基地局がカバーするエリアは限られており、実質的に沿岸から遠く離れた海上では携帯電話は使用できない。また、海上では通信衛星を利用しての通話が可能であるが、地上での携帯電話のような利便性はない。また緊急時に地上の基地局が使用不能になった場合に、携帯電話の中継基地局を気球やドローンに載せて通信可能エリアを確保する実験も行われている。
 上記のように自律航行型海洋ブイ1に無線の中継基地局としての機能を持たせ、海上の所要箇所に配置することにより、海上でも地上と同様に快適な無線通信環境を構築することができる。また、例えば、大地震等の陸地の大災害発生時において陸上の無線基地局が使用不能となった場合に、周辺を航行中の自律航行型海洋ブイ1を沿岸に集めることで、これらの自律航行型海洋ブイ1で陸上通信用の無線基地局としての機能を補完することができる。
 また、本実施形態に係る自律航行型海洋ブイ1は、ローカル制御モードと外部から遠隔制御を受ける遠隔制御モードとを有し、遠隔制御モードがローカル制御モードに対し優先される。
 これにより、例えば、規模の大きな遭難事故が発生した場合に、遭難船710から救援設定距離700よりも遠い位置にある自律航行型海洋ブイ1は、ローカル制御モードでは救援モードとはならないが、遠隔制御モードで強制的に救援モードとして、救援に向かわせることができる。
 また、本実施形態に係る海洋情報システム100は、一定水域内に格子状に配置された複数基の自律航行型海洋ブイ1を備えることを特徴とする。
 上記構成の海洋情報システム100によれば、自律航行型海洋ブイ1が配置された領域について、海上・海中の監視と、気象・海象情報の把握と、海難救助網の構築と、無線通信網の構築とが可能となる。例えば、日本の排他的経済水域内に自律航行型海洋ブイ1を50kmの等間隔で配置すれば、約2000基が配置される。そうすると日本の排他的経済水域内全ての範囲について海上・海中の監視と気象・海象情報の把握と海難救助網の構築と無線通信網の構築が可能となる。
  1 自律航行型海洋ブイ
  1A~1H 格子状に配置された自律航行型海洋ブイ
  2 ブイ本体
  4 避難室入口
  4A 避難室
  5 制御装置
  6 透明窓
 10 検知部
 12 GPS信号受信器
 14 内部センサ
 15 威嚇部
 17 スピーカ
 19 灯光器
 20 海上探査部
 22 海上カメラ
 24 レーダ
 30 海中探査部
 32 海中カメラ
 34 ソナー
 40 海図情報
 42 監視カメラ
 50 判断部
 52 航行制御部
 54 推進部
 56 操舵用モータ
 58 推進駆動源
 60 発電部
 62 蓄電部
 64 太陽光発電パネル
 70 通信部
 72 緊急信号部
 80 気象観測部
 82 風向・風速
 83 日射
 84 相対温度
 85 気温
 86 雨量
 87 気圧
 90 海象観測部
 92 波高
 94 水温
 96 流向
 98 流速
100 海洋情報システム
101 サーバ
502 左可動翼(第2の可動翼)
504 右可動翼(第1の可動翼)
506 前可動翼(第3の可動翼)
508 後可動翼(第4の可動翼)
510 可動翼支持部
600 排他的経済水域
700 救援設定距離
710 遭難船
720 遭難信号
900 波のあるときの海面
902 波のないときの海面

Claims (10)

  1. 浮体からなるブイ本体と、
    前記ブイ本体に設けられた少なくとも1つの内部センサと、
    GPS信号と前記内部センサの情報を受信する検知部と、
    海上を探査する海上探査部と、
    海中を探査する海中探査部と、
    前記検知部より検出された前記ブイ本体の位置情報と海図情報に基づいて設定された目標ルートに沿って前記ブイ本体の航行計画を作成する判断部と、
    前記ブイ本体を推進させる推進部と、
    前記判断部により生成された前記航行計画に従って前記ブイ本体が航行するように前記推進部の駆動制御を行う航行制御部と、
    自然エネルギーで発電する発電部と、
    前記発電部で発電された電気を貯蔵し前記ブイ本体内の必要箇所へ電気を供給する蓄電部と、
    外部との通信を行う通信部と、
    遭難信号を受信して前記遭難信号の発信位置を特定する緊急信号部と、
    遭難者を収容する避難室と、を備え、
    設定された海上位置まで自律航行を行う自律航行モードと、
    前記設定された海上位置で自律的に定位置を保持する定位置モードと、
    前記遭難信号を受信したときに海上の前記遭難信号の前記発信位置まで自律航行を行う救援モードと、を有する、
    自律航行型海洋ブイ。
  2.  前記緊急信号部が前記遭難信号を受信すれば、前記遭難信号の前記発信位置から所定の距離内にあることを条件として自律的に前記遭難信号の前記発信位置まで救助に向かう、
    請求項1に記載の自律航行型海洋ブイ。
  3.  前記ブイ本体の海中に位置する外部に設けられた回転可能な薄板状の複数の可動翼を、更に備え、
    少なくとも一つの前記可動翼の回転軸の延伸方向が前記ブイ本体の進行方向と同一であり、
    前記航行制御部が、前記複数の可動翼の回転角を制御することで、波による前記ブイ本体の上下運動により前記ブイ本体を定位置に保持するように構成されている、
    請求項1又は2に記載の自律航行型海洋ブイ。
  4.  前記ブイ本体の進行方向に直交する第1の回転軸を中心に前記ブイ本体の右側に回転可能に設けられた薄板状の第1の可動翼と、
     前記ブイ本体の進行方向に直交する第2の回転軸を中心に前記ブイ本体の左側に回転可能に設けられた薄板状の第2の可動翼と、
     前記ブイ本体の進行方向に並行する第3の回転軸を中心に前記ブイ本体の前側に回転可能に設けられた薄板状の第3の可動翼と、
     前記ブイ本体の進行方向に並行する第4の回転軸を中心に前記ブイ本体の前側に回転可能に設けられた薄板状の第4の可動翼と、を更に備える、
    請求項1又は2に記載の自律航行型海洋ブイ。
  5.  気象を観測する気象観測部と、海象を観測する海象観測部とを、更に備える、
    請求項1~4のいずれか1項に記載の自律航行型海洋ブイ。
  6.  前記海上探査部又は前記海中探査部が一定のエリア内に侵入した移動物体を検知したときに、前記通信部が外部の所定の箇所に通報を行うように構成されている、
    請求項1~5のいずれか1項に記載の自律航行型海洋ブイ。
  7.  威嚇部を更に備え、
     前記海上探査部又は前記海中探査部が一定のエリア内に侵入した移動物体を検知したときに、前記通信部が自動的に外部の所定の箇所に通報を行うとともに、前記威嚇部が威嚇動作を行うように構成されている、
    請求項1~5のいずれか1項に記載の自律航行型海洋ブイ。
  8.  前記通信部が無線の中継基地局としての機能を有する、
    請求項1~7のいずれか1項に記載の自律航行型海洋ブイ。
  9.  ローカル制御モードと外部から遠隔制御を受ける遠隔制御モードとを有し、前記遠隔制御モードが前記ローカル制御モードに対し優先される、
    請求項1~8のいずれか1項に記載の自律航行型海洋ブイ。
  10.  一定水域内に格子状に配置された複数基の請求項1~9のいずれか1項に記載の自律航行型海洋ブイを備える、海洋情報システム。
PCT/JP2019/032310 2019-08-19 2019-08-19 自律航行型海洋ブイとこれを用いた海洋情報システム WO2020121597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/757,731 US20220185436A1 (en) 2019-08-19 2019-08-19 Autonomous navigation type marine buoy and marine information system using the same
PCT/JP2019/032310 WO2020121597A1 (ja) 2019-08-19 2019-08-19 自律航行型海洋ブイとこれを用いた海洋情報システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032310 WO2020121597A1 (ja) 2019-08-19 2019-08-19 自律航行型海洋ブイとこれを用いた海洋情報システム

Publications (1)

Publication Number Publication Date
WO2020121597A1 true WO2020121597A1 (ja) 2020-06-18

Family

ID=71075528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032310 WO2020121597A1 (ja) 2019-08-19 2019-08-19 自律航行型海洋ブイとこれを用いた海洋情報システム

Country Status (2)

Country Link
US (1) US20220185436A1 (ja)
WO (1) WO2020121597A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896054A (zh) * 2020-08-05 2020-11-06 自然资源部第一海洋研究所 一种用于海洋环境预报的观测装置
CN113485331A (zh) * 2021-07-01 2021-10-08 西北工业大学 一种自回归式海洋浮标及回归方法
CN114194335A (zh) * 2021-12-27 2022-03-18 湖北中南鹏力海洋探测系统工程有限公司 一种带动力装置的智能型漂流浮标

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088142A (ja) * 2020-12-02 2022-06-14 ヤマハ発動機株式会社 距離認識システムおよびその制御方法、船舶
CN115426643A (zh) * 2022-10-14 2022-12-02 北京星天科技有限公司 一种基于北斗短报文的海上应急系统及海上应急检测救援方法
CN117125226B (zh) * 2023-03-27 2024-02-02 东台市海一船用设备有限公司 一种海上救援高密封性潜水设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110294A (ja) * 1975-03-24 1976-09-29 Shin Meiwa Ind Co Ltd Mujinkansokubui
JPS63170189A (ja) * 1986-12-29 1988-07-14 Nec Corp 定点保持用ブイシステム
JPH0527025A (ja) * 1991-07-22 1993-02-05 Oki Electric Ind Co Ltd 船舶接近警戒システム
JPH1090017A (ja) * 1996-09-12 1998-04-10 Japan Aviation Electron Ind Ltd 海面定点を浮遊する多目的ポッド
JP2001341693A (ja) * 2000-06-01 2001-12-11 Toyo Commun Equip Co Ltd 海洋観測ブイ
JP2004191268A (ja) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd ブイ、ブイ装置及び波浪情報計測装置
JP2008100536A (ja) * 2006-10-17 2008-05-01 Osaka Univ 無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法
JP2009196503A (ja) * 2008-02-21 2009-09-03 Kenwood Corp 画像データ伝送ブイ
JP2010030550A (ja) * 2008-07-31 2010-02-12 Kenwood Corp 観測用漂流ブイの自沈没装置
JP2017184034A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 海洋ネットワークシステム、ブイ、海中での物体制御システム、海中通信方法、海中での物体制御方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688052B1 (en) * 2011-09-23 2016-09-21 Aeromarine S. L. Maritime alarm and rescue system and method for controlling said system
US10719077B2 (en) * 2016-10-13 2020-07-21 Navico Holding As Castable sonar devices and operations in a marine environment
FR3062493A1 (fr) * 2017-01-27 2018-08-03 Airbus Helicopters Procede et systeme d'aide a l'approche et la mise en vol stationnaire relatif d'un giravion vis-a-vis d'une cible mobile
US10597128B2 (en) * 2017-12-18 2020-03-24 United States Of America As Represented By The Secretary Of Te Navy Diver navigation, information and safety buoy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110294A (ja) * 1975-03-24 1976-09-29 Shin Meiwa Ind Co Ltd Mujinkansokubui
JPS63170189A (ja) * 1986-12-29 1988-07-14 Nec Corp 定点保持用ブイシステム
JPH0527025A (ja) * 1991-07-22 1993-02-05 Oki Electric Ind Co Ltd 船舶接近警戒システム
JPH1090017A (ja) * 1996-09-12 1998-04-10 Japan Aviation Electron Ind Ltd 海面定点を浮遊する多目的ポッド
JP2001341693A (ja) * 2000-06-01 2001-12-11 Toyo Commun Equip Co Ltd 海洋観測ブイ
JP2004191268A (ja) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd ブイ、ブイ装置及び波浪情報計測装置
JP2008100536A (ja) * 2006-10-17 2008-05-01 Osaka Univ 無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法
JP2009196503A (ja) * 2008-02-21 2009-09-03 Kenwood Corp 画像データ伝送ブイ
JP2010030550A (ja) * 2008-07-31 2010-02-12 Kenwood Corp 観測用漂流ブイの自沈没装置
JP2017184034A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 海洋ネットワークシステム、ブイ、海中での物体制御システム、海中通信方法、海中での物体制御方法及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896054A (zh) * 2020-08-05 2020-11-06 自然资源部第一海洋研究所 一种用于海洋环境预报的观测装置
CN113485331A (zh) * 2021-07-01 2021-10-08 西北工业大学 一种自回归式海洋浮标及回归方法
CN114194335A (zh) * 2021-12-27 2022-03-18 湖北中南鹏力海洋探测系统工程有限公司 一种带动力装置的智能型漂流浮标

Also Published As

Publication number Publication date
US20220185436A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020121597A1 (ja) 自律航行型海洋ブイとこれを用いた海洋情報システム
US9606220B2 (en) Satellite and acoustic tracking device
EP3778373B1 (en) Unmanned surface vessel for remotely operated underwater vehicle operations
KR101710613B1 (ko) 수중익을 구비한 수중드론을 이용한 실시간 파랑-유속 관측방법 및 그 장치
JP2007500638A (ja) 無人海洋艇
US20190202532A1 (en) Manoeuvring device and method therof
KR101277002B1 (ko) 무인수상로봇
EP3501966A1 (en) An unmanned marine surface vessel
JP6568615B1 (ja) 自律航行型海洋ブイとこれを用いた海洋情報システム
EP3696078A1 (en) A method and system for piloting an unmanned marine surface vessel
JP2021049985A (ja) 無人飛行体を用いた水中調査システム及び水中調査方法
EP3647829A1 (en) Image processing for an unmanned marine surface vessel
JP2022145659A (ja) 水上中継機と水中航走体との連結システム及びその運用方法
RU2766365C1 (ru) Контролируемый мобильный гидроакустический буй-маяк
RU206765U1 (ru) Управляемое устройство для проведения поисковых, спасательных, мониторинговых работ под водой
WO2022196812A1 (ja) 水上中継機と水中航走体との連結システム及びその運用方法
Øveraas et al. Monitoring the Growth of Coastal Algae Blooms in Harsh Weather Conditions Using a Wave-Propelled ASV: Challenges and Lessons Learned
Lee et al. Recent R&D activities on underwater vehicles in Korea for ocean exploration and observation
KR20230117998A (ko) 안전관리 및 유지보수 가능한 부유식 해상풍력발전단지 관제시스템
Creuze et al. Design, simulation and experimental results of Taipan 300, a new Autonomous Underwater Vehicle prototype
PT104558A (pt) Sistema de vigilância e resgate
Millard et al. AUTOSUB-1. From test-tank to autonomy and the science beyond
Rechnitzer et al. An Assessment of Remotely Operated Vehicles to Support the AEAS Program in the Arctic
Defilippo et al. REx 4-An Autonomous Surface Vessel for Marine Research
MOT'LY AD-A231 730

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19897388

Country of ref document: EP

Kind code of ref document: A1