WO2020118664A1 - 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃 - Google Patents

玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃 Download PDF

Info

Publication number
WO2020118664A1
WO2020118664A1 PCT/CN2018/121141 CN2018121141W WO2020118664A1 WO 2020118664 A1 WO2020118664 A1 WO 2020118664A1 CN 2018121141 W CN2018121141 W CN 2018121141W WO 2020118664 A1 WO2020118664 A1 WO 2020118664A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
stainless steel
closed
loop
aluminum
Prior art date
Application number
PCT/CN2018/121141
Other languages
English (en)
French (fr)
Inventor
徐宝安
Original Assignee
淄博环能海臣环保技术服务有限公司
徐宝安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博环能海臣环保技术服务有限公司, 徐宝安 filed Critical 淄博环能海臣环保技术服务有限公司
Publication of WO2020118664A1 publication Critical patent/WO2020118664A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • C03C27/042Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts
    • C03C27/046Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts of metals, metal oxides or metal salts only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/08Joining glass to glass by processes other than fusing with the aid of intervening metal
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the invention relates to using vacuum brazing technology to braze and seal glass and metal to manufacture a functional glass plate. It belongs to the field of glass building materials.
  • the mainstream of functional glass is insulating glass and vacuum glass.
  • Insulating glass insulation performance is not ideal, because there is no mutual support between the two layers of glass, can not rely on each other, making the glass weak resistance to wind pressure, easy to break due to glass resonance. At the same time, because there is no protective frame around the insulating glass, it is easy to break the insulating glass due to bumping the glass corners during transportation and installation.
  • Vacuum glass is supported by sandwiching two layers of glass plates, and the periphery is sealed and sealed by sealing and adhesive bonding.
  • Vacuum glass is currently the best transparent energy-saving functional glass, with a series of advantages such as light weight, thin thickness, small heat transfer coefficient, good sound insulation effect, etc. It is an ideal energy-saving building material.
  • the sealing adhesive around the vacuum glass is bonded to a low-temperature glass fusion seal, its manufacturing process, cost, yield, mechanical properties and size specifications are greatly restricted, and it is difficult to achieve the tempering treatment of the glass plate. The glass strength and safety performance are affected. Once the glass frit edge is damaged due to stress and other reasons, the entire vacuum glass will lose good sound insulation and thermal insulation performance.
  • the glass and stainless steel frame and the tensile support frame are metal brazed laminated vacuum glass, including flat glass, gap isolation support, aluminum or aluminum alloy brazed frame, and stainless steel frame.
  • the two glass plates forming the spaced interlayer cavity correspond to each other in outline shape and size.
  • At least one of the two glass plates is provided with an embossed glass plate integrated with the glass plate and distributed with a series of raised points.
  • the edge of the glass sheet is provided with a ring-shaped closed glass sheet tensile support frame with the same height as the raised point.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the relative support of the raised points and the total height.
  • a closed-loop aluminum or aluminum alloy frame with at least one joint is inlaid with a "mountain" cross-section.
  • the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the "mountain” shaped aluminum or aluminum alloy profile.
  • the height of the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the "mountain” shaped middle aluminum or aluminum alloy profile.
  • the outer side of the closed-loop aluminum or aluminum alloy frame with a "mountain” shape is wrapped with a "U"-shaped closed-loop corrugated stainless steel frame with the cross-section of the inverted “U”-shaped closed-loop corrugated stainless steel frame, and the hollow laminated glass
  • the outer periphery of the panel is stretched and set, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross section be an inverted "U"-shaped closed-loop corrugated stainless steel frame, and the "mountain”-shaped closed loop outside the periphery of the hollow laminated glass panel
  • the outer sides of the aluminum or aluminum alloy frame are tightly fitted together.
  • the two glass edges are made of hollow laminated glass blanks inlaid with a "mountain" cross-section, which is connected with a closed-loop aluminum or aluminum alloy frame and a stainless-steel closed-loop protective frame.
  • the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size, and at least one of the two glass plates is provided with a dot matrix convex cladding glass plate that is pressed and stretched by a mold, or The mold presses the stretched corrugated glass sheet. Between the edges of the two glass plates, there is a processed shape corresponding to the contour shape, size and size of the two glass plates and the edge of the glass plate. The height of the frame support of the glass plate is close to the height of the convex hull or convex corrugation. The glass plate stretches the supporting frame.
  • a closed-loop aluminum or aluminum alloy frame with at least one joint is inlaid with a "mountain" cross-section.
  • the gap of the supporting frame left by the butt height of the point support or line support corresponds to the thickness of the "mountain” shaped aluminum or aluminum alloy profile.
  • the height of the supporting frame gap left by the butt height of the point support or line support corresponds to the thickness of the "mountain” shaped aluminum or aluminum alloy profile .
  • the outer side of the closed-loop aluminum or aluminum alloy frame with a "mountain” shape is wrapped with a "U"-shaped closed-loop corrugated stainless steel frame with the cross-section of the inverted “U”-shaped closed-loop corrugated stainless steel frame, and the hollow laminated glass
  • the outer periphery of the panel is stretched and set, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross section be an inverted "U"-shaped closed-loop corrugated stainless steel frame, and the "mountain”-shaped closed loop outside the periphery of the hollow laminated glass panel
  • the outer sides of the aluminum or aluminum alloy frame are tightly fitted together.
  • the two glass edges are made of hollow laminated glass blanks inlaid with a "mountain" cross-section, which is connected with a closed-loop aluminum or aluminum alloy frame and a stainless-steel closed-loop protective frame.
  • the two glass plates forming the spaced interlayer cavity correspond to each other in outline shape and size. At least one of the two glass plates is a bump glass plate, or two glass plates are both bump glass plates .
  • the bump glass plate is the original glass, which is made by printing glass powder paste and then sintering. The sintered glass powder paste becomes a supporting bump, or is synchronized with the glass tempering.
  • the frame is stretched to support the frame by the edge of the glass plate, and the two glass plates and the ring-shaped closed frame are brought into point contact and surface contact cover together.
  • the total height of the bumps superimposed on the supporting and closing pieces together is higher than the height of the tensile support frame of the ring-shaped closed glass plate.
  • a closed-loop aluminum or aluminum alloy frame with at least one joint is inlaid with a "mountain" cross-section.
  • the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the "mountain" shaped aluminum or aluminum alloy profile.
  • the height of the supporting frame gap left by the butt height of the bump support corresponds to the thickness of the "mountain" shaped middle aluminum or aluminum alloy profile.
  • the outer side of the closed-loop aluminum or aluminum alloy frame with a "mountain” shape is wrapped with a "U"-shaped closed-loop corrugated stainless steel frame with the cross-section of the inverted “U”-shaped closed-loop corrugated stainless steel frame, and the hollow laminated glass
  • the outer periphery of the panel is stretched and set, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross section be an inverted "U"-shaped closed-loop corrugated stainless steel frame, and the "mountain”-shaped closed loop outside the periphery of the hollow laminated glass panel
  • the outer sides of the aluminum or aluminum alloy frame are tightly fitted together.
  • the two glass edges are made of hollow laminated glass blanks inlaid with a "mountain" cross-section, which is connected with a closed-loop aluminum or aluminum alloy frame and a stainless-steel closed-loop protective frame.
  • the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size, and one of the at least two glass plates is provided with an adhesive lattice distribution support connected to the glass plate as a whole.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the support.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the total height of the relative support superposed on the support.
  • a closed-loop aluminum or aluminum alloy frame with at least one joint is inlaid with a "mountain" cross-section.
  • the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the "mountain” shaped aluminum or aluminum alloy profile. Or by recessing and drawing the peripheral edge of at least one sheet glass, the height of the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the "mountain” shaped middle aluminum or aluminum alloy profile.
  • the outer side of the closed-loop aluminum or aluminum alloy frame with a "mountain” shape is wrapped with a "U"-shaped closed-loop corrugated stainless steel frame with the cross-section of the inverted “U”-shaped closed-loop corrugated stainless steel frame, and the hollow laminated glass
  • the outer periphery of the panel is stretched and set, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross section be an inverted "U"-shaped closed-loop corrugated stainless steel frame, and the "mountain”-shaped closed loop outside the periphery of the hollow laminated glass panel
  • the outer sides of the aluminum or aluminum alloy frame are tightly fitted together.
  • the two glass edges are made of hollow laminated glass blanks inlaid with a "mountain" cross-section, which is connected with a closed-loop aluminum or aluminum alloy frame and a stainless-steel closed-loop protective frame.
  • At least one glass blank is sent into the vacuum furnace, heated and evacuated, and electrothermal brazed to achieve vacuum brazing of the stainless steel frame, aluminum or aluminum alloy and glass, and unsealing the long-acting getter.
  • the vacuum furnace is ventilated and cooled, the furnace is opened, and the glass and stainless steel frame and the tensile support frame are metal brazed interlayer vacuum glass.
  • Aluminum or aluminum alloy brazing materials include Al and brazing materials containing Al include AI-Si system, Al-Cu-Si system, and Zn-AI system.
  • a method for manufacturing glass and stainless steel frame and tensile support frame metal brazing interlayer vacuum glass including glass plate, aluminum or aluminum alloy brazing profile, stainless steel frame, vacuum brazing furnace. Between the two glass plates, a hollow interlayer is separated by a supporting frame. The two glass plate sealing covers and the surface and the edge of the glass plate are provided with aluminum or aluminum alloy brazed profiles. The aluminum alloy brazed profile frames are wrapped with stainless steel frames , Made into hollow laminated glass blank.
  • the resistance of the aluminum or aluminum alloy frame among the three of the stainless steel frame, glass, aluminum or aluminum alloy frame is the smallest, the current in the aluminum or aluminum alloy frame is the largest, the aluminum or aluminum alloy frame quickly heats up, and itself quickly heats up and melts evenly.
  • the molten solder and glass brazing surface and stainless steel brazing surface are fully immersed and wetted to achieve Brazing of glass surface and stainless steel surface by aluminum or aluminum alloy.
  • the long-acting getter close to the edges of the two glass plates in the interlayer cavity between the two glass plates is unsealed.
  • the glass brazed with stainless steel and aluminum is not completely softened due to its poor thermal conductivity and short heating time.
  • the stainless steel is not softened, and the surface of the oxide layer of the stainless steel reacts with aluminum, that is, the interface between the stainless steel and aluminum is also firmly bonded due to the chemical reaction.
  • the temperature of 720°C is already the softening temperature of ordinary glass.
  • Aluminum alloy brazing material is used to reduce the brazing temperature between the glass and stainless steel frame, improve the brazing quality between glass and stainless steel, and reduce the difficulty of the brazing process.
  • the corresponding closed-loop aluminum or aluminum alloy frame is also longer, so the brazed connection sealing layer formed is thicker, making the aluminum or aluminum alloy and glass It has high brazing strength with stainless steel and good airtight sealing performance.
  • this phenomenon can be used to automatically and intelligently control the energized heating time, accurately control the brazing temperature, and achieve good vacuum brazing of aluminum or aluminum alloys with flat glass and stainless steel frames.
  • the brazing layer of aluminum or aluminum alloy cools down, and gradually forms a temperature field with glass and stainless steel frame, the temperature tends to be consistent, and achieves a good brazing connection.
  • the water vaporizes and evaporates instantly under vacuum to generate air pressure.
  • the stainless steel frame quickly compacts the softened aluminum or aluminum alloy brazing layer and makes it exothermic and solidifies, and achieves a rapid and substantial cooling of the vacuum furnace.
  • the aluminum or aluminum alloy brazing layer cools down, and gradually forms a temperature field with glass and stainless steel frames, the temperature tends to be consistent, and achieves a good brazing connection.
  • the vacuum furnace is ventilated with air The air absorbs heat and expands to generate pressure.
  • the stainless steel frame quickly compacts the softened aluminum or aluminum alloy brazing layer and makes it exothermic and solidifies.
  • spray water to the vacuum furnace to make the water absorb air The heat reduces the temperature of the vacuum furnace, so that the glass in the stainless steel frame is moderately tempered, and then, or the cooling device provided in the vacuum furnace is turned on to cool the vacuum furnace.
  • the aluminum or aluminum alloy brazing layer cools down, and gradually forms a temperature field with glass and stainless steel frames, the temperature tends to be consistent, and achieves a good brazing connection.
  • the vacuum furnace is ventilated with air , The air absorbs heat and expands to generate pressure, and the stainless steel frame quickly compacts the softened aluminum or aluminum alloy brazing layer under the action of air pressure and allows it to radiate and solidify.
  • the hot air is released and the cold air is filled. Cool the vacuum furnace, or turn on the cooling device in the vacuum furnace to cool the vacuum furnace.
  • the aluminum or aluminum alloy brazing material in the stainless steel frame will naturally cool and solidify, causing the glass in the stainless steel frame to lose its tempering characteristics.
  • the quality of glass and stainless steel brazed by aluminum or aluminum alloy is improved, and the characteristics of the glass in the tempered glass stainless steel frame are changed, so that the flat glass within the inner edge of the closed-loop stainless steel frame is still tempered glass, or the closed-loop stainless steel frame groove
  • the wrapped glass is moderately tempered, or the glass wrapped in the closed-loop stainless steel frame groove loses the tempering characteristics and has a glass plate with vacuum interlayer.
  • a glass insulation sandwich cavity vacuum thermal insulation aluminum paste brazed glass plate includes flat glass, gap isolation support, aluminum paste, and stainless steel frame.
  • the two glass plates forming the spaced interlayer cavity correspond to each other in outline shape and size.
  • At least one of the two glass plates is provided with an embossed glass plate integrated with the glass plate and distributed with a series of raised points.
  • the edge of the glass sheet is provided with a ring-shaped closed glass sheet tensile support frame with the same height as the raised point.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the relative support of the raised points and the total height.
  • a closed-loop aluminum paste brazing film layer with a cross-section of "U" shape is coated and coated.
  • the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the “U” shaped aluminum paste coating.
  • the height of the gap of the supporting frame left by the butt height of the point support corresponds to the thickness of the “U” shaped aluminum paste coating.
  • the outer surface of the closed-loop aluminum paste brazed film layer with a "U" cross-section is wrapped with a closed-loop corrugated stainless steel frame with a "U” cross-section.
  • the groove in the corrugated stainless steel frame is filled with aluminum paste.
  • the cross-section is an inverted "U”-shaped corrugated stainless steel frame, and the cross-section is a "U"-shaped closed-loop corrugated stainless steel frame, which is closely attached to the outside of the closed-loop aluminum paste brazing film layer.
  • Two glass edge blanks are prepared, which are inlaid with a U-shaped cross section, and are connected with a closed-loop aluminum paste brazing film layer and a stainless steel closed-loop protective frame.
  • the hollow laminated glass plate blank is dried and processed.
  • the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size, and at least one of the two glass plates is provided with a dot matrix convex cladding glass plate that is pressed and stretched by a mold , Or the mold presses the stretched corrugated glass sheet.
  • a ring-shaped closed glass plate tensile support frame is provided on the edges of the two glass plates.
  • the height of the supporting frame of the glass plate is equal to the height of the convex hull or convex corrugation, or the edges of the two glass plates are provided with a ring-shaped closed glass plate tensile supporting frame of equal height to the total height of the supporting and superimposing relative to the convex hull or convex corrugation .
  • the sealing surface of the two ring-shaped closed glass plates of the flat glass is stretched to support the frame, and is coated with a closed-loop aluminum paste brazing film layer.
  • Two ring-shaped closed tensile support frames coated with closed-loop aluminum paste brazed film glass plates are brought into point contact, or line contact and surface contact, and are closed together.
  • the outer side of the closed-loop aluminum paste brazing film layer is wrapped with a closed-loop corrugated stainless steel frame with a U-shaped cross section, and the groove of the corrugated stainless steel frame is filled with aluminum paste.
  • a closed-loop corrugated stainless steel frame with a U-shaped cross section
  • the groove of the corrugated stainless steel frame is filled with aluminum paste.
  • the cross-section is an inverted "U”-shaped corrugated stainless steel frame, and the cross-section is a "U"-shaped closed-loop corrugated stainless steel frame, which is closely attached to the outside of the closed-loop aluminum paste brazing film layer.
  • Two glass edge blanks are prepared, which are inlaid with a U-shaped cross section, and are connected with a closed-loop aluminum paste brazing film layer and a stainless steel closed-loop protective frame.
  • the hollow laminated glass plate blank is dried and processed.
  • the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size, at least two glasses are printed by glass frit paste, and then made by sintering method.
  • the sintered glass powder paste becomes a supporting bump.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the raised point.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the relative support of the raised points and the total height.
  • the two glass plates are coated with a closed-loop aluminum paste brazing film layer on the ring-shaped closed glass plate tensile support frame, and the cover is closed. Then, on the outer side of the periphery of the hollow laminated glass plate body, a closed-loop corrugated stainless steel frame with a U-shaped cross section is wrapped. The groove in the corrugated stainless steel frame is filled with aluminum paste.
  • a closed-loop aluminum paste brazing film layer is placed on the ring-shaped closed glass plate tensile support frame to tightly connect the suit, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section
  • the "U"-shaped closed-loop corrugated stainless steel frame is closely attached to the edges of the two pieces of glass wrapped with the closed-loop aluminum paste brazing film layer to form the outer side of the closed-loop aluminum paste brazing film layer, which is wrapped in a "U” shape Hollow laminated glass plate blank with corrugated stainless steel frame, and drying the hollow laminated glass plate blank.
  • the paste brazing film layer is closely attached together.
  • Two glass edge blanks are produced, which are wrapped with a closed-loop aluminum paste brazing film layer, and closely fit with a stainless steel closed-loop protection frame, and the hollow laminated glass plate blank is dried.
  • the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size.
  • At least one of the two glass plates is provided with a support distributed through the bonding lattice, and the glass plate Glass plate connected as one.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the support.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate stretching support frame with the same height as the total height of the relative support.
  • the two contour shapes and sizes correspond to each other, at least one of which is provided with a support lattice-distributed glass plate and a flat glass, or a glue lattice-distributed glass plate and a glue lattice-distributed glass plate .
  • a closed-loop aluminum paste brazing film layer is placed on the ring-shaped closed glass plate tensile support frame to tightly connect the suit, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section
  • the "U"-shaped closed-loop corrugated stainless steel frame is closely attached to the edges of the two pieces of glass wrapped with the closed-loop aluminum paste brazing film layer to form the outer side of the closed-loop aluminum paste brazing film layer, which is wrapped in a "U” shape Hollow laminated glass plate blank with corrugated stainless steel frame, and drying the hollow laminated glass plate blank.
  • the paste brazing film layer is closely attached together.
  • Two glass edge blanks are produced, which are wrapped with a closed-loop aluminum paste brazing film layer, and closely fit with a stainless steel closed-loop protection frame, and the hollow laminated glass plate blank is dried.
  • At least one glass blank is sent into the vacuum furnace, heated and evacuated, and electrothermal brazed to achieve vacuum brazing of the stainless steel frame, aluminum or aluminum alloy and glass, and unsealing the long-acting getter.
  • the vacuum furnace is ventilated and cooled, and then the furnace is opened, and a vacuum insulation aluminum paste brazed glass plate with a glass space interlayer cavity is prepared.
  • Brazing aluminum paste includes low-temperature glass aluminum paste, medium-temperature glass aluminum paste, and high-temperature glass aluminum paste.
  • a method for manufacturing a glass insulation sandwich cavity vacuum thermal insulation aluminum paste brazing glass plate includes a glass plate, aluminum or aluminum alloy brazing profiles, stainless steel frame, and vacuum brazing furnace. Between the two glass plates, a hollow interlayer is separated by a supporting frame. The two glass plate sealing covers and the surface and the edge of the glass plate are provided with aluminum or aluminum alloy brazed profiles. The aluminum alloy brazed profile frames are wrapped with stainless steel frames , Made into hollow laminated glass blank.
  • the resistance of the aluminum paste brazing film layer among the three of the stainless steel frame, glass, and aluminum paste brazing film layer is the smallest, the current in the aluminum paste brazing film layer is the largest, the aluminum paste brazing film layer rapidly heats up, and itself quickly heats up Melt evenly.
  • the molten solder and glass brazing surface and stainless steel brazing surface are fully immersed and wetted to achieve Brazing of aluminum paste to glass surface and stainless steel surface.
  • the long-acting getter close to the edges of the two glass plates in the interlayer cavity between the two glass plates is unsealed.
  • the aluminum paste brazing material quickly heats up to become liquid aluminum, and the glass brazed with the stainless steel aluminum paste is not completely softened due to its poor thermal conductivity and short heating time.
  • the stainless steel is not softened, and the surface of the oxide layer of the stainless steel reacts with aluminum, that is, the interface between the stainless steel and aluminum is also firmly bonded due to the chemical reaction.
  • the temperature of 720°C is already the softening temperature of ordinary glass. Therefore, if the brazing temperature is lowered, it not only ensures that the glass is not significantly softened, but also meets the process requirements.
  • Aluminum alloy brazing material is used to reduce the brazing temperature between the glass and stainless steel frame, improve the brazing quality between glass and stainless steel, and reduce the difficulty of the brazing process.
  • the aluminum paste brazing material has good cutting properties, considering that the linear expansion coefficients of glass and aluminum paste brazing material are very different, in the cooling process, due to inconsistent shrinkage, a certain stress will be generated on the brazed surface. Therefore, the stainless steel frame is deformed as much as possible to absorb the stress caused by the thermal expansion and contraction of the aluminum paste brazing material to ensure the brazing quality between the stainless steel frame and the glass.
  • the corresponding closed-loop aluminum paste frame is also longer, so the formed brazing connection sealing layer is thicker, making the aluminum paste braze with glass and stainless steel High strength and good airtight sealing performance.
  • this phenomenon can be used to automatically and intelligently control the heating time of energization, accurately control the brazing temperature, and realize the vacuum brazing of aluminum paste, flat glass, and stainless steel frame.
  • the aluminum paste brazing layer cools down, and gradually forms a temperature field with glass and stainless steel frames that tend to be consistent in temperature, and achieves a good brazing connection.
  • directly spray water into the vacuum furnace to make the water Vacuum vaporizes and vaporizes instantly under vacuum to generate air pressure.
  • the stainless steel frame quickly compacts the softened aluminum paste brazing layer and makes it exothermic and solidifies, and achieves a rapid and sharp temperature reduction of the vacuum furnace.
  • the paste is a good conductor of heat, and the edge of the glass is wrapped with aluminum paste brazing material, so that the glass in the stainless steel frame can be evenly radiated and cooled, and the glass in the stainless steel frame is tempered. After that, the air is passed , Or turn on the cooling device in the vacuum furnace to cool the vacuum furnace.
  • the aluminum paste brazing layer cools down, and gradually forms a temperature field with glass and stainless steel frame that tends to be consistent in temperature, and achieves a good brazing connection.
  • air is introduced into the vacuum furnace. Endothermic heating and expansion generate pressure. Under the action of air pressure, the stainless steel frame quickly compacts the softened aluminum paste brazing layer and allows it to radiate and solidify.
  • spray water to the vacuum furnace to make the water absorb the heat of the air. Lower the temperature to make the glass in the stainless steel frame moderately tempered. After that, or turn on the cooling device provided in the vacuum furnace to cool the vacuum furnace.
  • the aluminum paste brazing layer cools down, and gradually forms a temperature field with glass and stainless steel frame that tends to be consistent in temperature, and achieves a good brazing connection.
  • air is introduced into the vacuum furnace.
  • the endothermic heating and expansion generate pressure.
  • the stainless steel frame quickly compacts the softened aluminum paste brazing layer and makes it exothermic and solidifies.
  • the hot air is released and the cold air is filled to cool the vacuum furnace.
  • the cooling device installed in the vacuum furnace to cool the vacuum furnace the aluminum paste brazing material in the stainless steel frame will naturally cool down and solidify, so that the glass in the stainless steel frame loses its tempering characteristics.
  • the quality of glass and stainless steel brazed by aluminum paste is improved, and the characteristics of the glass in the tempered glass stainless steel frame are changed, so that the flat glass within the inner edge of the closed-loop stainless steel frame is still tempered glass, or wrapped in the closed-loop stainless steel frame groove
  • the glass is moderately tempered, or the glass wrapped in the closed-loop stainless steel frame groove loses the tempering characteristics and has a glass plate with vacuum interlayer.
  • a vacuum insulation tin alloy brazing glass plate of a glass space interlayer cavity includes a glass plate, a tin alloy brazing material, a support, and a stainless steel frame.
  • the two glass plates forming the spaced interlayer cavity correspond to each other in outline shape and size.
  • At least one of the two glass plates is provided with an embossed glass plate integrated with the glass plate and distributed with a series of raised points.
  • the edge of the glass sheet is provided with a ring-shaped closed glass sheet tensile support frame with the same height as the raised point.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the relative support of the raised points and the total height.
  • the sealing surfaces of the edges of the two glass plates are compounded with tin alloy closed-loop solder.
  • the stretching and tempering of the glass plate are carried out simultaneously.
  • At least one of them is provided with embossed glass plates and flat glass with raised points, or embossed glass plates and embossed glass plates.
  • a closed-loop tin alloy brazing sheet is provided on the stretch support frame of the edge of the glass plate, and the interlocking cover is closed. Then, on the outer side of the periphery of the hollow laminated glass plate body, a closed-loop corrugated stainless steel frame with a U-shaped cross section is wrapped. The groove of the corrugated stainless steel frame is filled with tin alloy brazing filler metal.
  • a closed-loop tin alloy brazing sheet is tightly connected to the stretch support frame of the edge of the glass plate, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section "U"
  • the "closed-loop corrugated stainless steel frame” is closely attached to the edges of the two plywood sheets wrapped with the closed-loop tin alloy brazing sheet to form the outer side of the closed-loop tin alloy brazing sheet and wrapped with a "U"-shaped corrugated stainless steel frame. Hollow laminated glass blank.
  • (B) or the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size, and at least one of the two glass plates is provided with a dot matrix convex cladding glass plate that is pressed and stretched by a mold, Or the mold presses the stretched corrugated glass sheet.
  • a ring-shaped closed glass plate tensile support frame is provided on the edges of the two glass plates.
  • the height of the supporting frame of the glass plate is equal to the height of the convex hull or convex corrugation, or the edges of the two glass plates are provided with a ring-shaped closed glass plate tensile supporting frame of equal height to the total height of the supporting and superimposing relative to the convex hull or convex corrugation .
  • the sealing surfaces of the edges of the two glass plates are compounded with tin alloy closed-loop solder.
  • the stretching and tempering of the glass plate are carried out simultaneously.
  • At least one of them is provided with embossed glass plates and flat glass with raised points, or embossed glass plates and embossed glass plates.
  • a closed-loop tin alloy brazing sheet is provided on the stretch support frame of the edge of the glass plate, and the interlocking cover is closed. Then, on the outer side of the periphery of the hollow laminated glass plate body, a closed-loop corrugated stainless steel frame with a U-shaped cross section is wrapped. The groove of the corrugated stainless steel frame is filled with tin alloy brazing filler metal.
  • a closed-loop tin alloy brazing sheet is tightly connected to the stretch support frame of the edge of the glass plate, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section "U"
  • the "closed-loop corrugated stainless steel frame” is closely attached to the edges of the two plywood sheets wrapped with the closed-loop tin alloy brazing sheet to form the outer side of the closed-loop tin alloy brazing sheet and wrapped with a "U"-shaped corrugated stainless steel frame. Hollow laminated glass blank.
  • (C) or the two glass plates constituting the spaced interlayer cavity correspond to each other in outline shape and size
  • at least two glasses are printed by glass frit paste, and then made by sintering method.
  • the sintered glass powder paste becomes a supporting bump.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the raised point.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the relative support of the raised points and the total height.
  • a tin alloy closed-loop brazing sheet is compounded on the ring-shaped closed glass plate tensile support frame. Sintered glass powder paste, glass plate stretching process, or synchronized with tempering.
  • At least one of them is provided with embossed glass plates and flat glass with raised points, or embossed glass plates and embossed glass plates.
  • a closed-loop tin alloy brazing sheet is provided on the stretch support frame of the edge of the glass plate, and the interlocking cover is closed. Then, on the outer side of the periphery of the hollow laminated glass plate body, a closed-loop corrugated stainless steel frame with a U-shaped cross section is wrapped. The groove of the corrugated stainless steel frame is filled with tin alloy brazing filler metal.
  • a closed-loop tin alloy brazing sheet is tightly connected to the stretch support frame of the edge of the glass plate, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section "U"
  • the "closed-loop corrugated stainless steel frame” is closely attached to the edges of the two plywood sheets wrapped with the closed-loop tin alloy brazing sheet to form the outer side of the closed-loop tin alloy brazing sheet and wrapped with a "U"-shaped corrugated stainless steel frame. Hollow laminated glass blank.
  • the edges of the two glass plates are provided with a ring-shaped closed glass plate stretching support frame with the same height as the support.
  • the edge of the two glass plates is provided with a ring-shaped closed glass plate tensile support frame with the same height as the total height of the relative supports.
  • the sealing surfaces of the edges of the two glass plates are compounded with tin alloy closed-loop solder.
  • the glass sheet drawing process may be carried out simultaneously with the tempering.
  • At least one of them is provided with embossed glass plates and flat glass with raised points, or embossed glass plates and embossed glass plates.
  • a closed-loop tin alloy brazing sheet is provided on the stretch support frame of the edge of the glass plate, and the interlocking cover is closed. Then, on the outer side of the periphery of the hollow laminated glass plate body, a closed-loop corrugated stainless steel frame with a U-shaped cross section is wrapped. The groove of the corrugated stainless steel frame is filled with tin alloy brazing filler metal.
  • a closed-loop tin alloy brazing sheet is tightly connected to the stretch support frame of the edge of the glass plate, and the self-rebound of the closed-loop corrugated stainless steel frame is used to make the cross-section "U"
  • the "closed-loop corrugated stainless steel frame” is closely attached to the edges of the two plywood sheets wrapped with the closed-loop tin alloy brazing sheet to form the outer side of the closed-loop tin alloy brazing sheet and wrapped with a "U"-shaped corrugated stainless steel frame. Hollow laminated glass blank.
  • At least one glass blank is sent into the vacuum furnace, heated and evacuated, and electrothermal brazed to achieve vacuum brazing of the stainless steel frame, aluminum or aluminum alloy and glass, and unsealing the long-acting getter.
  • the vacuum furnace is ventilated and cooled, and then the furnace is opened to prepare a vacuum insulation tin alloy brazed glass plate with a glass space interlayer cavity.
  • the tin alloy solder includes Sn-9Zn tin alloy.
  • a method for manufacturing a vacuum insulation tin alloy brazing glass plate of a glass space interlayer cavity includes a glass plate, an isolation support, a tin or tin alloy brazing material, a stainless steel frame, and a vacuum brazing furnace. Between the two glass plates, the hollow interlayer is separated by the isolation support and the supporting frame. The two glass plate sealing covers and the surface and the edge of the glass plate are provided with tin or tin alloy brazing material, and the tin alloy brazing material frame The stainless steel frame is wrapped to make a hollow laminated glass blank.
  • At least one hollow laminated glass sheet blank is placed horizontally in a vacuum furnace provided with a supporting base, a fixed supporting jig or a tray. Close the vacuum furnace door, heat and evacuate the hollow laminated glass sheet blank in the vacuum furnace, when the heating temperature, vacuum degree and set vacuum time are reached.
  • the tin alloy brazing sheet melts evenly when heated to 300°C. Under the capillary action of the contact gap between stainless steel and glass, glass and glass, stainless steel and stainless steel, and the cohesion of the solder after melting, the molten solder and glass brazing surface and stainless steel brazing surface are fully immersed and wetted to achieve Brazing of tin alloy to glass and stainless steel frame. At the same time, the long-acting getter close to the edges of the two glass plates in the interlayer cavity between the two glass plates is unsealed.
  • the tin alloy brazing material has good cutting properties, considering that the linear expansion coefficients of glass and tin alloy brazing material differ greatly, in the cooling process, due to inconsistent shrinkage, a certain stress will be generated on the brazing surface. Therefore, the stainless steel frame should be deformed as much as possible to absorb the stress caused by the thermal expansion and contraction of the tin alloy brazing material to ensure the brazing quality between the stainless steel frame and the glass.
  • the corresponding closed-loop tin alloy frame is also longer, so the formed brazing connection sealing layer is thicker, making the tin alloy brazed to glass and stainless steel High strength and good airtight sealing performance.
  • the air When the air is introduced into the vacuum furnace, the air absorbs heat and expands to generate pressure. Under the action of air pressure, the stainless steel frame quickly compacts the softened tin alloy brazing layer and allows it to release heat and solidify. After that, or open the vacuum furnace. Some cooling devices cool the vacuum furnace.
  • the air is introduced into the vacuum furnace, the air absorbs heat and expands to generate pressure, and the stainless steel frame is quickly compressed by the softened tin alloy brazing layer under the action of air pressure and allowed to radiate and solidify. After that, by releasing hot air, Fill the cold air to cool the vacuum furnace, or turn on the cooling device in the vacuum furnace to cool the vacuum furnace.
  • the tin alloy brazing material in the stainless steel frame will naturally cool and solidify.
  • the quality of glass and stainless steel brazed by tin alloy is improved, and the flat glass is still tempered glass.
  • the vacuum furnace door is opened, and finally the vacuum insulation glass panel of glass plate and glass plate and stainless steel frame and tin alloy vacuum brazing is obtained.
  • Glass and stainless steel frame and stretched support frame metal brazed laminated vacuum glass its glass plate includes glass original sheet, tempered glass, cloth glass, embossed glass, halogenated glass, frosted glass, coated glass, and functional film of coated glass Including antireflection film, metal film, decorative film. If the surface of the glass panel is coated with a coating, the coating must be removed at the brazing surface of the glass panel.
  • Bump embossed glass plate is a glass plate that is rolled with glass bumps at a suitable temperature position in the glass tin bath when the original flat glass is produced.
  • the surface of a calender roll on the glass calender used is engraved with a series of pits of uniform shape and size, and arranged in a dot matrix of the convex support.
  • Embossed embossed glass plate is cut, edged and tempered.
  • the embossed glass plate of the convex point is the original flat glass, after edging and shaping, it is heated by the tempering furnace, the convex point is calendered by the glass calender, the supporting frame is bent, and after forming, it is tempered.
  • the surface of a calender roll on the glass calender used is engraved with a series of pits of uniform shape and size, and arranged in a dot matrix of the convex support.
  • the convex cladding glass plate or the corrugated glass plate is the glass pits that are rolled by the glass rolling machine at a suitable temperature position in the glass tin bath when producing the original flat glass sheet.
  • the surface of a calender roll on the glass calender used is engraved with a series of convex tips of uniform shape and size, and arranged in a dot matrix of the concave support.
  • the concave point embossed glass plate is cut, edged and tempered.
  • the convex cladding glass plate or corrugated glass plate after edging and shaping heated by the tempering furnace, the convex point is stretched by the glass mold, the supporting frame is bent, and after forming, it is tempered.
  • the bump glass plate is the original glass, which is made by printing glass powder paste and then sintering. That is, the low-temperature glass frit paste is printed on a flat glass according to the dot support pattern of the bump support, and then the flat glass is sent to the tempering sintering furnace and heated to a certain suitable temperature of the melting point of the glass frit paste, so that the glass The powder paste accumulation body is transformed into glass bumps fused to the surface of the flat glass, after which, the supporting frame is bent and tempered.
  • the support is a support coated with adhesive on at least one end, including the same or close to the closed-loop support sealing frame height including high-hard glass support, high-hard metal support, high-hard ceramic support, columnar or spherical or ring-shaped support lattice arrangement.
  • the support is a supporting thermal insulation material pad with an aerogel thermal insulation pad adhered to the end supporting surface, and the surface of the aerogel thermal insulation pad at both ends of the supporting thermal insulation material pad is coated with inorganic glue including water glass glue.
  • the tempered glass panel of flat glass with appropriate thickness is cut, edged and tempered according to the design size as raw materials.
  • the glass brazed surface needs to be deoiled, cleaned and dried.
  • the glass and stainless steel frame and the tensile support frame are metal brazed laminated vacuum glass, and the outer periphery of the hollow laminated glass plate body is wrapped with a closed-loop corrugated stainless steel frame with an inverted "U” section.
  • the "U” corrugated stainless steel groove profile is made of stainless steel strip by stamping and drawing, or the "U” corrugated stainless steel groove profile is made of stainless steel strip, which is rolled and formed by a rolling mill.
  • the closed-loop corrugated stainless steel frame is a "U"-shaped corrugated stainless steel groove profile, which is made by bending welding or cutting and welding.
  • the inverted "U” shaped closed-loop corrugated stainless steel frame groove must be deoiled, cleaned, and dried when used.
  • the board structure protects the border.
  • the "L” shaped stainless steel profile is a stainless steel slat, which is formed by stamping and drawing of a die, or the "L” shaped stainless steel profile is a stainless steel slat, which is rolled and formed by a rolling mill.
  • the closed-loop “L” shaped stainless steel frame is an “L” shaped stainless steel profile, which is made by bending welding or cutting welding.
  • a "U"-shaped interlocking glass space interlayer vacuum insulation tin alloy brazed glass plate is provided with ultrasonic energy conversion to improve the quality of glass to glass, glass to metal, metal to metal brazing Device.
  • the vacuum glass manufactured by the invention can obtain good metal glass brazing quality, solve the problem of vacuum glass tempering, and thus solve the safety problem of vacuum glass.
  • the vacuum glass produced by this process method also has better thermal insulation and sound insulation effects, and has top-level light transmittance.
  • Tempered glass can be widely used in materials, and the production cost has been greatly reduced.
  • the structure is diversified.
  • the glass has high strength, safety, long life, large size, low cost, high yield, good thermal insulation and sound insulation performance, strong functionality, and low energy.
  • the features of consumption, good perspective effect, and convenience for mass production have overcome many problems of current functional glass. Therefore, the vacuum glass is applied to the facility agriculture and high-rise buildings to the maximum extent, and the energy-saving effect of the building is maximized. Therefore, the invention has good economic benefits, environmental benefits and social benefits.
  • 1 to 28 are cross-sectional views of the present invention.
  • the upper tempered flat glass 5 and the lower tempered glass 3 provided with a stretched support frame 2 and a composite distribution dotted pattern embossed support bump 9 correspond to each other, forming a vacuum interlayer 4 at intervals.
  • a glass plate frame supporting ply metal brazing stainless steel frame hollow glass plate is made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,包括平板玻璃(3、5)、间隙隔离支撑、铝或铝合金钎焊边框(6)、不锈钢边框(1、15),两张玻璃板边沿设有环形封闭玻璃板的拉伸支撑边框(2),两张平板玻璃边沿之间上,包裹镶嵌有截面为"山"形的至少设有一个衔接处的闭环铝或铝合金边框(6),将截面为"山"形的闭环铝或铝合金边框的外侧,包裹上截面为"U"或"L"形闭环波纹不锈钢边框(1、15)。

Description

玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃 技术领域
本发明涉及一种利用真空钎焊技术,对玻璃和金属进行钎焊封接,制造一种功能玻璃板。属于玻璃建材领域。
背景技术
目前,功能玻璃主流有中空玻璃、真空玻璃。
技术问题
中空玻璃保温性能并不理想,因两层玻璃之间没有相互支撑,不能互相借力,使得玻璃抗风压能力弱,容易因玻璃共振而破碎。同时,因为中空玻璃周边没有保护边框,很容易在运输、安装过程中因磕碰了玻璃边角而造成中空玻璃的破碎。
真空玻璃是由两层玻璃板夹层设支撑,周边通过密封粘接剂粘接抽真空封闭制成。真空玻璃是目前节能效果最好的透明功能玻璃,具有重量轻、厚度薄、传热系数小、隔音效果好等一系列优点,是理想的节能建筑材料。但是因为其昂贵的生产成本,及尚无法达到高层建筑所要求的钢化玻璃安全性要求,目前尚未得到大规模的应用。由于真空玻璃周边密封粘接剂粘接为低温玻璃熔封,使其制造工艺、成本、成品率,机械性能和尺寸规格均受到了极大的限制,而且很难实现对玻璃板的钢化处理,使玻璃强度和安全性能受到影响。一旦玻璃熔封边由于应力等原因损坏漏真空,则整个真空玻璃将丧失良好的隔音、保温性能。
技术解决方案
玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,包括平板玻璃、间隙隔离支撑、铝或铝合金钎焊边框、不锈钢边框。
(A)将两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙。组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框。点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应。或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
(B)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板。两张玻璃板的边沿之间,设有加工成型的与两张玻璃板在轮廓形状、尺寸大小与玻璃板边沿对应,玻璃板的边框支撑高度与凸包、或凸起波纹等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿上,设有加工成型的与两张玻璃板在轮廓形状、尺寸大小与玻璃板边沿对应,玻璃板的边框支撑高度与点阵凸包,或凸起波纹的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框。点支撑或线支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应。或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑或线支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
(C)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一为凸点玻璃板,或两张玻璃板,均为凸点玻璃板。凸点玻璃板是玻璃原片,通过印刷玻璃粉膏,然后用烧结法制成。烧结玻璃粉膏成为支撑凸点,或和玻璃钢化同步进行。
通过玻璃板边沿拉伸支撑边框,将两张玻璃板和环形封闭边框点接触及面接触盖合合片在一起。相互支撑盖合合片在一起的凸点叠加总高度,等高于环形封闭玻璃板拉伸支撑边框高度。两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框。点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应。或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使凸点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或 铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
(D)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布支撑与玻璃板连接为一体。两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与支撑的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框。点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应。或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯。
之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂。对真空炉通气冷却后开炉,制得玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃。
铝或铝合金钎料包括Al和含有Al的钎料有AI-Si系、Al-Cu-Si系、Zn-AI系。
一种制造玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃的方法,包括玻璃板、铝或铝合金钎焊型材、不锈钢边框、真空钎焊炉。将两张玻璃板之间,通过支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有铝或铝合金钎焊型材,铝合金钎焊型材边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯。
之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内,并在截面为“山”形闭环铝或铝合金边框的衔接处外侧包裹的不锈钢的边框上连接压紧电夹,在不锈钢边框等距离处的另一点上连接另一压紧电夹,形成包裹玻璃边框电阻相等的两路导电回路。关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空。当达到钢化玻璃失钢化温度388℃之下的设定加热温度、真空度和设定抽真空时间后,对中空夹层玻璃板毛坯上的两压紧电夹接入低电压、大电流的加热电源。
由于不锈钢边框、玻璃、铝或铝合金边框三者中的铝或铝合金边框电阻最小,因此,铝或铝合金边框中的电流最大,铝或铝合金边框迅速发热,自身快速升温均匀熔化。在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿, 实现铝或铝合金对玻璃表面及不锈钢表面的钎焊。同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封。
在此过程中,铝迅速发热变为液态铝,而与不锈钢铝钎焊的玻璃因其导热性能差,加热时间短并未完全软化。而在720℃时,玻璃的主要成分Si02和Al产生化学反应:4A1+3Si0 2=2A1 20 3+3Si,即此时玻璃与铝的界面可因发生化学反应而牢固结合。同时,在720℃时,不锈钢并未软化,不锈钢的氧化层表面和铝产生化学反应,即此时不锈钢与铝的界面也因发生化学反应而牢固结合。但720℃的温度毕竟已是普通玻璃的软化温度,因此,如降低钎焊温度,既保证玻璃没有明显的软化,又可满足工艺要求。选用铝合金钎焊料,用于降低玻璃与不锈钢边框之间的钎焊温度,提高玻璃与不锈钢之间钎焊质量,降低钎焊工艺难度。
虽然铝或铝合金钎焊料具有良好的可伐特性,但考虑到玻璃和铝或铝合金钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力。因此,尽量使不锈钢边框通过变形,吸收铝或铝合金钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量。
同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环铝或铝合金边框同样较长,因此形成的钎焊连接密封层较厚,使得铝或铝合金与玻璃和不锈钢钎焊强度高,气密密封性能好。
铝或铝合金边框升温均匀熔化后,电阻会突然变大,电流会瞬间变小。因此,可利用此现象自动智能控制通电加热时间,精准控制钎焊温度,良好实现铝或铝合金与平板玻璃、不锈钢边框的真空钎焊。
当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,直接对真空炉喷水,使水在真空状态下瞬间蒸发汽化产生气压,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,并实现对真空炉迅速大幅降温,由于不锈钢、铝或铝合金都是热的良导体,且玻璃边沿是被铝或铝合金钎焊料包裹的,因此能够使不锈钢边框内的玻璃均匀迅速放热降温,使不锈钢边框内的玻璃得到钢化处理,之后,通入空气,或开启真空炉内设有的冷却装置对真空炉降温。
或当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,之后,对真空炉喷水,使水吸收空气热量对真空炉降温,使不锈钢边框内的玻璃得到适度钢化处理,之后,或开启真空炉内设有的冷却装置对真空炉降温。
或当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的铝或铝合金钎焊料会自然降温凝固,使不锈钢边框内的玻璃失去钢化特性。
通过上述工艺,提高玻璃与不锈钢通过铝或铝合金钎焊的质量,改变钢化玻璃不锈钢边框内玻璃的特性,使闭环不锈钢边框内边沿之内的平板玻璃仍为钢化玻璃,或闭环不锈钢边框槽内包裹的玻璃为适度钢化,或闭环不锈钢边框槽内包裹的玻璃失去钢化特性,具有真空夹层的玻璃板。
当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与铝或铝合金真空电热钎焊的真空保温玻璃板。
一种玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板,包括平板玻璃、间隙隔离支撑、铝浆、不锈钢边框。
(A)将两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙。组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
两张平板玻璃的边沿上,包裹有截面为“U”形的闭环铝浆钎焊膜层涂覆包边。点支撑的对接高度所留支撑边框缝隙,与“U”形的中间铝浆涂覆厚度相对应。或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“U”形的中间铝浆涂覆厚度相对应。将两张玻璃板和环形封闭边框点接触及面接触盖合合片在一起。
将截面为“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“U”形闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有铝浆。利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起,制成设有中空保温夹层玻璃板体的周边外侧,包裹有截面为倒“U”形的波纹不锈钢边框,并使截面为“U”形闭环波纹不锈钢边框,与闭环铝浆钎焊膜层的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
或中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
(B)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板。两张玻璃板的边沿上,设有环形封闭玻璃板拉伸支撑边框。玻璃板的支撑边框高度与凸包、或凸起波纹等高,或两张玻璃板的边沿设有与凸包、或凸起波纹相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
两张平板玻璃的环形封闭玻璃板拉伸支撑边框的密封面上,涂覆有闭环铝浆钎焊膜层。将两张涂覆有闭环铝浆钎焊膜层玻璃板的环形封闭拉伸支撑边框点接触、或线接触及面接触盖合合片在一起。
将闭环铝浆钎焊膜层的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,波纹不锈钢边框的槽内,填充有铝浆。利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起,制成设有中空保温夹层玻璃板体的周 边外侧,包裹有截面为倒“U”形的波纹不锈钢边框,并使截面为“U”形闭环波纹不锈钢边框,与闭环铝浆钎焊膜层的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
或中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
(C)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃通过印刷玻璃粉膏,然后用烧结法制成。烧结玻璃粉膏成为支撑凸点。两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。烧结玻璃粉膏、拉伸支撑边框或和玻璃钢化同步进行。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
两张玻璃板通过在环形封闭玻璃板拉伸支撑边框上,涂覆闭环铝浆钎焊膜层,盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有铝浆。利用截面为“U”形闭环波纹不锈钢边框的弹性,与环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环铝浆钎焊膜层的两张合片玻璃边沿紧密贴合,制成闭环铝浆钎焊膜层外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
或中空夹层玻璃板体闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有铝浆,与闭环铝浆钎焊膜层紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环铝浆钎焊膜层,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
(D)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布的支撑,与玻璃板连接为一体的玻璃板。两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将两张轮廓形状、尺寸大小相互对应,至少其中之一设有粘接点阵分布的支撑玻璃板和平板玻璃,或粘接点阵分布支撑的玻璃板和粘接点阵分布支撑的玻璃板。通过在环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层,盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有铝浆。利用截面为“U”形闭环波纹不锈钢边框的弹性,与环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环铝浆钎焊膜层的两张合片玻璃边沿紧密贴合,制成闭环铝浆钎焊膜层外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
或中空夹层玻璃板体闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有铝浆,与闭环铝浆钎焊膜层紧 密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环铝浆钎焊膜层,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理。
之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂。对真空炉通气冷却后开炉,制得一种玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板。
钎焊铝浆包括低温玻璃铝浆、中温玻璃铝浆、高温玻璃铝浆。
一种制造玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板的方法,包括玻璃板、铝或铝合金钎焊型材、不锈钢边框、真空钎焊炉。将两张玻璃板之间,通过支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有铝或铝合金钎焊型材,铝合金钎焊型材边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯。
之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内,并在截面为“U”形闭环铝浆钎焊膜层外侧包裹的不锈钢的边框上连接压紧电夹,在不锈钢边框等距离处的另一点上连接另一压紧电夹,形成包裹玻璃边框电阻相等的两路导电回路。关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空。当达到钢化玻璃失钢化温度388℃之下的设定加热温度、真空度和设定抽真空时间后,对中空夹层玻璃板毛坯上的两压紧电夹接入低电压、大电流的加热电源。
由于不锈钢边框、玻璃、铝浆钎焊膜层三者中的铝浆钎焊膜层电阻最小,因此,铝浆钎焊膜层中的电流最大,铝浆钎焊膜层迅速发热,自身快速升温均匀熔化。在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿,实现铝浆对玻璃表面及不锈钢表面的钎焊。同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封。
在此过程中,铝浆钎料迅速发热变为液态铝,而与不锈钢铝浆钎焊的玻璃因其导热性能差,加热时间短并未完全软化。而在720℃时,玻璃的主要成分Si02和Al产生化学反应:4A1+3Si0 2=2A1 20 3+3Si,即此时玻璃与铝的界面可因发生化学反应而牢固结合。同时,在720℃时,不锈钢并未软化,不锈钢的氧化层表面和铝产生化学反应,即此时不锈钢与铝的界面也因发生化学反应而牢固结合。但720℃的温度毕竟已是普通玻璃的软化温度,因此,如降低钎焊温度,既保证玻璃没有明显的软化,又可满足工艺要求。选用铝合金钎焊料,用于降低玻璃与不锈钢边框之间的钎焊温度,提高玻璃与不锈钢之间钎焊质量,降低钎焊工艺难度。
虽然铝浆钎焊料具有良好的可伐特性,但考虑到玻璃和铝浆钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力。因此,尽量使不锈钢边框通过变形,吸收铝浆钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量。
同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环铝浆边框同样较长,因此形成的钎焊连接密封层较厚,使得铝浆与玻璃和不锈钢钎焊强度高,气密密封性能好。
铝浆边框升温均匀熔化后,电阻会突然变大,电流会瞬间变小。因此,可利用此现象自动智能控制通电加热时间,精准控制钎焊温度,良好实现铝浆与平板玻璃、不锈钢边框的真空钎焊。
当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,直接对真空炉喷水,使水在真空状态下瞬间蒸发汽化产生气压,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,并实现对真空炉迅速大幅降温,由于不锈钢、铝浆都是热 的良导体,且玻璃边沿是被铝浆钎焊料包裹的,因此能够使不锈钢边框内的玻璃均匀迅速放热降温,使不锈钢边框内的玻璃得到钢化处理,之后,通入空气,或开启真空炉内设有的冷却装置对真空炉降温。
或当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,之后,对真空炉喷水,使水吸收空气热量对真空炉降温,使不锈钢边框内的玻璃得到适度钢化处理,之后,或开启真空炉内设有的冷却装置对真空炉降温。
或当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的铝浆钎焊料会自然降温凝固,使不锈钢边框内的玻璃失去钢化特性。
通过上述工艺,提高玻璃与不锈钢通过铝浆钎焊的质量,改变钢化玻璃不锈钢边框内玻璃的特性,使闭环不锈钢边框内边沿之内的平板玻璃仍为钢化玻璃,或闭环不锈钢边框槽内包裹的玻璃为适度钢化,或闭环不锈钢边框槽内包裹的玻璃失去钢化特性,具有真空夹层的玻璃板。
当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与铝浆真空电热钎焊的真空保温玻璃板。
一种玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板,包括玻璃板、锡合金钎料、支撑、不锈钢边框。
(A)两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙。组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
两张玻璃板边沿的密封面上,复合有锡合金闭环钎料。玻璃板拉伸加工、钢化同步进行。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板。通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有锡合金钎料。利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯。
(B)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板。两张玻璃板的边沿上,设有环形封闭玻璃板拉伸支撑边框。玻璃板的支撑边框高度与凸包、或凸起波纹等高,或两张玻璃板的边沿设有与凸包、或凸起波纹相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
两张玻璃板边沿的密封面上,复合有锡合金闭环钎料。玻璃板拉伸加工、钢化同步进行。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板。通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有锡合金钎料。利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯。
(C)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃通过印刷玻璃粉膏,然后用烧结法制成。烧结玻璃粉膏成为支撑凸点。两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
环形封闭玻璃板拉伸支撑边框上,复合有锡合金闭环钎料片。烧结玻璃粉膏、玻璃板拉伸加工、或与钢化同步进行。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板。通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有锡合金钎料。利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯。
(D)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布的支撑,与玻璃板连接为一体的玻 璃板。两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框。或两张玻璃板的边沿设有与相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框。
两张玻璃板边沿的密封面上,复合有锡合金闭环钎料。玻璃板拉伸加工或与钢化同步进行。
在两张玻璃板之间的夹层腔体内,设有长效消气剂。
将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板。通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭。之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框。波纹不锈钢边框的槽内,填充有锡合金钎料。利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯。
或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起。制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯。
之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂。对真空炉通气冷却后开炉,制得一种玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板。
锡合金钎料包括Sn-9Zn锡合金。
一种制造玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板的方法,包括玻璃板、隔离支撑、锡或锡合金钎焊料、不锈钢边框、真空钎焊炉。将两张玻璃板之间,通过隔离支撑及支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有锡或锡合金钎焊料,锡合金钎焊料边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯。
之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内。关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空,当达到加热温度、真空度和设定抽真空时间后。
锡合金钎焊薄片升温到300℃时便均匀熔化。在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿,实现锡合金对玻璃及不锈钢边框的钎焊。同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封。
虽然锡合金钎焊料具有良好的可伐特性,但考虑到玻璃和锡合金钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力。因此,尽量使不锈钢边框通过变形,吸收锡合金钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量。
同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环锡合金边框同样较长,因此形成的钎焊连接密封层较厚,使得锡合金与玻璃和不锈钢钎焊强度高,气密密封性能好。
对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的锡合金钎焊层,并使之放热凝固,之后,或开启真空炉内设有的冷却装置对真空炉降温。
或对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的锡合金钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的锡合金钎焊料会自然降温凝固。
通过上述工艺,提高玻璃与不锈钢通过锡合金钎焊的质量,而且平板玻璃仍为钢化玻璃。当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与锡合金真空钎焊的真空保温玻璃板。
玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,其玻璃板包括玻璃原片、钢化玻璃、布纹玻璃、压花玻璃、卤化玻璃、磨沙玻璃、镀膜玻璃,镀膜玻璃的功能膜包括增透膜、金属膜,装饰膜。玻璃面板表面复合有镀膜的,则玻璃面板钎焊面处必须除去镀膜。
凸点压花玻璃板为在生产平板玻璃原片时,在玻璃锡槽中的适合温度位置上,经玻璃压延机压延上玻璃凸点。所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凸点支撑物点阵排列的系列凹坑。凸点压花玻璃板经过裁切、磨边、钢化处理。
或凸点压花玻璃板为平板玻璃原片磨边整形后,通过钢化炉加热,经玻璃压延机压延凸点,折弯支撑边框,成型后,进行钢化处理。所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凸点支撑物点阵排列的系列凹坑。
或凸包玻璃板或波纹玻璃板为在生产平板玻璃原片时,在玻璃锡槽中的适合温度位置上,经玻璃压延机压延上玻璃凹点。所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凹点支撑物点阵排列的系列凸尖。凹点压花玻璃板经过裁切、磨边、钢化处理。
或凸包玻璃板或波纹玻璃板经过磨边整形后,通过钢化炉加热,经玻璃模具拉伸凸点,折弯支撑边框,成型后,进行钢化处理。
或凸点玻璃板是玻璃原片,通过印刷玻璃粉膏,然后用烧结法制成的。即先将低温玻璃粉膏按所述凸点支撑物点阵排列图案印刷到一平板玻璃上,然后将该平板玻璃送入钢化烧结炉,加热到玻璃粉膏熔点的某一适宜温度,令玻璃粉膏堆积体转化为与平板玻璃表面熔合在一起的玻璃凸点,之后,折弯支撑边框,进行钢化处理。
或支撑为至少一端涂有粘接剂的支撑,包括与闭环支撑密封边框高度相等或接近的包括高硬玻璃支撑、高硬金属支撑、高硬陶瓷支撑,柱状或球状或环状支撑点阵状排列。或支撑为端头支撑面上粘接有气凝胶隔热垫的支撑隔热材料垫,支撑隔热材料垫两端气凝胶绝热垫的表面涂覆有包括水玻璃胶无机胶。
将适当厚度平板玻璃按照设计尺寸裁截处理,磨边处理,钢化处理的钢化玻璃面板,作为原材料使用。玻璃钎焊表面需进行脱油、清洁、烘干处理。
玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,其中空夹层玻璃板体的周边外侧,包裹有截面为倒“U”形的闭环波纹不锈钢边框。“U”形波纹不锈钢槽型材为不锈钢板条通过模具冲压拉伸成型,或“U”形波纹不锈钢槽型材为不锈钢板条,通过辊压轧制机轧制成型。闭环波纹不锈钢边框为“U”形波纹不锈钢槽型材,通过折弯焊接,或裁切焊接制成的弹缩闭环波纹不锈钢边框。
倒“U”形的闭环波纹不锈钢边框槽使用时须进行脱油、清洁、烘干处理。
玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,中空夹层玻璃板体的周边外侧,包裹有截面为“L”和反“L”形的闭环不锈钢边框扣合套装形成的中空夹层玻璃板结构保护边框。“L”形不锈钢型材为不锈钢板条,通过模具冲压拉伸成型, 或“L”形不锈钢型材为不锈钢板条,通过辊压轧制机轧制成型。闭环“L”形不锈钢边框为“L”形不锈钢型材,通过折弯焊接,或裁切焊接制成的不锈钢边框。
“L”形不锈钢型材使用时须进行脱油、清洁、烘干处理。
一种“U”形互扣玻璃间隔夹层真空保温锡合金钎焊玻璃板,其钎焊炉的玻璃托盘上,设有改进玻璃与玻璃、玻璃与金属、金属与金属钎焊质量的超声波换能器。
本发明的有益效果是:
本发明制造的真空玻璃,可以获得很好的金属玻璃钎焊质量,解决了真空玻璃的失钢化难题,从而解决了真空玻璃的安全问题。不仅如此,与现有真空玻璃相比,利用本工艺方法制作的真空玻璃,还具有更好的保温及隔音效果,同时具备顶级的透光性。在材质上可以广泛应用钢化玻璃,在制作成本上大幅下降,结构形式多样化,玻璃强度高、安全、寿命长、大尺寸、造价低、成品率高,保温隔音性能好、功能性强、低能耗、透视效果好、便于大规模生产等特点,克服了目前功能玻璃的诸多问题。从而使真空玻璃最大限度的应用于设施农业、高层建筑上,并最大限度的达到建筑物的节能效果。因此本发明具有良好的经济效益、环境效益和社会效益。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1至图28是本发明的剖视图。
图中:1“U”形不锈钢波纹保护边框、2拉伸玻璃支撑边框、3下侧钢化平板玻璃、4真空夹层、5上侧钢化平板玻璃、6金属钎焊层、7气密密封面、8压花支撑凸点、9水玻璃、10拉伸支撑凸点、11烧结支撑凸点、12波纹玻璃板、13支撑凸包、14粘接支撑凸点、15外侧“L”形不锈钢保护边框、16内侧“L”形不锈钢保护边框。
本发明的最佳实施方式
如图1所示:上侧钢化平板玻璃5,和设有拉伸支撑边框2、复合分布有点阵压花支撑凸点9的下侧钢化玻璃3相互对应合片,间隔组成真空夹层4。通过闭环“U”形不锈钢波纹保护边框1,和金属钎焊层6的钎焊密封,制成玻璃板边框支撑合片金属钎焊不锈钢边框中空玻璃板。

Claims (10)

  1. 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,包括平板玻璃、间隙隔离支撑、铝或铝合金钎焊边框、不锈钢边框,其特征是:
    (A)将两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙;组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框;点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应;或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    (B)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板;两张玻璃板的边沿之间,设有加工成型的与两张玻璃板在轮廓形状、尺寸大小与玻璃板边沿对应,玻璃板的边框支撑高度与凸包、或凸起波纹等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿上,设有加工成型的与两张玻璃板在轮廓形状、尺寸大小与玻璃板边沿对应,玻璃板的边框支撑高度与点阵凸包,或凸起波纹的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框;点支撑或线支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应;或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑或线支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或 铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    (C)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一为凸点玻璃板,或两张玻璃板,均为凸点玻璃板;凸点玻璃板是玻璃原片,通过印刷玻璃粉膏,然后用烧结法制成;烧结玻璃粉膏成为支撑凸点,或和玻璃钢化同步进行;
    通过玻璃板边沿拉伸支撑边框,将两张玻璃板和环形封闭边框点接触及面接触盖合合片在一起;相互支撑盖合合片在一起的凸点叠加总高度,等高于环形封闭玻璃板拉伸支撑边框高度;两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框;点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应;或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使凸点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    (D)组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布支撑与玻璃板连接为一体;两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与支撑的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;两张平板玻璃边沿之间上,包裹镶嵌有截面为“山”形的至少设有一个衔接处的闭环铝或铝合金边框;点支撑的对接高度所留支撑边框缝隙,与“山”形的中间铝或铝合金型材厚度相对应;或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“山”形的中间铝或铝合金型材厚度相对应;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将截面为“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体的周边外侧的“山”形的闭环铝或铝合金边框的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“山”形的闭环铝或铝合金边框的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“山”形的,衔接闭环铝或铝合金边框和不锈钢闭环保护框的中空夹层玻璃板毛坯;
    之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂;对真空炉通气冷却后开炉,制得玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃;
    铝或铝合金钎料包括Al和含有Al的钎料有AI-Si系、Al-Cu-Si系、Zn-AI系。
  2. 一种制造玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃的方法,包括玻璃板、铝或铝合金钎焊型材、不锈钢边框、真空钎焊炉,其特征是:将两张玻璃板之间,通过支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有铝或铝合金钎焊型材,铝合金钎焊型材边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯;
    之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内,并在截面为“山”形闭环铝或铝合金边框的衔接处外侧包裹的不锈钢的边框上连接压紧电夹,在不锈钢边框等距离处的另一点上连接另一压紧电夹,形成包裹玻璃边框电阻相等的两路导电回路;关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空;当达到钢化玻璃失钢化温度388℃之下的设定加热温度、真空度和设定抽真空时间后,对中空夹层玻璃板毛坯上的两压紧电夹接入低电压、大电流的加热电源;
    由于不锈钢边框、玻璃、铝或铝合金边框三者中的铝或铝合金边框电阻最小,因此,铝或铝合金边框中的电流最大,铝或铝合金边框迅速发热,自身快速升温均匀熔化;在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿,实现铝或铝合金对玻璃表面及不锈钢表面的钎焊;同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封;
    在此过程中,铝迅速发热变为液态铝,而与不锈钢铝钎焊的玻璃因其导热性能差,加热时间短并未完全软化;而在720℃时,玻璃的主要成分Si02和Al产生化学反应:4A1+3Si0 2=2A1 20 3+3Si,即此时玻璃与铝的界面可因发生化学反应而牢固结合;同时,在720℃时,不锈钢并未软化,不锈钢的氧化层表面和铝产生化学反应,即此时不锈钢与铝的界面也因发生化学反应而牢固结合;但720℃的温度毕竟已是普通玻璃的软化温度,因此,如降低钎焊温度,既保证玻璃没有明显的软化,又可满足工艺要求;选用铝合金钎焊料,用于降低玻璃与不锈钢边框之间的钎焊温度,提高玻璃与不锈钢之间钎焊质量,降低钎焊工艺难度;
    虽然铝或铝合金钎焊料具有良好的可伐特性,但考虑到玻璃和铝或铝合金钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力;因此,尽量使不锈钢边框通过变形,吸收铝或铝合金钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量;
    同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环铝或铝合金边框同样较长,因此形成的钎焊连接密封层较厚,使得铝或铝合金与玻璃和不锈钢钎焊强度高,气密密封性能好;
    铝或铝合金边框升温均匀熔化后,电阻会突然变大,电流会瞬间变小;因此,可利用此现象自动智能控制通电加热时间,精准控制钎焊温度,良好实现铝或铝合金与平板玻璃、不锈钢边框的真空钎焊;
    当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,直接对真空炉喷水,使水在真空状态下瞬间蒸发汽化产生气压,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,并实现对真空炉迅速大幅降温,由于不锈钢、铝或铝合金都是热的良导体,且玻璃边沿是被铝或铝合金钎焊料包裹的,因此能够使不锈钢边框内的玻璃均匀迅速放热降温,使不锈钢边框内的玻璃得到钢化处理,之后,通入空气,或开启真空炉内设有的冷却装置对真空炉降温;
    或当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,之后,对真空炉喷水,使水吸收空气热量对真空炉降温,使不锈钢边框内的玻璃得到适度钢化处理,之后,或开启真空炉内设有的冷却装置对真空炉降温;
    或当适时断掉钎焊加热电源后,铝或铝合金钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝或铝合金钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的铝或铝合金钎焊料会自然降温凝固,使不锈钢边框内的玻璃失去钢化特性;
    通过上述工艺,提高玻璃与不锈钢通过铝或铝合金钎焊的质量,改变钢化玻璃不锈钢边框内玻璃的特性,使闭环不锈钢边框内边沿之内的平板玻璃仍为钢化玻璃,或闭环不锈钢边框槽内包裹的玻璃为适度钢化,或闭环不锈钢边框槽内包裹的玻璃失去钢化特性,具有真空夹层的玻璃板;
    当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与铝或铝合金真空电热钎焊的真空保温玻璃板。
  3. 一种玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板,包括平板玻璃、间隙隔离支撑、铝浆、不锈钢边框,其特征是:
    (A)将两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙;组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    两张平板玻璃的边沿上,包裹有截面为“U”形的闭环铝浆钎焊膜层涂覆包边;点支撑的对接高度所留支撑边框缝隙,与“U”形的中间铝浆涂覆厚度相对应;或通过对至少一张的平板玻璃周圈边沿进行下凹拉伸加工,使点支撑的对接高度所留支撑边框缝隙高度,与“U”形的中间铝浆涂覆厚度相对应;将两张玻璃板和环形封闭边框点接触及面接触盖合合片在一起;
    将截面为“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“U”形闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有铝浆;利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起,制成设有中空保温 夹层玻璃板体的周边外侧,包裹有截面为倒“U”形的波纹不锈钢边框,并使截面为“U”形闭环波纹不锈钢边框,与闭环铝浆钎焊膜层的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    或中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    (B)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板;两张玻璃板的边沿上,设有环形封闭玻璃板拉伸支撑边框;玻璃板的支撑边框高度与凸包、或凸起波纹等高,或两张玻璃板的边沿设有与凸包、或凸起波纹相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    两张平板玻璃的环形封闭玻璃板拉伸支撑边框的密封面上,涂覆有闭环铝浆钎焊膜层;将两张涂覆有闭环铝浆钎焊膜层玻璃板的环形封闭拉伸支撑边框点接触、或线接触及面接触盖合合片在一起;
    将闭环铝浆钎焊膜层的外侧,包裹上截面为“U”形闭环波纹不锈钢边框,波纹不锈钢边框的槽内,填充有铝浆;利用截面为倒“U”形闭环波纹不锈钢边框的自身弹性,与中空夹层玻璃板体的周边外侧进行拉伸套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为倒“U”形闭环波纹不锈钢边框,与中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起,制成设有中空保温夹层玻璃板体的周边外侧,包裹有截面为倒“U”形的波纹不锈钢边框,并使截面为“U”形闭环波纹不锈钢边框,与闭环铝浆钎焊膜层的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    或中空夹层玻璃板体的周边外侧的“U”形的闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与截面为“U”形的闭环铝浆钎焊膜层的外侧紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有截面为“U”形的,衔接闭环铝浆钎焊膜层和不锈钢闭环保护框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    (C)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃通过印刷玻璃粉膏,然后用烧结法制成;烧结玻璃粉膏成为支撑凸点;两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;烧结玻璃粉膏、拉伸支撑边框或和玻璃钢化同步进行;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    两张玻璃板通过在环形封闭玻璃板拉伸支撑边框上,涂覆闭环铝浆钎焊膜层,盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有铝浆;利用截面为“U”形闭环波纹不锈钢边框的弹性,与环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环铝浆钎焊膜层的两张合片玻璃边沿紧密贴合,制成闭环铝浆钎焊膜 层外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    或中空夹层玻璃板体闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有铝浆,与闭环铝浆钎焊膜层紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环铝浆钎焊膜层,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    (D)或将组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布的支撑,与玻璃板连接为一体的玻璃板;两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将两张轮廓形状、尺寸大小相互对应,至少其中之一设有粘接点阵分布的支撑玻璃板和平板玻璃,或粘接点阵分布支撑的玻璃板和粘接点阵分布支撑的玻璃板;通过在环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层,盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有铝浆;利用截面为“U”形闭环波纹不锈钢边框的弹性,与环形封闭玻璃板拉伸支撑边框上设置闭环铝浆钎焊膜层紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环铝浆钎焊膜层的两张合片玻璃边沿紧密贴合,制成闭环铝浆钎焊膜层外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    或中空夹层玻璃板体闭环铝浆钎焊膜层的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有铝浆,与闭环铝浆钎焊膜层紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环铝浆钎焊膜层,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯,并将中空夹层玻璃板毛坯进行烘干处理;
    之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂;对真空炉通气冷却后开炉,制得一种玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板;
    钎焊铝浆包括低温玻璃铝浆、中温玻璃铝浆、高温玻璃铝浆。
  4. 一种制造玻璃间隔夹层腔体真空保温铝浆钎焊玻璃板的方法,包括玻璃板、铝或铝合金钎焊型材、不锈钢边框、真空钎焊炉,其特征是:将两张玻璃板之间,通过支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有铝或铝合金钎焊型材,铝合金钎焊型材边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯;
    之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内,并在截面为“U”形闭环铝浆钎焊膜层外侧包裹的不锈钢的边框上连接压紧电夹,在不锈钢边框等距离处的另一点上连接另一压紧电夹,形成包裹玻璃边框电阻相等的两路导电回路;关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空;当达到钢化玻璃失钢化温度388℃之下的设定加热温度、真空度和设定抽真空时间后,对中空夹层玻璃板毛坯上的两压紧电夹接入低电压、大电流的加热电源;
    由于不锈钢边框、玻璃、铝浆钎焊膜层三者中的铝浆钎焊膜层电阻最小,因此,铝浆钎焊膜层中的电流最大,铝浆钎焊膜层迅速发热,自身快速升温均匀熔化;在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿,实现 铝浆对玻璃表面及不锈钢表面的钎焊;同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封;
    在此过程中,铝浆钎料迅速发热变为液态铝,而与不锈钢铝浆钎焊的玻璃因其导热性能差,加热时间短并未完全软化;而在720℃时,玻璃的主要成分Si02和Al产生化学反应:4A1+3Si0 2=2A1 20 3+3Si,即此时玻璃与铝的界面可因发生化学反应而牢固结合;同时,在720℃时,不锈钢并未软化,不锈钢的氧化层表面和铝产生化学反应,即此时不锈钢与铝的界面也因发生化学反应而牢固结合;但720℃的温度毕竟已是普通玻璃的软化温度,因此,如降低钎焊温度,既保证玻璃没有明显的软化,又可满足工艺要求;选用铝合金钎焊料,用于降低玻璃与不锈钢边框之间的钎焊温度,提高玻璃与不锈钢之间钎焊质量,降低钎焊工艺难度;
    虽然铝浆钎焊料具有良好的可伐特性,但考虑到玻璃和铝浆钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力;因此,尽量使不锈钢边框通过变形,吸收铝浆钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量;
    同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环铝浆边框同样较长,因此形成的钎焊连接密封层较厚,使得铝浆与玻璃和不锈钢钎焊强度高,气密密封性能好;
    铝浆边框升温均匀熔化后,电阻会突然变大,电流会瞬间变小;因此,可利用此现象自动智能控制通电加热时间,精准控制钎焊温度,良好实现铝浆与平板玻璃、不锈钢边框的真空钎焊;
    当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,直接对真空炉喷水,使水在真空状态下瞬间蒸发汽化产生气压,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,并实现对真空炉迅速大幅降温,由于不锈钢、铝浆都是热的良导体,且玻璃边沿是被铝浆钎焊料包裹的,因此能够使不锈钢边框内的玻璃均匀迅速放热降温,使不锈钢边框内的玻璃得到钢化处理,之后,通入空气,或开启真空炉内设有的冷却装置对真空炉降温;
    或当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,之后,对真空炉喷水,使水吸收空气热量对真空炉降温,使不锈钢边框内的玻璃得到适度钢化处理,之后,或开启真空炉内设有的冷却装置对真空炉降温;
    或当适时断掉钎焊加热电源后,铝浆钎焊层降温,与玻璃、不锈钢边框逐渐形成温度趋于一致的温场,并实现良好钎焊连接,之后,对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的铝浆钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的铝浆钎焊料会自然降温凝固,使不锈钢边框内的玻璃失去钢化特性;
    通过上述工艺,提高玻璃与不锈钢通过铝浆钎焊的质量,改变钢化玻璃不锈钢边框内玻璃的特性,使闭环不锈钢边框内边沿之内的平板玻璃仍为钢化玻璃,或闭环不锈钢边框槽内包裹的玻璃为适度钢化,或闭环不锈钢边框槽内包裹的玻璃失去钢化特性,具有真空夹层的玻璃板;
    当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与铝浆真空电热钎焊的真空保温玻璃板。
  5. 一种玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板,包括玻璃板、锡合金钎料、支撑、不锈钢边框,其特征是:
    (A)两张大小相等相互对应的平板玻璃,通过两张平板玻璃之间的间隙隔离支撑,在两张平板玻璃之间间隔出中空隔离缝隙;组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有与玻璃板一体,分布有点阵凸起点的压花玻璃板,两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    两张玻璃板边沿的密封面上,复合有锡合金闭环钎料;玻璃板拉伸加工、钢化同步进行;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板;通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有锡合金钎料;利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯;
    (B)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有模具压制拉伸成型的点阵凸包玻璃板,或模具压制拉伸成型的波纹玻璃板;两张玻璃板的边沿上,设有环形封闭玻璃板拉伸支撑边框;玻璃板的支撑边框高度与凸包、或凸起波纹等高,或两张玻璃板的边沿设有与凸包、或凸起波纹相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    两张玻璃板边沿的密封面上,复合有锡合金闭环钎料;玻璃板拉伸加工、钢化同步进行;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板;通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有锡合金钎料;利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄 片紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯;
    (C)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃通过印刷玻璃粉膏,然后用烧结法制成;烧结玻璃粉膏成为支撑凸点;两张玻璃板边沿设有与凸起点等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与凸起点的相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    环形封闭玻璃板拉伸支撑边框上,复合有锡合金闭环钎料片;烧结玻璃粉膏、玻璃板拉伸加工、或与钢化同步进行;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板;通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有锡合金钎料;利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯;
    (D)或组成间隔夹层腔体的两张玻璃板,在轮廓形状、尺寸大小上相互对应,至少两张玻璃板其中之一上,设有通过粘接点阵分布的支撑,与玻璃板连接为一体的玻璃板;两张玻璃板边沿设有与支撑等高度的环形封闭玻璃板拉伸支撑边框;或两张玻璃板的边沿设有与相对支撑叠加总高度等高的环形封闭玻璃板拉伸支撑边框;
    两张玻璃板边沿的密封面上,复合有锡合金闭环钎料;玻璃板拉伸加工或与钢化同步进行;
    在两张玻璃板之间的夹层腔体内,设有长效消气剂;
    将两张轮廓形状、尺寸大小相互对应,至少其中之一设有凸起点的压花玻璃板和平板玻璃,或压花玻璃板和压花玻璃板;通过在玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片,互扣盖合合片封闭;之后在中空夹层玻璃板体的周边外侧,包裹上截面为“U”形的闭环波纹不锈钢边框;波纹不锈钢边框的槽内,填充有锡合金钎料;利用截面为“U”形闭环波纹不锈钢边框的弹性,与玻璃板边沿拉伸支撑边框上设置闭环锡合金钎焊薄片紧密连接套装,并利用闭环波纹不锈钢边框的自身回弹,使截面为“U”形闭环波纹不锈钢边框,与包裹镶嵌有闭环锡合金钎焊薄片的两张合片玻璃边沿紧密贴合,制成闭环锡合金钎焊薄片外侧,包裹有截面为“U”形波纹不锈钢边框的中空夹层玻璃板毛坯;
    或中空夹层玻璃板体闭环锡合金钎焊薄片的外侧,包裹上截面为“L”和反“L”形的闭环不锈钢边框扣合套装,与玻璃边沿缝隙内填充有锡合金,与闭环锡合金钎焊薄片紧密贴合在一起;制成两张玻璃边沿均包裹镶嵌有闭环锡合金钎焊薄片,和不锈钢闭环保护框紧密贴合的中空夹层玻璃板毛坯;
    之后,将至少一张的玻璃板毛坯送入真空炉内,加热抽真空,并通过电热钎焊,实现不锈钢边框、铝或铝合金与玻璃的真空钎焊,解封长效消气剂;对真空炉通气冷却后开炉,制得一种玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板;
    锡合金钎料包括Sn-9Zn锡合金。
  6. 一种制造玻璃间隔夹层腔体真空保温锡合金钎焊玻璃板的方法,包括玻璃板、隔离支撑、锡或锡合金钎焊料、不锈钢边框、真空钎焊炉,其特征是:将两张玻璃板之间,通过隔离支撑及支撑边框间隔出中空夹层,两张玻璃板密封盖和面和玻璃板边沿上,设有锡或锡合金钎焊料,锡合金钎焊料边框上包裹不锈钢边框,制成中空夹层玻璃板毛坯;
    之后,将至少一张的中空夹层玻璃板毛坯水平放入设有支撑底座、固定支撑夹具或托盘的真空炉内;关闭真空炉门,对真空炉内中空夹层玻璃板毛坯加热抽真空,当达到加热温度、真空度和设定抽真空时间后;
    锡合金钎焊薄片升温到300℃时便均匀熔化;在不锈钢与玻璃、玻璃与玻璃、不锈钢与不锈钢之间接触缝隙的毛细作用,和钎料熔化后自身内聚力的作用下,熔化钎料和玻璃钎焊表面、不锈钢钎焊表面充分浸渍润湿,实现锡合金对玻璃及不锈钢边框的钎焊;同时,对在两张玻璃板之间夹层腔体内贴近两张玻璃板边沿的长效消气剂解封;
    虽然锡合金钎焊料具有良好的可伐特性,但考虑到玻璃和锡合金钎焊料的线膨胀系数相差很大,在冷却过程中,因收缩不一致,会在钎焊面上产生一定应力;因此,尽量使不锈钢边框通过变形,吸收锡合金钎焊料因热胀冷缩产生的应力,保证不锈钢边框与玻璃之间的钎焊质量;
    同时,由于截面为“U”形闭环不锈钢边框凹槽设计较深,使与其对应的闭环锡合金边框同样较长,因此形成的钎焊连接密封层较厚,使得锡合金与玻璃和不锈钢钎焊强度高,气密密封性能好;
    对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的锡合金钎焊层,并使之放热凝固,之后,或开启真空炉内设有的冷却装置对真空炉降温;
    或对真空炉通入空气,空气吸热升温膨胀产生压力,不锈钢边框在气压的作用下,迅速压实软化状态的锡合金钎焊层,并使之放热凝固,之后,通过放出热空气,充入冷空气对真空炉降温,或开启真空炉内设有的冷却装置对真空炉降温,不锈钢边框内的锡合金钎焊料会自然降温凝固;
    通过上述工艺,提高玻璃与不锈钢通过锡合金钎焊的质量,而且平板玻璃仍为钢化玻璃;当真空炉温降低到50℃-55℃后,打开真空炉门,最终获得玻璃板与玻璃板及不锈钢边框与锡合金真空钎焊的真空保温玻璃板。
  7. 根据权利要求1、2、3、4、5或6所述的玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,其特征是:玻璃板包括玻璃原片、钢化玻璃、布纹玻璃、压花玻璃、卤化玻璃、磨沙玻璃、镀膜玻璃,镀膜玻璃的功能膜包括增透膜、金属膜,装饰膜;玻璃面板表面复合有镀膜的,则玻璃面板钎焊面处必须除去镀膜;
    凸点压花玻璃板为在生产平板玻璃原片时,在玻璃锡槽中的适合温度位置上,经玻璃压延机压延上玻璃凸点;所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凸点支撑物点阵排列的系列凹坑;凸点压花玻璃板经过裁切、磨边、钢化处理;
    或凸点压花玻璃板为平板玻璃原片磨边整形后,通过钢化炉加热,经玻璃压延机压延凸点,折弯支撑边框,成型后,进行钢化处理;所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凸点支撑物点阵排列的系列凹坑;
    或凸包玻璃板或波纹玻璃板为在生产平板玻璃原片时,在玻璃锡槽中的适合温度位置上,经玻璃压延机压延上玻璃凹点;所用玻璃压延机上的一根压延辊的表面上,刻有形状和尺寸均一,且按所述凹点支撑物点阵排列的系列凸尖;凹点压花玻璃板经过裁切、磨边、钢化处理;
    或凸包玻璃板或波纹玻璃板经过磨边整形后,通过钢化炉加热,经玻璃模具拉伸凸点,折弯支撑边框,成型后,进行钢化处理;
    或凸点玻璃板是玻璃原片,通过印刷玻璃粉膏,然后用烧结法制成的;即先将低温玻璃粉膏按所述凸点支撑物点阵排列图案印刷到一平板玻璃上,然后将该平板玻璃送入钢化烧结炉,加热到玻璃粉膏熔点的某一适宜温度,令玻璃粉膏堆积体转化为与平板玻璃表面熔合在一起的玻璃凸点,之后,折弯支撑边框,进行钢化处理;
    或支撑为至少一端涂有粘接剂的支撑,包括与闭环支撑密封边框高度相等或接近的包括高硬玻璃支撑、高硬金属支撑、高硬陶瓷支撑,柱状或球状或环状支撑点阵状排列;或支撑为端头支撑面上粘接有气凝胶隔热垫的支撑隔热材料垫,支撑隔热材料垫两端气凝胶绝热垫的表面涂覆有包括水玻璃胶无机胶;
    将适当厚度平板玻璃按照设计尺寸裁截处理,磨边处理,钢化处理的钢化玻璃面板,作为原材料使用;玻璃钎焊表面需进行脱油、清洁、烘干处理。
  8. 根据权利要求1、2、3、4、5或6所述的玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,其特征是:中空夹层玻璃板体的周边外侧,包裹有截面为倒“U”形的闭环波纹不锈钢边框;“U”形波纹不锈钢槽型材为不锈钢板条通过模具冲压拉伸成型,或“U”形波纹不锈钢槽型材为不锈钢板条,通过辊压轧制机轧制成型;闭环波纹不锈钢边框为“U”形波纹不锈钢槽型材,通过折弯焊接,或裁切焊接制成的弹缩闭环波纹不锈钢边框;
    倒“U”形的闭环波纹不锈钢边框槽使用时须进行脱油、清洁、烘干处理。
  9. 根据权利要求1、2、3、4、5或6所述的玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃,其特征是:中空夹层玻璃板体的周边外侧,包裹有截面为“L”和反“L”形的闭环不锈钢边框扣合套装形成的中空夹层玻璃板结构保护边框;“L”形不锈钢型材为不锈钢板条,通过模具冲压拉伸成型,或“L”形不锈钢型材为不锈钢板条,通过辊压轧制机轧制成型;闭环“L”形不锈钢边框为“L”形不锈钢型材,通过折弯焊接,或裁切焊接制成的不锈钢边框;
    “L”形不锈钢型材使用时须进行脱油、清洁、烘干处理。
  10. 根据权利要求1、2、3、4、5或6所述的一种“U”形互扣玻璃间隔夹层真空保温锡合金钎焊玻璃板,其特征是:钎焊炉的玻璃托盘上,设有改进玻璃与玻璃、玻璃与金属、金属与金属钎焊质量的超声波换能器。
PCT/CN2018/121141 2018-12-11 2018-12-14 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃 WO2020118664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811508412.0A CN111302656B (zh) 2018-12-11 2018-12-11 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃
CN201811508412.0 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020118664A1 true WO2020118664A1 (zh) 2020-06-18

Family

ID=71075847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121141 WO2020118664A1 (zh) 2018-12-11 2018-12-14 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃

Country Status (2)

Country Link
CN (1) CN111302656B (zh)
WO (1) WO2020118664A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864961A (zh) * 2022-05-31 2022-08-05 上海电气集团股份有限公司 燃料电池的双极板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302081A (zh) * 2007-04-05 2008-11-12 格伦策巴赫机械制造有限公司 真空绝缘玻璃构件以及其制造方法和装置
DE202009012136U1 (de) * 2009-09-07 2009-11-26 Grenzebach Maschinenbau Gmbh Vorrichtung zum Vakuum-dichten Aneinanderfügen von Glasplatten
CN101942954A (zh) * 2009-07-03 2011-01-12 贾天民 一种可监测和调节修复空腔内压力值的负压式中空玻璃
CN201794459U (zh) * 2010-05-19 2011-04-13 张彩凤 多层隔热窗装置
CN103717820A (zh) * 2011-08-03 2014-04-09 旭硝子欧洲玻璃公司 带周沿密封垫的玻璃板和相应的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079619B (zh) * 2009-11-27 2012-02-15 洛阳兰迪玻璃机器股份有限公司 一种玻璃板复合封接方法
CN102079632A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 一种真空玻璃封接方法及真空玻璃产品
CN102121284A (zh) * 2010-01-05 2011-07-13 北京环能海臣科技有限公司 调控腔体真空度保温的夹层平板玻璃幕墙
CN202265509U (zh) * 2011-11-01 2012-06-06 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃
CN104743939A (zh) * 2013-12-25 2015-07-01 戴长虹 金属焊接密封槽封边有安装孔的平面真空玻璃
CN203807343U (zh) * 2014-04-25 2014-09-03 徐林波 具有外密封结构的中空玻璃
CN105601092A (zh) * 2014-11-19 2016-05-25 戴长虹 胶粘剂密封的真空玻璃及其制备方法
CN105669003A (zh) * 2014-11-19 2016-06-15 戴长虹 真空玻璃绝热板及其制备方法
EP3440298A1 (en) * 2016-04-05 2019-02-13 AGC Glass Europe Process for manufacturing vacuum insulating glazing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302081A (zh) * 2007-04-05 2008-11-12 格伦策巴赫机械制造有限公司 真空绝缘玻璃构件以及其制造方法和装置
CN101942954A (zh) * 2009-07-03 2011-01-12 贾天民 一种可监测和调节修复空腔内压力值的负压式中空玻璃
DE202009012136U1 (de) * 2009-09-07 2009-11-26 Grenzebach Maschinenbau Gmbh Vorrichtung zum Vakuum-dichten Aneinanderfügen von Glasplatten
CN201794459U (zh) * 2010-05-19 2011-04-13 张彩凤 多层隔热窗装置
CN103717820A (zh) * 2011-08-03 2014-04-09 旭硝子欧洲玻璃公司 带周沿密封垫的玻璃板和相应的制造方法

Also Published As

Publication number Publication date
CN111302656A (zh) 2020-06-19
CN111302656B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2020118664A1 (zh) 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃
WO2020118697A1 (zh) 玻璃边框支撑互补扣合金属钎焊不锈钢边框真空调控玻璃
WO2020118672A1 (zh) 玻璃及不锈钢边框与金属钎焊隔离夹层真空保温玻璃板
JP2014127435A (ja) 全固体電池の製造方法
WO2020118663A1 (zh) 设有保护边框滚压支撑金属钎焊夹层调控真空保温玻璃板
WO2020119693A1 (zh) 钢化玻璃边沿周边电热熔焊夹层真空保温透光钢化玻璃板
WO2020118671A1 (zh) 玻璃板边框支撑互补扣合金属钎焊不锈钢边框真空玻璃板
WO2020118673A1 (zh) 玻璃拉伸支撑边框及不锈钢边框与金属钎焊真空调控玻璃
WO2020118675A1 (zh) 设有保护边框辊压支撑边框金属钎焊夹层调真空保温玻璃
CN102951786B (zh) 玻璃焊接的凸面低空玻璃及其制备方法
CN111305715B (zh) 设有保护边框滚压支撑金属钎焊夹层中空保温玻璃板
CN111305719B (zh) 玻璃拉伸边框支撑合片金属钎焊不锈钢边框中空保温玻璃
WO2020118668A1 (zh) 一种复合玻璃边框支撑合片金属钎焊不锈钢边框中空玻璃
WO2020118676A1 (zh) 玻璃复合支撑边框及不锈钢边框与金属钎焊真空调控玻璃
WO2020118677A1 (zh) 双胶密封玻璃间隔腔体调控真空保温玻璃板
CN111302660B (zh) 玻璃板边框支撑互补扣合金属钎焊不锈钢边框中空玻璃板
CN111302665A (zh) 设有辊压支撑双胶密封玻璃间隔腔体调控真空钢化玻璃板
CN112777953A (zh) 一种钢化真空玻璃的制作方法及其生产线
CN104310769A (zh) 一种真空钢化玻璃制备方法
WO2020118670A1 (zh) 双胶密封槽边支撑扣合夹层调控真空玻璃板
CN108625742B (zh) 一种内置气凝胶复合玻璃及其制备方法
CN104230155A (zh) 钢化、半钢化真空玻璃的封边方法
CN102951812A (zh) 玻璃焊料微波焊接、条框和沟槽封边的凸面低空玻璃及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943088

Country of ref document: EP

Kind code of ref document: A1