WO2020119694A1 - 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板 - Google Patents

钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板 Download PDF

Info

Publication number
WO2020119694A1
WO2020119694A1 PCT/CN2019/124402 CN2019124402W WO2020119694A1 WO 2020119694 A1 WO2020119694 A1 WO 2020119694A1 CN 2019124402 W CN2019124402 W CN 2019124402W WO 2020119694 A1 WO2020119694 A1 WO 2020119694A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
tempered glass
tempered
glass plate
vacuum
Prior art date
Application number
PCT/CN2019/124402
Other languages
English (en)
French (fr)
Inventor
徐宝安
Original Assignee
淄博环能海臣环保技术服务有限公司
徐宝安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博环能海臣环保技术服务有限公司, 徐宝安 filed Critical 淄博环能海臣环保技术服务有限公司
Publication of WO2020119694A1 publication Critical patent/WO2020119694A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/24Making hollow glass sheets or bricks
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention belongs to the field of interlayer vacuum thermal insulation light-transmitting tempered glass sheet manufacturing.
  • the mainstream of functional glass is insulating glass and vacuum glass.
  • the insulating performance of insulating glass is not ideal, because there is no mutual support between the two layers of glass, and they cannot borrow each other, making the glass weak against wind pressure and easily broken due to glass resonance.
  • Vacuum glass relies on the special structure of the vacuum layer, which can effectively block the heat conduction inside and outside. It can significantly reduce air conditioning power consumption and emissions of pollutants and greenhouse gases, and reduce environmental pollution.
  • vacuum layer of vacuum glass can effectively block the transmission of sound, especially for the low and medium frequencies with strong penetration, and the effect is very significant.
  • the interior of the vacuum glass is in a vacuum state and is not affected by the atmospheric pressure, and is suitable for various altitude regions; at the same time, the vacuum glass can maintain its excellent performance at all locations of the building, including the facade and the slope And the roof, there is no problem that the air convection increases when the hollow glass is laid flat, which leads to a decrease in performance, but the vacuum glass is not tempered glass.
  • Vacuum glass is made of two layers of tempered glass plates sandwiched between supports, and the periphery is made of hot-melt low-temperature glass sealing adhesive bonding and vacuum sealing.
  • Vacuum glass is currently the best transparent energy-saving functional glass, with a series of advantages such as light weight, thin thickness, small heat transfer coefficient, good sound insulation effect, etc. It is an ideal energy-saving building material. However, because of its expensive production cost and the inability to meet the safety requirements of toughened glass required by high-rise buildings, it has not yet been applied on a large scale.
  • the sealing adhesive around the vacuum glass is bonded to a low-temperature glass fusion seal, its manufacturing process, cost, yield, mechanical properties and size specifications Both are greatly restricted, and it is difficult to achieve the tempering treatment of the tempered glass plate, which affects the strength and safety performance of the glass. Once the glass frit is damaged due to stress or other reasons, the entire vacuum glass will lose good sound insulation and thermal insulation performance.
  • vacuum glass that is, the two original glass pieces are separated by a small lattice of support objects, and the periphery is sealed with a low-melting glass frit. After the "exhaust" is sealed through the glass exhaust pipe, the air pressure is lower than O. Vacuum layer with lPa thickness of only 0.1-0.3mm.
  • vacuum glass must be completed through multiple processes, including: 1) drilling of the suction port, 2) the placement of the support, 3) the coating of the glass brazing material, 4) the glass plywood, 5) high temperature edge sealing/ Brazing of the exhaust port, 6) high temperature exhaust/sealing, and 7) getter unsealing.
  • the above-mentioned high-temperature edge-sealing process is the main reason that the existing vacuum glass cannot meet the safety standards of high-rise buildings.
  • the standard requires that high-rise building glass components must be made of tempered glass.
  • the melting temperature of the existing high-temperature edge-sealing glass brazing material exceeds 550°C, which is much higher than the annealing temperature of conventional tempered glass of 388°C, so even if tempered glass is used to manufacture vacuum glass, it will still be in the edge-sealing process.
  • the middle is annealed into ordinary glass.
  • This application provides a vacuum glass and a manufacturing method thereof. It uses a micro-bump support integrated with the original glass sheet to replace the existing stainless steel support deployment process, and the use of the original glass will not cause the original glass Annealed low-temperature metal tin brazing technology for edge sealing, and simple integration of the traditional vacuum layer extraction process and the edge sealing process into an integrated process of extraction and sealing.
  • the surface of the glass needs to be electrolessly plated with copper metal on the basis of the original process.
  • the workpiece needs to be heated to 550°C with the furnace, and the temperature in the furnace is kept to 4xlO-2Pa, so that the temperature of each part of the workpiece is uniform, and the soldering furnace needs to be continued.
  • the temperature of the vacuum glass is below 50°C.
  • glass is an insulator and is normally non-conductive, but at high temperatures (above 500°C) the situation will change.
  • Glass is a transparent solid, which is a semi-liquid substance that forms a continuous network structure when it melts. During cooling, the viscosity gradually increases and hardens without crystallizing silicates. The higher the temperature of the glass body, the greater the voltage across the glass body, and the stronger the glass's conductivity. There are two factors that cause the glass body to conduct electricity. One is high temperature, and the other is voltage. Of course, high temperature is the most important factor.
  • the so-called conductors and insulators refer to the distinction between the conductive properties of the material in the normal state.
  • some insulators can be conductive.
  • the high temperature makes the electrons in the glass break free of the atoms and form free electrons, thus having the ability to conduct electricity.
  • the voltage across the terminals ionizes the heated glass and conducts electricity. The higher the temperature of the glass body, the higher the voltage across it, and the stronger its conductivity.
  • the present invention utilizes the characteristics of the tempered glass edge heating, the tempered glass will change from an insulator to a conductor, through the voltage applied on both sides of the tempered glass, to achieve resistance welding of the tempered glass. Therefore, the resistance heat capacity welding of the raw materials is realized without the use of other materials and dielectric materials as the brazing agent, thus achieving the advantages of stable performance, low cost, simple process, low stress and other advantages of the tempered glass hot melt welding.
  • tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation transparent tempered glass plate including tempered glass plate, gap isolation support, closed-loop glass support. It is characterized by: two tempered glass plates with corresponding contour shapes and sizes corresponding to each other are isolated and supported by the gap between the two tempered glass plates and filled with gaps.
  • the closed-loop glass support is hollowed out between the two tempered glass plates Isolate the gap to form a double-layer tempered glass plate with spaced interlayer cavity.
  • connection and sealing pipe parts are connected and sealed by connecting fasteners and an airtight sealing adhesive.
  • One of the two tempered glass plates corresponding to each other in contour shape, size and size is provided with a composite integral with the tempered glass plate, distributed with a little array of convex points and spaced apart and supported. Or both tempered glass plates It is integrated with the tempered glass plate, and is distributed and supported by a series of convex points and gaps.
  • This tempered glass plate is an embossed tempered glass plate formed by pressing a tempered glass plate by a roll. Laminate the two tempered glass plates directly, or bond the raised support points of the two tempered glass plates, and isolate the supports by the gap between the two tempered glass plates to form a hollow space between the two tempered glass plates Isolate the gap. This process may be synchronized with the glass production process.
  • (B) or bump tempered glass plate is the original glass, by printing glass powder paste, and then made by hot melt method
  • the hot-melt glass powder paste becomes a supporting bump, and this process may be synchronized with the glass tempering. Laminate the two tempered glass plates directly, or bond the raised support points of the two tempered glass plates, and isolate the supports by the gap between the two tempered glass plates to form a hollow space between the two tempered glass plates Isolate the gap.
  • this tempered glass plate is a lattice-shaped convex clad tempered glass plate formed by pressing and stretching through a mold. Laminate the two tempered glass plates directly, or bond the raised support points of the two tempered glass plates, and isolate the supports by the gap between the two tempered glass plates to form a hollow space between the two tempered glass plates Isolation gap
  • the convex corrugated groove is a tempered glass plate formed by pressing and stretching through a mold. Laminate the two tempered glass plates directly, or glue the two convex support points of the tempered glass plates together, and cross and stack them through the raised corrugated grooves on the two tempered glass plates, between the two tempered glass plates Hollow isolation gaps are formed. This process may be synchronized with glass tempering.
  • the tempered glass plate is a tempered glass plate that is isolated and supported by an adhesive lattice distribution gap. Laminate the two tempered glass plates directly, or bond the raised support points of the two tempered glass plates, and isolate the supports by the gap between the two tempered glass plates to form a hollow space between the two tempered glass plates Isolate the gap.
  • the material of the closed-loop glass gasket frame is the same as the material of the tempered glass plate.
  • the edge of the tempered glass plate is filled with gaps and closed-loop glass supports, and the closed-loop tempered glass plate frame fills the gap of the gap-isolated support, and its thickness is equal to the height of the single gap-isolated support, or the sum of the relative gap-isolated support and the relative superimposed height.
  • This process may be synchronized with glass tempering.
  • Hot-melt glass powder paste becomes a closed-loop glass support to fill gaps, and this process may be synchronized with glass tempering.
  • the closed-loop glass gasket frame made of printed glass powder paste has the same material as the tempered glass plate.
  • edges of the two tempered glass plates are aligned and folded together, and the edges of the two tempered glass plates are electrically heated so that the edges of the two tempered glass plates reach the glass conduction temperature.
  • the resistance hot melt welding power supply is connected to the edges of the two tempered glass plates, and the relative pressure is applied by the electric heating roller to make the gap closed and the closed-loop glass is supported, and the glass resistance hot melt welding with the two tempered glass plates is formed, leaving Double-layer tempered glass plate with glass welding at the edge of the hollow interlayer:
  • the glass resistance hot-melt welding circuit is provided with a ballast, which is used to solve the problem that the glass resistance becomes smaller and the current becomes larger due to the increase in temperature after the glass resistance hot-melt welding. .
  • the outer periphery of the vacuum laminated tempered glass plate body is wrapped with a closed-loop corrugated stainless steel frame with a U-shaped cross section, and the groove of the corrugated stainless steel frame is filled with structural sealant.
  • a closed-loop corrugated stainless steel frame with a “U” section stretch the outer periphery of the vacuum sandwich tempered glass plate body, and use the self-rebound of the closed-loop corrugated stainless steel frame to make the section with a “U”-shaped closed-loop corrugation
  • the stainless steel frame is tightly bonded to the outer periphery of the vacuum sandwich tempered glass plate.
  • the blocking head of the pipe is provided with a vent groove, and the outer wall of the pipe is provided with a thread.
  • the thread of the pipe is correspondingly provided with a root as a tooth, and the upward is Conical nut.
  • the thread of the pipe fitting is tightly sealed on the hollow interlayer tempered glass plate body through the airtight sealant and the nut. Or the thread of the pipe fitting is sealed on the hollow interlayer tempered glass plate body by brazing and screwing the nut through the low melting point metal.
  • the cross-section is "T" shaped pipe with stopper or magnetic material.
  • a glass resistance welding machine for manufacturing tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate including electrothermal welding roller, support bracket, power supply device, control operation device. Its characteristics are: the edges of the two tempered glass plates are aligned together, and the edges of the two tempered glass plates are electrically welded by a pair of electric heating resistance hot-melt welding rollers provided on the edge of the glass.
  • the electric heating resistance hot-melt welding roller is provided with an electric heating power source and a resistance hot-melt welding power source, respectively, so that the roller generates heat to heat the tempered glass plate and realize the resistance hot-melt welding between the tempered glass plates.
  • the three sets of power supply alternately supply power.
  • the power supply on the two electric heating rollers is set on the diameter of the roller. Heat is generated by the resistance of the roller itself, and the heat is transferred to the two tempered glass plates through conduction, so that the tempered glass plate temperature increases and conducts electricity.
  • the electric resistance hot-melt welding power source is provided on two opposite sides of the two tempered glass plates, and the tempered glass plates are heated and welded by electricity.
  • the insulator is gradually transformed into semiconductors and conductors.
  • pressure is applied to the rollers and current flows, the glass will heat and soften and deform, and it will be between the deformed layers of the glass. Heat is generated due to conduction, making the temperature of the conductive glass higher than the temperature of the glass in other places.
  • the conductive melting of the glass is generated, and a good glass hot-melt welding between glass is achieved.
  • Glass resistance hot-melt The temperature of the glass increases after welding, and the glass resistance becomes smaller. When the voltage is constant, the current will increase. Therefore, the glass resistance hot-melt welding circuit is provided with a ballast.
  • An electric heating resistance hot-melt welding roller is provided with a heat preservation device. The tempered glass plate can quickly cool the edge of the glass by resistance welding, and the tempered glass edge can be tempered again.
  • a glass resistance welding machine for manufacturing a tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate includes an electrothermal welding roller, a support bracket, a power supply device, and a control operation device. Its characteristics are: the edges of two tempered glass plates are aligned together, and two pairs of electric heating resistance hot-melt welding rollers arranged on the edge of the glass are used to perform electrical heating and resistance hot-melt glass welding on the edges of the two tempered glass plates .
  • the electric heating and resistance hot-melt welding rollers are respectively provided with an electric heating power source and a resistance hot-melt welding power source, respectively, so that the electric heating roller generates heat to heat the tempered glass plate and make the tempered glass plate conductive.
  • the resistance hot melt welding roller is energized to realize resistance hot melt welding between tempered glass plates.
  • the two sets of power sources are respectively set on the diameter of the electrically heated roller, and heat is generated by the resistance of the roller itself, and the heat is transferred to the two tempered glass plates through conduction, so that the tempered glass plate temperature increases and conducts electricity.
  • the resistance hot-melt welding power source is provided on two opposite sides of the two tempered glass plates, and the tempered glass plates are electrically heated to perform hot-melt glass welding.
  • the glass changes from solid to softening, the glass gradually transforms from an insulator to a semiconductor or a conductor.
  • the roller is pressed relatively, when a current passes through the glass, the glass will deform, which will cause the glass layer to layer.
  • Electric heating resistance hot melt welding roller wire welding welds two pieces of tempered glass plates together. After the glass resistance hot melt welding, the temperature of the glass increases, and the glass resistance becomes smaller. When the voltage is constant, the current will increase. Therefore, the glass resistance hot melt welding circuit is provided with a ballast.
  • An electric heating resistance hot-melt welding roller is provided with a heat preservation device. The tempered glass plate can be quickly cooled by the edge of the glass resistance hot-melt welding, and the tempered glass edge can be tempered again.
  • Tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate the tempered glass plate is subjected to edging treatment and tempered treatment, including flat glass, cloth glass, embossed glass, southern glass, Frosted glass, coated glass, the functional film of coated glass includes antireflection film, metal film, decorative film. If the surface of the glass panel is coated with a coating, the coating must be removed at the resistance hot-melt welding surface of the glass panel; the tempered glass plate or double-layer or multi-layer laminated glass.
  • Bumped embossed tempered glass plate is a glass tempered glass plate that is rolled at a suitable temperature position in the glass tin bath when the original tempered glass plate is produced.
  • the surface of a calender roll on the glass calender used is engraved with a series of pits of uniform shape and size and arranged in a lattice of the convex support.
  • the embossed tempered glass plate is cut, edged and tempered.
  • the embossed tempered glass plate is the original tempered glass plate after edging and shaping, heated by a tempering furnace, the convex point is calendered by a glass calender, the support frame is bent, and after forming, it is tempered.
  • the surface of a calender roll on the glass calender used is engraved with a series of pits of uniform shape and size, and arranged in a dot array according to the bump support.
  • the convex cladding tempered glass plate or the corrugated tempered glass plate is a glass pit that is rolled by a glass calender at a suitable temperature position in the glass tin bath when the original tempered glass plate is produced.
  • One of the glass calenders used The surface of the root calender roll is engraved with a series of convex tips of uniform shape and size, and arranged in a lattice of the concave support.
  • the concave point embossed tempered glass plate is cut, edged and tempered.
  • the convex clad tempered glass plate or corrugated tempered glass plate is edging and shaping, heated by a tempering furnace, and the convex points are stretched by a glass mold, the supporting frame is bent, and after forming, it is tempered.
  • a bump tempered glass plate is a glass original sheet, which is produced by printing glass frit paste and then using a hot-melt method. That is, firstly print the low-temperature glass frit paste on a tempered glass plate according to the dot array pattern of the convex support, and then send the tempered glass plate into a tempering hot-melt furnace, and heat to a suitable temperature of the melting point of the glass frit paste, The glass powder paste accumulation body is transformed into glass bumps fused to the surface of the tempered glass plate, and then, the supporting frame is bent and tempered.
  • the support is a support coated with an adhesive on at least one end, including a close-loop support and a sealing frame with a height equal to or close to a high-hard glass support, a high-hard metal support, a high-hard ceramic support, a cylindrical or spherical or ring-shaped support Dotted array.
  • the support is a supporting thermal insulation material pad with an aerogel thermal insulation pad adhered to the end supporting surface, and the surfaces of the aerogel thermal insulation pads at both ends of the supporting thermal insulation material pad are coated with inorganic glue including water glass glue.
  • a tempered glass panel with an appropriate thickness is cut according to a design size, edging, and tempered glass panels are used as raw materials.
  • the surface of the glass resistance hot melt welding needs to be degreased, cleaned and dried.
  • a glass support point printer for manufacturing a tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate characterized in that: the dot matrix support tempered glass plate passes through the top cover provided on the top of the tin bath of the float glass production line The glass printing device in the shell, located behind the edger and before the transition roller table, in the critical temperature zone of glass hardening in the tin bath is printed.
  • the head of the printing mold of the glass printing device is provided with a circular cone or crater shape
  • the concave pit, or a nail-shaped printing die with a convex tip on the head is printed on the glass ribbon floating on the surface of the tin bath, and is provided with an upward convex dot matrix or a concave concave dot matrix.
  • the adjacent points around each convex point of the lattice on the surface of the flat glass ribbon are arranged at equal distances between the adjacent points around each concave point, and the surface of the glass ribbon is provided with an upper convex lattice, Or the diamond lattice of concave lattice supports the glass ribbon.
  • the convex dot matrix or the concave dot matrix provided on the surface is buckled up and down to form an equal distance between adjacent points with complementary cross Arrangement, the surface of the two laminated glass is provided with an upper convex lattice, or a diamond lattice formed by the cross complementation of the concave lattice to support the tempered glass plate.
  • the flat glass ribbon After the flat glass ribbon is printed on the support lattice by a nail-shaped printing die, it passes through a transitional roller table and enters an annealing kiln for annealing to form an upward convex support lattice on the flat glass ribbon or a concave support lattice without stress Dot matrix supports flat glass ribbons.
  • the dot matrix support flat glass ribbon is cut to make a dot matrix support tempered glass plate, and the dot matrix support tempered glass plate is stacked off-line and put into storage for storage.
  • the critical temperature zone of glass hardening before the transition roll table should generally be between 520°C and 820°C.
  • At least one glass printing device is provided on the horizontal frame.
  • the glass printing device can print an upper convex dot matrix or a concave concave dot matrix on the surface of the glass ribbon.
  • the above-mentioned various printing dies use small-area die heads to act on the surface of the glass ribbon, and generate a large pressure with a small pressure to print on the glass ribbon to float on the surface of the tin liquid.
  • the softened glass ribbon in the traveling state does not have an overall deformation effect. Therefore, the glass printing device is to print on the surface of the glass ribbon scattered convex dot matrix, or concave dot matrix, or the convex and concave dots printed by accumulation to form various graphic patterns.
  • the printing mold of the glass printing apparatus is a nail-shaped printing mold
  • the head of the nail-shaped printing mold is a nail-shaped printing mold provided with a circular cone-shaped crater or a crater-shaped crater, which is arranged radially at an equal distance to the rotation Print on the round roller.
  • the head of the nail-shaped printing die is a nail-shaped printing die provided with a protruding tip, and is equidistantly arranged radially on the rotating printing roller.
  • the printing roller is set on a bracket with a base, driven by a power transmission device with an external thermal insulation and an internal cooling device, and is installed horizontally between the groove walls on both sides of the tin bath.
  • the nail printing die on the printing roller is used to print the convex dot matrix or the concave dot matrix on the surface of the continuous glass ribbon through the continuous rotation of the nail printing die.
  • the printing die of the glass printing device is a nail-like printing die
  • the head of the nail-like printing die is a nail-like printing die provided with circular cone-shaped craters or crater-shaped pits.
  • the head of the nail-shaped printing die is a nail-shaped printing die provided with a convex tip.
  • the nail-shaped printing die is arranged on the printing beam arm which reciprocates up and down.
  • the printing beam arm is arranged on the bracket provided with the base, driven by the power transmission device provided with the external thermal insulation and the internal cooling device, and installed horizontally on both sides of the tin bath Between the groove walls.
  • the nail-shaped printing die on the printing beam arm is printed on the surface of the continuous glass ribbon by continuously reciprocating up and down to print a convex dot matrix or a concave dot matrix.
  • the printing die of the glass printing device is a pin-type printing die
  • the pin-type printing die is provided on the pin-type glass printer
  • the pin-type printer die is provided on the printing beam arm
  • the printing beam arm is provided on the base provided with the base
  • the bracket Driven by the power transmission device of the external insulation and internal cooling device, it is installed horizontally between the groove walls on both sides of the tin bath.
  • various graphic patterns are printed on the surface of the continuous glass ribbon.
  • Tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate, its tin bath includes supporting steel, top cover shell and bottom shell, refractory material, tin liquid, heating element, reducing atmosphere, temperature sensor, computer Process control system.
  • the homogenized glass liquid in the working section of the furnace enters the tin bath through the flow channel, forms on the tin liquid surface of the tin bath, adjusts the thickness by means of the edger, and cools and forms a smooth and flat glass ribbon in sections.
  • the critical temperature range of glass hardening should generally be between 660 ⁇ 370°C, and the optimal temperature range should be between 680 ⁇ 820°C between.
  • the glass printing device intelligently measures the distance between the printing die head and the surface of the glass ribbon, automatically and intelligently adjusts the printing depth of the die head, and automatically and intelligently adjusts the printing speed and spacing of the nail-shaped printing die according to the automatic intelligent movement speed and spacing of the previous printing dot row , Realize the intelligent automatic measurement, control and printing of the printing matrix printing the support lattice on the transparent glass ribbon.
  • the glass ribbon After the glass ribbon comes out of the tin bath, it passes through the roller table on the transition roller table and enters the roller table of the annealing kiln for annealing. Cutting through intelligent automatic cutting equipment, off-line stacking storage.
  • Tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate the rotating printing roller may be provided with at least one pair of closed-loop edge-pressing groove ring, or raised ring, lattice support within two closed loop blank holders
  • the nail-shaped printing die is made of special chrome-plated steel that is resistant to high temperature and is not prone to deformation.
  • the production process of the lattice-supported glass ribbon on the float glass production line of the tempered glass edge electrothermal fusion welding interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate is to install points on the tin bath of the float glass production line Array printing device, producing printing dot matrix support glass ribbon. Instead, a conventional float glass ribbon needs to be produced. As long as the nail printing mold is lifted away from the glass ribbon surface, the conventional float glass ribbon will be produced.
  • Tempered glass edge electric heat fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate interlayer vacuum adjustable thermal insulation system which includes a tempered glass plate equipped with intake and exhaust pipe seals around the glass to regulate the functional gas pressure of the interlayer interlayer, and a vacuum valve , Vacuum gauges, intake and exhaust pipes, vacuum pumps. It is characterized by: at least one tempered glass plate with inlet and exhaust pipe fittings, sealing glass periphery, and regulating the gas pressure of the interlayer function, and its inlet and outlet
  • the air pipe fittings are connected to the intake and exhaust pipes in parallel through the pipe fittings including the three-way and four-way fittings and the intake and exhaust pipes by bolting, including welding, bonding, and nut sealing.
  • the intake and exhaust pipes are connected Vacuum gauge.
  • the intake and exhaust pipes are hermetically connected to the vacuum pump set through a vacuum valve, and the vacuum pump set is opened and closed by a numerical standard set by a vacuum gauge. Or the variable frequency vacuum pump set can output power through the value standard set by the vacuum gauge.
  • the vacuum pump group is provided with two groups of rough-pumping and fine-pumping vacuum pumps, which can be operated in parallel or in series by the two groups of rough-pumping and fine-pumping vacuum pumps. Or when the rough vacuum pump reaches the set vacuum, the rough vacuum pump is turned off and the fine vacuum pump is started until the fine vacuum pump is turned off after the set vacuum is reached. When the vacuum decreases to the set value, start the vacuum pump again. Or the vacuum pump group is a continuous-operation frequency conversion vacuum pump group.
  • the vacuum degree of the insulating tempered glass plate is reduced to the set value, or automatically close the vacuum valve provided on the pipe, and the vacuum pump measures the gas pressure of the insulating glass at the periphery of the sealing glass The degree of vacuum in the interlayer of the heat-insulated tempered glass plate to determine whether the heat-insulated heat-dissipating light-transmitting tempered glass plate leaks vacuum.
  • the vacuum valve is automatically opened and closed.
  • the intake and exhaust pipes may be provided with a gas inlet pipe which is controlled by a vacuum valve connection and controlled by a pre-vacuum valve.
  • the air inlet pipe provided before the vacuum valve may be provided with a dryer assembly.
  • the dryer assembly is equipped with electric heating dehumidification device and air exhaust valve.
  • the functional gas tank group includes low thermal conductivity gas argon gas tank and carbon dioxide gas tank, and high thermal conductivity gas includes hydrogen gas tank and nitrogen gas tank.
  • the heat insulation and heat dissipation of the tempered glass plate can be achieved through the introduction of hydrogen or nitrogen with high thermal conductivity gas to the heat dissipation and light transmission tempered glass plate. Good heat dissipation of the tempered glass plate.
  • the conventional heat dissipation of the heat dissipation light-transmitting tempered glass plate is achieved by passing air to the heat-insulation heat-dissipation transparent glass plate.
  • the vacuum gauge is a conventional vacuum gauge, or an artificial intelligence vacuum gauge
  • the vacuum valve is a conventional vacuum valve, or an artificial intelligence vacuum valve.
  • the vacuum glass manufactured by the present invention can obtain very good glass resistance hot-melt welding quality, solve the vacuum glass tempering problem, and thus solve the vacuum glass safety problem.
  • the vacuum glass produced by this process method also has better thermal insulation and sound insulation effect, and also has top-level light transmittance.
  • Tempered glass can be widely used in materials, the production cost has been greatly reduced, the structure form is diversified, the glass has high strength, safety, long life, large size, low cost, high yield, good thermal insulation performance, strong functionality, low energy
  • the features of energy consumption, good perspective effect, and ease of mass production have overcome many problems of current functional glass. Therefore, the vacuum glass is applied to the agricultural facilities and high-rise buildings to the maximum extent, and the energy-saving effect of the buildings is maximized. Therefore, the present invention has good economic benefits, environmental benefits and social benefits.
  • FIG. 1 is a cross-sectional view of the present invention is provided with a one-side hot-melt bump tempered glass plate and a tempered flat tempered glass plate plywood, electric heating fusion-welded glass support frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 2 is a cross-section of the present invention is provided with a hot-melt bump tempered glass plate on one side and a hot-melt bump tempered glass plate on the other side, electric hot-melt welded glass support frame interlayer vacuum adjustable thermal insulation translucent tempered glass plate
  • FIG. 3 is a cross-sectional view of the present invention is provided with one side printed bump tempered glass plate and a tempered flat tempered glass plate plywood, electrothermal fusion welded glass support frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 5 is a cross-sectional view of the present invention is provided with one side printed crater bump tempered glass plate and tempered flat tempered glass plate plywood, electrothermal fusion welded glass support frame interlayer vacuum adjustable thermal insulation translucent tempered glass plate;
  • [0078 6 is a cross-section of the present invention is provided with a printed crater bump tempered glass plate on one side and a crater bump tempered glass plate printed on the other side, an electrothermal fusion welded glass support frame interlayer vacuum adjustable thermal insulation translucent tempered glass plate Sectional view;
  • FIG. 7 is a cross-sectional view of a tempered glass plate on one side of the present invention, and another tempered glass plate through supporting bumps, electric heating welding glass support frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 8 is a cross-sectional view of the present invention is provided with a one-side hot-melt bump tempered glass plate and a tempered flat tempered glass plate plywood, electrothermal deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 9 is the present invention is provided with one side of the hot-melt bump tempered glass plate and the other side of the hot-melt bump tempered glass plate plywood
  • FIG. 10 is the present invention is provided with one side printing bump tempered glass plate and tempered flat tempered glass plate plywood, electrothermal deformed glass Cross-sectional view of the fusion-welded frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 11 is a cross-sectional view of the present invention is provided with a printed bump tempered glass plate on one side and a printed bump tempered glass plate on the other side, an electrothermal deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate; [0084] FIG.
  • FIG. 12 is a cross-sectional view of the present invention is provided with one side printed crater bump tempered glass plate and tempered flat tempered glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 13 is a cross-section of the present invention is provided with a printed crater bump tempered glass plate on one side and a crater bump tempered glass plate printed on the other side, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation translucent tempered glass plate Cutaway view
  • FIG. 14 is a cross-sectional view of a tempered glass plate on one side of the present invention, and another tempered glass plate through supporting bumps, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 15 is the present invention is provided with a side of the hot-melt bump tempered glass plate and the tempered flat glass plate plywood, electric hot-melt welded glass support frame interlayer vacuum adjustable insulation perimeter of the transparent glass plate, wrapped and bonded by structural sealant A cross-sectional view of a "U" closed-loop corrugated stainless steel frame;
  • FIG. 16 is the present invention is provided with one side of the hot-melt bump tempered glass plate and the other side of the hot-melt bump tempered glass plate plywood, electric hot-melt welded glass support frame interlayer vacuum adjustable thermal insulation transparent glass plate, A cross-sectional view of a U-shaped closed-loop corrugated stainless steel frame wrapped with structural sealant;
  • FIG. 17 is the present invention is provided with one side printed bump tempered glass plate and tempered flat glass plate, electrothermal fusion welding glass support frame interlayer vacuum adjustable insulation perimeter of transparent glass plate, wrapped and bonded by structural sealant A cross-sectional view of a "U"-shaped closed-loop corrugated stainless steel frame;
  • FIG. 18 is the present invention is provided with one side printed bump tempered glass plate and the other side printed bump tempered glass plate , A cross-sectional view of a "U"-shaped closed-loop corrugated stainless steel frame wrapped with structural sealant and wrapped around the periphery of the vacuum adjustable thermal insulation transparent glass plate of the electrothermal welding glass support frame interlayer;
  • FIG. 19 is the invention is provided with one side printed caldera bump tempered glass plate and tempered flat glass plate plywood, electrothermal fusion welded glass support frame sandwich vacuum adjustable thermal insulation perimeter of the transparent glass plate, wrapped with structural sealant Cross-sectional view of a U-shaped closed-loop corrugated stainless steel frame bonded;
  • FIG. 20 is the present invention is provided with one side printed crater bump tempered glass plate and the other side printed crater bump tempered glass plate plywood, electric heating welding glass support frame interlayer vacuum adjustable thermal insulation transparent glass plate Peripheral, a cross-sectional view of a "U" closed-loop corrugated stainless steel frame wrapped with structural sealant;
  • FIG. 21 is a one-side tempered glass plate of the present invention, and another tempered glass plate through supporting bumps, electric heating welding glass support frame interlayer vacuum adjustable insulation perimeter of transparent glass plate, through structural sealant A cross-sectional view of a U-shaped closed-loop corrugated stainless steel frame wrapped and bonded;
  • FIG. 22 of the present invention is provided with a one-side hot-melt bump tempered glass plate and a tempered flat glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable insulation perimeter of the transparent glass plate, wrapped and bonded by structural sealant
  • FIG. 23 is the present invention is provided with one side of the hot-melt bump tempered glass plate and the other side of the hot-melt bump tempered glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation transparent glass plate around, A cross-sectional view of a closed-loop corrugated stainless steel frame with cross-section "L” and reverse "L” shape wrapped and bonded by structural sealant;
  • FIG. 24 is the present invention is provided with one side printed bump tempered glass plate and tempered flat glass plate, electrothermal deformation glass welding frame interlayer vacuum adjustable insulation perimeter of the transparent glass plate, wrapped and bonded by structural sealant A cross-sectional view of a closed-loop corrugated stainless steel frame with cross-section "L" and anti-"L" shape;
  • FIG. 25 is the present invention is provided with one side printed bump tempered glass plate and the other side printed bump tempered glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation transparent glass plate around, through the structure;
  • FIG. 26 is the present invention is provided with a side printed crater bump tempered glass plate and a tempered flat glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable insulation perimeter of the transparent glass plate, wrapped by structural sealant;
  • FIG. 27 is the invention is provided with one side printed crater bump tempered glass plate and the other side printed crater bump tempered glass plate plywood, electric deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation transparent glass plate Around, A cross-sectional view of a closed-loop corrugated stainless steel frame with cross-section "L” and reverse “L” shape wrapped and bonded by structural sealant;
  • FIG. 28 is a one-side tempered glass plate of the present invention, and another tempered glass plate through supporting bumps, electric deformation glass fusion welding frame interlayer vacuum adjustable insulation perimeter of transparent glass plate, through structural sealant
  • FIG. 29 is a schematic structural view of a glass heating resistance glass welding integrated machine for manufacturing the electrothermal deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 30 is a schematic structural view of a glass heating and resistance glass welding split machine for manufacturing the electrothermal deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 31 is a schematic structural view of a glass heating and resistance glass sealing and welding integrated machine for manufacturing an electrothermal deformation glass fusion welding frame interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate;
  • FIG. 32 is a schematic structural view of a roller glass support point printer
  • FIG. 33 is a schematic view of the structure of a glass support point printer with a beam arm reciprocating up and down;
  • FIG. 34 is a schematic structural view of a glass support point printed by a pin printer
  • FIG. 35 is a schematic view of a single-sided glass support point distribution
  • 36 is a schematic diagram of the distribution of double-sided glass support points.
  • FIG. 37, FIG. 38, FIG. 39, and FIG. 40 are schematic diagrams of the connection of the tempered glass edge electric heating fusion welding interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate of the present invention.
  • a vacuum adjustment system for regulating the function of gas pressure insulation, heat dissipation and heat-transmitting toughened glass plate of the glass interval interlayer, matching with it, the tempered glass edge of the tempered glass with inlet and exhaust pipe fittings can be adjusted for vacuum interlayer welding It is composed of heat-insulating and translucent tempered glass plates.
  • a vacuum valve F3 is provided on the intake and exhaust pipes.
  • the vacuum valve F3 is equipped with a front vacuum gauge, and the vacuum valve F3 is equipped with a rear vacuum gauge.
  • the intake and exhaust pipes are connected to the vacuum pump group through one end port of the tee fitting 52; the other end port of the tee fitting 52 is connected to the functional gas tank group through the vacuum valve F2.
  • the edge of the tempered glass with intake and exhaust pipes is electrically heated and welded with an interlayer vacuum adjustable thermal insulation and light-transmitting tempered glass plate, which is the upper tempered glass 5 and the lower tempered glass with a small array of support bumps.
  • the glass 3 corresponds to each other in outline shape, size, and complementary complementation, and forms a hollow interlayer 4 at intervals.
  • the structural sealant 1 and the airtight sealant 2 are used to bond and seal the periphery of the glass to make a vacuum adjustable tempered glass plate.
  • Inlet and exhaust pipe fittings 8 are installed on the vacuum tempered glass plate.
  • the intake and exhaust pipelines are hermetically connected to the vacuum pump set through one end of the three-way pipe fitting 52, and the vacuum pump set is opened and closed by the numerical standard set by the vacuum meter; or the variable frequency vacuum pump set is output by the variable standard set by the vacuum meter .
  • the vacuum pump group is provided with two sets of vacuum pumps, a rough vacuum pump 50 and a fine vacuum pump 41.
  • a rough vacuum pump 50 draws the set vacuum
  • the rough vacuum pump 50 is turned off, and the fine vacuum pump 41 is started until the set vacuum is drawn.
  • the fine-pump vacuum pump 41 is turned off; when the vacuum degree decreases to the set value, the vacuum pump group is started again; or the vacuum pump group is a continuously-operated variable-frequency vacuum pump group.
  • the vacuum pump group is provided with two parallel vacuum pumps for rough pumping and fine pumping. By operating the two vacuum pumps in parallel or in series for the rough vacuum pump 50 and the fine pumping vacuum pump 41, rapid vacuum pumping and high vacuum pumping are achieved.
  • the intake and exhaust pipes are provided with a vacuum valve F2 connected through the other end nozzle of the three-way pipe member 52.
  • Vacuum valve F2 controls the opening and closing of the functional gas intake pipe;
  • the intake pipe provided before the vacuum valve F2 is provided with a dryer assembly 42;
  • the dryer assembly 42 is provided with an electric heating dehumidification device and an air exhaust valve 44;
  • a plurality of groups of functional gas tanks including air are provided on the pipeline before the dryer assembly 42;
  • the functional gas tank group includes a low thermal conductivity gas argon tank 46, a carbon dioxide gas tank 45, and a high thermal conductivity gas including a hydrogen tank 48, nitrogen tank 47;
  • the heat insulation and heat dissipation of the tempered glass plate can be achieved through the introduction of hydrogen or nitrogen with high thermal conductivity gas to the heat dissipation and light transmission tempered glass plate.
  • the conventional heat dissipation of the heat dissipation light-transmitting tempered glass plate is realized by passing air to the heat-insulation heat-dissipation transparent glass plate;
  • the vacuum gauge is a conventional vacuum gauge, or an artificial intelligence vacuum gauge
  • the vacuum valve is a conventional vacuum valve, or an artificial intelligence vacuum valve.
  • tempered glass edge electric heat fusion welding interlayer vacuum adjustable thermal insulation translucent tempered glass plate vacuum adjustment The tempered glass edge of the system is equipped with an electric thermal fusion welding interlayer vacuum adjustable thermal insulation and light-transmitting tempered glass plate. It is a product with a supporting frame, and the other is equivalent to Figure 37.
  • the tempered glass edge electric heating welding interlayer vacuum adjustable thermal insulation light-transmitting tempered glass plate vacuum adjustment system supporting tempered glass edge electric heating welding interlayer vacuum adjustable insulation light-transmitting tempered glass plate is provided with
  • the products with stainless steel protection frame are the same as those in Figure 37.

Abstract

钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板,包括钢化玻璃板、间隙隔离支撑、闭环玻璃支撑。将两张轮廓形状、尺寸大小相互对应的钢化玻璃板,通过两张钢化玻璃板之间的间隙隔离支撑和填补缝隙闭环玻璃支撑,在两张钢化玻璃板之间,间隔出中空隔离缝隙,组成具有间隔夹层腔体的双层钢化玻璃板。通过玻璃电阻热熔焊接,解决了真空玻璃的失钢化难题,从而解决了真空玻璃的安全问题。与现有真空玻璃相比,利用本工艺方法制作的真空玻璃,还具有更好的保温及隔音效果,同时具备顶级的透光性。在材质上可以广泛应用钢化玻璃,在制作成本上大幅下降,结构形式多样化,玻璃强度高、安全、寿命长、大尺寸、造价低、成品率高,保温隔音性能好。

Description

钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板
技术领域
[0001] 本发明属于夹层真空保温透光钢化玻璃板制造领域。
背景技术
[0002] 目前, 功能玻璃主流有中空玻璃、 真空玻璃。
[0003] 中空玻璃保温性能并不理想, 因两层玻璃之间没有相互支撑, 不能互相借力, 使得玻璃抗风压能力弱, 容易因玻璃共振而破碎。
[0004] 真空玻璃依靠真空层特殊结构, 可有效阻隔室内外热量传导。 可以显著减少空 调电耗及污染物和温室气体的排放, 减少环境污染。
[0005] 选用适当遮阳系数的真空玻璃, 在夏季, 能够有效控制太阳得热, 保持室内凉 爽;在冬季, 当室外温度为 -20°C时, 真空玻璃的内表温度仅比室内空气温度低 3-5 °C, 可以保持室内温暖舒适。
[0006] 随着都市人口的密集和交通运输工具的增多, 噪声污染日益严重, 直接对人产 生危害。 真空玻璃的真空层可以有效地阻隔声音的传递, 特别是对于穿透性较 强的中低频率, 效果十分显著。
[0007] 真空玻璃内部为真空状态, 不受环境气压的影响, 适用于各种海拔地区; 同时 , 真空玻璃应用于建筑物的各个位置都能保持其优异的性能不变, 包括立面, 斜面及屋顶, 不存在中空玻璃平放时气体对流加大导致性能降低的问题, 但真 空玻璃不是钢化玻璃。
[0008] 真空玻璃是由两层钢化玻璃板夹层内设支撑, 周边通过热熔低温玻璃密封粘接 剂粘接抽真空封闭制成。 真空玻璃是目前节能效果最好的透明功能玻璃, 具有 重量轻、 厚度薄、 传热系数小、 隔音效果好等一系列优点, 是理想的节能建筑 材料。 但是因为其昂贵的生产成本, 及尚无法达到高层建筑所要求的钢化玻璃 安全性要求, 目前尚未得到大规模的应用。 但是, 由于真空玻璃周边密封粘接 剂粘接为低温玻璃熔封, 使其制造工艺、 成本、 成品率, 机械性能和尺寸规格 均受到了极大的限制, 而且很难实现对钢化玻璃板的钢化处理, 使玻璃强度和 安全性能受到影响。 一旦玻璃熔封边由于应力等原因损坏漏真空, 则整个真空 玻璃将丧失良好的隔音、 保温性能。
[0009] 5见有真空玻璃的上述缺点是由其设计结构和生产工艺造成的。 5见有真空玻璃即 两片玻璃原片之间用微小的支撑物点阵隔开, 周边用低熔点玻璃料熔封, 通过 玻璃抽气管进行“排气”后封口, 形成气压低于 O.lPa厚度仅为 0.1-0.3mm的真空层 。 因此真空玻璃的生产必须经过多道工序来完成, 包括: 1)抽气口钻孔、 2)支撑 物布放、 3)玻璃钎焊料布涂、 4)玻璃合片、 5)高温封边 /抽气口钎焊、 6)高温抽气 / 封口、 和 7)吸气剂解封。
[0010] 上述的高温封边工序则是造成现有真空玻璃, 达不到高层建筑安全标准的主要 原因。 标准要求高层建筑玻璃构件必须使用钢化玻璃制造。 但是因为现有高温 封边玻璃钎焊料的熔化温度超过 550°C, 大大高于常规钢化玻璃的退火温度 388°C , 所以即使采用钢化玻璃来制造真空玻璃, 它也会在封边工序过程中被退火成 为普通玻璃。
[0011] 申请人[刘伟杰]申请了 《一种低成本钢化真空玻璃及其制作方法》 申请号
CN200910188347.2
[0012] 此申请提供一种真空玻璃及其制造方法, 它是用与玻璃原片融为一体的微凸点 支撑物取代现有的不锈钢支撑物布放工艺, 使用不会造成钢化玻璃原片退火的 低温金属锡钎焊技术进行封边, 及把传统的真空层抽气工序, 和封边工序简约 集成为抽气封边一体化工序。
[0013] 此申请与现有真空玻璃及其制造工艺相比, 虽然将抽真空和钎焊封接一次完成 , 安全性达到高层建筑使用标准。 但由于需要涂覆烧结高价格的金水, 锡钎焊 温度低, 真空炉加热温度低, 玻璃及锡钎焊料放气不充分, 抽真空效果差, 玻 璃真空夹层真空度低等原因, 使得真空玻璃保温和隔音性能不尽如人意。
[0014] 申请人[南京工业大学]申请的 《一种玻璃和金属真空钎焊工艺》 申请号
CN200910234678.5的技术方案, 则需在原工艺基础上, 对玻璃表面进行化学电 镀铜金属表面处理。 而且启动加热系统后, 需将工件随炉加热升温至 550°C, 保 温至炉内真空度为 4xlO-2Pa, 使工件各部位的温度均匀, 而且还需对钎焊炉内继 续升温至钎焊温度, 并保温 10〜 30min后停止加热, 随炉慢慢冷却, 真空玻璃出 炉温度在 50°C以下。
发明概述
技术问题
[0015] 众所周知玻璃是绝缘体, 常态下是不可导电的, 但是在高温下 (500°C以上) 情况会发生变化。 玻璃是一种透明的固体, 是由半液体物质, 在熔融时形成连 续网络结构, 冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类。 玻璃体的 温度越高, 玻璃体两端的电压越大, 玻璃的导电能力越强。 致使玻璃体导电的 因素是两个, 一是高温, 另一个是电压, 当然其中高温是最主要的因素。 所谓 导体与绝缘体是指常态下的材料导电性能的区分, 在非常态下, 有些绝缘体是 可以导电的, 高温使得玻璃体内电子挣脱原子的束缚形成自由电子, 从而具备 了导电能力。 两端电压使受高温的玻璃产生电离, 从而导电。 玻璃体温度越高 两端电压越高, 其导电能力越强。
问题的解决方案
技术解决方案
[0016] 本发明正是利用钢化玻璃边沿加热后, 钢化玻璃会由绝缘体变成导体的特性, 通过钢化玻璃两侧施加的电压, 实现钢化玻璃电阻焊接。 从而在没有其它材质 介质材料作为钎焊剂的情况下, 实现原材料的电阻热容焊接, 因而实现钢化玻 璃热熔焊接性能稳定、 成本低廉、 工艺简单、 应力小等诸多优点。
[0017] 本发明的技术方案是这样实现的: 钢化玻璃边沿电热熔焊夹层真空可调保温透 光钢化玻璃板, 包括钢化玻璃板、 间隙隔离支撑、 闭环玻璃支撑。 其特征是: 将两张轮廓形状、 尺寸大小相互对应的钢化玻璃板, 通过两张钢化玻璃板之间 的间隙隔离支撑和填补缝隙闭环玻璃支撑, 在两张钢化玻璃板之间, 间隔出中 空隔离缝隙, 组成具有间隔夹层腔体的双层钢化玻璃板。
[0018] 在两张钢化玻璃板之一上, 设有联通两侧, 通过连接紧固件和气密密封粘接剂 粘接密封的联通密封管件。
[0019] 在轮廓形状、 尺寸大小上相互对应的两张钢化玻璃板其中之一上, 设有与钢化 玻璃板复合一体, 分布有点阵凸起点间隙隔离支撑。 或两张钢化玻璃板上均设 有与钢化玻璃板复合一体, 分布有点阵凸起点间隙隔离支撑。
[0020] (A) 此钢化玻璃板为通过钢化玻璃板压辊压制成型的压花钢化玻璃板。 将两 张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘接合片, 通过两张 钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃板之间间隔出中空隔离缝隙 。 此过程或和玻璃生产过程同步进行。
[0021] (B) 或凸点钢化玻璃板是玻璃原片, 通过印刷玻璃粉膏, 然后用热熔法制成
。 热熔玻璃粉膏成为支撑凸点, 此过程或和玻璃钢化同步进行。 将两张钢化玻 璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘接合片, 通过两张钢化玻璃 板之间的间隙隔离支撑, 在两张钢化玻璃板之间间隔出中空隔离缝隙。
[0022] (C) 或此钢化玻璃板为通过模具压制拉伸成型的点阵凸包钢化玻璃板。 将两 张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘接合片, 通过两张 钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃板之间间隔出中空隔离缝隙
[0023] (D) 或在轮廓形状、 尺寸大小上相互对应的两张钢化玻璃板上, 设有与钢化 玻璃板一体, 分布有波纹槽凸起交叉间隙隔离支撑。 凸起波纹槽为通过模具压 制拉伸成型的钢化玻璃板。 将两张钢化玻璃板直接合片, 或将两张钢化玻璃板 凸起支撑点粘接合片, 通过两张钢化玻璃板上的凸起波纹槽交叉叠摞, 在两张 钢化玻璃板之间间隔出中空隔离缝隙。 此过程或和玻璃钢化同步进行。
[0024] (E) 或钢化玻璃板为通过粘接点阵分布间隙隔离支撑的钢化玻璃板。 将两张 钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘接合片, 通过两张钢 化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃板之间间隔出中空隔离缝隙。
[0025] 在设有间隙隔离支撑的两张钢化玻璃板的边缘之间, 设有与两张钢化玻璃板在 轮廓形状、 尺寸大小与钢化玻璃板边沿对应, 补齐两张钢化玻璃板之间隔离支 撑间隙厚度的填补缝隙闭环玻璃支撑。
[0026] (A) 填补缝隙闭环玻璃支撑, 为玻璃加工成型的闭环玻璃垫圈边框, 其为与 两张设有间隙隔离支撑的钢化玻璃板, 在轮廓形状、 尺寸大小与钢化玻璃板边 沿对应的填补缝隙闭环玻璃支撑, 闭环钢化玻璃板边框补齐间隙隔离支撑的缝 隙, 其厚度与单一间隙隔离支撑的高度, 或相对间隙隔离支撑相对叠加高度之 和等高。 闭环玻璃垫圈边框的材质与钢化玻璃板的材质相同。
[0027] (B) 或填补缝隙闭环玻璃支撑, 为在玻璃周边通过加热玻璃模具拉伸或折边 加工成型的, 与两张设有间隙隔离支撑的钢化玻璃板, 在轮廓形状、 尺寸大小 与钢化玻璃板边沿对应的填补缝隙闭环玻璃支撑, 闭环钢化玻璃板边框补齐间 隙隔离支撑的缝隙, 其厚度与单一间隙隔离支撑的高度, 或相对间隙隔离支撑 相对叠加高度之和等高。 此过程或和玻璃钢化同步进行。
[0028] (C) 或填补缝隙闭环玻璃支撑, 为在玻璃周边通过印刷玻璃粉膏制成。 热熔 玻璃粉膏成为填补缝隙闭环玻璃支撑, 此过程或和玻璃钢化同步进行。 印刷玻 璃粉膏制成的闭环玻璃垫圈边框, 其材质与钢化玻璃板的材质相同。
[0029] (D) 或填补缝隙闭环玻璃支撑, 为通过电加热边框对玻璃边沿进行电加热并 相对施压, 使两张设有间隙隔离支撑的钢化玻璃板的边沿软化变形, 逐渐软化 贴合, 实现补齐钢化玻璃板之间的缝隙, 其厚度与单一间隙隔离支撑的高度, 或相对间隙隔离支撑相对叠加高度之和等高。
[0030] 两张钢化玻璃板边缘对齐合片在一起, 对两张钢化玻璃板边缘电加热, 使两张 钢化玻璃板边缘达到玻璃导电温度。
[0031] 对两张钢化玻璃板边缘接通电阻热熔焊接电源, 并通过电热滚轮进行相对施压 , 使填补缝隙闭环玻璃支撑, 与两张钢化玻璃板实现玻璃电阻热熔焊接, 形成 留有中空夹层的边缘玻璃焊接双层钢化玻璃板: 玻璃电阻热熔焊接电路上, 设 有镇流器, 用于解决玻璃电阻热熔焊接后因温度升高, 玻璃电阻变小, 电流变 大的问题。
[0032] 或真空夹层钢化玻璃板体的周边外侧, 包裹上截面为“U”形的闭环波纹不锈钢 边框, 波纹不锈钢边框的槽内, 填充有结构密封胶。 利用截面为“U”形闭环波纹 不锈钢边框的自身弹性, 与真空夹层钢化玻璃板体的周边外侧进行拉伸套装, 并利用闭环波纹不锈钢边框的自身回弹, 使截面为“U”形闭环波纹不锈钢边框, 与真空夹层钢化玻璃板体的周边外侧紧密贴合粘接在一起。
[0033] 或真空夹层钢化玻璃板体的周边外侧, 包裹上截面为“L”和反“L”形, 涂覆有结 构密封胶的闭环不锈钢边框扣合套装形成的真空夹层钢化玻璃板结构保护边框 [0034] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 其中空夹层钢化玻 璃板体上的开孔设于玻璃面板上; 联通密封管件为剖面为“T”形设有挡头的管件 , 管件的挡头上设有通气沟槽。 或联通密封管件为剖面为“T”形的设有挡头的管 件, 管件的挡头上设有通气沟槽, 管件的外壁上设有螺纹, 管件螺纹对应设有 根部为齿楞, 向上为锥形的螺帽。 管件螺纹通过气密密封胶和螺帽旋紧密封在 中空夹层钢化玻璃板体上。 或管件螺纹通过低熔点金属通过钎焊和螺帽旋紧密 封在中空夹层钢化玻璃板体上。 剖面为“T”形设有挡头的管件或为磁性材料。
[0035] 一种制造钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板的玻璃电阻 焊机, 包括电热焊接滚轮、 支撑托架、 电源装置, 控制操作装置。 其特征是: 两张钢化玻璃板边缘对齐合片在一起, 通过设于玻璃边缘上的一对电加热电阻 热熔焊接滚轮, 对两张钢化玻璃板边缘进行电加热电阻热熔玻璃焊接。 电加热 电阻热熔焊接滚轮上, 分别设有电加热电源和电阻热熔焊接电源, 分别使滚轮 产生热量加热钢化玻璃板和实现钢化玻璃板之间的电阻热熔焊接。 三组电源交 替供电, 两电热加热滚轮上的电源, 设于滚轮的直径上, 通过滚轮自身电阻发 热, 并通过传导将热量传给两张钢化玻璃板, 使钢化玻璃板温度升高导电。 电 阻热熔焊接电源设于两张钢化玻璃板的相对两侧, 对钢化玻璃板通电加热焊接 。 当玻璃由固体到软化过程中玻璃由绝缘体逐步转化为半导体、 导体, 当对滚 轮相对施压, 有电流通过的时候, 玻璃就会发热软化变形, 就会在玻璃变形的 层与层之间, 因导电而发热, 使导电玻璃温度高于其它地方的玻璃温度, 因此 产生玻璃导电融化, 实现玻璃与玻璃之间的良好玻璃热熔焊接。 玻璃电阻热熔 焊接后因温度升高, 玻璃电阻变小, 在电压不变的情况下, 电流会变大, 因此 , 在玻璃电阻热熔焊接电路上, 设有镇流器。 电加热电阻热熔焊接滚轮上设有 保温装置。 钢化玻璃板可通过对玻璃电阻热熔焊接边缘的迅速降温, 可实现失 钢化的玻璃边缘再次钢化。
[0036] 一种制造钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板的玻璃电阻 焊机, 包括电热焊接滚轮、 支撑托架、 电源装置, 控制操作装置。 其特征是: 两张钢化玻璃板边缘对齐合片在一起, 通过设于玻璃边缘上的前后两对电加热 电阻热熔焊接滚轮, 对两张钢化玻璃板边缘进行电加热和电阻热熔玻璃焊接。 电加热和电阻热熔焊接的滚轮上, 分别设有电加热电源和电阻热熔焊接电源, 分别使电加热滚轮产生热量加热钢化玻璃板, 使钢化玻璃板导电。 电阻热熔焊 接滚轮通电实现钢化玻璃板之间的电阻热熔焊接。 两组电源分别设于电加热滚 轮的直径上, 通过滚轮自身电阻发热, 并通过传导将热量传给两张钢化玻璃板 , 使钢化玻璃板温度升高导电。 电阻热熔焊接电源设于两张钢化玻璃板的相对 两侧, 对钢化玻璃板通电加热进行热熔玻璃焊接。 当玻璃由固体到软化过程中 玻璃由绝缘体逐步转化为半导体、 导体, 当对滚轮相对施压, 在有电流通过玻 璃的时候, 玻璃通过变形, 就会使玻璃的层与层之间, 因电阻大而温度高, 玻 璃因此产生融化, 实现玻璃与玻璃之间的良好焊接。 电加热电阻热熔焊接滚轮 线焊将两片钢化玻璃板焊接在一起。 玻璃电阻热熔焊接后因温度升高, 玻璃电 阻变小, 在电压不变的情况下, 电流会变大, 因此, 在玻璃电阻热熔焊接电路 上, 设有镇流器。 电加热电阻热熔焊接滚轮上设有保温装置。 钢化玻璃板可通 过对玻璃电阻热熔焊接边缘的迅速降温, 可实现失钢化的玻璃边缘再次钢化。
[0037] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 其钢化玻璃板为经 过磨边处理和经钢化处理的包括平板玻璃、 布纹玻璃、 压花玻璃、 南化玻璃、 磨沙玻璃、 镀膜玻璃, 镀膜玻璃的功能膜包括增透膜、 金属膜, 装饰膜。 玻璃 面板表面复合有镀膜的, 则玻璃面板电阻热熔焊接面处必须除去镀膜; 钢化玻 璃板或为双层或多层夹胶玻璃。
[0038] 凸点压花钢化玻璃板为在生产钢化玻璃板原片时, 在玻璃锡槽中的适合温度位 置上, 经玻璃压延机压延上玻璃凸点。 所用玻璃压延机上的一根压延辊的表面 上, 刻有形状和尺寸均一, 且按所述凸点支撑物点阵排列的系列凹坑。 凸点压 花钢化玻璃板经过裁切、 磨边、 钢化处理。
[0039] 或凸点压花钢化玻璃板为钢化玻璃板原片磨边整形后, 通过钢化炉加热, 经玻 璃压延机压延凸点, 折弯支撑边框, 成型后, 进行钢化处理。 所用玻璃压延机 上的一根压延辊的表面上, 刻有形状和尺寸均一, 且按所述凸点支撑物点阵排 列的系列凹坑。
[0040] 或凸包钢化玻璃板或波纹钢化玻璃板为在生产钢化玻璃板原片时, 在玻璃锡槽 中的适合温度位置上, 经玻璃压延机压延上玻璃凹点。 所用玻璃压延机上的一 根压延辊的表面上, 刻有形状和尺寸均一, 且按所述凹点支撑物点阵排列的系 列凸尖。 凹点压花钢化玻璃板经过裁切、 磨边、 钢化处理。
[0041] 或凸包钢化玻璃板或波纹钢化玻璃板经过磨边整形后, 通过钢化炉加热, 经玻 璃模具拉伸凸点, 折弯支撑边框, 成型后, 进行钢化处理。
[0042] 或凸点钢化玻璃板是玻璃原片, 通过印刷玻璃粉膏, 然后用热熔法制成的。 即 先将低温玻璃粉膏按所述凸点支撑物点阵排列图案印刷到一钢化玻璃板上, 然 后将该钢化玻璃板送入钢化热熔炉, 加热到玻璃粉膏熔点的某一适宜温度, 令 玻璃粉膏堆积体转化为与钢化玻璃板表面熔合在一起的玻璃凸点, 之后, 折弯 支撑边框, 进行钢化处理。
[0043] 或支撑为至少一端涂有粘接剂的支撑, 包括与闭环支撑密封边框高度相等或接 近的包括高硬玻璃支撑、 高硬金属支撑、 高硬陶瓷支撑, 柱状或球状或环状支 撑点阵状排列。 或支撑为端头支撑面上粘接有气凝胶隔热垫的支撑隔热材料垫 , 支撑隔热材料垫两端气凝胶绝热垫的表面涂覆有包括水玻璃胶无机胶。
[0044] 将适当厚度钢化玻璃板按照设计尺寸裁截处理, 磨边处理, 钢化处理的钢化玻 璃面板, 作为原材料使用。 玻璃电阻热熔焊接表面需进行脱油、 清洁、 烘干处 理。
[0045] 一种制造钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板的玻璃支撑 点打印机, 其特征是: 点阵支撑钢化玻璃板通过设于浮法玻璃生产线锡槽顶部 顶罩壳内的、 位于拉边器之后、 过渡辊台之前, 锡槽内玻璃硬化临界温区内的 玻璃打印装置打印, 玻璃打印装置的打印模具头部为设有园锥形凹坑或火山口 状凹坑, 或头部为凸尖的钉状打印模, 在漂浮于锡槽面上的玻璃带上, 打印出 设有上凸点阵, 或下凹点阵。
[0046] 平板玻璃带表面上点阵的各凸起点周围的相邻点之间、 或各下凹点周围的相邻 点之间等距离布置, 制成玻璃带表面设有上凸点阵, 或下凹点阵的菱形点阵支 撑玻璃带。
[0047] 或将玻璃带裁切成的两张钢化玻璃板, 其表面上设有的凸起点阵、 或下凹点阵 上下扣合后, 形成的交叉互补的相邻点之间为等距离布置, 制成两张合片玻璃 表面设有上凸点阵, 或下凹点阵交叉互补形成的菱形点阵支撑钢化玻璃板。 [0048] 平板玻璃带通过钉状打印模打印支撑点阵后, 经过过渡辊道台, 进退火窑进行 退火, 制成平板玻璃带上的上凸支撑点阵, 或下凹支撑点阵无应力的点阵支撑 平板玻璃带。 点阵支撑平板玻璃带经裁切后制成点阵支撑钢化玻璃板, 点阵支 撑化钢化玻璃板下线堆垛入库储存。
[0049] 或在玻璃锡槽顶罩壳内的拉边器之后, 过渡辊台之前的玻璃硬化临界温度区内 , 一般应在 520°C〜 820°C之间。
[0050] 锡槽漂浮玻璃带之上的两侧锡槽边框上, 横架设有至少一台的玻璃打印装置。
玻璃打印装置能够在玻璃带的表面上打印出上凸点阵, 或下凹点阵。
[0051] 以上各种打印模都是以小面积的模头, 作用于玻璃带表面之上, 以小的压力, 产生大的压强, 对玻璃带进行打印, 从而对上浮于锡液表面上漂浮行进状态的 软化玻璃带, 不产生整体形变影响。 因此, 玻璃打印装置是在玻璃带表面上, 分散打印出上凸的点阵、 或下凹点阵、 或通过累积打印出的上凸、 下凹点组成 各式图文花样。
[0052] 玻璃打印装置的打印模为钉状打印模, 钉状打印模的头部, 为设有园锥形凹坑 或火山口状凹坑的钉状打印模, 以等距放射状布置于转动的打印圆辊上。 或钉 状打印模的头部, 为设有凸尖的钉状打印模, 以等距放射状布置于转动的打印 圆辊上。 打印圆辊设于设有基座的支架上, 通过设有外保温内冷却装置的动力 传动装置带动, 横置安装于锡槽两侧槽壁之间。 打印圆辊上的钉状打印模, 通 过连续转动的钉状打印模, 将上凸的点阵、 或下凹点阵打印于连续前行的玻璃 带表面上。
[0053] 或玻璃打印装置的打印模为钉状打印模, 钉状打印模的头部, 为设有园锥形凹 坑或火山口状凹坑的钉状打印模。 或钉状打印模的头部, 为设有凸尖的钉状打 印模。 钉状打印模设于上下往复运动的打印梁臂上, 打印梁臂设于设有基座的 支架上, 通过设有外保温内冷却装置的动力传动装置带动, 横置安装于锡槽两 侧槽壁之间。 打印梁臂上的钉状打印模, 通过连续上下往复运动, 将上凸的点 阵、 或下凹点阵, 打印于连续前行的玻璃带表面上。
[0054] 或玻璃打印装置的打印模为针式打印模, 针式打印模设于针式玻璃打印机上, 针式打印机模头设于打印梁臂上, 打印梁臂设于设有基座的支架上, 通过设有 外保温内冷却装置的动力传动装置带动, 横置安装于锡槽两侧槽壁之间。 通过 针式玻璃打印机的针式模头, 在连续前行的玻璃带表面上, 打印出各种图文花 样。
[0055] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 其锡槽包括支撑钢 , 顶罩壳和底壳, 耐火材料, 锡液, 加热元件, 还原气氛, 温度传感器, 计算 机工艺控制系统。 熔窑工作段经均化的玻璃液经流道进入锡槽, 在锡槽锡液面 成型, 借助于拉边机调整厚度, 并逐段冷却成型为光滑而平坦的玻璃带。 在玻 璃锡槽上部的顶罩壳内, 拉边器之后, 过渡辊台之前的玻璃硬化临界温度区内 , 一般应在 660〜 370°C之间, 最佳温区应在 680〜 820°C之间。 锡槽漂浮玻璃 带之上的两侧锡槽边框上, 横架设有至少一台的玻璃打印装置。 玻璃打印装置 智能测量打印模头与玻璃带表面的距离, 自动智能调整模头打印深度, 并根据 自动智能前次打印点排的移动速度和间距, 自动智能调控钉状打印模的打印速 度和间距, 实现打印模在透明玻璃带上打印支撑点阵的智能自动测量、 控制和 打印。
[0056] 玻璃带从锡槽出来后, 经过过渡辊道台上的辊道进入退火窑的辊道, 进行退火 。 通过智能自动裁切设备, 进行裁切, 下线堆垛储存。
[0057] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 其转动的打印圆辊 上或设有至少一对的闭环压边凹槽圈, 或凸起圈, 点阵支撑设于两闭环压边内
[0058] 钉状打印模为耐高温且不易出现变形的特种镀铬钢制造。
[0059] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 其浮法玻璃生产线 上的点阵支撑玻璃带的生产工艺, 为在浮法玻璃生产线的锡槽上, 加装点阵打 印装置, 生产打印点阵支撑玻璃带。 而需生产常规浮法玻璃带, 只要将钉状打 印模抬起离开玻璃带面, 则将生产出常规浮法玻璃带。
[0060] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板的夹层真空可调保温 系统, 包括设有进排气管件密封玻璃周边调控间隔夹层功能气体气压的钢化玻 璃板、 真空阀、 真空表、 进排气管道、 真空泵组。 其特征是: 至少一张设有进 排气管件、 密封玻璃周边、 调控间隔夹层功能气体气压的钢化玻璃板, 其进排 气管件通过包括三通、 四通的管件与进排气管道, 通过用包括焊接、 粘接、 螺 帽密封管件栓接的方式, 与进排气管道并联密封连接, 进排气管道上连接有真 空表。
[0061] 进排气管道通过真空阀与真空泵组密封连接, 真空泵组通过真空表设定的数值 标准启闭。 或变频真空泵组通过真空表设定的数值标准变功率出力。
[0062] 真空泵组设有粗抽和精抽两组真空泵, 可通过对粗抽和精抽两组真空泵通过并 联或串联运行。 或当粗抽真空泵抽到设定真空后, 粗抽真空泵关闭, 精抽真空 泵启动, 直到抽到设定真空后精抽真空泵关闭。 当真空度降低到设定数值时, 再次启动真空泵组。 或真空泵组为连续运行的变频真空泵组。
[0063] 密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板的真空度降低到设定 值后, 或自动关闭设于其管件之上的真空阀, 真空泵测量密封玻璃周边调控间 隔夹层功能气体气压保温钢化玻璃板夹层内的真空度, 判断保温散热透光钢化 玻璃板是否漏真空, 当真空升到或降到设定值后自动启闭真空阀。
[0064] 进排气管道上或设有通过真空阀连接控制的, 通过前置真空阀控制启闭的功能 气体进气管道。 在真空阀之前所设的进气管道上, 或设有干燥器组件。 干燥器 组件上设有电加热除湿装置和对空排气阀。
[0065] 在干燥器之前的管道上或设有包括空气的多组功能气体罐。 功能气体罐组包括 低导热系数气体氩气罐、 二氧化碳气体罐, 及高导热系数气体包括氢气罐、 氮 气罐。
[0066] 密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板保温散热透光钢化玻 璃板根据设计要求, 通过对保温散热透光钢化玻璃板通入高导热系数气体的氢 气或氮气实现保温散热透光钢化玻璃板的良好散热。
[0067] 通过对保温散热透光钢化玻璃板通入空气, 实现保温散热透光钢化玻璃板的常 规散热。
[0068] 通过对保温散热透光钢化玻璃板通入低导热系数气体的氩气或二氧化碳, 实现 保温散热透光钢化玻璃板的常规保温。
[0069] 通过对保温散热透光钢化玻璃板抽真空, 实现保温散热透光钢化玻璃板的良好 保温。 [0070] 真空表为常规真空表, 或为人工智能真空表, 真空阀为常规真空阀, 或为人工 智能真空阀。
发明的有益效果
有益效果
[0071] 本发明制造的真空玻璃, 可以获得很好的玻璃电阻热熔焊接质量, 解决了真空 玻璃的失钢化难题, 从而解决了真空玻璃的安全问题。 不仅如此, 与现有真空 玻璃相比, 利用本工艺方法制作的真空玻璃, 还具有更好的保温及隔音效果, 同时具备顶级的透光性。 在材质上可以广泛应用钢化玻璃, 在制作成本上大幅 下降, 结构形式多样化, 玻璃强度高、 安全、 寿命长、 大尺寸、 造价低、 成品 率高, 保温隔音性能好、 功能性强、 低能耗、 透视效果好、 便于大规模生产等 特点, 克服了目前功能玻璃的诸多问题。 从而使真空玻璃最大限度的应用于设 施农业、 高层建筑上, 并最大限度的达到建筑物的节能效果。 因此本发明具有 良好的经济效益、 环境效益和社会效益。
对附图的简要说明
附图说明
[0072] 下面结合附图和实施例对本发明进一步说明。
[0073] 图 1是本发明设有一侧热熔凸点钢化玻璃板与钢化平板钢化玻璃板合片, 电热 熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0074] 图 2是本发明设有一侧热熔凸点钢化玻璃板与另一侧热熔凸点钢化玻璃板合片 , 电热熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0075] 图 3是本发明设有一侧打印凸点钢化玻璃板与钢化平板钢化玻璃板合片, 电热 熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0076] 图 4是本发明设有一侧打印凸点钢化玻璃板与另一侧打印凸点钢化玻璃板合片 , 电热熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0077] 图 5是本发明设有一侧打印火山口凸点钢化玻璃板与钢化平板钢化玻璃板合片 , 电热熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0078] 图 6是本发明设有一侧打印火山口凸点钢化玻璃板与另一侧打印火山口凸点钢 化玻璃板合片, 电热熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截 面剖视图;
[0079] 图 7是本发明的一侧钢化玻璃板, 与另一钢化玻璃板通过支撑凸点合片, 电热 熔焊玻璃支撑边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0080] 图 8本发明设有一侧热熔凸点钢化玻璃板与钢化平板钢化玻璃板合片, 电热形 变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0081] 图 9是本发明设有一侧热熔凸点钢化玻璃板与另一侧热熔凸点钢化玻璃板合片
, 电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0082] 图 10是本发明设有一侧打印凸点钢化玻璃板与钢化平板钢化玻璃板合片, 电热 形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0083] 图 11是本发明设有一侧打印凸点钢化玻璃板与另一侧打印凸点钢化玻璃板合片 , 电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0084] 图 12是本发明设有一侧打印火山口凸点钢化玻璃板与钢化平板钢化玻璃板合片 , 电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图; [0085] 图 13是本发明设有一侧打印火山口凸点钢化玻璃板与另一侧打印火山口凸点钢 化玻璃板合片, 电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截 面剖视图;
[0086] 图 14是本发明的一侧钢化玻璃板, 与另一钢化玻璃板通过支撑凸点合片, 电热 形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃板的截面剖视图;
[0087] 图 15是本发明设有一侧热熔凸点钢化玻璃板与钢化平板玻璃板合片, 电热熔焊 玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接 有“U”形闭环波纹不锈钢边框的截面剖视图;
[0088] 图 16是本发明设有一侧热熔凸点钢化玻璃板与另一侧热熔凸点钢化玻璃板合片 , 电热熔焊玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封 胶包裹粘接有“U”形闭环波纹不锈钢边框的截面剖视图;
[0089] 图 17是本发明设有一侧打印凸点钢化玻璃板与钢化平板玻璃板合片, 电热熔焊 玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接 有“U”形闭环波纹不锈钢边框的截面剖视图;
[0090] 图 18是本发明设有一侧打印凸点钢化玻璃板与另一侧打印凸点钢化玻璃板合片 , 电热熔焊玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封 胶包裹粘接有“U”形闭环波纹不锈钢边框的截面剖视图;
[0091] 图 19是本发明设有一侧打印火山口凸点钢化玻璃板与钢化平板玻璃板合片, 电 热熔焊玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包 裹粘接有“U”形闭环波纹不锈钢边框的截面剖视图;
[0092] 图 20是本发明设有一侧打印火山口凸点钢化玻璃板与另一侧打印火山口凸点钢 化玻璃板合片, 电热熔焊玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接有“U”形闭环波纹不锈钢边框的截面剖视图;
[0093] 图 21是本发明的一侧钢化玻璃板, 与另一钢化玻璃板通过支撑凸点合片, 电热 熔焊玻璃支撑边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹 粘接有“U”形闭环波纹不锈钢边框的截面剖视图;
[0094] 图 22本发明设有一侧热熔凸点钢化玻璃板与钢化平板玻璃板合片, 电热形变玻 璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接有 截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0095] 图 23是本发明设有一侧热熔凸点钢化玻璃板与另一侧热熔凸点钢化玻璃板合片 , 电热形变玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封 胶包裹粘接有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0096] 图 24是本发明设有一侧打印凸点钢化玻璃板与钢化平板玻璃板合片, 电热形变 玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接 有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0097] 图 25是本发明设有一侧打印凸点钢化玻璃板与另一侧打印凸点钢化玻璃板合片 , 电热形变玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封 胶包裹粘接有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0098] 图 26是本发明设有一侧打印火山口凸点钢化玻璃板与钢化平板玻璃板合片, 电 热形变玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包 裹粘接有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0099] 图 27是本发明设有一侧打印火山口凸点钢化玻璃板与另一侧打印火山口凸点钢 化玻璃板合片, 电热形变玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹粘接有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视 图;
[0100] 图 28是本发明的一侧钢化玻璃板, 与另一钢化玻璃板通过支撑凸点合片, 电热 形变玻璃熔焊边框夹层真空可调保温透光玻璃板的周边, 通过结构密封胶包裹 粘接有截面“L”和反“L”形闭环波纹不锈钢边框的截面剖视图;
[0101] 图 29是一种制造本发明电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃 板的玻璃加热电阻玻璃焊接一体机的结构示意图;
[0102] 图 30是一种制造本发明电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃 板的玻璃加热、 电阻玻璃焊接分体机的结构示意图;
[0103] 图 31是一种制造本发明电热形变玻璃熔焊边框夹层真空可调保温透光钢化玻璃 板的玻璃加热、 电阻玻璃封口焊接一体机的结构示意图;
[0104] 图 32是滚轮玻璃支撑点打印机的结构示意图;
[0105] 图 33是玻璃支撑点通过上下往复运动梁臂打印机的结构示意图;
[0106] 图 34是玻璃支撑点通过针式打印机打印的结构示意图;
[0107] 图 35是单面玻璃支撑点分布示意图;
[0108] 图 36是双面玻璃支撑点分布示意图。
[0109] 图 37、 图 38、 图 39、 图 40是本发明的钢化玻璃边沿电热熔焊夹层真空可调保温 透光钢化玻璃板的连接示意图。
发明实施例
具体实施方式
[0110] 图中: 1热熔玻璃电阻焊接密封边框、 2进排气真空阀、 3下侧钢化平板玻璃、 4 真空夹层、 5上侧钢化平板玻璃、 6烧结支撑凸点、 7粘接剂、 8进排气管嘴、 9拉 伸支撑凸点、 10压花支撑凸点、 11外置支撑点、 12结构密封胶、 13“U”形不锈钢 波纹保护边框、 14“L”形不锈钢保护边框、 15电热滚轮转轴、 16焊接接电碳刷、
17焊接电源线、 18保温罩、 19加热接电碳刷、 20电热焊接滚轮、 21加热电源线 、 22电热熔玻璃焊接滚轮、 23电热滚轮、 24耐火材料、 25锡槽支撑、 26锡液、 2 7地板、 28打印模、 29锡槽外壳、 30耐火材料、 31基板、 32地基、 33顶罩外壳、
34压花滚轮、 35压花滚轮转轴、 36保温材料、 37打印梁臂、 38导轨 39针式打印 机、 40打印模头、 41精抽真空泵、 42干燥器、 43真空表、 44干燥器排气阀、 45 二氧化碳气罐、 46氩气罐、 47氮气罐、 48氢气罐、 49空气进气管、 50粗抽真空 泵、 51粗抽真空泵排气管、 52三通管件、 53精抽真空泵排气管、 54四通管件、 5 5人工智能控制器。
[0111] 如图 37所示: 调控玻璃间隔夹层功能气体气压保温散热透光钢化玻璃板的调真 空系统, 由与之配套, 设有进排气管件的钢化玻璃边沿电热熔焊夹层真空可调 保温透光钢化玻璃板拼装组成。 钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板的进排气管, 通过三通管件 52、 或四通管件 54, 通过用包括焊接、 粘接、 螺帽密封管件栓接的方式, 与进排气管道密封并联连接。 进排气管道上 设有真空阀 F3。 真空阀 F3前设有前置真空表, 真空阀 F3后设有后置真空表。 进 排气管道通过三通管件 52的一端管口与真空泵组连接; 三通管件 52的另一端管 口, 通过真空阀 F2和功能气体罐组连接。
[0112] 如图 37所示的设有进排气管件的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 为上侧钢化玻璃 5和分布有点阵支撑凸点的下侧钢化玻璃 3 , 在轮 廓形状、 尺寸大小上相互对应, 互补扣合, 间隔组成中空夹层 4。 通过结构密封 胶 1和气密密封胶 2粘接密封玻璃周边, 制成真空可调钢化玻璃板。 真空钢化玻 璃板上安装有进排气管件 8。
[0113] 进排气管道通过三通管件 52的一端管口与真空泵组密封连接, 真空泵组通过真 空表设定的数值标准启闭; 或变频真空泵组通过真空表设定的数值标准变功率 出力。
[0114] 真空泵组设有粗抽真空泵 50和精抽真空泵 41两组真空泵, 当粗抽真空泵 50抽到 设定真空后, 粗抽真空泵 50关闭, 精抽真空泵 41启动, 直到抽到设定真空后精 抽真空泵 41关闭; 当真空度降低到设定数值时, 再次启动真空泵组; 或真空泵 组为连续运行的变频真空泵组。
[0115] 真空泵组设有粗抽和精抽两台并联真空泵, 通过对粗抽真空泵 50和精抽真空泵 41两组真空泵并联或串联运行, 实现快速抽真空和高度抽真空。
[0116] 如关闭 F4、 F18 , 打开, F5、 F6、 F7、 F8、 F19 , 开启粗抽真空泵 50对系统抽真 空, 气体通过粗抽真空泵 50、 真空阀 F19 , 经粗抽真空泵 50的排气管 51排出。 [0117] 密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板的真空度升高到设定 值后, 粗抽真空泵的效率将大幅降低。 关闭真空阀 F5、 F6、 F7、 F8、 F18、 F19 , 关闭粗抽真空泵; 开启精抽真空泵 41, 开启真空阀 F4、 F9、 F10、 F16、 F17 , 直到抽到设定真空后, 先关闭真空阀 F4、 F9、 F10、 F16、 F17, 后精抽真空泵 41 。 当真空度降低到设定数值时, 再次启动真空泵组;
[0118] 或密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板的真空度升高到设 定值后, 关闭真空阀 F19, 开启精抽真空泵 41, 开启真空阀 F18、 F9、 F10、 F16 、 F17 , 直到抽到设定真空后, 先关闭真空阀 F5、 F6、 F7、 F8、 F18、 F19 , 关闭 粗抽真空泵; 后关闭真空阀 F4、 F9、 F10、 F16、 F17 , 精抽真空泵 41。 当真空度 降低到设定数值时, 再次启动真空泵组;
[0119] 进排气管道上设有通过三通管件 52的另一端管口连接的真空阀 F2。 真空阀 F2控 制启闭的功能气体进气管道; 在真空阀 F2之前所设的进气管道上, 设有干燥器 组件 42; 干燥器组件 42上设有电加热除湿装置和对空排气阀 44;
[0120] 在干燥器组件 42之前的管道上设有包括空气的多组功能气体罐; 功能气体罐组 包括低导热系数气体氩气罐 46、 二氧化碳气体罐 45 , 及高导热系数气体包括氢 气罐 48、 氮气罐 47 ;
[0121] 密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板保温散热透光钢化玻 璃板根据设计要求, 通过对保温散热透光钢化玻璃板通入高导热系数气体的氢 气或氮气实现保温散热透光钢化玻璃板的良好散热;
[0122] 通过对保温散热透光钢化玻璃板通入空气, 实现保温散热透光钢化玻璃板的常 规散热;
[0123] 通过对保温散热透光钢化玻璃板通入低导热系数气体的氩气或二氧化碳, 实现 保温散热透光钢化玻璃板的常规保温;
[0124] 通过对保温散热透光钢化玻璃板抽真空, 实现保温散热透光钢化玻璃板的良好 保温。
[0125] 真空表为常规真空表, 或为人工智能真空表, 真空阀为常规真空阀, 或为人工 智能真空阀。
[0126] 如图 38所示: 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板调真空 系统配套的钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 为设有 支撑边框的产品, 其它等同于图 37。
[0127] 如图 39所示: 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板调真空 系统配套的钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 为设有 不锈钢保护边框的产品, 其它等同于图 37。

Claims

权利要求书
[权利要求 i] 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板, 包括钢化 玻璃板、 间隙隔离支撑、 闭环玻璃支撑, 其特征是: 将两张轮廓形状 、 尺寸大小相互对应的钢化玻璃板, 通过两张钢化玻璃板之间的间隙 隔离支撑和填补缝隙闭环玻璃支撑, 在两张钢化玻璃板之间, 间隔出 中空隔离缝隙, 组成具有间隔夹层腔体的双层钢化玻璃板; 在两张钢化玻璃板之一上, 设有联通两侧, 通过气密密封胶和结构密 封胶粘接密封的联通密封管件; 或在两张钢化玻璃板之一上, 设有联 通两侧, 通过连接紧固件和气密密封胶粘接密封旋紧锁固的联通密封 管件; 或在两张钢化玻璃板之一上, 设有联通两侧, 通过低熔点金属 钎焊剂钎焊密封的联通密封管件; 或在两张钢化玻璃板之一上, 设有 联通两侧, 通过连接紧固件和低熔点金属钎焊剂钎焊密封旋紧锁固的 联通密封管件;
在轮廓形状、 尺寸大小上相互对应的两张钢化玻璃板其中之一上, 设 有与钢化玻璃板复合一体, 分布有点阵凸起点间隙隔离支撑; 或两张 钢化玻璃板上均设有与钢化玻璃板复合一体, 分布有点阵凸起点间隙 隔离支撑;
(A) 此钢化玻璃板为通过钢化玻璃板压辊压制成型的压花钢化玻璃 板; 将两张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘 接合片, 通过两张钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃 板之间间隔出中空隔离缝隙; 此过程或和玻璃生产过程同步进行;
(B) 或凸点钢化玻璃板是玻璃原片, 通过印刷玻璃粉膏, 然后用热 熔法制成; 热熔玻璃粉膏成为支撑凸点, 此过程或和玻璃钢化同步进 行; 将两张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘 接合片, 通过两张钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃 板之间间隔出中空隔离缝隙;
(C) 或此钢化玻璃板为通过模具压制拉伸成型的点阵凸包钢化玻璃 板; 将两张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘 接合片, 通过两张钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃 板之间间隔出中空隔离缝隙;
(D) 或在轮廓形状、 尺寸大小上相互对应的两张钢化玻璃板上, 设 有与钢化玻璃板一体, 分布有波纹槽凸起交叉间隙隔离支撑; 凸起波 纹槽为通过模具压制拉伸成型的钢化玻璃板; 将两张钢化玻璃板直接 合片, 或将两张钢化玻璃板凸起支撑点粘接合片, 通过两张钢化玻璃 板上的凸起波纹槽交叉叠摞, 在两张钢化玻璃板之间间隔出中空隔离 缝隙; 此过程或和玻璃钢化同步进行;
(E) 或钢化玻璃板为通过粘接点阵分布间隙隔离支撑的钢化玻璃板
; 将两张钢化玻璃板直接合片, 或将两张钢化玻璃板凸起支撑点粘接 合片, 通过两张钢化玻璃板之间的间隙隔离支撑, 在两张钢化玻璃板 之间间隔出中空隔离缝隙;
在设有间隙隔离支撑的两张钢化玻璃板的边缘之间, 设有与两张钢化 玻璃板在轮廓形状、 尺寸大小与钢化玻璃板边沿对应, 补齐两张钢化 玻璃板之间隔离支撑间隙厚度的填补缝隙闭环玻璃支撑;
(A) 填补缝隙闭环玻璃支撑, 为玻璃加工成型的闭环玻璃垫圈边框
, 其为与两张设有间隙隔离支撑的钢化玻璃板, 在轮廓形状、 尺寸大 小与钢化玻璃板边沿对应的填补缝隙闭环玻璃支撑, 闭环钢化玻璃板 边框补齐间隙隔离支撑的缝隙, 其厚度与单一间隙隔离支撑的高度, 或相对间隙隔离支撑相对叠加高度之和等高; 闭环玻璃垫圈边框的材 质与钢化玻璃板的材质相同;
(B) 或填补缝隙闭环玻璃支撑, 为在玻璃周边通过加热玻璃模具拉 伸或折边加工成型的, 与两张设有间隙隔离支撑的钢化玻璃板, 在轮 廓形状、 尺寸大小与钢化玻璃板边沿对应的填补缝隙闭环玻璃支撑, 闭环钢化玻璃板边框补齐间隙隔离支撑的缝隙, 其厚度与单一间隙隔 离支撑的高度, 或相对间隙隔离支撑相对叠加高度之和等高; 此过程 或和玻璃钢化同步进行;
(C) 或填补缝隙闭环玻璃支撑, 为在玻璃周边通过印刷玻璃粉膏制 成; 热熔玻璃粉膏成为填补缝隙闭环玻璃支撑, 此过程或和玻璃钢化 同步进行; 印刷玻璃粉膏制成的闭环玻璃垫圈边框, 其材质与钢化玻 璃板的材质相同;
(D) 或填补缝隙闭环玻璃支撑, 为通过电加热边框对玻璃边沿进行 电加热并相对施压, 使两张设有间隙隔离支撑的钢化玻璃板的边沿软 化变形, 逐渐软化贴合, 实现补齐钢化玻璃板之间的缝隙, 其厚度与 单一间隙隔离支撑的高度, 或相对间隙隔离支撑相对叠加高度之和等 尚;
两张钢化玻璃板边缘对齐合片在一起, 对两张钢化玻璃板边缘电加热 , 使两张钢化玻璃板边缘达到玻璃导电温度;
对两张钢化玻璃板边缘接通电阻热熔焊接电源, 并通过电热滚轮进行 相对施压, 使填补缝隙闭环玻璃支撑, 与两张钢化玻璃板实现玻璃电 阻热熔焊接, 形成留有中空夹层的边缘玻璃焊接双层钢化玻璃板: 玻 璃电阻热熔焊接电路上, 设有镇流器, 用于解决玻璃电阻热熔焊接后 因温度升高, 玻璃电阻变小, 电流变大的问题; 或真空夹层钢化玻璃板体的周边外侧, 包裹上截面为“U”形的闭环波 纹不锈钢边框, 波纹不锈钢边框的槽内, 填充有结构密封胶; 利用截 面为“U”形闭环波纹不锈钢边框的自身弹性, 与真空夹层钢化玻璃板 体的周边外侧进行拉伸套装, 并利用闭环波纹不锈钢边框的自身回弹 , 使截面为“U”形闭环波纹不锈钢边框, 与真空夹层钢化玻璃板体的 周边外侧紧密贴合粘接在一起;
或真空夹层钢化玻璃板体的周边外侧, 包裹上截面为“L”和反“L”形, 涂覆有结构密封胶的闭环不锈钢边框扣合套装形成的真空夹层钢化玻 璃板结构保护边框。
[权利要求 2] 根据权利要求 1所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 其特征是: 中空夹层钢化玻璃板体上的开孔设于玻璃面 板上; 联通密封管件为剖面为“T”形设有挡头的管件, 管件的挡头上 设有通气沟槽; 或联通密封管件为剖面为“T”形的设有挡头的管件, 管件的挡头上设有通气沟槽, 管件的外壁上设有螺纹, 管件螺纹对应 设有根部为齿楞, 向上为锥形的螺帽; 管件螺纹通过气密密封胶和螺 帽旋紧密封在中空夹层钢化玻璃板体上; 或管件螺纹通过低熔点金属 通过钎焊和螺帽旋紧密封在中空夹层钢化玻璃板体上; 剖面为“T”形 设有挡头的管件或为磁性材料。
[权利要求 3] 一种制造权利要求 1钢化玻璃边沿电热熔焊夹层真空可调保温透光钢 化玻璃板的玻璃电阻焊机, 包括电热焊接滚轮、 支撑托架、 电源装置 , 控制操作装置, 其特征是: 两张钢化玻璃板边缘对齐合片在一起, 通过设于玻璃边缘上的一对电加热电阻热熔焊接滚轮, 对两张钢化玻 璃板边缘进行电加热电阻热熔玻璃焊接; 电加热电阻热熔焊接滚轮上 , 分别设有电加热电源和电阻热熔焊接电源, 分别使滚轮产生热量加 热钢化玻璃板和实现钢化玻璃板之间的电阻热熔焊接; 三组电源交替 供电, 两电热加热滚轮上的电源, 设于滚轮的直径上, 通过滚轮自身 电阻发热, 并通过传导将热量传给两张钢化玻璃板, 使钢化玻璃板温 度升高导电; 电阻热熔焊接电源设于两张钢化玻璃板的相对两侧, 对 钢化玻璃板通电加热焊接; 当玻璃由固体到软化过程中玻璃由绝缘体 逐步转化为半导体、 导体, 当对滚轮相对施压, 有电流通过的时候, 玻璃就会发热软化变形, 就会在玻璃变形的层与层之间, 因导电而发 热, 使导电玻璃温度高于其它地方的玻璃温度, 因此产生玻璃导电融 化, 实现玻璃与玻璃之间的良好玻璃热熔焊接; 玻璃电阻热熔焊接后 因温度升高, 玻璃电阻变小, 在电压不变的情况下, 电流会变大, 因 此, 在玻璃电阻热熔焊接电路上, 设有镇流器; 电加热电阻热熔焊接 滚轮上设有保温装置; 钢化玻璃板可通过对玻璃电阻热熔焊接边缘的 迅速降温, 可实现失钢化的玻璃边缘再次钢化。
[权利要求 4] 一种制造权利要求 1钢化玻璃边沿电热熔焊夹层真空可调保温透光钢 化玻璃板的玻璃电阻焊机, 包括电热焊接滚轮、 支撑托架、 电源装置 , 控制操作装置, 其特征是: 两张钢化玻璃板边缘对齐合片在一起, 通过设于玻璃边缘上的前后两对电加热电阻热熔焊接滚轮, 对两张钢 化玻璃板边缘进行电加热和电阻热熔玻璃焊接; 电加热和电阻热熔焊 接的滚轮上, 分别设有电加热电源和电阻热熔焊接电源, 分别使电加 热滚轮产生热量加热钢化玻璃板, 使钢化玻璃板导电; 电阻热熔焊接 滚轮通电实现钢化玻璃板之间的电阻热熔焊接; 两组电源分别设于电 加热滚轮的直径上, 通过滚轮自身电阻发热, 并通过传导将热量传给 两张钢化玻璃板, 使钢化玻璃板温度升高导电; 电阻热熔焊接电源设 于两张钢化玻璃板的相对两侧, 对钢化玻璃板通电加热进行热熔玻璃 焊接; 当玻璃由固体到软化过程中玻璃由绝缘体逐步转化为半导体、 导体, 当对滚轮相对施压, 在有电流通过玻璃的时候, 玻璃通过变形 , 就会使玻璃的层与层之间, 因电阻大而温度高, 玻璃因此产生融化 , 实现玻璃与玻璃之间的良好焊接; 电加热电阻热熔焊接滚轮线焊将 两片钢化玻璃板焊接在一起; 玻璃电阻热熔焊接后因温度升高, 玻璃 电阻变小, 在电压不变的情况下, 电流会变大, 因此, 在玻璃电阻热 熔焊接电路上, 设有镇流器; 电加热电阻热熔焊接滚轮上设有保温装 置; 钢化玻璃板可通过对玻璃电阻热熔焊接边缘的迅速降温, 可实现 失钢化的玻璃边缘再次钢化。
[权利要求 5] 根据权利要求 1所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 其特征是: 钢化玻璃板为经过磨边处理和经钢化处理的 包括平板玻璃、 布纹玻璃、 压花玻璃、 南化玻璃、 磨沙玻璃、 镀膜玻 璃, 镀膜玻璃的功能膜包括增透膜、 金属膜, 装饰膜; 玻璃面板表面 复合有镀膜的, 则玻璃面板电阻热熔焊接面处必须除去镀膜; 钢化玻 璃板或为双层或多层夹胶玻璃;
凸点压花钢化玻璃板为在生产钢化玻璃板原片时, 在玻璃锡槽中的适 合温度位置上, 经玻璃压延机压延上玻璃凸点; 所用玻璃压延机上的 一根压延辊的表面上, 刻有形状和尺寸均一, 且按所述凸点支撑物点 阵排列的系列凹坑; 凸点压花钢化玻璃板经过裁切、 磨边、 钢化处理 或凸点压花钢化玻璃板为钢化玻璃板原片磨边整形后, 通过钢化炉加 热, 经玻璃压延机压延凸点, 折弯支撑边框, 成型后, 进行钢化处理 ; 所用玻璃压延机上的一根压延辊的表面上, 刻有形状和尺寸均一, 且按所述凸点支撑物点阵排列的系列凹坑;
或凸包钢化玻璃板或波纹钢化玻璃板为在生产钢化玻璃板原片时, 在 玻璃锡槽中的适合温度位置上, 经玻璃压延机压延上玻璃凹点; 所用 玻璃压延机上的一根压延辊的表面上, 刻有形状和尺寸均一, 且按所 述凹点支撑物点阵排列的系列凸尖; 凹点压花钢化玻璃板经过裁切、 磨边、 钢化处理;
或凸包钢化玻璃板或波纹钢化玻璃板经过磨边整形后, 通过钢化炉加 热, 经玻璃模具拉伸凸点, 折弯支撑边框, 成型后, 进行钢化处理; 或凸点钢化玻璃板是玻璃原片, 通过印刷玻璃粉膏, 然后用热熔法制 成的; 即先将低温玻璃粉膏按所述凸点支撑物点阵排列图案印刷到一 钢化玻璃板上, 然后将该钢化玻璃板送入钢化热熔炉, 加热到玻璃粉 膏熔点的某一适宜温度, 令玻璃粉膏堆积体转化为与钢化玻璃板表面 熔合在一起的玻璃凸点, 之后, 折弯支撑边框, 进行钢化处理; 或支撑为至少一端涂有粘接剂的支撑, 包括与闭环支撑密封边框高度 相等或接近的包括高硬玻璃支撑、 高硬金属支撑、 高硬陶瓷支撑, 柱 状或球状或环状支撑点阵状排列; 或支撑为端头支撑面上粘接有气凝 胶隔热垫的支撑隔热材料垫, 支撑隔热材料垫两端气凝胶绝热垫的表 面涂覆有包括水玻璃胶无机胶;
将适当厚度钢化玻璃板按照设计尺寸裁截处理, 磨边处理, 钢化处理 的钢化玻璃面板, 作为原材料使用; 玻璃电阻热熔焊接表面需进行脱 油、 清洁、 烘干处理。
[权利要求 6] —种制造权利要求 1钢化玻璃边沿电热熔焊夹层真空可调保温透光钢 化玻璃板的玻璃支撑点打印机, 其特征是: 点阵支撑钢化玻璃板通过 设于浮法玻璃生产线锡槽顶部顶罩壳内的、 位于拉边器之后、 过渡辊 台之前, 锡槽内玻璃硬化临界温区内的玻璃打印装置打印, 玻璃打印 装置的打印模具头部为设有园锥形凹坑或火山口状凹坑, 或头部为凸 尖的钉状打印模, 在漂浮于锡槽面上的玻璃带上, 打印出设有上凸点 阵, 或下凹点阵;
平板玻璃带表面上点阵的各凸起点周围的相邻点之间、 或各下凹点周 围的相邻点之间等距离布置, 制成玻璃带表面设有上凸点阵, 或下凹 点阵的菱形点阵支撑玻璃带;
或将玻璃带裁切成的两张钢化玻璃板, 其表面上设有的凸起点阵、 或 下凹点阵上下扣合后, 形成的交叉互补的相邻点之间为等距离布置, 制成两张合片玻璃表面设有上凸点阵, 或下凹点阵交叉互补形成的菱 形点阵支撑钢化玻璃板;
平板玻璃带通过钉状打印模打印支撑点阵后, 经过过渡辊道台, 进退 火窑进行退火, 制成平板玻璃带上的上凸支撑点阵, 或下凹支撑点阵 无应力的点阵支撑平板玻璃带; 点阵支撑平板玻璃带经裁切后制成点 阵支撑钢化玻璃板, 点阵支撑化钢化玻璃板下线堆垛入库储存; 或在玻璃锡槽顶罩壳内的拉边器之后, 过渡辊台之前的玻璃硬化临界 温度区内, 一般应在 520°C〜 820°C之间;
锡槽漂浮玻璃带之上的两侧锡槽边框上, 横架设有至少一台的玻璃打 印装置; 玻璃打印装置能够在玻璃带的表面上打印出上凸点阵, 或下 凹点阵;
以上各种打印模都是以小面积的模头, 作用于玻璃带表面之上, 以小 的压力, 产生大的压强, 对玻璃带进行打印, 从而对上浮于锡液表面 上漂浮行进状态的软化玻璃带, 不产生整体形变影响; 因此, 玻璃打 印装置是在玻璃带表面上, 分散打印出上凸的点阵、 或下凹点阵、 或 通过累积打印出的上凸、 下凹点组成各式图文花样;
玻璃打印装置的打印模为钉状打印模, 钉状打印模的头部, 为设有园 锥形凹坑或火山口状凹坑的钉状打印模, 以等距放射状布置于转动的 打印圆辊上; 或钉状打印模的头部, 为设有凸尖的钉状打印模, 以等 距放射状布置于转动的打印圆辊上; 打印圆辊设于设有基座的支架上 , 通过设有外保温内冷却装置的动力传动装置带动, 横置安装于锡槽 两侧槽壁之间; 打印圆辊上的钉状打印模, 通过连续转动的钉状打印 模, 将上凸的点阵、 或下凹点阵打印于连续前行的玻璃带表面上; 或玻璃打印装置的打印模为钉状打印模, 钉状打印模的头部, 为设有 园锥形凹坑或火山口状凹坑的钉状打印模; 或钉状打印模的头部, 为 设有凸尖的钉状打印模; 钉状打印模设于上下往复运动的打印梁臂上 , 打印梁臂设于设有基座的支架上, 通过设有外保温内冷却装置的动 力传动装置带动, 横置安装于锡槽两侧槽壁之间; 打印梁臂上的钉状 打印模, 通过连续上下往复运动, 将上凸的点阵、 或下凹点阵, 打印 于连续前行的玻璃带表面上;
或玻璃打印装置的打印模为针式打印模, 针式打印模设于针式玻璃打 印机上, 针式打印机模头设于打印梁臂上, 打印梁臂设于设有基座的 支架上, 通过设有外保温内冷却装置的动力传动装置带动, 横置安装 于锡槽两侧槽壁之间; 通过针式玻璃打印机的针式模头, 在连续前行 的玻璃带表面上, 打印出各种图文花样。
[权利要求 7] 根据权利要求 6所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 其特征是: 锡槽包括支撑钢, 顶罩壳和底壳, 耐火材料 , 锡液, 加热元件, 还原气氛, 温度传感器, 计算机工艺控制系统; 熔窑工作段经均化的玻璃液经流道进入锡槽, 在锡槽锡液面成型, 借 助于拉边机调整厚度, 并逐段冷却成型为光滑而平坦的玻璃带; 在玻 璃锡槽上部的顶罩壳内, 拉边器之后, 过渡辊台之前的玻璃硬化临界 温度区内, 一般应在 660〜 370°C之间, 最佳温区应在 680〜 820°C 之间; 锡槽漂浮玻璃带之上的两侧锡槽边框上, 横架设有至少一台的 玻璃打印装置; 玻璃打印装置智能测量打印模头与玻璃带表面的距离 , 自动智能调整模头打印深度, 并根据自动智能前次打印点排的移动 速度和间距, 自动智能调控钉状打印模的打印速度和间距, 实现打印 模在透明玻璃带上打印支撑点阵的智能自动测量、 控制和打印; 玻璃带从锡槽出来后, 经过过渡辊道台上的辊道进入退火窑的辊道, 进行退火; 通过智能自动裁切设备, 进行裁切, 下线堆垛储存。
[权利要求 8] 根据权利要求 6所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 其特征是: 转动的打印圆辊上或设有至少一对的闭环压 边凹槽圈, 或凸起圈, 点阵支撑设于两闭环压边内;
钉状打印模为耐高温且不易出现变形的特种镀铬钢制造。
[权利要求 9] 根据权利要求 6所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板, 其特征是: 浮法玻璃生产线上的点阵支撑玻璃带的生产 工艺, 为在浮法玻璃生产线的锡槽上, 加装点阵打印装置, 生产打印 点阵支撑玻璃带; 而需生产常规浮法玻璃带, 只要将钉状打印模抬起 离开玻璃带面, 则将生产出常规浮法玻璃带。
[权利要求 10] 根据权利要求 1所述的钢化玻璃边沿电热熔焊夹层真空可调保温透光 钢化玻璃板的夹层真空可调保温系统, 包括设有进排气管件密封玻璃 周边调控间隔夹层功能气体气压的钢化玻璃板、 真空阀、 真空表、 进 排气管道、 真空泵组, 其特征是: 至少一张设有进排气管件、 密封玻 璃周边、 调控间隔夹层功能气体气压的钢化玻璃板, 其进排气管件通 过包括三通、 四通的管件与进排气管道, 通过用包括焊接、 粘接、 螺 帽密封管件栓接的方式, 与进排气管道并联密封连接, 进排气管道上 连接有真空表;
进排气管道通过真空阀与真空泵组密封连接, 真空泵组通过真空表设 定的数值标准启闭; 或变频真空泵组通过真空表设定的数值标准变功 率出力;
真空泵组设有粗抽和精抽两组真空泵, 可通过对粗抽和精抽两组真空 泵通过并联或串联运行; 或当粗抽真空泵抽到设定真空后, 粗抽真空 泵关闭, 精抽真空泵启动, 直到抽到设定真空后精抽真空泵关闭; 当 真空度降低到设定数值时, 再次启动真空泵组; 或真空泵组为连续运 行的变频真空泵组;
密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板的真空度降 低到设定值后, 或自动关闭设于其管件之上的真空阀, 真空泵测量密 封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板夹层内的真空 度, 判断保温散热透光钢化玻璃板是否漏真空, 当真空升到或降到设 定值后自动启闭真空阀;
进排气管道上或设有通过真空阀连接控制的, 通过前置真空阀控制启 闭的功能气体进气管道; 在真空阀之前所设的进气管道上, 或设有干 燥器组件; 干燥器组件上设有电加热除湿装置和对空排气阀; 在干燥器之前的管道上或设有包括空气的多组功能气体罐; 功能气体 罐组包括低导热系数气体氩气罐、 二氧化碳气体罐, 及高导热系数气 体包括氢气罐、 氮气罐;
密封玻璃周边调控间隔夹层功能气体气压保温钢化玻璃板保温散热透 光钢化玻璃板根据设计要求, 通过对保温散热透光钢化玻璃板通入高 导热系数气体的氢气或氮气实现保温散热透光钢化玻璃板的良好散热 通过对保温散热透光钢化玻璃板通入空气, 实现保温散热透光钢化玻 璃板的常规散热;
通过对保温散热透光钢化玻璃板通入低导热系数气体的氩气或二氧化 碳, 实现保温散热透光钢化玻璃板的常规保温;
通过对保温散热透光钢化玻璃板抽真空, 实现保温散热透光钢化玻璃 板的良好保温;
真空表为常规真空表, 或为人工智能真空表, 真空阀为常规真空阀, 或为人工智能真空阀。
PCT/CN2019/124402 2018-12-11 2019-12-10 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板 WO2020119694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811508058 2018-12-11
CN201811508058.1 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020119694A1 true WO2020119694A1 (zh) 2020-06-18

Family

ID=71075554

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/121157 WO2020118678A1 (zh) 2018-12-11 2018-12-14 双胶粘接密封玻璃间隔腔体真空调控保温玻璃板
PCT/CN2019/124402 WO2020119694A1 (zh) 2018-12-11 2019-12-10 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板
PCT/CN2019/124401 WO2020119693A1 (zh) 2018-12-11 2019-12-10 钢化玻璃边沿周边电热熔焊夹层真空保温透光钢化玻璃板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121157 WO2020118678A1 (zh) 2018-12-11 2018-12-14 双胶粘接密封玻璃间隔腔体真空调控保温玻璃板

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124401 WO2020119693A1 (zh) 2018-12-11 2019-12-10 钢化玻璃边沿周边电热熔焊夹层真空保温透光钢化玻璃板

Country Status (2)

Country Link
CN (2) CN111302669A (zh)
WO (3) WO2020118678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112901031A (zh) * 2021-02-07 2021-06-04 东莞帕萨电子装备有限公司 真空玻璃生产线及加工工艺
CN115263167A (zh) * 2022-08-14 2022-11-01 孙明云 一种绿色建筑用中空百叶玻璃及其制作方法、维修方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219853A (zh) * 2007-01-10 2008-07-16 天津市鑫全真电子管技术有限公司 电子管玻壳与管芯的气电封口工艺
CN101886511A (zh) * 2009-05-14 2010-11-17 陈恒路 平板玻璃表面在线压制微凸微小圆柱点阵列的方法和装置
CN102121284A (zh) * 2010-01-05 2011-07-13 北京环能海臣科技有限公司 调控腔体真空度保温的夹层平板玻璃幕墙
EP2653454A1 (en) * 2010-12-13 2013-10-23 Alga Co., Ltd. Vacuum glass panel and manufacturing method thereof
CN104817259A (zh) * 2015-03-23 2015-08-05 常虎 自体熔封式真空玻璃

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177337A (zh) * 2006-11-08 2008-05-14 李洪生 具有高安全性能的夹层真空玻璃及制造方法
CN201144189Y (zh) * 2007-12-21 2008-11-05 东华大学 中空玻璃
CN101942954A (zh) * 2009-07-03 2011-01-12 贾天民 一种可监测和调节修复空腔内压力值的负压式中空玻璃
CN201581769U (zh) * 2009-07-29 2010-09-15 刘长礼 一种间隔装置
CN102050585A (zh) * 2009-11-02 2011-05-11 刘伟杰 一种低成本钢化真空玻璃及其制作方法
EP2552847A4 (en) * 2010-03-27 2013-10-02 Robert S Jones VACUUM INSULATION GLASS UNIT WITH VISKOSER EDGE SEAL
CN103588386B (zh) * 2013-11-11 2016-05-18 青岛亨达玻璃科技有限公司 钢化真空玻璃的生产方法
US10280680B2 (en) * 2013-12-31 2019-05-07 Guardian Glass, LLC Vacuum insulating glass (VIG) unit with pump-out port sealed using metal solder seal, and/or method of making the same
CN104071992A (zh) * 2014-06-21 2014-10-01 北京来利尔科技发展有限公司 一种新型真空玻璃
US20180066470A1 (en) * 2014-11-19 2018-03-08 Changhong Dai Vacuum glass and manufacturing method therefor
JP6425174B2 (ja) * 2015-03-20 2018-11-21 パナソニックIpマネジメント株式会社 真空ガラスパネルの製造方法
CN105134027B (zh) * 2015-08-10 2017-10-20 Vecast(北京)科技有限公司 一种中空玻璃及其制造方法
CN105645789B (zh) * 2015-12-22 2018-05-11 湖南省华京粉体材料有限公司 一种热垒中空玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219853A (zh) * 2007-01-10 2008-07-16 天津市鑫全真电子管技术有限公司 电子管玻壳与管芯的气电封口工艺
CN101886511A (zh) * 2009-05-14 2010-11-17 陈恒路 平板玻璃表面在线压制微凸微小圆柱点阵列的方法和装置
CN102121284A (zh) * 2010-01-05 2011-07-13 北京环能海臣科技有限公司 调控腔体真空度保温的夹层平板玻璃幕墙
EP2653454A1 (en) * 2010-12-13 2013-10-23 Alga Co., Ltd. Vacuum glass panel and manufacturing method thereof
CN104817259A (zh) * 2015-03-23 2015-08-05 常虎 自体熔封式真空玻璃

Also Published As

Publication number Publication date
WO2020119693A1 (zh) 2020-06-18
CN111302669A (zh) 2020-06-19
WO2020118678A1 (zh) 2020-06-18
CN111302670A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN102050585A (zh) 一种低成本钢化真空玻璃及其制作方法
US20150024151A1 (en) Low pressure air or vacuum glass edge-sealed with bar frame and groove
CN1903759B (zh) 一种真空玻璃的生产方法
CN102951820A (zh) 真空玻璃及其制备方法
WO2020119694A1 (zh) 钢化玻璃边沿电热熔焊夹层真空可调保温透光钢化玻璃板
CN111302664A (zh) 玻璃边框支撑互补扣合金属钎焊不锈钢边框调控真空玻璃
CN201933017U (zh) 一种低辐射钢化真空玻璃
CN1134377C (zh) 一种真空玻璃及其制造方法
CN111302663A (zh) 设有保护边框辊压支撑边框金属钎焊夹层调真空保温玻璃
CN107584845A (zh) 一种弯钢化夹胶玻璃的制备方法
CN111302665A (zh) 设有辊压支撑双胶密封玻璃间隔腔体调控真空钢化玻璃板
WO2020118673A1 (zh) 玻璃拉伸支撑边框及不锈钢边框与金属钎焊真空调控玻璃
WO2020118677A1 (zh) 双胶密封玻璃间隔腔体调控真空保温玻璃板
CN216377923U (zh) 一种钢化炉生产真空low-e玻璃的强制对流装置
WO2020118672A1 (zh) 玻璃及不锈钢边框与金属钎焊隔离夹层真空保温玻璃板
CN111302661B (zh) 设有保护边框滚压支撑金属钎焊夹层真空保温玻璃板
WO2020118676A1 (zh) 玻璃复合支撑边框及不锈钢边框与金属钎焊真空调控玻璃
WO2020118670A1 (zh) 双胶密封槽边支撑扣合夹层调控真空玻璃板
CN111302659B (zh) 玻璃板边框支撑互补扣合金属钎焊不锈钢边框真空玻璃板
WO1996027560A1 (fr) Procede de fabrication de verre trempe par sustentation par pression statique
CN209344087U (zh) 一种安全光伏真空玻璃
CN111305715B (zh) 设有保护边框滚压支撑金属钎焊夹层中空保温玻璃板
CN111305719B (zh) 玻璃拉伸边框支撑合片金属钎焊不锈钢边框中空保温玻璃
WO2020118664A1 (zh) 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃
CN215175410U (zh) 一种具有排气通道的发热瓷砖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895313

Country of ref document: EP

Kind code of ref document: A1