WO2020119494A1 - 卫星网络通信方法、相关装置及系统 - Google Patents

卫星网络通信方法、相关装置及系统 Download PDF

Info

Publication number
WO2020119494A1
WO2020119494A1 PCT/CN2019/122257 CN2019122257W WO2020119494A1 WO 2020119494 A1 WO2020119494 A1 WO 2020119494A1 CN 2019122257 W CN2019122257 W CN 2019122257W WO 2020119494 A1 WO2020119494 A1 WO 2020119494A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
user equipment
sub
eid
address information
Prior art date
Application number
PCT/CN2019/122257
Other languages
English (en)
French (fr)
Inventor
严学强
余荣道
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19895553.6A priority Critical patent/EP3886337A4/en
Publication of WO2020119494A1 publication Critical patent/WO2020119494A1/zh
Priority to US17/346,658 priority patent/US11968028B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • H04B7/1856Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations for call routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18584Arrangements for data networking, i.e. for data packet routing, for congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/604Address structures or formats
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, and in particular to satellite network communication methods, related devices and systems.
  • the future 5th generation mobile communication systems (5G) and 5G evolved networks need to meet the business needs of all walks of life, and also need to provide wider business coverage.
  • the limited coverage capability of the current terrestrial mobile communication network can no longer meet people's demand for information at any time and any place.
  • the current base station coverage model to provide ultra-wide area coverage has great challenges in terms of economy and feasibility in remote areas, deserts, oceans, and air.
  • the satellite communication system Compared with the traditional ground mobile communication system, the satellite communication system has a wider coverage, and the communication cost has nothing to do with the transmission distance. It can overcome the advantages of natural geographical obstacles such as oceans, deserts, and mountains. In order to overcome the shortcomings of the traditional ground mobile communication network, satellite communication can be used as an effective supplement to the traditional ground mobile communication network.
  • the satellite communication system can be divided into the following three types: high-orbit (Geostationary Earth Orbit, GEO) satellite communication system, also known as geosynchronous orbit satellite system; medium orbit (Medium Earth Orbit, MEO) satellite communication system and Low orbit (LEO) satellite communication system.
  • GEO satellites are also generally called geostationary satellites, with an orbital height of 35786km. Its main advantage is that it is relatively stationary and provides a large coverage area.
  • the MEO satellite has an orbital altitude of 2000Km to 35786km. It can achieve global coverage with a relatively small number of satellites, but its transmission delay is higher than that of LEO satellites, and it is mainly used for positioning and navigation.
  • the orbit height between 300-2000km is called the low-orbit satellite (LEO).
  • the LEO satellite has a lower orbital height than MEO and GEO. The data propagation delay is small, the power loss is smaller, and the launch cost is relatively lower.
  • IP technology is an important addressing technology, and various services such as voice, data, and multimedia can be transmitted using the IP protocol.
  • IP addresses are the foundation of today's Internet architecture. As mobile access becomes the mainstream of today's networks, the deficiencies of IP technology are also increasingly apparent. Due to the semantic overload of the IP address, that is, the IP address is both an identification of the network node and the location of the network node, and therefore naturally lacks support for user mobility. In addition, many well-known problems stem from the semantic overload of IP addresses, such as security and routing scalability.
  • Existing terrestrial mobile communication networks use the tunnel mechanism to try to solve the mobility problem, but as the cell becomes smaller and smaller, and the mobility events increase, the overhead of the tunnel mechanism in the control and user planes cannot be sustained.
  • This application provides communication methods, registration methods, related devices, chips, programs, and readable storage media in a satellite network to solve problems in related technologies.
  • the technical solution is as follows:
  • an embodiment of the present application provides a satellite network communication method, characterized in that the method includes: determining user equipment address information of user equipment, and the user equipment address information includes: a second sub-area number EID and the user equipment's Device number UDID; the second EID is used to indicate the second sub-area where the user equipment is currently located; the second sub-area is one of the multiple sub-areas into which the earth's surface is divided, and the EIDs of the multiple sub-areas are different; the user equipment Sending the user equipment address information to the first satellite.
  • the method further includes: receiving satellite address information sent by the first satellite; the satellite address information includes: a first sub-area number EID and a satellite device number SDID; a first sub-area number EID It is used to indicate the first sub-area corresponding to the area currently covered by the first satellite; the satellite device number is used to indicate the network interface of the first satellite, and the network interface is used for communication between the first satellite and user equipment; A sub-region is one of multiple sub-regions.
  • the satellite device number may be the MAC address of the network interface of the link between the satellite and the user equipment.
  • the user equipment may include satellite terminals, ground stations, cellular terminals, cellular base stations, and so on.
  • the sub-area number where the user equipment is located is reflected in the user equipment address, and the sub-area number where the user equipment is located is used as a part of the user equipment address to identify the location of the user equipment, corresponding to the area covered by the satellite
  • the sub-region number identifies the location of the user equipment, and can be more flexibly adapted to the high-speed mobility of satellites in the satellite network and the mobility of user equipment, so that user equipment and satellites can efficiently address each other and Two-way communication.
  • the multiple sub-regions are divided based on the number of satellite orbits and/or the number of satellites in each orbit.
  • the number of satellite orbits is M
  • the number of satellites in each orbit is N
  • one orbit corresponds to N sub-regions
  • the number of the plurality of sub-regions is M*N.
  • the size of each sub-region is: a longitude range of 180°/M and a latitude range of 180°/N.
  • the EIDs of N sub-regions corresponding to the same track in the plurality of sub-regions are consecutive positive integers; or, the EIDs of the N sub-regions corresponding to the same track in the plurality of sub-regions are of tolerance d Arithmetic series, tolerance d is an integer greater than 1.
  • the earth surface can be evenly divided into sub-regions with a longitude range of 180°/M and a latitude range of 180°/N.
  • the user equipment receives the beacon message sent by the first satellite, the beacon message includes the satellite address information of the first satellite; the user equipment sends a registration request message to the first satellite, and the registration request message includes the user of the user equipment Device address information; the method further includes: receiving a registration response message sent by the first satellite; optionally, if the first EID of the first satellite is the same as the second EID of the user equipment, the user equipment sends a registration request to the first satellite Message; or, if the elevation angle between the first satellite and the user equipment is greater than the first threshold or maximum, the user equipment sends a registration request message to the first satellite.
  • an embodiment of the present application provides another satellite network communication method, including: a first satellite determines satellite address information, and the satellite address information includes: a first sub-area number EID; and the first EID is used to indicate A first sub-region corresponding to the area currently covered by the first satellite; the first sub-region is one of a plurality of sub-regions into which the surface of the earth is divided, and the EIDs of the plurality of sub-regions are different; Describe the satellite address information.
  • the satellite address information further includes: a satellite device number, where the satellite device number is used to indicate a network interface of the first satellite, and the network interface is used for communication between the first satellite and user equipment.
  • the satellite device number may be the MAC address of the network interface of the link between the satellite and the user equipment.
  • the user equipment may include satellite terminals, ground stations, cellular terminals, cellular base stations, and so on.
  • the number of the sub-region corresponding to the area covered by the satellite is used as a part of the satellite address to identify the position of the satellite, which can be more flexibly adapted to the high-speed mobility of satellites in the satellite network and the mobility of user equipment, so that the user equipment And satellites can efficiently address each other and two-way communication.
  • the multiple sub-regions are divided based on the number of satellite orbits and/or the number of satellites in each orbit.
  • the number of satellite orbits is M
  • the number of satellites in each orbit is N
  • one orbit corresponds to N sub-regions
  • the number of the plurality of sub-regions is M*N.
  • the size of each sub-region is: a longitude range of 180°/M and a latitude range of 180°/N.
  • determining the satellite address information includes: determining the first EID of the first sub-region according to a mapping relationship between a satellite number SID of the first satellite and the EIDs of the plurality of sub-regions; wherein , The satellite number SID of the first satellite is used to identify the first satellite, and optionally, the SID of the first satellite can be used for routing with other satellites, and can be used as an index of the routing table between satellites to facilitate Addressing and routing of inter-satellite communications.
  • the EIDs of N sub-regions corresponding to the same track in the multiple sub-regions are consecutive positive integers, and the mapping relationship is:
  • EID t represents the first EID of the first sub-region corresponding to the area currently covered by the first satellite
  • SID is the satellite number of the first satellite
  • SID is equal to the first satellite
  • N is the number of satellites in the orbit of the satellite
  • T is the operating period of the first satellite
  • int is a rounding operation
  • mod is a modulus operation.
  • the EIDs of the N sub-regions corresponding to the same track in the plurality of sub-regions are equal difference sequences with a tolerance d, and the tolerance d is an integer greater than 1;
  • the mapping relationship is:
  • EID t represents the first sub-region number EID of the first sub-region corresponding to the current area covered by the first satellite
  • SID is equal to the number EID 0 of the sub-region corresponding to the area initially covered by the first satellite
  • N is the number of satellites in the orbit of the first satellite
  • T is the operating period of the satellites in the orbit
  • int is a rounding operation
  • mod is a modulus operation.
  • the earth surface can be evenly divided into sub-regions with a longitude range of 180°/M and a latitude range of 180°/N, and the satellite can be calculated in real time to obtain the current satellite coverage
  • the sub-area corresponding to the area does not need to store the EID addressing table or other forms of mapping relationship table, so it can significantly save the memory space of the satellite.
  • the calculated delay will be much smaller than the lookup table delay, especially when the number of satellites is large, it can significantly reduce the delay and improve the efficiency of the system.
  • the first satellite sends a beacon message to the user equipment, the beacon message includes the satellite address information of the first satellite, the first satellite receives the registration request message sent by the user equipment, and the registration request message User equipment address information of the user equipment is included; the user equipment address information includes: a second sub-area number EID and the device number UDID of the user equipment; the second EID is used to indicate where the user equipment is currently located Second sub-region; the first satellite feeds back a registration response message to the user equipment, and the registration response message is used to respond to the registration request message. Based on this solution, the user equipment can successfully implement the registration process to the satellite.
  • the method further includes: sending the registration request message to a neighboring satellite, the neighboring satellite including the currently covered area The corresponding sub-area is the second satellite of the second sub-area; sending the registration response message to the user equipment includes: receiving the registration response message sent by the second satellite; to the second The user equipment in the sub-area forwards the registration response message.
  • the first satellite may forward the registration request message, so that the user equipment can still successfully implement the registration process.
  • the method further includes: receiving a data message sent by the user equipment currently in the second subregion, and a target address of the data message includes: a target user equipment of the data message The third sub-area number EID of the third sub-area and the UDID of the target user equipment; the source address of the data message includes: the second EID of the second sub-area and the UDID of the user equipment ;
  • the first satellite sends the data message to the target user equipment; or,
  • the first satellite determines the satellite of the third satellite covering the third sub-region according to the mapping relationship between the satellite number SID and the EIDs of the multiple sub-regions Number SID;
  • the first satellite forwards the data message to the third satellite, and the source address of the data message forwarded by the first satellite is updated to the SID of the first satellite and the UDID of the user equipment.
  • the destination address of the data message forwarded by a satellite is updated to the SID of the third satellite and the UDID of the target user equipment.
  • the method further includes:
  • the source address of the data message includes: the third EID of the third sub-region and the UDID of the source user equipment; the destination address of the data message includes: The second EID and the UDID of the user equipment; if the third EID is the same as the second EID, the first satellite sends the data message to the user equipment; or,
  • the data message is forwarded to the second satellite by a third satellite whose sub-region corresponding to the currently covered area is a third sub-region, and the data message comes from the current location
  • the source user equipment of the third sub-region, the source address of the data message forwarded by the third satellite includes: the SID of the third satellite and the UDID of the source user equipment; the data message forwarded by the third satellite
  • the destination address of includes: the SID of the second satellite and the UDID of the user equipment; the first satellite sends the data message to the user equipment.
  • the method further includes:
  • the target address of the data message includes: a third EID of the third subregion where the target user equipment of the data message is currently located and the UDID of the target user equipment;
  • the source address of the data message includes: the second EID and the UDID of the user equipment;
  • the first satellite sends the data message to the target user equipment; or,
  • the first satellite determines the sub-area corresponding to the currently covered area as the third sub-area according to the mapping relationship between the satellite number SID and multiple sub-areas The satellite number SID of the third satellite in the area; forwarding the data message to the third satellite, the destination address of the data message is updated to: the SID of the third satellite and the UDID of the target user equipment, the The source address of the data message is updated to: the SID of the first satellite and the UDID of the user equipment.
  • the method further includes:
  • the source address of the data message includes: the first EID and the UDID of the source user equipment; the destination address of the data message includes: The first EID and the UDID of the user equipment; or,
  • Receiving a data message forwarded by a third satellite in a third sub-area whose sub-area corresponding to the currently covered area is received from the source user equipment currently in the third sub-area and forwarded by the third satellite The source address of the data message is updated to the SID of the third satellite and the UDID of the source user equipment; the destination address of the data message forwarded by the third satellite is updated to the SID of the first satellite and the user equipment UDID; the first satellite forwards the data message to the user equipment.
  • an embodiment of the present application provides a registration method in a satellite network, including: user equipment receiving one or more beacon messages sent by one or more satellites; each beacon message includes satellite address information; a satellite address The information includes: the EID of the sub-area corresponding to the area currently covered by the satellite; the user equipment determines a registered satellite from one or more satellites based on the beacon message; the user equipment sends a registration request message to the registered satellite. The user equipment receives a registration response message sent by the registered satellite.
  • the registered satellite is determined based on the satellite address information carried in the beacon message. Specifically, the user equipment determines that a satellite corresponding to the sub-area currently covered by the multiple satellites and the sub-area where the user equipment is currently located is the registered satellite.
  • the beacon message also includes satellite address information and altitude information, and the satellite address information includes satellite longitude, latitude, and altitude. Based on the position information and altitude information of the satellite carried in the beacon message, the registered satellite is determined. The user equipment may determine that the satellite whose elevation angle between the satellite and the user equipment is greater than the first threshold or the maximum elevation angle among the multiple satellites is used as the registered satellite.
  • the registered satellite is determined based on the signal strength of the beacon message.
  • the user equipment may determine that the signal strength of the beacon message among the multiple satellites is greater than the second threshold or the signal strength is the largest as the registered satellite.
  • an embodiment of the present application provides a communication device on a user equipment side.
  • the apparatus may be user equipment or a chip in the user equipment.
  • the device has a function to realize the user equipment in the first aspect or the third aspect. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the user equipment when the apparatus is user equipment, the user equipment includes: a processor, a transmitter, and a receiver, and the processor is configured to support the user equipment to perform the corresponding function in the foregoing method.
  • the transmitter and the receiver are used to support communication between the user equipment and the satellite, and send a registration request message or data message or confirmation message carrying the address information of the user equipment to the satellite.
  • the user equipment may further include a memory for coupling with the processor, which stores necessary program instructions and data of the user equipment.
  • the communication device includes: a determination module, a sending module, and a receiving module.
  • the determining module is used to determine the user equipment address information of the user equipment; the sending module, the user sends the user equipment address information, for example, sends a registration request message or data message or confirmation message carrying the user equipment address information.
  • the receiving module is used for receiving satellite address information sent by satellites, for example, receiving beacon messages or registration response messages including satellite address information sent by satellites.
  • the communication device includes: a controller/processor, a memory, a modem processor, a transmitter, a receiver, and an antenna for supporting the communication device to perform the first aspect or the third aspect The corresponding function in the method.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (Central Processing Unit, CPU for short), microprocessor, application-specific integrated circuit (application-specific integrated circuit, ASIC for short), or one or more An integrated circuit for executing a program for controlling the communication method of the satellite network in the above aspects.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • an embodiment of the present application provides a satellite-side communication device.
  • the device may be a satellite or a chip in the satellite.
  • the device has the function of realizing the satellite related to the second aspect described above. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the user equipment when the apparatus is a satellite, the user equipment includes: a processor, a transmitter, and a receiver, and the processor is configured to support the satellite to perform the corresponding function in the foregoing method.
  • the transmitter and the receiver are used to support communication between the user equipment and the satellite, and send a beacon message or a registration response message or data message carrying satellite address information to the user equipment.
  • the satellite may also include a memory for coupling with the processor, which stores necessary program instructions and data of the satellite.
  • the communication device includes: a determination module, a sending module, and a receiving module.
  • the determining module is used to determine the satellite address information of the satellite; the sending module, the user sends the satellite address information, for example, sends a beacon message or data message carrying the satellite address information or a registration response message.
  • the receiving module is configured to receive user equipment address information sent by the user equipment, for example, receive a registration request message or data message or response message including the user equipment address information sent by the user equipment.
  • the communication device includes: a controller/processor, a memory, a modem processor, a transmitter, a receiver, and an antenna, for supporting the communication device to execute the corresponding method in the second aspect Features.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (Central Processing Unit, CPU for short), microprocessor, application-specific integrated circuit (application-specific integrated circuit, ASIC for short), or one or more An integrated circuit for executing a program for controlling the communication method of the satellite network in the above aspects.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • the present application provides a computer-readable storage medium having instructions stored therein, which may be executed by one or more processors on a processing circuit. When it is run on a computer, it causes the computer to perform the method in the above-mentioned first aspect or second aspect or third aspect.
  • a computer program product containing instructions.
  • the computer program product includes instructions for implementing the method of any one of the first aspect to the third aspect, which when executed on a computer, causes the computer to execute the above The method in any one of the first aspect to the third aspect or any possible implementation manner thereof.
  • the computer program product may be stored in whole or in part on a storage medium packaged in the processor, or in whole or in part in a storage medium packaged outside the processor.
  • a chip including a processor, for calling and running instructions stored in the memory from a memory, so that a communication device installed with the chip executes the method in the above aspects.
  • another chip including: an input interface, an output interface, and a processor, and optionally, a memory, and the input interface, the output interface, the processor, and the memory are connected internally The channels are connected, and the processor is used to execute the code in the memory. When the code is executed, the processor is used to execute the methods in the above aspects.
  • an apparatus for implementing the methods of the above aspects.
  • a wireless communication system including the satellite and user equipment related to the above aspect.
  • An embodiment of the present application further provides another chip, which may become a part of user equipment or satellite equipment.
  • the chip includes: an input interface, an output interface, and a circuit, between the input interface, the output interface, and the circuit Connected by internal connection paths, the circuits are used to perform the methods in the above examples.
  • FIG. 1 shows an exemplary satellite communication system according to an embodiment of the present application
  • FIG. 2 shows an example of sub-region division and numbering according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a satellite network communication method according to an embodiment of the present application
  • FIG. 4a shows a schematic structural diagram of satellite address information according to an embodiment of the present application
  • 4b shows a schematic structural diagram of user equipment address information according to an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of another satellite network communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a satellite network registration method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a satellite network registration method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another satellite network registration method according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a satellite network data communication method according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another satellite network data communication method according to an embodiment of the present application.
  • FIG. 13 shows an example of a satellite network data communication process according to an embodiment of the present application
  • 16 shows another communication device on the user equipment side according to an embodiment of the present application
  • FIG. 17 shows another communication device on the user equipment side according to an embodiment of the present application.
  • FIG. 18 shows another communication device on the user equipment side according to an embodiment of the present application.
  • FIG. 20 shows another satellite-side communication device according to an embodiment of the present application.
  • FIG. 1 shows an exemplary satellite communication system according to an embodiment of the present application.
  • the satellite communication system shown in FIG. 1 includes a space segment (Space Segment) and a ground segment (Ground Segment).
  • the space segment includes satellites and links between satellites
  • the ground segment includes user terminals, ground stations, ground networks, and network control centers.
  • the user terminals may include cellular terminals (Cellular UE), satellite terminals (Satellite UE), and fixed terminals. (Fixed UE) etc.
  • the communication link of the satellite communication system may include the following 4 types:
  • USL User Satellite Link
  • Ground station satellite link (ground-station satellite link, GSL): a two-way communication link between a ground station (or gateway) and a satellite. For a given constellation and a given deployment of a ground station, some satellites in the constellation can periodically turn on/off the GSL link.
  • Inter-satellite link a two-way communication link between adjacent satellites in the same orbit. If the orbit is circular, the ISL is usually fixed, because the relative position of the two satellites connected by the ISL remains fixed.
  • Inter-Orbit Link Two-way communication link between adjacent satellites on different adjacent orbits. Adjacent orbits cross each other near the highest latitude, where each satellite's neighbor will flip (the neighbor's left and right relationships are interchanged), requiring the IOL interface between them to either physically rotate 180 degrees to follow the neighbor and maintain the link, or shut down And re-establish the link.
  • user equipment may be user terminals capable of communicating with satellites, such as satellite terminals, or other types of terminals capable of communicating with satellites, or may be ground stations capable of communicating with satellites , Cellular base stations, access points, etc.
  • Naming is the process of assigning a name that can identify the network element to a device or device in a communication system
  • addressing is the process of designing a communication address for a device or device.
  • the name of the device or device is a static identification that can uniquely identify the device or device.
  • IP addresses are usually used as the digital labels assigned to devices that use Internet Protocol (IP) on the network. Devices in the network can be addressed or routed based on IP addresses.
  • IP Internet Protocol
  • a satellite network if both the satellite and the user equipment use the IP address for addressing, it may cause difficulty and inefficiency in addressing the satellite and the user equipment. For example, in the satellite network shown in FIG. 1, if satellite 00 establishes a connection with satellite terminal 101 at time t1, with the high-speed movement of satellite 00, satellite 00 moves to another location farther from satellite terminal 101 at time t2. .
  • embodiments of the present application provide an addressing method, a registration method, and a communication method in a satellite network to adapt to the characteristics of high-speed movement of satellites in the satellite network, improve the efficiency of addressing and routing of the satellite network, and provide the communication efficiency of the satellite network.
  • an embodiment of the present application provides an addressing method in a satellite network.
  • the satellite number SID (satellite identification, SID) may be used as the name of the satellite to identify the satellite.
  • SID is a static identifier. It is optional and can be configured at the initial stage. After the configuration is completed, it does not change with the operation of the satellite.
  • the SID of the satellite can be used for the ISL of the inter-satellite link, or the identifier of the satellite for the IOL communication of the inter-orbit link, and can be used for the routing between the satellites.
  • the SID of the satellite can be used for the addressing and routing between the satellites.
  • the SID of the satellite can also be an index of the routing table on the satellite to facilitate routing between the satellites.
  • the SID of the satellite can also be applied to the identification of communication between other links in the satellite network.
  • different satellites have different SIDs.
  • the device number (user ID, UDID) of the user equipment can be used as the name of the user equipment to identify the user equipment.
  • the UDID of the user equipment may be a Media Access Control (MAC) address or an International Mobile Subscriber Identity (IMSI) of the user equipment.
  • MAC Media Access Control
  • IMSI International Mobile Subscriber Identity
  • Earth surface sub-area number (Earth surface sub-area ID, EID), as the name of the sub-area into which the earth surface is divided, is used to identify a sub-area.
  • the surface of the earth can be divided into multiple sub-regions.
  • the multiple sub-regions divided on the surface of the earth may be static, and will not change with the operation of the satellite and the movement of the user equipment. Subregions can be viewed as a subset of the earth's surface.
  • the satellite's satellite address SADD can be used in the GSL/USL link and can be used for user equipment and satellite addressing to achieve communication between the satellite and the user equipment.
  • satellite The satellite address SADD can also be used for communication of other links of the satellite network, which is not limited in the embodiments of the present application.
  • the satellite address SADD includes: the EID of the sub-area corresponding to the area currently covered by the satellite. The sub-region corresponding to the current coverage area of the satellite is one of the sub-regions on the surface of the earth.
  • the satellite SADD also includes a satellite device number (satellite device ID, SDID).
  • the satellite device number is used to identify the network interface of the satellite relative to the user, and the network interface is used for communication between the satellite and the user equipment.
  • the satellite device number may be a device-dependent identification.
  • the satellite device number may be the identifier of the network interface through which the satellite and the user equipment communicate via the USL/GSL link.
  • the satellite device number is the media access control of the satellite network interface of the USL/GSL link (Media Access Control Address (MAC) address.
  • MAC Media Access Control Address
  • the SDID of the satellite can be used for two-way communication between the satellite and the user equipment.
  • the SDID of different satellites is different, which can facilitate the user equipment to identify different satellites. That is to say, a satellite can have two numbers, one is SID, which is satellite-oriented, used for communication between satellites; the other is satellite equipment number SDID, which is for user equipment, used for satellite and user equipment Communication.
  • the EID identifies the position of the satellite
  • the satellite equipment number identifies the network interface between the satellite and the user equipment.
  • the satellite address will be updated in real time. For example, when the satellite detects a change in the sub-region corresponding to the area it covers, the satellite will update the satellite address.
  • the area currently covered by the satellite may be completely the same as a sub-region on the surface of the earth, or may not be completely the same.
  • the area currently covered by the satellite is the same as a sub-area
  • the sub-area is the sub-area corresponding to the area currently covered by the satellite; in another example, the area currently covered by the satellite overlaps with a certain sub-area, However, they are not exactly the same.
  • the sub-region is the sub-region corresponding to the area currently covered by the satellite; in another example, if the satellite currently covers the area The center of the satellite, ie, the latitude and longitude position of the satellite, is within the latitude and longitude range of a sub-region, which is the sub-region corresponding to the area currently covered by the satellite.
  • the user equipment address (UADD, user device address, UADD) of the user equipment can be used in the GSL/USL link for the satellite to address the user equipment to realize the communication between the user equipment and the satellite.
  • the address can also be used in other links.
  • the user equipment address includes: the sub-area EID where the user equipment is currently located and the device number UDID of the user equipment.
  • the sub-region where the user equipment is currently located is one of the sub-regions into which the surface of the earth is divided.
  • the UDID of the user equipment may be the MAC address or IMSI of the user equipment.
  • the EID of the sub-area where the user equipment is currently identifies the location of the user equipment
  • the UDID of the user equipment identifies the user equipment, which is convenient for identifying different user equipment.
  • the UADD of a user equipment usually does not change often.
  • UADD changes due to the change of EID.
  • user equipment has the ability to acquire real-time location information (such as longitude and latitude information). Therefore, when the user equipment moves to another sub-area, the user equipment will detect the change of the sub-area, and then update the EID to obtain the updated UADD.
  • both the user equipment and the satellite can determine whether the sub-region has changed, thereby updating the address information in real time.
  • Satellite address and user equipment address can be used in the process of two-way communication between satellite and user equipment. In one example, both the satellite and the user equipment periodically determine whether the sub-region has changed to update the address information.
  • the surface of the earth may be evenly divided into multiple sub-regions, or it may be unevenly divided into multiple sub-regions.
  • the surface of the earth can be divided into multiple sub-regions according to the number of satellite orbits and/or the number of satellites in each orbit, and in another implementation, the surface of the earth can be divided into Multiple sub-regions, for example, can also be divided based on the density of user equipment in the earth's continents and oceans.
  • the continents can be divided into sub-regions with a small latitude and longitude range, and the oceanic regions into sub-regions with a large latitude and longitude range.
  • the multiple sub-regions may not overlap each other, or may partially overlap.
  • the EID of each sub-region may be different, and may also be globally unique.
  • the surface of the earth may be evenly divided into multiple sub-regions according to latitude and longitude. Satellite orbits are polar orbits, each orbit is evenly distributed, and the satellites on each orbit are also evenly distributed. The surface of the earth is divided into multiple sub-regions according to the number of satellite orbits and/or the number of satellites in each orbit.
  • the earth surface is divided into longitudes, M orbits correspond to 2M longitude ranges of 180°/M, and one orbit corresponds to two 180°/M longitude ranges;
  • M orbits correspond to 2M longitude ranges of 180°/M
  • one orbit corresponds to two 180°/M longitude ranges;
  • N of satellites in each orbit each 180°/M longitude range is divided from latitude into N/2 latitude ranges of 180°/N, then the surface of the earth is divided into M*N subregions
  • One track corresponds to N sub-regions, and the size of each sub-region is: 180°/M longitude range and 180°/N latitude range.
  • the EIDs of the corresponding N sub-regions on one track are consecutive integers.
  • the EIDs of the corresponding N sub-regions on a track are equal numbers, and the tolerance is an integer greater than 1.
  • the EIDs of the N sub-regions can also be numbered in other forms.
  • M*N sub-regions have no regular numbering, etc., and the embodiments of the present application are not specifically limited.
  • the surface of the earth may be unevenly divided into multiple sub-regions according to latitude and longitude.
  • the earth's orbit is a polar orbit, and the orbits are unevenly distributed, and the satellites in each orbit are not evenly distributed, the surface of the earth can be unevenly divided according to the number of satellite orbits and/or the number of satellites in each orbit Into multiple sub-regions.
  • the surface of the earth is statically divided into multiple sub-regions.
  • the surface of the earth can be statically divided.
  • Satellite configuration may include, but is not limited to: the number of satellite orbits, the height of the orbits, the number of satellites in each orbit, and so on.
  • FIG. 2 shows a schematic diagram of division and EID encoding of multiple sub-regions.
  • the satellite communication system has 6 evenly distributed orbits, each of which orbits 18 satellites. Among them, these 6 orbits correspond to 12 longitude ranges of 30° on the surface of the earth, and each orbit corresponds to 2 30° longitude range; each 30° longitude range is divided into nine 20° latitude ranges according to latitude.
  • the earth's surface is divided into 108 sub-regions, and the size of each sub-region is: 30° longitude range and 20° latitude range.
  • the first row of the table in Figure 2 represents the central latitude of each subregion, in order: 80 degrees north latitude (80 degrees) north latitude (80N), 60 degrees north latitude (60N), 40 degrees north latitude (40N), 20 degrees north latitude (20N) , 0 degrees, 20 degrees south latitude (20S), 40 degrees south latitude (40S), 60 degrees south latitude (60S), 80 degrees south latitude (80S); the first column represents the central longitude of each subregion , followeded by: 15 degrees east longitude (15E), 45 degrees east (45E), 75 degrees east (75E), 105 degrees east (105E), 135 degrees east (135E), 165 degrees east (165E), 15 degrees west longitude (15W), 45 degrees west longitude (45W), 75 degrees west longitude (75W), 105 degrees west longitude (105W), 135 degrees west longitude (135W), 165 degrees west longitude (165W).
  • the sub-region numbered 0 corresponds to the latitude and longitude range: 90° north latitude-70° north latitude and 0° east longitude-30° east longitude, where the latitude range is 90° north latitude-70° north latitude, and the longitude range is 0° east longitude-east longitude 30°.
  • the division and coding diagram of the sub-region shown in FIG. 2 is only an example. Understandably, there are other forms of representation in the table in FIG. 2.
  • the first row of the table in FIG. 2 can also represent the minimum latitude of each sub-region, and the first column represents the minimum longitude of each sub-region; or, the first row of the table in FIG.
  • the first column represents the maximum longitude of each subregion
  • the first row of the table in Figure 2 can also be modified to the longitude range of each subregion
  • the first column can be modified to the latitude range of each subregion, for example, for
  • the 9 columns in the first row can be modified to: 90° north latitude-70° north latitude, 70° north latitude-50 north latitude, 50° north latitude-30° north latitude, 30° north latitude-10° north latitude, 10° north latitude-10° north latitude-10° south latitude, 10° south latitude -South latitude 30, south latitude 30°-south latitude 50, south latitude 50°-south latitude 70, and, south latitude 70°-south latitude 90; similarly, the 9th row of the first column can be similarly modified.
  • FIG. 3 shows a schematic flowchart of a satellite network communication method according to an embodiment of the present application. Specifically, the address information transmission method. The method includes:
  • the first satellite determines satellite address information, where the satellite address information includes: a first sub-area number (Earth Surface ID, EID); the first EID is used to indicate the area corresponding to the area currently covered by the first satellite A first sub-region; wherein, the first sub-region is one of a plurality of sub-regions into which the surface of the earth is divided.
  • the EIDs of the plurality of sub-regions are different.
  • the first satellite may be any satellite in any orbit. For example, it may be the satellite 00 shown in FIG. 1.
  • the satellite address information further includes: a satellite device number, the satellite device number is used to indicate a network interface between the first satellite and the user equipment, and the network interface is used for the first satellite and the user equipment Communication between.
  • the satellite device number may be the network interface number for communication between the first satellite and the user equipment, for example, the MAC address of the network interface of the USL/GSL; it may also be a unique identification of the first satellite, used for satellites Communication with user equipment.
  • the EID in the satellite address information is used to identify the position of the satellite.
  • the SDID in the satellite address information is the identification of the satellite's network interface. Based on the satellite address information, the user equipment can address the satellite, and the communication between the user equipment and the satellite can be realized.
  • the first sub-region is one of a plurality of sub-regions into which the surface of the earth is divided.
  • the surface of the earth may be evenly divided into multiple sub-regions, or it may be unevenly divided into multiple sub-regions.
  • the surface of the earth may be divided into multiple sub-regions according to the number of satellite orbits and/or the number of satellites in each orbit.
  • the multiple sub-regions may not overlap each other, or may partially overlap.
  • the EID of each sub-region may be different, and may also be globally unique.
  • the sub-area is the sub-area corresponding to the current coverage area of the satellite; in another example, the area currently covered by the satellite overlaps with a sub-area , but not exactly the same, if the overlapping area included in the sub-region is greater than 1/2 of the sub-region, the sub-region is the sub-region corresponding to the area currently covered by the satellite; in another example, the center point of the area currently covered by the satellite Located in a sub-region, the sub-region is the sub-region corresponding to the area currently covered by the satellite.
  • S102 The first satellite sends the satellite address information
  • Satellite address information can be carried in beacon messages, data messages, or other types of messages. As shown in FIG. 4a, an exemplary structure of satellite address information is shown.
  • the satellite address information includes: the sub-area corresponding to the area currently covered by the satellite and the satellite device number.
  • S103 The user equipment receives the satellite address information sent by the first satellite;
  • S104 Determine the first sub-region corresponding to the area currently covered by the first satellite according to the satellite address information, and optionally, determine the satellite device number of the first satellite.
  • the user equipment receives the satellite address information sent by the first satellite, and parses the satellite address information to obtain the sub-region corresponding to the area currently covered by the first satellite and the satellite device number of the first satellite.
  • the user equipment that has obtained the satellite address information may perform two-way communication between the user equipment and the first satellite based on the satellite address information.
  • determining the satellite address information includes determining the EID of the first sub-region corresponding to the area currently covered by the first satellite, and the manner of determining the EID may include, but is not limited to, the following multiple methods:
  • the first way confirm the EID of the first sub-region according to the current position information of the first satellite, where the position information includes the current longitude and latitude of the first satellite.
  • the first satellite determines the EID of the first sub-region according to the mapping relationship between the EID and the latitude and longitude ranges of the plurality of sub-regions.
  • the first satellite may store a mapping relationship table between the EID and the latitude and longitude ranges of each sub-region, and query the mapping relationship table to determine the EID corresponding to the current coverage area. Taking FIG.
  • the first The satellite look-up table may determine that the EID of the sub-region currently corresponding to the first satellite is 1.
  • the first satellite can also know the division rules of the sub-regions on the Earth’s surface and the numbering rules of the EID, without storing the mapping relationship table between the EID and the latitude and longitude ranges of the respective sub-regions, directly according to the division rules of the sub-regions on the Earth’s surface and the EID number
  • the rule can determine the sub-area corresponding to the area currently covered by the first satellite.
  • the first method is not limited to the manner in which sub-regions on the surface of the earth are divided and the manner in which the EIDs of the sub-regions are numbered.
  • the sub-regions on the surface of the earth can be divided in a manner that does not consider the number of orbits and the number of satellites in each orbit, and the EIDs of the divided sub-regions can be arbitrarily numbered, as long as the latitude and longitude ranges of each sub-region and each sub-region are satisfied
  • the corresponding relationship between the EIDs of the areas may be one-to-one. Therefore, this EID addressing method is more flexible.
  • the first method of determining satellite address information has a small calculation complexity, consumes less calculation resources, and has a high degree of flexibility.
  • the second way determine the first EID of the first sub-region according to the mapping relationship between the satellite number SID of the first satellite and the EIDs of the plurality of sub-regions; wherein, the satellite number SID of the first satellite It is used to indicate the first satellite.
  • the number of orbits and/or the number of satellites in each orbit needs to be considered for the division of sub-regions on the surface of the earth and the encoding of EIDs in sub-regions.
  • the satellite orbits are polar orbits, each orbit is evenly distributed, and the satellites on each orbit are evenly distributed. According to the number of satellite orbits and the number of satellites in each orbit, the earth's surface is divided into multiple sub-regions.
  • the surface of the earth is divided into 2M longitude ranges of 180°/M according to longitude, where M orbits correspond to 2M longitude ranges of 180°/M, one orbit Corresponding to two 180°/M longitude ranges; according to the number N of satellites in each orbit, each 180°/M longitude range is divided into N/2 latitude ranges of 180°/N from latitude, Then the surface of the earth is divided into M*N sub-regions, one orbit corresponds to N sub-regions, and the size of each sub-region is: 180°/M longitude range and 180°/N latitude range.
  • Example 1 The EIDs of the corresponding N sub-regions on a track are consecutive integers.
  • Example two the EIDs of the corresponding N sub-regions on a track are equal differences, and the tolerance d is an integer greater than 1.
  • the EIDs of the N sub-regions can also be numbered by other methods, and the embodiments of the present application are not specifically limited.
  • the EID of each sub-region corresponding to one orbit is a continuous integer
  • the mapping relationship between the SID of the first satellite and the EIDs of multiple sub-regions is:
  • EID t represents the first sub-region number EID of the first sub-region corresponding to the region covered by the first satellite at present, and SID is equal to the number EID 0 of the sub-region corresponding to the region initially covered by the first satellite
  • N is the number of satellites in the orbit of the first satellite
  • T is the operating period of the satellites in the orbit
  • int is the rounding operation
  • mod is the modulus operation.
  • equation (1) can be rewritten as:
  • the EIDs at the initial moment are: 0, 1, 2, 3, ..., 18; then the 18 satellites in orbit 0
  • the SIDs are: 0, 1, 2, 3, ..., 18.
  • the EID of each sub-region corresponding to an orbit is an equidistance number, and the tolerance d is an integer greater than 1, and the mapping relationship between the SID of the satellite and the EIDs of multiple sub-regions is:
  • EID t represents the first sub-region number EID of the first sub-region corresponding to the current area covered by the first satellite
  • SID is equal to the number EID 0 of the sub-region corresponding to the area initially covered by the first satellite
  • N is the number of satellites in the orbit of the first satellite
  • T is the operating period of the satellites in the orbit
  • int is a rounding operation
  • mod is a modulus operation.
  • the operating period T of the satellite may be:
  • R is the radius of the earth
  • h is the height of the orbit
  • G is the gravitational constant
  • M is the mass of the earth.
  • the operation period T of the satellites in formula (1) to formula (4) can also be stored as a constant in the satellite, and the satellite does not need to be calculated based on the above formula (5).
  • the satellite can obtain the operating period T directly in the memory.
  • the above (Formula 1) to (Formula 4) can be used not only to determine the EID of the sub-region corresponding to the area currently covered by the satellite based on the SID of the satellite, but also to the area corresponding to the area currently covered by the satellite The EID of the sub-region determines the sub-region corresponding to the initial satellite coverage area, thereby determining the SID of the satellite.
  • the satellite uses the regularity and periodicity of the movement of the satellite constellation, and can obtain the one-to-one mapping from SID to EID through formula (1) to formula (4), so as to obtain the satellite’s current coverage in real time.
  • the EID of the sub-region corresponding to the region does not need to store the EID addressing table or other forms of mapping relationship table, so it can significantly save the memory space of the satellite.
  • the second method uses real-time calculation to determine the EID, and the calculated delay will be much smaller than the lookup table delay, especially when the number of satellites is large, it can significantly reduce the delay and improve the efficiency of the system.
  • the EID of the sub-region corresponding to the satellite identifies the position of the satellite.
  • the satellite address information can adapt to the characteristics of high-speed satellite movement in the satellite network, and the satellite in the satellite communication network can update the satellite in real time. Address information reduces the complexity and delay of addressing and routing, and improves the stability of satellite communication system communications.
  • FIG. 5 shows that another embodiment of the present application provides another satellite network communication method, specifically an address information transmission method.
  • the method includes:
  • the user equipment determines user equipment address (UADD) information, where the user equipment address information includes: a second sub-area number (Earth surface identification, EID) and a user equipment device number DID (User device identification (DID);
  • EID Earth surface identification
  • DID User device identification
  • the second sub-region EID is used to indicate the second sub-region where the user equipment is currently located; the UDID of the user equipment is used to identify the user equipment.
  • the UDID of the user equipment may be the MAC address or IMSI of the user equipment. Due to the large satellite coverage area, the UADD of a user equipment usually does not change often. If the user equipment moves from one subregion to another subregion, UADD changes due to changes in EID. Generally, user equipment has the ability to acquire real-time location information (such as longitude and latitude information). Therefore, if the user equipment moves to another sub-area, the user equipment will detect the change in the sub-area, and then update the EID to obtain the updated UADD.
  • real-time location information such as longitude and latitude information
  • the user equipment may also confirm the EID of the second sub-area according to current location information, where the location information includes the current longitude and latitude of the user equipment.
  • the user equipment determines the EID of the second sub-region according to the mapping relationship between the EID and the latitude and longitude ranges of the multiple sub-regions.
  • the user equipment may store, for example, a mapping relationship table between the EID and the latitude and longitude ranges of each sub-region, and query the mapping relationship table to determine the EID of the sub-region currently located. Taking FIG.
  • the user equipment may look up the table to determine that the EID of the subregion where the user equipment is currently located is 36.
  • the manner in which the user equipment determines the EID is not limited to the manner in which the sub-regions on the surface of the earth are divided and the manner in which the EID of the sub-region is encoded.
  • the sub-regions on the surface of the earth can be divided in a manner that does not consider the number of orbits and the number of satellites in each orbit, and the EIDs of the divided sub-regions can be arbitrarily addressed, as long as the latitude and longitude ranges of each sub-region and each
  • the correspondence between the EIDs of the sub-regions may be one-to-one. Therefore, this approach is more flexible.
  • the structure of the address information of the user equipment may be as shown in FIG. 4b, including the sub-area number EID of the earth surface and the device number UDID of the user equipment.
  • S202 Send the user equipment address information to the first satellite
  • the user equipment address information may be carried in a data message, a registration request message, or other types of messages.
  • the first satellite determines the address information of the sending end of these messages to facilitate addressing and two-way communication between the satellite and the user equipment.
  • S203 The first satellite receives the user equipment address information.
  • the first satellite determines the EID of the second sub-area where the user equipment is currently located and the device ID of the user equipment according to the user equipment address information.
  • the user equipment in the satellite communication network can update its own address information in real time, which can adapt to the characteristics of satellite mobility, dynamic topology, etc., and improve the stability of communication in the satellite communication system.
  • FIG. 6 shows a schematic flowchart of a satellite network registration method according to an embodiment of the present application, including:
  • the first satellite determines satellite address information, where the satellite address information includes: a first sub-area number (Earth Surface ID, EID); the first sub-area EID is used to indicate an area covered by the first satellite at the current time The corresponding first sub-region; optionally, also includes a satellite device number (satellite device identification, SDID), where the satellite device number is used to indicate the network interface between the first satellite and the user equipment.
  • EID Earth Surface ID
  • SDID satellite device identification
  • Step S301 is similar to step S101, which has been described in detail in step S101 and will not be repeated here.
  • the first satellite sends a beacon message, and the beacon message includes the satellite address information;
  • the satellite broadcasts a beacon message (beacon message) to the coverage area through the USL/GSL link.
  • the satellite may periodically broadcast beacon messages via USL/GSL links.
  • the beacon message includes satellite address information, and optionally, may also include other information of the first satellite, for example, the latitude and longitude of the first satellite, and may also include the altitude of the first satellite.
  • the user equipment may obtain address information and/or other information in the beacon message, so that the user equipment can determine whether to access the satellite according to the information.
  • satellite address information and/or longitude and latitude can be used by the user equipment to determine its registered satellite.
  • the satellite indicated by the destination address of the registration request message sent by the user equipment is referred to as a registered satellite. Understandably, there may be other names, which are not limited in the embodiments of the present application.
  • S303 The user equipment receives the beacon message
  • the user equipment receives the beacon message broadcast by the satellite, and obtains the satellite address information of the first satellite from the broadcast beacon message. Optionally, you can also obtain satellite longitude, latitude, altitude and other information, or other signaling information.
  • the user equipment determines, according to the satellite address information, the EID of the first sub-area corresponding to the area currently covered by the first satellite and the satellite equipment number SDID;
  • Step S304 is similar to step S104, which has been described in detail in step S104 and will not be repeated here.
  • the user equipment determines the user equipment address information, and the user equipment address information includes: a second sub-area number (Earth surface identification, EID) and a user equipment device number UDID (User device identification (UDID); the second sub The area EID is used to indicate the second sub-area where the user equipment is currently located; the UDID of the user equipment is used to identify the user equipment.
  • EID Earth surface identification
  • UDID User device identification
  • Step S305 is similar to step S201, which has been described in detail in step S201 and will not be repeated here.
  • step S305 and step S303 is not strictly limited, as long as S305 is satisfied and executed before S306.
  • the user equipment may execute S305 first, and then execute S303 and S304; or, the user equipment may execute S303 and S305 simultaneously, and then execute S304.
  • step S305 can also be executed in parallel with step S301 or before step S301. Therefore, the interaction flow shown in FIG. 7 is only an illustration of a situation.
  • S306 The user equipment sends a registration request message to the first satellite, where the registration request message includes the user equipment address information;
  • the user equipment may determine the registered satellite according to the satellite address information and the user equipment address information.
  • the user equipment only receives the beacon message sent by the first satellite, but does not receive the beacon message from other satellites, then the user equipment may determine that the first satellite is the registered satellite of the user equipment, that is, the user equipment Sending a registration request message to the first satellite; in another case, the user equipment receives registration request messages sent by multiple satellites, including the registration request message sent by the first satellite, and the user equipment according to the satellite address information and the user equipment address information To determine the registered satellite of the user equipment.
  • the user equipment may determine the registered satellite according to the satellite address information and the user equipment address information.
  • S307 The first satellite receives the registration request message
  • the first satellite that receives the registration request message extracts the user equipment address information from the registration request message, and stores the user equipment address information of the user equipment.
  • the first satellite determines the EID of the second sub-area where the user equipment is currently located and the UDID of the user equipment according to the user equipment address information in the registration request message.
  • the first satellite may establish a registered user equipment table, and store the address of the user equipment that sends the registration request message to the first satellite in the registered user equipment table. Therefore, based on the registration request message, the first satellite can learn the address information of the user equipment, which facilitates addressing and two-way communication between the satellite and the user equipment.
  • the method further includes S317: determining whether the first sub-region of the first satellite and the second sub-region of the user equipment are the same; that is, determining the first EID Is it the same as the second EID?
  • the first sub-region of the first satellite is different from the second sub-region of the user equipment, that is, the first EID and the second EID are different, further including steps S327, S337, S347.
  • the first satellite forwards the registration request message to a neighboring satellite.
  • the neighboring satellite includes a second satellite.
  • the subregion corresponding to the area currently covered by the second satellite and the second substation where the user equipment is located The area is the same.
  • the neighboring satellites of the first satellite may be one or more satellites adjacent to the subregion corresponding to the area currently covered and the subregion corresponding to the area currently covered by the first satellite; optionally, adjacent
  • the satellite may also be a satellite whose current distance from the satellite is less than a certain threshold.
  • the second satellite corresponding to the currently covered area and the second sub-area where the user equipment is located may be called a serving satellite. Understandably, there may be other names, which are not limited in the embodiments of the present application. .
  • S337 The second satellite (serving satellite) receives the registration request message forwarded by the first satellite;
  • the second satellite (serving satellite) also stores the SID of the first satellite in the routing and forwarding table. Instead of receiving the registration request message forwarded by the first satellite, the non-serving satellite will ignore the registration request message.
  • the second satellite may also obtain user equipment address information of the user equipment, and may determine that the user equipment is registered in the first satellite (registered satellite).
  • the second satellite sends a registration response message to the first satellite in response to the registration request message, so that the first satellite forwards the registration response message to the user equipment, so that the user equipment knows whether the registration is successful.
  • the first satellite receives the registration response message sent by the second satellite (serving satellite) in response to the registration request message.
  • the first satellite If the service satellite of the user equipment is also a registered satellite of the user equipment, the first satellite does not perform the above steps S327, S337, and S347, and directly executes step S308.
  • S308 The first satellite sends a registration response message to the user equipment, where the registration response message is used to respond to the registration request message.
  • the registration response message is generated and sent for the first satellite; for the first satellite, it is only the registered satellite of the user equipment
  • the registration response message is generated for the second satellite and sent to the first satellite, which is then forwarded to the user equipment by the first satellite.
  • the user equipment After receiving the registration response request, the user equipment can confirm whether the registration is successful.
  • the EID of the sub-region is used as a part of the satellite address or user equipment address to identify the location of the satellite or user equipment, so that the satellite and user equipment can update their own addresses in real time. And based on the registration process, both the satellite and the user equipment can obtain the address information of the other party. For scenarios where there is mobility of satellites and user equipment in a satellite network, the addressing may be more complicated.
  • IP addressing technology user equipment and satellites do not update IP addresses in real time with mobility, which may cause the satellite that initially served the user equipment to have moved to a farther area, and the registration relationship between the satellite and user equipment It is still maintained, so that the satellite cannot be normally addressed to the user equipment, and the user equipment cannot be normally addressed to the serving satellite, resulting in low communication efficiency and reduced reliability.
  • the EID of the sub-region is used as a part of the satellite address or user equipment address, which can be updated in real time as the satellite and user equipment move. It can adapt to the characteristics of mobility in satellite networks and improve the reliability and efficiency of satellite communications.
  • FIG. 8 shows a schematic flowchart of a registration method in a satellite communication system provided by an embodiment of the present application. The method includes:
  • the user equipment receives one or more beacon messages sent by one or more satellites, and each beacon message includes one satellite address information.
  • the satellite address information includes: a sub-area number (Earth surface ID, EID) and a satellite device number SDID; the sub-area EID is used to indicate a sub-area corresponding to an area currently covered by the satellite; the satellite device The number SDID is used to indicate a network interface for communication between the satellite and the user equipment.
  • the beacon message further includes satellite location information or altitude, and the satellite location information includes the satellite's current longitude and latitude.
  • the user equipment may receive a beacon message sent by a satellite.
  • the user equipment may receive multiple beacon messages sent by multiple satellites.
  • a plurality of beacon messages correspond to a plurality of satellites in one-to-one correspondence, and a beacon message includes satellite address information of the satellite that sent the beacon message.
  • the user equipment After receiving the beacon message, the user equipment obtains satellite address information of each satellite from one or more beacon messages, and optionally, can also obtain satellite position information or altitude information.
  • the address information of the satellite will change. If the satellite detects that the sub-region corresponding to the area covered by the satellite has changed, the satellite may update the address information to ensure that the satellite address information carried in the beacon message is the current latest address information.
  • S402 Determine a registered satellite from the one or more satellites according to the one or more beacon messages.
  • the methods for determining the registered satellite include but are not limited to the following implementation methods:
  • the user equipment may use the satellite that sent the beacon message as a registered satellite.
  • the EID of the sub-region corresponding to the area covered by the satellite is the same as the EID of the sub-region where the user equipment is located, and the user equipment determines that the satellite is a registered satellite.
  • the user equipment may determine the registered satellite in several ways including but not limited to the following:
  • Method 1 Determine the registered satellite based on the satellite address information carried in the beacon message.
  • the user equipment determines that a sub-region corresponding to an area currently covered by multiple satellites is the same as the sub-region where the user equipment is currently located as a registered satellite.
  • the EID of the sub-region corresponding to the area covered by the multiple satellites at the current time is acquired, and the EID corresponding to the current time in the multiple satellites and the current time of the user equipment are determined Satellites with the same EID in the sub-area are registered satellites.
  • Method 2 Determine the registered satellite based on the position and altitude information of the satellite carried in the beacon message.
  • the user equipment may determine that the satellite whose elevation angle between the satellite and the user equipment is greater than the first threshold or the maximum elevation angle among the multiple satellites is used as the registered satellite.
  • the user equipment calculates the elevation angle between multiple satellites and the user equipment according to the longitude, latitude, and altitude carried in the beacon message, and selects the satellite whose elevation angle is greater than the first threshold or the maximum elevation angle as the registered satellite.
  • the first threshold may be preset in advance, or may be determined by the user equipment itself.
  • Method 3 Determine the registered satellite based on the signal strength of the beacon message.
  • the user equipment may determine that the signal strength of the beacon message among the multiple satellites is greater than the second threshold or the signal strength is the largest as the registered satellite.
  • the user equipment detects the signal strength of multiple beacon messages sent by multiple satellites, and selects the satellite corresponding to the beacon message with a signal strength greater than the second threshold or the largest signal strength as the registered satellite.
  • the signal strength may be signal power, or signal-to-noise ratio (SNR), or received signal level.
  • SNR signal-to-noise ratio
  • S403 The user equipment sends a registration request message to the registered satellite.
  • Method 1 is used to determine the registered satellite, that is, the user equipment sends a registration request message to a satellite whose sub-area corresponding to the covered area has the same EID as the EID where the user equipment is located;
  • Method 2 is used to determine the registered satellite, that is, the user equipment sends a registration request message to the satellite with the largest elevation angle or an elevation angle greater than the first threshold;
  • Method 3 is used to determine the registered satellite, that is, the user equipment sends a registration request message to the satellite corresponding to the beacon message with the highest signal strength.
  • S404 The user equipment receives a registration response message sent by the registered satellite.
  • the user equipment may determine whether the registration is successful according to the registration response message.
  • FIG. 9 shows an example of a registration method according to an embodiment of the present application, where satellite 1, satellite 2 and satellite 3 are three satellites in orbit 5 shown in FIG. 1.
  • the SADD of satellite 1 can be expressed as: 91.0.0.51, and the SADD of satellite 2 can be expressed as: 92.0.0.52.
  • the beacon message 1 For the user equipment 1, only the beacon message 1 sent by the satellite 1 is received, and the beacon message 1 includes the SADD1 of the satellite 1. Extract the EID of the sub-region corresponding to satellite 1 in SADD1 of beacon message 1, and determine that the EID1 of the sub-region corresponding to satellite 1 is equal to the EID1 of the sub-region where user equipment 1 is located, then it can be determined that satellite 1 is the user equipment 1’s Register the satellite. Further, the user equipment 1 may send a registration request message to the satellite 1. The registration request message carries the UADD1 of the user equipment 1. After receiving the registration request message, the satellite 1 sends a registration response message to the user equipment 1.
  • beacon message 1 For the user equipment 2, both the beacon message 1 sent by the satellite 1 and the beacon message 2 sent by the satellite 2 are received.
  • Beacon message 1 includes SADD1 of satellite 1, and beacon message 2 includes SADD2 of satellite 2.
  • the EID of the subregion corresponding to satellite 1 is extracted from SADD1 of the beacon message 1
  • the EID of the subregion corresponding to satellite 2 is extracted from SADD of the beacon message 2.
  • the beacon message 1 may also include the altitude and latitude and longitude information of the satellite 1
  • the beacon message 2 may also include the altitude and latitude and longitude information of the satellite 2.
  • the user equipment 2 determines that the EID2 of the sub-region corresponding to the satellite 2 is equal to the EID2 of the sub-region where the user equipment 2 is located, then it can be determined that the satellite 2 is the registered satellite of the user equipment 2. Further, the user equipment 2 may send a registration request message to the satellite 2. The registration request message carries the UADD1 of the user equipment 1. After receiving the registration request message, the satellite 1 sends a registration response message to the user equipment 2.
  • the user equipment 2 calculates the elevation angle 1 between itself and the satellite 1, and the elevation angle 2 between itself and the satellite 2. In an example, if the user equipment determines that the elevation angle 2 is greater than the elevation angle 1, then it may determine that the satellite 2 is the registered satellite of the user equipment 2. Further, the user equipment 2 may send a registration request message to the satellite 2, and the registration request message carries the user equipment 1’s UADD1, after receiving the registration request message, satellite 1 sends a registration response message to user equipment 2.
  • the user equipment 2 detects the signal strength 1 of the beacon message 1 and the signal strength 2 of the beacon message 2. In one example, if the user equipment determines that the signal strength 2 is greater than the signal strength 1, it may determine that the satellite 2 is the registered satellite of the user equipment 2. Further, the user equipment 2 may send a registration request message to the satellite 2. The registration request message carries the UADD1 of the user equipment 1. After receiving the registration request message, the satellite 1 sends a registration response message to the user equipment 2.
  • the sub-area where the user equipment is located may change. If the user equipment detects that the sub-area where the user equipment is located changes, the user equipment updates its own user equipment address information. further.
  • the user equipment can also initiate the registration process spontaneously, that is, the user equipment actively sends a registration request message, and the registration request message carries the updated user equipment address information, the processing flow of the satellite that received the registration request message, and the foregoing steps S307, S317, and S308 It is similar or similar to steps S307, S317, S327, S337 or S347, and will not be repeated here.
  • the sub-region is used as a part of the satellite address or the user equipment address to indicate the location of the satellite and the user equipment, so that the satellite and the user equipment can update their own addresses in real time. And based on the registration process, both the satellite and the user equipment can obtain the address information of the other party in real time. For scenarios where there is mobility of satellites and user equipment in a satellite network, the addressing may be more complicated.
  • IP addressing technology the user equipment and satellites do not update the IP address in real time with mobility, which may cause the satellite initially serving the user equipment to have moved to a farther area at present, and the registration of the satellite and user equipment The relationship is still maintained, so that the satellite cannot be normally addressed to the user equipment, and the user equipment cannot be normally addressed to the serving satellite.
  • the sub-region is used as a part of the satellite address or the user equipment address.
  • the address information can be updated in real time as the satellite and the user equipment move. It can adapt to the characteristics of mobility and dynamic topology in the satellite network, and improve the reliability and efficiency of satellite communications.
  • the above embodiment provides a schematic flowchart of a registration method in a satellite communication system. Based on the above naming and addressing method, the present application provides a schematic flowchart of a data communication method in a satellite communication system. As shown in Figure 10, it includes:
  • S501 The user equipment generates a data message
  • the user equipment sends a data message to the first satellite.
  • the data message includes a destination address and a source address.
  • the source address includes the first EID of the first subregion where the user equipment is currently located and the user equipment’s Device number UDID;
  • the destination address includes the third EID of the third sub-area where the target user equipment of the data message is currently located and the UDID of the target user equipment;
  • the source address is the user equipment address information of the user equipment; the destination address is the user equipment address information of the target user equipment.
  • the method for determining the source address is similar to the method for the user equipment to determine the address information of the user equipment in the foregoing embodiment. For details, reference may be made to step S201 or step S305, and details are not described herein again.
  • the user equipment receives the confirmation message sent by the first satellite; the target address of the confirmation message includes the first EID and the UDID of the user equipment, and the source address of the confirmation message includes The third EID and the UDID of the target user equipment.
  • the user equipment that receives the confirmation message may determine whether the target receiving user equipment successfully receives the data message sent by the user equipment.
  • the sub-region is used as a part of the satellite address or the user equipment address to indicate the location of the satellite and the user equipment, so that the satellite and the user equipment can update their own addresses in real time.
  • the addressing may be more complicated. If IP addressing technology is used, the user equipment and satellites do not update the IP address in real time with mobility, which may cause the satellite initially serving the user equipment to have moved to a farther area at present, and the registration of the satellite and user equipment The relationship is still maintained, resulting in that the satellite cannot be normally addressed to the user equipment, and the user equipment cannot be normally addressed to the serving satellite, so that normal or efficient two-way communication cannot be achieved.
  • the embodiment of the present application uses the sub-region as a part of the satellite address or user equipment address, which can update the address information in real time as the satellite and user equipment move, and can adapt to the characteristics of mobility and dynamic topology in the satellite network to improve the reliability and efficiency of satellite communications .
  • This embodiment provides a schematic flowchart of another data communication method in a satellite communication system. As shown in Figure 11, it includes:
  • the first satellite receives a data message sent by user equipment, where the data message includes a destination address and a source address, and the source address includes the first EID of the first subregion where the user equipment is currently located and the user equipment UDID; the destination address includes the third EID of the third sub-region where the target user equipment of the data message is currently located and the UDID of the target user equipment.
  • the first satellite may obtain the destination address and the source address from the data message.
  • the destination address is the user equipment address information of the target user equipment
  • the source address is the user equipment address information of the user equipment.
  • the first satellite extracts the third EID of the third sub-area where the target user equipment is currently located and the UDID of the target user equipment from the target address of the user equipment.
  • the sub-region corresponding to the area currently covered by the first satellite is the first sub-region, that is to say, the first satellite may be a service satellite of the user equipment.
  • S602 The first satellite determines whether the third EID of the third sub-region is the same as the first EID of the first sub-region.
  • the first satellite determines whether the EID of the sub-area corresponding to the area currently covered by the satellite is equal to the EID of the third sub-area, that is, whether the sub-area where the target user equipment is located is the same as the sub-area where the user equipment is located.
  • the first satellite executes step S603, and optionally, S604 and S605 may also be executed.
  • S603 The first satellite forwards the data message to the target user equipment.
  • the target user equipment that has received the data message may further feed back a response message to the first satellite to inform the user equipment whether it successfully received the data message.
  • the first satellite receives the response message sent by the target user equipment;
  • the target address of the confirmation message includes the first EID and the UDID of the user equipment, and the The source address includes the third EID and the UDID of the target user equipment.
  • S605 The first satellite forwards the response message to the user equipment.
  • the user equipment that has received the response message may determine whether the target user equipment is successfully received.
  • the first satellite performs step S606, optionally, further S608 and S609 can be performed.
  • the first satellite determines the satellite number SID of the third satellite corresponding to the third sub-region according to the third EID of the third sub-region in the destination address.
  • the SID of the third satellite is used to indicate the third satellite.
  • the sub-region corresponding to the area currently covered by the third satellite is the third sub-region.
  • Both the first subregion and the third subregion are one of the subregions divided on the surface of the earth.
  • the division of the subregion on the surface of the earth and the encoding of the EID of the subregion need to consider the number of orbits and the number of satellites in each orbit.
  • For the addressing method of the divided sub-regions refer to the description of Example 1 and Example 2 in step S101.
  • Determining the satellite number SID of the third satellite corresponding to the third sub-region includes: determining the SID of the third satellite according to the mapping relationship between the satellite number SID of the third satellite and the EIDs of the plurality of sub-regions ;
  • the EIDs of N sub-regions corresponding to the same orbit are consecutive integers
  • the mapping relationship between the SID of the third satellite and the EIDs of multiple sub-regions is:
  • EID t represents the third EID of the third sub-region corresponding to the area covered by the third satellite at the current time
  • the SID of the third satellite is equal to the number of the sub-region corresponding to the area covered by the third satellite at the initial time EID 0
  • N is the number of satellites in the orbit where the third satellite is located
  • T is the operating period of the satellites in the orbit
  • int is a rounding operation
  • mod is a modulus operation.
  • the EID of each sub-region corresponding to the same orbit is an equivariance
  • the tolerance d is an integer greater than 1
  • the mapping relationship between the SID of the satellite and the EID of multiple sub-regions is
  • EID t represents the third sub-region number EID of the third sub-region corresponding to the region covered by the third satellite at the current moment
  • SID of the third satellite is equal to the sub-region corresponding to the region covered by the third satellite at the initial moment
  • the zone numbers EID 0 , N are the number of satellites in the orbit where the third satellite is located
  • T is the operating period of the satellites in the orbit
  • int is the rounding operation
  • mod is the modulus operation.
  • the satellite can determine the SID of the satellite according to the EID of the sub-region corresponding to the satellite currently covered area, without storing the mapping relationship between the SID and the EID addressing table Or other forms of mapping relationship table, so it can significantly save the memory space of the satellite.
  • the calculated delay will be much smaller than the lookup table delay, especially when the number of satellites is large, it can significantly reduce the delay and improve the efficiency of the system.
  • the first satellite forwards the data message to the third satellite, the destination address of the data message is updated to include the SID of the third satellite and the UDID of the target user equipment, and the source address is updated to include the The SID of the first satellite and the UDID of the user equipment.
  • the first satellite After the first satellite obtains the SID of the third satellite, it can update the destination address and source address in the data message.
  • the destination address is updated to include the SID of the third satellite and the UDID of the target user equipment
  • the source address is updated to include the SID of the first satellite and the UDID of the user equipment.
  • the updated destination address and source address do not include the EID of the sub-area, which can separate data messages or other messages from the sub-area when routing and forwarding between satellites, which can separate the satellite's mobility and routing issues. It can reuse the traditional routing algorithm to directly use SID as the routing index to route forward on the ISL/IOL link, without the need to redesign the new inter-satellite routing algorithm, and the compatibility is better.
  • the EID corresponding to the satellite will change, but the link between the satellite and the satellite is relatively stable, so the address separated from the EID is used to route between the satellite and the satellite, which can move the satellite. Separation of sexuality and routing issues can improve routing efficiency.
  • This application uses SID as the index number for inter-satellite routing, which can avoid frequent updating of routing tables by satellites, reduce routing complexity and routing delay, and reduce the use of system resources. It can also use traditional routing algorithms for inter-satellite routing, with good compatibility .
  • the satellite updates the address information in real time, so that the satellite network can correctly address the service satellite currently serving the user equipment, which can improve the communication efficiency of the satellite network.
  • Case 1 The third satellite is a registered satellite of the target user equipment.
  • the third satellite may determine whether the target user equipment is a registered user registered to the third satellite by searching the registered user information table. If it is, the third satellite forwards the data message to the target user equipment.
  • the destination address of the data message forwarded by the third satellite includes: the EID of the sub-area where the target user equipment is located and the DID of the target user equipment; the source address includes: the sub-area where the user equipment is located The EID and the DID of the user equipment.
  • the user equipment may also feed back a confirmation message to the third satellite.
  • the third satellite is not a registered satellite of the target user equipment.
  • the third satellite may determine whether the target user device is a registered user registered to the third satellite by searching the registered user information table. If not, the third satellite may further search the registered satellite information table, find the registered satellite of the target user equipment, and forward the data message to the registered satellite, and then the registered satellite forwards the data message to the The target user equipment.
  • the method further includes: the user equipment feeds back a confirmation message to the registered satellite, the registered satellite further forwards the confirmation message to the third satellite, and the third satellite forwards the confirmation message to the Describe the first satellite.
  • the registered user information table includes user equipment address information of user equipment registered to the third satellite.
  • S608 The first satellite receives a confirmation message sent by the third satellite to confirm the data message.
  • the target address of the confirmation message includes the first EID and the UDID of the user equipment.
  • the source address of the confirmation message includes the third EID and the UDID of the target user equipment.
  • S609 The first satellite forwards the response message to the user equipment.
  • An embodiment of the present application proposes a communication method in a satellite network, which uses a sub-region as a part of a satellite address or user equipment address to indicate the location of the satellite and the user equipment, so that the satellite and user equipment can update their own addresses in real time .
  • the addressing may be more complicated.
  • IP addressing technology the user equipment and satellites do not update the IP address in real time with mobility, which may cause the satellite that initially served the user equipment to have moved to a farther area at present, and the service satellite and the user equipment’s The registration relationship is still maintained, so that the satellite cannot be normally addressed to the user equipment, and the user equipment cannot be normally addressed to the serving satellite, so that normal or efficient two-way communication cannot be achieved.
  • the embodiment of the present application uses the sub-region as a part of the satellite address or the user equipment address.
  • the satellite and the user equipment can quickly address the service satellite serving the user equipment according to the user equipment address information and the satellite address information, thereby improving Communication efficiency, reduce communication delay, and can adapt to the characteristics of mobility, dynamic topology, etc. in the satellite network.
  • FIG. 12 shows a specific example of a satellite network data communication process.
  • the user equipment 2 needs to communicate with the user equipment 1 through a satellite network.
  • the user equipment 2 can send a data message to the satellite 1 through USL/GSL, and the source address (Src) of the data message is 101.0.0.20; the destination address (Dst) is 101.0.0.10.
  • the satellite 1 that received the data message obtains EID1 from the data message, and the satellite 1 determines that EID2 and EID1 are equal. Further, the satellite 1 may send the data message to the user equipment 1 through USL/GSL, so that the user equipment 1 receives the data message.
  • user equipment 1 can also feed back a confirmation message to user equipment 2.
  • user equipment 1 sends a confirmation message to satellite 1.
  • the destination address of the confirmation message is 101.0.10 and the source address is 101.0.0.20.
  • the satellite 1 of the confirmation message determines that EID2 is equal to EID1, and then sends a confirmation message to the user equipment 2, and the user equipment 2 can determine whether the user equipment 1 successfully receives the data message based on the confirmation message.
  • FIG. 13 shows another specific example of the data communication process of the satellite network.
  • the user equipment 3 needs to communicate with the user equipment 1 through the satellite network.
  • satellite 1 is a serving satellite and a registered satellite of user equipment 1.
  • the user equipment 3 can send a data message to the satellite 3 through the USL/GSL, and the source address (Src) of the data message is 103.0.0.30; the destination address (Dst) is 91.0.0.10.
  • the satellite 3 that received the data message obtains EID1 from the data message, and determines that EID3 is not equal to EID1.
  • Satellite 3 determines SID1 corresponding to EID1 based on the mapping relationship between SID and EID (for example, Formula 6 or Formula 7). Further, the satellite 3 can obtain the next hop SID and the port ID by searching the routing table, and the port ID can be an ISL/IOL link ID.
  • Satellite 3 sends the data message, the destination address of the data message is updated to SID 1.0.0.10, and the source address is updated to SID 3.0.0.30.
  • the data message can be selected by the satellite network's path selection algorithm and then received by the satellite 1 via the ISL/IOL link. Satellite 1 determines that the user equipment included in the destination address in the data message is the user equipment served by satellite 1, and sends a data message to the user equipment 1, the destination address of the data message is further updated to 91.0.0.10, and the source address is updated to 103.0.0.30, the user equipment 1 thus receives the data message. In a similar process, the user equipment 1 can also feed back a confirmation message to the user equipment 3. Specifically, the user equipment 1 sends a confirmation message to the satellite 1. The destination address of the confirmation message is 103.0.10 and the source address is 91.0.0.20. The satellite 1 that receives the confirmation message forwards the confirmation message to the satellite 3. The confirmation message is forwarded to the user equipment 3.
  • FIG. 14 shows another specific example of the data communication process of the satellite network.
  • the user equipment 3 needs to communicate with the user equipment 2 through the satellite network.
  • satellite 1 is a registered satellite of user equipment 2
  • satellite 2 is a serving satellite of user equipment 2.
  • the user equipment 3 can send a data message to the satellite 3 through USL/GSL.
  • the source address (Src) of the data message is 103.0.0.30; the destination address (Dst) is 92.0.0.20, the satellite that receives the data message 3.
  • the satellite 3 determines the SID2 corresponding to the EID2 based on the mapping relationship between the SID and the EID (for example, Formula 6 or Formula 7). Satellite 3 can obtain the next hop SID and port ID by looking up the routing table.
  • the port ID can be the ISL/IOL link ID.
  • Satellite 3 sends the data message, the destination address of the data message is updated to SID 2.0.0.20, and the source address is updated to SID 3.0.0.30.
  • the data message can be received by satellite 2 after selecting a path through the path selection algorithm of the satellite network. Satellite 2 extracts DID2 of user equipment 2 from the destination address, determines that it is not a registered satellite of user equipment 2, then satellite 2 searches the registered satellite information table, determines that the registered satellite of user equipment 2 is satellite 1, then satellite 2 goes to registered satellite 1 Forward the data message.
  • the satellite 1 can send a data message to the user equipment 2 through USL/GSL, the destination address of the data message is further updated to 92.0.0.20, and the source address is updated to 103.0.0.30; the user equipment 2 thus receives The data message.
  • user equipment 2 can also feed back a confirmation message to user equipment 3.
  • user equipment 1 sends a confirmation message to satellite 1.
  • the destination address of the confirmation message is 103.0.10 and the source address is 92.0.0.20.
  • the satellite 1 of the confirmation message forwards the confirmation message to the satellite 2, the satellite 2 then forwards to the satellite 3, and further the satellite 3 forwards the confirmation message to the user equipment 3.
  • An embodiment of the present application provides a communication apparatus, which can be applied to a user equipment side, and can be used to implement the methods and steps related to user equipment in the foregoing embodiments.
  • the user equipment may be a communication device located on the ground segment as shown in FIG. 1, for example, user terminals, satellite terminals, cellular terminals, ground stations, cellular base stations, and access points.
  • the communication device may be user equipment or a chip in the user equipment. Referring to FIG. 15, the communication device 1500 includes a determination module 1501 and a transmission module 1502.
  • the determining module 1501 may be used to determine the user equipment address information of the user equipment.
  • the user equipment address information includes: a second sub-area number EID and a user equipment device number UDID; the second EID is used to indicate the current location of the user equipment At the second subregion.
  • the determination module 1501 is further configured to determine the EID and satellite device number SDID of the first sub-region corresponding to the area currently covered by the satellite according to the satellite address information.
  • the determination module 1501 determines a registered satellite from one or more satellites. For example, it is used to implement S104, S201, S304, S305, and S402.
  • the sending module 1502 is configured to send the user equipment address information. In a possible implementation manner, the sending module 1502 is further configured to send a registration request message, where the registration request message includes user equipment address information. In a possible implementation manner, the sending module 1502 is further configured to send a data message, where the data message includes user equipment address information. For example, the sending module 1502 is used to implement S202, S306, S403, and S502.
  • the communication device 1500 further includes: a receiving module 1503, configured to receive satellite address information sent by the first satellite.
  • the receiving module 1503 is further configured to receive a beacon message sent by the first satellite, and the beacon message includes the satellite address information.
  • the receiving module 1503 is further configured to receive the registration response message sent by the first satellite.
  • the receiving module 1504 is further configured to receive a confirmation message or a data message fed back by the first satellite.
  • the receiving module is used to implement S103, S303, S309, S304, or S503.
  • An embodiment of the present application also provides a communication device.
  • the communication device can be applied to the user equipment side, and can be used to implement the methods and steps related to the user equipment in the foregoing embodiments.
  • the user equipment may be a communication device located on the ground segment as shown in FIG. 1, for example, user terminals, satellite terminals, cellular terminals, ground stations, cellular base stations, and access points.
  • the communication device may be user equipment or a chip in the user equipment. Referring to FIG. 16, the communication device 1600 includes a processor 1601, a transmitter 1602, and optionally a receiver 1603.
  • the processor 1601 may be used to determine the user equipment address information of the user equipment.
  • the user equipment address information includes: a second sub-area number EID and a user equipment device number UDID; the second EID is used to indicate the current location of the user equipment At the second subregion.
  • the processor 1601 is further configured to determine the EID and satellite device number SDID of the first sub-region corresponding to the area currently covered by the satellite according to the satellite address information.
  • the processor 1601 determines a registered satellite from one or more satellites. For example, it is used to implement S104, S201, S304, S305, and S402.
  • the transmitter 1602 is configured to send the user equipment address information.
  • the transmitter 1502 is further configured to send a registration request message, where the registration request message includes user equipment address information.
  • the transmitter 1602 is further configured to send a data message, where the data message includes user equipment address information.
  • the transmitter 1602 is used to implement S202, S306, S403, and S502.
  • the communication device 1600 further includes: a receiver 1603, configured to receive satellite address information sent by the first satellite.
  • the receiver 1603 is further configured to receive a beacon message sent by the first satellite, and the beacon message includes the satellite address information.
  • the receiver 1603 is further configured to receive the registration response message sent by the first satellite.
  • the receiver 1603 is further configured to receive a confirmation message or a data message fed back by the first satellite.
  • the receiver is used to implement S103, S303, S309, S304, or S503.
  • An embodiment of the present application also provides a communication device.
  • the communication device can be applied to the user equipment side, and can be used to implement the methods and steps related to the user equipment in the foregoing embodiments.
  • the user equipment may be a communication device located on the ground segment as shown in FIG. 1, for example, user terminals, satellite terminals, cellular terminals, ground stations, cellular base stations, and access points.
  • the communication device may be user equipment or a chip in the user equipment.
  • the user equipment is a terminal device.
  • FIG. 17 shows a simplified schematic diagram of a possible design structure of the user equipment involved in the foregoing embodiment.
  • the user equipment includes a transmitter 1701, a receiver 1702, a controller/processor 1703, a memory 1704, and a modem processor 1705.
  • the transmitter 1701 adjusts (e.g., analog conversion, filtering, amplification, up-conversion, etc.) the output samples and generates an uplink signal, which is transmitted to the satellite described in the above embodiment via an antenna.
  • the antenna receives the downlink signal transmitted by the satellite in the above embodiment.
  • the receiver 1702 regulates (eg, filters, amplifies, down-converts, digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 1706 receives the service data and signaling messages to be sent on the link (for example, the GSL/USL link shown in FIG. 1), and the service data and signaling messages Perform processing (eg, formatting, encoding, and interleaving).
  • the modulator 1707 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 1709 processes (eg, demodulates) the input samples and provides symbol estimates.
  • the decoder 1708 processes (e.g., deinterleaves and decodes) the symbol estimates and provides the decoded data and signaling messages sent to the UE.
  • the encoder 1706, the modulator 1707, the demodulator 1709, and the decoder 1708 may be implemented by a synthesized modem processor 1705.
  • the controller/processor 1703 controls and manages the actions of the user equipment, and is used to execute the processing performed by the user equipment in the foregoing embodiment. For example, it is used to determine the user equipment address information of the user equipment; optionally, it is also used to determine the EID and satellite equipment number SDID of the first sub-area corresponding to the area currently covered by the satellite according to the satellite address information. Optionally, it is also used to determine a registered satellite from one or more satellites. As an example, the controller/processor 1703 is used to support user equipment to implement S104, S201, S304, S305, S402, and so on.
  • the memory 1703 is used to store program codes and data of user equipment.
  • FIG. 17 only shows a simplified design of the user equipment.
  • the user equipment may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all user equipments that can implement the present application are within the protection scope of the present invention.
  • the user equipment is a base station, such as a cellular base station that can communicate with a satellite, a ground, etc.
  • FIG. 18 shows a possible structural schematic diagram of the base station involved in the foregoing embodiment.
  • the base station includes a transmitter/receiver 1801, a controller/processor 1802, a memory 1803, and a communication unit 1804.
  • the transmitter/receiver 1801 is used to support transmission and reception of information between the base station and the satellite in the foregoing embodiment, and to support radio communication between a cellular terminal and other cellular terminals.
  • the controller/processor 1802 performs various functions for communicating with satellites. On the downlink, the signal from the satellite is received via the antenna, mediated by the receiver 1801, and further processed by the controller/processor 1182 to recover the service data and signaling information sent by the UE.
  • the service data and signaling messages are processed by the controller/processor 1802 and mediated by the transmitter 1801 to generate the uplink signal and transmitted to the satellite via the antenna.
  • the controller/processor 1802 also performs the processing procedures related to the user equipment in FIGS. 3 to 11 and/or other procedures for the technology described in this application.
  • the memory 1803 is used to store program codes and data of the base station.
  • the communication unit 1804 is used to support the base station to communicate with other network entities.
  • FIG. 18 only shows a simplified design of the base station.
  • the base station may contain any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the protection scope of the present invention.
  • An embodiment of the present application provides a communication device.
  • the communication device can be applied to a satellite, and can be used to implement the method and steps related to the satellite in the foregoing embodiments.
  • the user equipment may be a satellite located in a space segment as shown in FIG.
  • the communication device may also be a chip in a satellite.
  • the communication device 1900 includes a determination module 1901, a transmission module 1902, and optionally, a reception module 1903.
  • the determining module 1901 may be used to determine satellite address information of a satellite. In a possible implementation manner, the determination module 1901 is further configured to determine the EID and the user equipment number UDID of the second subregion where the user equipment is currently located according to the address information of the user equipment. In a possible implementation, the determination module 1901 is also used to determine whether the first sub-region and the second sub-region are the same. For example, it is used to implement S101, S204, S301, S317, and S602.
  • the sending module 1902 is used to send the satellite address information.
  • the sending module 1902 is further configured to send a beacon message, where the beacon message includes satellite address information.
  • the sending module 1902 is also used to send a registration response message.
  • the sending module 1902 is also used to send a data message.
  • the sending module 1902 is also used to forward the registration request message to neighboring satellites.
  • the sending module 1902 is used to implement S102, S302, S327, S308, S607, and S605.
  • the receiving module 1903 is configured to receive user equipment address information sent by the user equipment. In a possible implementation manner, the receiving module 1903 is further configured to receive a registration request message sent by the user equipment, where the registration request message includes the user equipment address information. In a possible implementation manner, the receiving module 1903 is further configured to receive the data message or confirmation message sent by the user equipment. In a possible implementation, the receiving module 1903 is also used to receive confirmation messages or data messages sent by other satellites. For example, the receiving module is used to implement S203, S307, S347, S601, S608, and S604.
  • An embodiment of the present application also provides a communication device.
  • the communication apparatus can be applied to the user equipment side, and can be used to implement the methods and steps related to the user equipment in the foregoing embodiments.
  • the user equipment may be a communication device located on the ground segment as shown in FIG. 1, for example, user terminals, satellite terminals, cellular terminals, ground stations, cellular base stations, and access points.
  • the communication device may be user equipment or a chip in the user equipment. Referring to FIG. 20, the communication device 2000 includes a processor 2001, a transmitter 2002, and optionally, a receiver 2003.
  • the communication device 2000 includes a determiner 2001, a transmitter 2002, and optionally, a receiver 2003.
  • the determiner 2001 can be used to determine the satellite address information of the satellite. In a possible implementation manner, the determiner 2001 is further configured to determine the EID and the user equipment number UDID of the second subregion where the user equipment is currently located according to the address information of the user equipment. In a possible implementation, the determiner 2001 is further used to determine whether the first sub-region and the second sub-region are the same. For example, it is used to implement S101, S204, S301, S317, and S602.
  • the transmitter 2002 is used for transmitting the satellite address information.
  • the transmitter 2002 is further configured to send a beacon message, where the beacon message includes satellite address information.
  • the transmitter 2002 is also used to send a registration response message.
  • the transmitter 2002 is also used to send a data message.
  • the transmitter 2002 is also used to forward the registration request message to neighboring satellites.
  • the transmitter 2002 is used to implement S102, S302, S327, S308, S607, and S605.
  • the receiver 2003 is used to receive user equipment address information sent by the user equipment.
  • the receiver 2003 is further configured to receive a registration request message sent by the user equipment, and the registration request message includes the user equipment address information.
  • the receiver 2003 is further used to receive a data message or a confirmation message sent by the user equipment.
  • the receiver 2003 is also used to receive confirmation messages or data messages sent by other satellites.
  • the receiver is used to implement S203, S307, S347, S601, S608, and S604.
  • sending in the above embodiment may also refer to “providing” or “output”; the action of “receiving” may also refer to “acquiring” or “input”.
  • Embodiments of the present application also provide a computer storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on the processing circuit. When it runs on a computer, it causes the computer to perform the methods described in the above aspects.
  • An embodiment of the present application further provides a chip system including a processor, which is used to support a distributed unit, a centralized unit, and a satellite or user equipment to implement the functions involved in the above embodiments, such as generation or processing The data and/or information involved in the above method.
  • the chip system may further include a memory for storing program instructions and data necessary for the distributed unit, the centralized unit, and the satellite or user equipment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present application further provides a chip, including a processor, for calling and running instructions stored in the memory from a memory, so that a communication device installed with the chip executes the method in each of the foregoing examples.
  • An embodiment of the present application further provides another chip, including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected by an internal connection path.
  • the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the methods in the above examples.
  • An embodiment of the present application further provides another chip, which may become a part of user equipment or satellite equipment.
  • the chip includes: an input interface, an output interface, and a circuit, between the input interface, the output interface, and the circuit Connected by internal connection paths, the circuits are used to perform the methods in the above examples.
  • An embodiment of the present application further provides a processor, coupled to the memory, for performing the method and function related to the satellite or user equipment in any of the foregoing embodiments.
  • An embodiment of the present application also provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods and functions related to satellite or user equipment in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication system, which includes the satellite and at least one user equipment involved in the foregoing embodiment.
  • the embodiments of the present application also provide an apparatus for implementing the methods in the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请公开了一种卫星网络通信方法及相关装置,属于通信技术领域。方法包括:确定用户设备的用户设备地址信息,所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备当前所处的第二子区域;其中,所述第二子区域为地球表面被划分成的多个子区域中的一个;所述用户设备向第一卫星发送所述用户设备地址信息。通过在用户设备地址中体现用户设备所处的子区域编号,可以适应卫星网络中卫星高速移动的特点。此外,基于本申请的方案可降低寻址和路由的复杂度和时延,提升卫星网络的通信效率。

Description

卫星网络通信方法、相关装置及系统
本申请要求于2018年12月14日提交中国国家知识产权局、申请号为201811534818.6、申请名称为“卫星网络通信方法、相关装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及卫星网络通信方法、相关装置及系统。
背景技术
未来的第五代移动通信系统(5th generation mobile networks,5G)及5G演进网络需要满足各行各业的业务需求,同时还需要提供更广的业务覆盖。当前地面移动通信网络有限的覆盖能力,已经不能满足人们在任意时间、任意地点获取信息的需求。此外,当前基于基站覆盖的模式来提供超广域的覆盖对于偏远地区、沙漠、海洋和空中等场景存在经济性和可行性方面的巨大挑战。
卫星通信系统相对于传统的地面移动通信系统,其拥有更广的覆盖范围,且通信成本与传输距离无关,可以克服海洋,沙漠,高山等自然地理障碍等优点。为了克服传统地面移动通信网的不足,卫星通信可以作为传统地面移动通信网络的一个有效的补充。
根据轨道高度的不同可以将卫星通信系统区分为如下三种:高轨(Geostationary Earth Orbit,GEO)卫星通信系统,也称地球同步轨道卫星系统;中轨(Medium Earth Orbit,MEO)卫星通信系统和低轨(Low Earth Orbit,LEO)卫星通信系统。GEO卫星一般又称为静止轨道卫星,轨道高度35786km,其主要的优点是相对地面静止并且提供很大的覆盖面积。MEO卫星,轨道高度位于2000Km至35786km,拥有相对较少的卫星数目即可以实现全球覆盖,但是其传输时延相比LEO卫星较高,其主要的用于定位导航。轨道高度在300-2000km称为低轨卫星(LEO),LEO卫星比MEO和GEO轨道高度低,数据传播时延小,功率损耗更小,发射成本相对更低。
在地面移动通信系统中,IP技术是一种重要的编址技术,语音、数据、多媒体等各种业务均可采用IP协议进行传输。IP地址是当今互联网架构的基础。随着移动接入成为当今网络的主流,IP技术的缺陷也日益显现。由于IP地址的语义过载,即IP地址既是网络节点的标识,又指示网络节点的位置,因此天然缺少对用户移动性的支持。此外许多众所周知的问题都源于IP地址的语义过载,如安全性、路由可扩展性等。现有地面移动通信网络利用隧道机制试图解决移动性问题,但随着蜂窝小区日益变小,移动性事件日益增多,隧道机制在控制面和用户面的开销无法承受。
然而,由于卫星网络的特性,例如卫星的高速移动、有限的星上处理、动态拓扑、卫星高速移动导致的频繁切换等,使用IP技术作为卫星网络的编址架构是不合适的。而且地面基于IP技术的路由和传输技术也因为卫星网络的以上特征而无法直接使用。因此,如何设计适应卫星网络特点的卫星网络编址方案和通信方法,是至关重要的问题。
发明内容
本申请提供了卫星网络中的通信方法、注册方法、相关装置、芯片、程序及可读存储介质,以解决相关技术中的问题。所述技术方案如下:
第一方面,本申请实施例提供一种卫星网络通信方法,其特征在于,所述方法包括:确定用户设备的用户设备地址信息,用户设备地址信息包括:第二子区域编号EID和用户设备的设备编号UDID;所述第二EID用于指示用户设备当前所处的第二子区域;第二子区域为地球表面被划分成的多个子区域中的一个,多个子区域的EID不同;用户设备向第一卫星发送所述用户设备地址信息。
在一种可能的实现方式中,所述方法还包括:接收所述第一卫星发送的卫星地址信息;卫星地址信息包括:第一子区域编号EID和卫星设备编号SDID;第一子区域编号EID用于指示第一卫星当前覆盖的区域所对应的第一子区域;卫星设备编号用于指示第一卫星的网络接口,所述网络接口用于第一卫星与用户设备之间通信;所述第一子区域为多个子区域中的一个。可选的,卫星设备编号可以为卫星与用户设备之间链路的网络接口的MAC地址。该用户设备可包括卫星终端,地面站,蜂窝终端,蜂窝基站等。
本申请中,在用户设备地址中体现用户设备所处的子区域编号,以用户设备所处的子区域的编号作为用户设备地址的一部分,标识用户设备的位置,以卫星覆盖的区域所对应的子区域的编号作为卫星地址的一部分,标识用户设备的位置,可以更加灵活地适应卫星网络中卫星的高速移动性和用户设备的移动性,使得用户设备和卫星之间可以高效地相互寻址和双向通信。
在一种可能的实现方式中,多个子区域是基于卫星轨道的数量和/或每个轨道中的卫星数量被划分的。可选的,所述卫星轨道的数量为M,每个轨道中的卫星数量为N,一个轨道对应N个子区域,所述多个子区域的数量为M*N。
一个可能的实现方式中,每个子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
一个可能的实现方式中,所述多个子区域中同一轨道对应的N个子区域的EID为连续的正整数;或,所述多个子区域中同一轨道对应的N个子区域的EID为公差为d的等差数列,公差d为大于1的整数。
基于上述对EID的划分方法和编址方法,使得地球表面可以均匀地划分成大小为180°/M的经度范围和180°/N的纬度范围的子区域。
一个可能的实现方式中,用户设备接收第一卫星发送的信标消息,信标消息包括第一卫星的卫星地址信息;用户设备向第一卫星发送注册请求消息,注册请求消息包括用户设备的用户设备地址信息;所述方法还包括:接收第一卫星发送的注册响应消息;可选的,若第一卫星的第一EID与用户设备的第二EID相同,用户设备向第一卫星发送注册请求消息;或,若第一卫星与用户设备的仰角大于第一阈值或最大,用户设备向第一卫星发送注册请求消息。
第二方面,本申请实施例提供另一种卫星网络通信方法,包括:第一卫星确定卫星地址信息,所述卫星地址信息包括:第一子区域编号EID;所述第一EID用于指示所述第一卫星当前覆盖的区域所对应的第一子区域;所述第一子区域为地球表面被划分成的多个子区域中的一个,所述多个子区域的EID不同;向用户设备发送所述卫星地址信息。
可选的,卫星地址信息还包括:卫星设备编号,所述卫星设备编号用于指示第一卫星的网络接口,所述网络接口用于所述第一卫星与用户设备之间通信。可选的,卫星设备编号可以为卫星与用户设备之间链路的网络接口的MAC地址。该用户设备可包括卫星终端,地面站,蜂窝终端,蜂窝基站等。
本申请中,以卫星覆盖的区域所对应的子区域的编号作为卫星地址的一部分,标识卫星的位置,可以更加灵活地适应卫星网络中卫星的高速移动性和用户设备的移动性,使得用户设备和卫星之间可以高效地相互寻址和双向通信。
在一种可能的实现方式中,多个子区域是基于卫星轨道的数量和/或每个轨道中的卫星数量被划分的。可选的,所述卫星轨道的数量为M,每个轨道中的卫星数量为N,一个轨道对应N个子区域,所述多个子区域的数量为M*N。
一个可能的实现方式中,每个子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
一个可能的实现方式中,确定卫星地址信息包括:根据第一卫星的卫星编号SID与所述多个子区域的EID之间的映射关系,确定所述第一子区域的所述第一EID;其中,所述第一卫星的卫星编号SID用于标识所述第一卫星,可选的,所述第一卫星的SID可用于与其他卫星间的路由,可以作为卫星间的路由表的索引,便于卫星间通信的寻址和路由。
一个可能的实现方式中,所述多个子区域中同一轨道对应的N个子区域的EID为连续的正整数,所述映射关系为:
Figure PCTCN2019122257-appb-000001
其中,EID t表示所述第一卫星当前覆盖的区域所对应的第一子区域的所述第一EID,所述SID为所述第一卫星的卫星编号,所述SID等于所述第一卫星初始覆盖的区域所对应的子区域的EID,N为所述卫星所处轨道上的卫星的数目,T为所述第一卫星的运行周期;int为取整运算,mod为取模运算。
一个可能的实现方式中,所述多个子区域中同一轨道对应的N个子区域的EID为公差为d的等差数列,公差d为大于1的整数;所述映射关系为:
Figure PCTCN2019122257-appb-000002
其中,EID t表示当前所述第一卫星覆盖的区域所对应的第一子区域的第一子区域编号EID,SID等于初始所述第一卫星覆盖的区域所对应的子区域的编号EID 0,N为所述第一卫星所处轨道上的卫星的数目,T为所述轨道上卫星的运行周期;int为取整运算,mod为取模运算。
基于上述对EID的划分方法和编址方法,使得地球表面可以均匀地划分成大小为180°/M的经度范围和180°/N的纬度范围的子区域,且卫星可实时计算得到卫星当前覆盖的区域所对应的子区域,而不需要存储EID编址表或其他形式的映射关系表,因此可以显著节省卫星的内存空间大小。此外,采用实时计算确定EID,其计算的时延将远远小于查找表的时延,尤其是当卫星数量很大时,可显著降低时延,提升系统工作效率。
一种可能的实现方式中,所述第一卫星向用户设备发送信标消息,所述信标消息包括第一卫星的卫星地址信息,第一卫星接收用户设备发送的注册请求消息,注册请求消息包括用户设备的用户设备地址信息;所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备在当前所处的第二子区域;第一卫星向所述用户设备反馈注册响应消息,所述注册响应消息用于响应所述注册请求消息。基于此方案,用户设备可成功实现注册到卫星的流程。
一种可能的实现方式中,若所述第二EID与所述第一EID不相同,所述方法还包括:向相邻卫星发送所述注册请求消息,所述相邻卫星包括当前覆盖的区域所对应的子区域 为所述第二子区域的第二卫星;向所述用户设备发送所述注册响应消息,包括:接收所述第二卫星发送的所述注册响应消息;向所述第二子区域内的所述用户设备转发所述注册响应消息。基于此方案,当第一卫星覆盖的区域所对应的子区域与用户设备所处的子区域不同时,第一卫星可转发注册请求消息,以使得用户设备仍然可以成功的实现注册过程。
一种可能的实现方式中,所述方法还包括:接收当前位于所述第二子区域的所述用户设备发送的数据消息,所述数据消息的目标地址包括:所述数据消息的目标用户设备所在的第三子区域的第三子区域编号EID和所述目标用户设备的UDID;所述数据消息的源地址包括:所述第二子区域的所述第二EID和所述用户设备的UDID;
若所述第三EID与所述第二EID相同,所述第一卫星向所述目标用户设备发送所述数据消息;或,
若所述第三EID与所述第二EID不相同,所述第一卫星根据卫星编号SID与多个子区域的EID之间的映射关系,确定覆盖所述第三子区域的第三卫星的卫星编号SID;
所述第一卫星将所述数据消息转发给所述第三卫星,所述第一卫星转发的数据消息的源地址更新为所述第一卫星的SID和所述用户设备的UDID,所述第一卫星转发的数据消息的目的地址更新为所述第三卫星的SID和所述目标用户设备的UDID。
一种可能的实现方式中,所述方法还包括:
接收当前位于第三子区域的源用户设备发送的数据消息,所述数据消息的源地址包括:第三子区域的第三EID和源用户设备的UDID;所述数据消息的目的地址包括:所述第二EID和所述用户设备的UDID;若所述第三EID与所述第二EID相同,所述第一卫星向所述用户设备发送所述数据消息;或,
接收所述第二卫星转发的数据消息,所述数据消息由当前覆盖的区域所对应的子区域为第三子区域的第三卫星转发给所述第二卫星,所述数据消息来自于当前位于所述第三子区域的源用户设备,所述第三卫星转发的数据消息的源地址包括:所述第三卫星的SID和所述源用户设备的UDID;所述第三卫星转发的数据消息的目的地址包括:所述第二卫星的SID和所述用户设备的UDID;所述第一卫星向所述用户设备发送所述数据消息。
一种可能的实现方式中,若所述第二EID与所述第一EID相同,所述方法还包括:
接收当前位于所述第二子区域的所述用户设备发送的数据消息,所述数据消息的目标地址包括:所述数据消息的目标用户设备当前所在的第三子区域的第三EID和所述目标用户设备的UDID;所述数据消息的源地址包括:所述第二EID和所述用户设备的UDID;
若所述第三EID与所述第一EID相同,所述第一卫星向所述目标用户设备发送所述数据消息;或,
若所述第三EID与所述第二EID不相同,所述第一卫星根据卫星编号SID与多个子区域之间的映射关系,确定当前覆盖的区域所对应的子区域为所述第三子区域的第三卫星的卫星编号SID;向所述第三卫星转发所述数据消息,所述数据消息的目的地址更新为:所述第三卫星的SID和所述目标用户设备的UDID,所述数据消息的源地址更新为:所述第一卫星的SID和所述用户设备的UDID。
一种可能的实现方式中,若所述第二EID与所述第一EID相同,所述方法还包括:
接收当前位于所述第一子区域的源用户设备发送的数据消息,所述数据消息的源地址包括:所述第一EID和所述源用户设备的UDID;所述数据消息的目的地址包括:所述第一EID和所述用户设备的UDID;或者,
接收当前覆盖的区域所对应的子区域为第三子区域的第三卫星转发的数据消息,所述数据消息来自于当前位于所述第三子区域的源用户设备,所述第三卫星转发的数据消息的源地址更新为所述第三卫星的SID和所述源用户设备的UDID;所述第三卫星转发的数据消息的目的地址更新为所述第一卫星的SID和所述用户设备的UDID;所述第一卫星向所述用户设备转发所述数据消息。
第三方面,本申请实施例提供一种卫星网络中的注册方法,包括:用户设备接收一个或多个卫星发送的一个或多个信标消息;每个信标消息包括卫星地址信息;卫星地址信息包括:卫星当前覆盖的区域所对应的子区域的EID;用户设备基于信标消息,从一个或多个卫星中确定一个注册卫星;所述用户设备向所述注册卫星发送注册请求消息,所述用户设备接收所述注册卫星发送的注册响应消息。
一个可能的实现方式中,基于信标消息中携带的卫星地址信息,确定注册卫星。具体地,用户设备确定多个卫星中当前覆盖的区域所对应的子区域与所述用户设备当前所处的子区域相同的卫星作为注册卫星。
一个可能的实现方式中,信标消息还包括卫星的地址信息和高度信息,卫星的地址信息包括卫星的经度、纬度和高度。基于信标消息中携带的卫星的位置信息和高度信息,确定注册卫星。用户设备可确定多个卫星中卫星与用户设备之间的仰角大于第一阈值或仰角最大的卫星作为注册卫星。
一个可能的实现方式中,基于信标消息的信号强度,确定注册卫星。用户设备可确定多个卫星中信标消息的信号强度大于第二阈值或信号强度最大的卫星作为注册卫星。
第四方面,本申请实施例提供一种用户设备端的通信装置,该装置可以是用户设备,也可以是用户设备内的芯片。该装置具有实现上述第一方面或第三方面涉及用户设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为用户设备时,用户设备包括:处理器、发送器和接收器,所述处理器被配置为支持用户设备执行上述方法中相应的功能。发送器和接收器用于支持用户设备和卫星之间的通信,向卫星发送携带用户设备地址信息的注册请求消息或数据消息或确认消息。可选的,用户设备还可以包括存储器,所述存储器用于与处理器耦合,其保存用户设备必要的程序指令和数据。
在另一种可能的实现方式中,该通信装置包括:确定模块、发送模块和接收模块。确定模块用于确定用户设备的用户设备地址信息;发送模块,用户发送该用户设备地址信息,例如发送携带用户设备地址信息的注册请求消息或数据消息或确认消息。接收模块,用于接收卫星发送的卫星地址信息,例如,接收卫星发送的包括卫星地址信息的信标消息或注册响应消息。
在又一个可能的实现方式中,该通信装置包括:控制器/处理器,存储器,调制解调处理器,发射器,接收器,天线,用于支持通信装置执行上述第一方面或第三方面方法中相应的功能。
上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面卫星网络的通信方法的程序执行的集成电路。
第五方面,本申请实施例提供一种卫星端的通信装置,该装置可以是卫星,也可以是卫星内的芯片。该装置具有实现上述第二方面涉及卫星的功能。该功能可以通过硬件实现,也 可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为卫星时,用户设备包括:处理器、发送器和接收器,所述处理器被配置为支持卫星执行上述方法中相应的功能。发送器和接收器用于支持用户设备和卫星之间的通信,向用户设备发送携带卫星地址信息的信标消息或注册响应消息或数据消息。可选的,卫星还可以包括存储器,所述存储器用于与处理器耦合,其保存卫星必要的程序指令和数据。
在另一种可能的实现方式中,该通信装置包括:确定模块、发送模块和接收模块。确定模块用于确定卫星的卫星地址信息;发送模块,用户发送该卫星地址信息,例如发送携带卫星地址信息的信标消息或数据消息或注册响应消息。接收模块,用于接收用户设备发送的用户设备地址信息,例如,接收用户设备发送的包括用户设备地址信息的注册请求消息或数据消息或响应消息。
在又一个可能的实现方式中,该通信装置包括:控制器/处理器,存储器,调制解调处理器,发射器,接收器,天线,用于支持通信装置执行上述第二方面方法中相应的功能。
上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面卫星网络的通信方法的程序执行的集成电路。
第六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面中的方法。
第七方面,提供了一种包含指令的计算机程序产品,该计算机程序产品包括用于实现上述第一方面至第三方面中任一方面方法的指令,其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一方面或其任意可能的实现方式中的方法。该计算机程序产品可全部或部分的存储于封装于处理器当中的存储介质上,还可以全部或部分的存储在封装于处理器之外的存储介质中。
第八方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。
第九方面,提供另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
第十方面,提供一种装置,用于实现上述各方面的方法。
第十一方面,提供一种无线通信系统,该系统包括上述方面涉及的卫星和用户设备。
本申请实施例还提供另一种芯片,该芯片可以成为用户设备或卫星设备的一部分,该芯片包括:输入接口、输出接口和电路,所述输入接口、所述输出接口与所述电路之间通过内部连接通路相连,所述电路用于执行上述各示例中的方法。
附图说明
图1示出了本申请实施例的一种示例性的卫星通信系统;
图2示出了本申请实施例的一种子区域划分和编号的示例;
图3示出了本申请实施例的一种卫星网络通信方法的流程示意图;
图4a示出了本申请实施例的一种卫星地址信息的结构示意图;
图4b示出了本申请实施例的一种用户设备地址信息的结构示意图;
图5示出了本申请实施例的另一种卫星网络通信方法的流程示意图;
图6示出了本申请实施例的一种卫星网络注册方法的流程示意图;
图7示出了本申请实施例的一种卫星网络注册方法的流程示意图;
图8示出了本申请实施例的另一种卫星网络注册方法的流程示意图;
图9示出了本申请实施例的一种卫星网络注册方法的示例;
图10示出了本申请实施例的一种卫星网络数据通信方法的流程示意图;
图11示出了本申请实施例的另一种卫星网络数据通信方法的流程示意图;
图12示出了本申请实施例的一种卫星网络数据通信流程的示例;
图13示出了本申请实施例的一种卫星网络数据通信流程的示例;
图14示出了本申请实施例的一种卫星网络数据通信流程的示例;
图15示出了本申请实施例的一种用户设备端的通信装置;
图16示出了本申请实施例的另一种用户设备端的通信装置;
图17示出了本申请实施例的又一种用户设备端的通信装置;
图18示出了本申请实施例的又一种用户设备端的通信装置;
图19示出了本申请实施例的一种卫星端的通信装置;
图20示出了本申请实施例的又一种卫星端的通信装置。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1示出了本申请实施例的一种示例性的卫星通信系统。图1所示的卫星通信系统包括空间段(Space Segment)和地面段(Ground Segment)。空间段包括卫星及卫星间的链路,地面段则包括用户终端、地面站、地面网络,网络控制中心等,其中用户终端可包括蜂窝终端(Cellular UE),卫星终端(Satellite UE)及固定终端(Fixed UE)等。
卫星通信系统的通信链路可包括如下4种:
用户卫星链路(UE satellite link,USL):地面段的用户设备和卫星之间的双向通信链路。一些卫星的USL链路可以在极区域时关闭。卫星可以周期性的打开或关闭USL。
地面站卫星链路(ground-station satellite link,GSL):地面站(或网关)与卫星之间的双向通信链路。对于给定的星座和地面站的给定部署,星座中的一些卫星可以定期接通/断开GSL链路。
卫星间链路(Inter Satellite Link,ISL):同一轨道内相邻卫星之间的双向通信链路。如果轨道是圆形的,则ISL通常是固定不变的,因为有ISL连接的两颗卫星的相对位置保持固定。
轨道间链路(Inter Orbit Link,IOL):不同相邻轨道上的相邻卫星之间的双向通信链路。相邻轨道在最高纬度附近彼此交叉,其中每个卫星的邻居将翻转(邻居的左右关系互换),要求它们之间的IOL接口要么物理地转动180度以跟随邻居并保持链路,要么关闭并重新建立链路。
本申请中,相对于卫星来说,用户设备可以是能够与卫星进行通信的用户终端,例如卫星终端,或其他类型的可与卫星进行通信的终端,还可以是能够与卫星进行通信的地面站、 蜂窝基站、接入点等。
对于卫星网络的编址架构来说,命名和编址是网络架构的基础。命名是为通信系统中的设备或装置分配可以标识该网元的名称的过程,而编址是为设备或装置设计通信地址的过程。设备或装置的名称是可以唯一标识该设备或装置的静态标识。
在地面移动通信网络中,通常采用IP地址作为分配给网络上使用网际协议(Internet Protocol,IP)的设备的数字标签。网络中的设备可基于IP地址进行寻址或路由。而在卫星网络中,若卫星和用户设备都采用IP地址进行编址,可能会导致卫星和用户设备寻址的困难和低效。例如,如图1所示的卫星网络中,若在时刻t1卫星00与卫星终端101建立连接关系,随着卫星00的高速移动,在时刻t2卫星00移动到距离卫星终端101较远的其他位置。当其他用户设备,例如云端地面站102需要通过卫星网络向卫星终端101发送信息时,一种情况,若卫星网络不及时更新路由信息,仍采用时刻t1的路由信息进行路由,可能会导致卫星网络基于IP地址寻址到移动到其他位置的卫星00后,而由于与卫星终端101的位置较远而无法实现与卫星终端101的通信;另一种情况,若卫星网络及时更新路由信息,那随着卫星00的移动,用户设备会发生频繁的切换,从而导致频繁的IP地址更新和路由信息更新,使得整个卫星网络的通信效率较低。
因此本申请实施例提供一种卫星网络中的编址方法、注册方法和通信方法,以适应卫星网络中卫星高速移动的特点,提升卫星网络寻址和路由的效率,提供卫星网络的通信效率。
首先介绍本申请实施例提供一种卫星网络中的编址方法。在本申请实施例中,对于卫星网络中的卫星,可以以卫星编号SID(satellite identification,SID)作为卫星的名称,标识该卫星。SID为一个静态的标识,可选的,可以在初始阶段配置,配置完成后不随卫星的运行发生变化。卫星的SID可以用于卫星间链路ISL,或,轨道间链路IOL通信的卫星的标识符,可以用于卫星间的路由,例如,卫星的SID可以用于卫星间的寻址和路由。可选的,卫星的SID还可以是卫星上路由表的索引,便于卫星间进行路由。当然卫星的SID还可以应用于卫星网络中其他链路间通信的标识。可选的,在卫星网络中,不同的卫星的SID不同。对于卫星网络中的用户设备,可采用用户设备的设备编号(user device ID,UDID)作为用户设备的名称,标识该用户设备。一个示例中,用户设备的UDID可以是此用户设备的媒体访问控制(Media Access Control Address,MAC)地址或国际移动用户识别码(international mobile subscriber identity,IMSI)等。
地球表面子区域编号(Earth surface sub-area ID,EID),作为地球表面被划分成的子区域的名称,用于标识一个子区域。地球表面可被划分成多个子区域。地球表面被划分的多个子区域可以是静态的,不随卫星的运行和用户设备的移动发生改变。子区域可以看作是地球表面的子集。
卫星网络中,卫星的卫星地址SADD(satellite address,SADD)可以用于GSL/USL链路中,可用于用户设备和卫星进行寻址,以实现卫星和用户设备之间的通信,当然,卫星的卫星地址SADD还可以用于卫星网络的其他链路的通信,本申请实施例不限定。卫星地址SADD包括:卫星当前覆盖的区域所对应的子区域的EID。卫星当前覆盖区域所对应的子区域为地球表面被划分成多个子区域中的一个。可选的,卫星SADD还包括卫星设备编号(satellite device ID,SDID),卫星设备编号用于标识卫星相对于用户的网络接口,该网络接口用于卫星与用户设备之间通信。卫星设备编号可以是依赖于设备的标识。例如,该卫星设备编号可以是卫星与用户设备通过USL/GSL链路进行通信的网络接口的标识,例如,卫星的设备编号为USL/GSL链路的卫星的网络接口的媒体访问控制(Media Access Control Address,MAC) 地址。一个示例,卫星的SDID可用于卫星与用户设备之间的双向通信,可选的,不同的卫星的SDID不同,可便于用户设备识别不同的卫星。也就是说,一个卫星可以存在两个编号,一个编号为SID,是面向卫星的,用于卫星间的通信;另一个编号为卫星设备编号SDID,是面向用户设备的,用于卫星和用户设备的通信。
可以理解的,EID标识卫星的位置,卫星设备编号标识卫星与用户设备之间的网络接口。卫星在运行过程中,会实时的更新卫星地址,例如,当卫星检测到其覆盖的区域对应的子区域变化时,卫星会对卫星地址进行更新。
需要说明的是,卫星在运行过程中,其当前覆盖的区域与地球表面的一个子区域可以是完全相同的,也可以是不完全相同的。一个示例中,卫星当前覆盖的区域与一个子区域相同,该子区域为该卫星当前覆盖的区域所对应的子区域;另一个示例中,卫星当前覆盖的区域与某个子区域存在重叠区域的,但不完全相同,可选的,若子区域中包括重叠区域大于该子区域的1/2,该子区域为卫星当前覆盖的区域所对应的子区域;又一个示例中,若卫星当前覆盖的区域的中心,即卫星的经纬度位置,位于某个子区域的经纬度范围内,该子区域为卫星当前覆盖的区域所对应的子区域。
用户设备的用户设备地址(UADD,user device address,UADD)可以用于GSL/USL链路中,用于卫星对用户设备进行寻址,以实现用户设备与卫星之间的通信,当然,用户设备地址还可以用于其他链路中。用户设备地址包括:用户设备在当前所处的子区域EID和用户设备的设备编号UDID。用户设备当前所处的子区域为地球表面被划分成的多个子区域中的一个。用户设备的UDID可以是此用户设备的MAC地址或IMSI等。也就是说,用户设备当前所处的子区域的EID标识用户设备的位置,而用户设备的UDID标识用户设备,便于识别不同的用户设备。由于卫星覆盖区域面积较大,一个用户设备的UADD通常不会经常变化。当用户设备从一个子区域移动到另一个子区域时,由于EID的变化,会导致UADD更改。一般地,用户设备具有获取实时位置信息(例如经度和纬度信息)的能力。因此,当用户设备移动到另一个子区域时,用户设备会检测到子区域的更改,然后更新EID,从而获取更新后的UADD。
需要说明的是,用户设备和卫星都可以判断子区域是否变化,从而实时的更新地址信息。卫星地址和用户设备地址可用于卫星和用户设备双向通信的过程中。一个示例中,卫星和用户设备都周期性的判断子区域是否变化,以更新地址信息。
可选的,地球表面可以被均匀地划分成多个子区域,也可以被不均匀地划分成多个子区域。在一种实现方式中,可根据卫星轨道的数量和/或每个轨道中的卫星数量将地球表面划分成多个子区域,在另一种实现方式中,还可基于其他方式将地球表面划分成多个子区域,例如,还可以基于地球大陆和海洋中用户设备的密集度进行划分,可以将大陆划分成经纬度范围较小的子区域,将海洋区域划分成经纬度范围较大的子区域。多个子区域可以是互不重叠的,可以是存在部分重叠的。可选的,每个子区域的EID可以是各不相同的,且,还可以是全球唯一的。
在一个示例中,地球表面可以按照经纬度被均匀地划分成多个子区域。卫星轨道为极地轨道,各轨道均匀分布,各个轨道上的卫星也均匀分布。根据卫星轨道的数量和/或每个轨道中的卫星数量将地球表面划分成多个子区域。一种实施方式中,根据卫星轨道的数量M,将地球表面按经度划分,M个轨道对应2M个大小为180°/M的经度范围,其中一个轨道对应2个180°/M的经度范围;根据每个轨道上的卫星数量N,将每个180°/M的经度范围从纬度上划分成N/2个大小为180°/N的纬度范围,则地球表面被划分为M*N个子区域,一个轨道对应N个子区域,每个子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
对划分好的M*N个子区域进行编号,即可得到各个子区域的EID。在一个示例中,一个轨道上对应的N个子区域的EID为连续的整数。另一个示例中,一个轨道上对应的N个子区域的EID为等差数,公差为大于1的整数。当然,N个子区域的EID还可以其他形式进行编号,例如,对M*N个子区域无规则编号等,本申请实施例并不具体限定。
在另一个示例中,地球表面可以按照经纬度被不均匀地划分成多个子区域。例如,地球轨道为极地轨道,各个轨道之间不均匀分布,各个轨道上的卫星也不均匀分布,则可根据卫星轨道的数量和/或每个轨道中的卫星数量将地球表面不均匀地划分成多个子区域。
可选的,地球表面是被静态地划分成多个子区域的,可以预先规划好卫星网络的卫星配置后,对地球表面进行静态的划分。卫星配置可以包括但不限于:卫星轨道的数量,轨道的高度,各个轨道上卫星的数量等。
图2示出了一种多个子区域的划分及EID编码的示意图。在该示意图中,假设卫星通信系统具有6个均匀分布的轨道,每个轨道均匀的运行18个卫星,其中,这6个轨道对应地球表面12个30°的经度范围,每个轨道对应2个30°的经度范围;每个30°的经度范围按照纬度被划分成9个20°的纬度范围。地球表面总共被划分成108个子区域,每个子区域的大小为:30°的经度范围和20°的纬度范围。图2中表格的第一行表示各个子区域的中心纬度,依次为:北纬80度(80degrees north latitude,80N)、北纬60度(60N)、北纬40度(40N)、北纬20度(20N)、0度、南纬20度(20degrees south latitude,20S)、南纬40度(40S)、南纬60度(60S)、南纬80度(80S);第一列表示各个子区域的中心经度,依次为:东经15度(15degrees east longitude,15E)、东经45度(45E)、东经75度(75E)、东经105度(105E)、东经135度(135E)、东经165度(165E)、西经15度(15W),西经45度(45W)、西经75度(75W)、西经105度(105W)、西经135度(135W)、西经165度(165W)。因此,编号为0的子区域对应经纬度范围为:北纬90°-北纬70°和东经0°-东经30°,其中,纬度范围为北纬90°-北纬70°,经度范围为东经0°-东经30°。
可以理解的,图2所示的子区域的划分和编码图仅是一种示例。可以理解的,图2中的表格还有其他的表现形式。例如,图2中表格的第一行也可以表示各个子区域的最小纬度,第一列表示各个子区域的最小经度;或,图2中表格的第一行还可以表示为各个子区域的最大纬度,第一列表示各个子区域的最大经度;或者,图2中表格的第一行还可以修改成各个子区域的经度范围,第一列可以修改成各个子区域的纬度范围,例如,对于第一行的9列可以修改为:北纬90°-北纬70、北纬70°-北纬50、北纬50°-北纬30、北纬30°-北纬10、北纬10°-南纬10、南纬10°-南纬30、南纬30°-南纬50、南纬50°-南纬70,和,南纬70°-南纬90;相类似的,第一列的9行也可以类似的修改。
基于上述命名和编址方法,图3示出了本申请实施例的一种卫星网络通信方法的流程示意图,具体的,地址信息传输方法。该方法包括:
S101:第一卫星确定卫星地址信息,所述卫星地址信息包括:第一子区域编号(Earth surface ID,EID);所述第一EID用于指示所述第一卫星当前覆盖的区域所对应的第一子区域;其中,所述第一子区域为地球表面被划分成的多个子区域中的一个,可选的,所述多个子区域的EID不同。第一卫星可以是任意轨道上的任意一个卫星。例如,可以是图1中所示的卫星00。
可选的,卫星地址信息还包括:卫星设备编号,所述卫星设备编号用于指示所述第一卫星与所述用户设备之间的网络接口,所述网络接口用于第一卫星与用户设备之间通信。
可选的,卫星设备编号可以为第一卫星与用户设备之间通信的网络接口号,例如,USL/GSL的网络接口的MAC地址;还可以是第一卫星的一个唯一的标识,用于卫星和用户设备之间的通信。
卫星地址信息中的EID用于标识卫星的位置,卫星地址信息中的SDID为卫星的网络接口的标识,基于卫星地址信息,用户设备可寻址卫星,可实现用户设备与卫星之间的通信。
具体的,第一子区域为地球表面被划分成的多个子区域中的一个。可选的,地球表面可以被均匀地划分成多个子区域,也可以被不均匀地划分成多个子区域。在一种实现方式中,可根据卫星轨道的数量和/或每个轨道中的卫星数量将地球表面划分成多个子区域。多个子区域可以是互不重叠的,也可以是存在部分重叠的。可选的,每个子区域的EID可以是各不相同的,且,还可以是全球唯一的。
需要说明的是,卫星在运行过程中,其当前覆盖的区域与一个子区域可以是完全相同的,也可以是不完全相同的。一个示例中,若卫星当前覆盖的区域与一个子区域完全相同,该子区域为该卫星当前覆盖区域所对应的子区域;另一个示例中,卫星当前覆盖的区域与某个子区域存在重叠区域的,但不完全相同,若子区域中包括的重叠区域大于该子区域的1/2,该子区域为卫星当前覆盖的区域所对应的子区域;又一个示例中,卫星当前覆盖的区域的中心点位于某个子区域,该子区域为卫星当前覆盖的区域所对应的子区域。
S102:第一卫星发送所述卫星地址信息;
卫星地址信息可携带在信标消息,数据消息,或其他类型的消息中。如图4a,示出了一种卫星地址信息的示例性结构,卫星地址信息包括:卫星当前覆盖的区域所对应的子区域和卫星设备编号。
S103:用户设备接收第一卫星发送的所述卫星地址信息;
S104:根据所述卫星地址信息,确定所述第一卫星当前覆盖的区域所对应的第一子区域,可选的,还可以确定所述第一卫星的卫星设备编号。
用户设备接收到第一卫星发送的卫星地址信息,解析卫星地址信息,即可获取第一卫星当前覆盖的区域所对应的子区域和第一卫星的卫星设备编号。获取到卫星地址信息的用户设备,可基于该卫星地址信息,进行用户设备和第一卫星之间的双向通信。
可选的,在步骤S101中,确定卫星地址信息包括确定第一卫星当前覆盖的区域所对应的第一子区域的EID,确定EID的方式可包括但不限于如下多种方式:
第一种方式:根据第一卫星当前的位置信息确认所述第一子区域的EID,所述位置信息包括所述第一卫星当前的经度和纬度。一个示例中,第一卫星根据EID与所述多个子区域的经纬度范围之间的映射关系确定第一子区域的EID。例如,第一卫星可存储EID与各子区域经纬度范围之间映射关系表,查询映射关系表,即可确定当前覆盖区域所对应的EID。以图2为例,举例来说,假设该第一卫星为6个轨道中的轨道0上的卫星,当前该卫星的位置为东经18度(18E)、北纬65度(65N),则第一卫星查表可确定第一卫星当前所对应的子区域的EID为1。当然第一卫星也可以知晓地球表面子区域的划分规则和EID的编号规则,而不存储EID与各自子区域经纬度范围之间的映射关系表,直接依据地球表面子区域的划分规则和EID的编号规则即可确定第一卫星当前覆盖的区域所对应的子区域。
可以理解的,第一种方式不局限于地球表面的子区域采用何种方式划分以及子区域的EID采用何种方式编号。也就是说,地球表面的子区域可以采用不考虑轨道数和各轨道卫星数的方式进行划分,且被划分的多个子区域的EID可以任意编号,只需满足各个子区域的经纬度范围与各个子区域的EID的对应关系是一一对应的即可。因此,这种EID编址方式更灵活, 第一种确定卫星地址信息的方式的计算复杂度小,占用的计算资源少,且灵活度高。
第二种方式:根据第一卫星的卫星编号SID与所述多个子区域的EID之间的映射关系,确定所述第一子区域的第一EID;其中,所述第一卫星的卫星编号SID用于指示所述第一卫星。
对于第二种方式,其地球表面的子区域划分以及子区域的EID的编码需要考虑轨道数和/或各轨道卫星数。在一个示例中,卫星轨道为极地轨道,各轨道均匀分布,各个轨道上的卫星均匀分布,根据卫星轨道的数量和每个轨道中的卫星数量将地球表面划分成多个子区域。可选的,根据卫星轨道的数量M,地球表面按经度被划分为2M个大小为180°/M的经度范围,其中,M个轨道对应2M个大小为180°/M的经度范围,一个轨道对应2个180°/M的经度范围;根据每个轨道上的卫星数量N,每个180°/M的经度范围从纬度上被划分成N/2个大小为180°/N的纬度范围,则地球表面被划分为M*N个子区域,一个轨道对应N个子区域,每个子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
对划分好的M*N个子区域进行编号,即可得到各个子区域的EID。示例一,一个轨道上对应的N个子区域的EID为连续的整数。示例二,一个轨道上对应的N个子区域的EID为等差数,公差d为大于1的整数。当然,N个子区域的EID还可以其他方法进行编号,本申请实施例并不具体限定。
对于示例一,一个轨道对应的各个子区域的EID为连续的整数,所述第一卫星的SID与多个子区域的EID之间的映射关系为:
Figure PCTCN2019122257-appb-000003
其中,EID t表示当前所述第一卫星覆盖的区域所对应的第一子区域的第一子区域编号EID,SID等于初始所述第一卫星覆盖的区域所对应的子区域的编号EID 0,N为所述第一卫星所处轨道上的卫星的数目,T为所述轨道上卫星的运行周期;int为取整运算,mod为取模运算。
可以理解的,由于SID等于初始所述第一卫星覆盖的区域所对应的子区域的编号EID 0因,即SID=EID 0,公式(1)可改写为:
Figure PCTCN2019122257-appb-000004
以图2示出的EID编号为例来说,假设轨道0上的18颗卫星,初始时刻的EID依次为:0、1、2、3、…、18;则0轨道上的18颗卫星的SID依次为:0、1、2、3、…、18。假设第一颗卫星(SID=0)运行的时刻t为T/N,则第一颗卫星(SID=0)在t时刻覆盖的区域所对应的子区域的EID=1。
对于示例二,一个轨道对应的各个子区域的EID为等差数,公差d为大于1的整数,所述卫星的SID与多个子区域的EID之间的映射关系为:
Figure PCTCN2019122257-appb-000005
其中,EID t表示当前所述第一卫星覆盖的区域所对应的第一子区域的第一子区域编号EID,SID等于初始所述第一卫星覆盖的区域所对应的子区域的编号EID 0,N为所述第一卫星所处轨道上的卫星的数目,T为所述轨道上卫星的运行周期;int为取整运算,mod为取模运算。
可以理解的,由于SID等于初始所述第一卫星覆盖的区域所对应的子区域的编号EID 0,即SID=EID 0,因此公式(3)可改写为:
Figure PCTCN2019122257-appb-000006
一个示例中,公式(1)至公式(4)中,卫星的运行周期T可为:
Figure PCTCN2019122257-appb-000007
其中,R为地球半径,h为所述轨道的高度,G为万有引力常数,M为地球质量。
又一个示例中,公式(1)至公式(4)中的卫星的运行周期T还可以作为常数存储在卫星中,不需要卫星基于上述公式(5)计算得到。卫星在计算EID t时,直接在存储器中获取运行周期T即可。
需要说明的是,上述(公式1)至(公式4),不仅仅可用于基于卫星的SID确定卫星当前覆盖的区域所对应的子区域的EID,还可以用于基于卫星当前覆盖的区域所对应的子区域的EID,确定初始卫星覆盖区域所对应的子区域,从而确定卫星的SID。
在第二种方式中,卫星利用卫星星座运动的规律性和周期性,可以通过公式(1)至公式(4)来获得SID到EID的一对一映射,从而实时的获取卫星在当前覆盖的区域所对应的子区域的EID,而不需要存储EID编址表或其他形式的映射关系表,因此可以显著节省卫星的内存空间大小。此外,第二种方式采用实时计算确定EID,其计算的时延将远远小于查找表的时延,尤其是当卫星数量很大时,可显著降低时延,提升系统工作效率。
本申请实施例中,卫星所对应的子区域的EID标识卫星的位置,作为卫星地址信息的一部分,可以适应卫星网络中卫星高速移动的特点,且卫星通信网络中的卫星可实时的更新卫星的地址信息,降低寻址和路由的复杂度和时延,提升卫星通信系统通信的稳定性。
基于上述命名和编址方法,图5示出了本申请实施例提供另一种卫星网络通信方法,具体为地址信息传输方法。该方法包括:
S201:用户设备确定用户设备地址(UADD)信息,所述用户设备地址信息包括:第二子区域编号(Earth surface identify,EID)和用户设备的设备编号DID(User device identify,DID);所述第二子区域EID用于指示所述用户设备当前所处的第二子区域;所述用户设备的UDID用于标识所述用户设备。
用户设备的UDID可以是用户设备的MAC地址或IMSI等。由于卫星覆盖区域面积较大,一个用户设备的UADD通常不会经常变化。若用户设备从一个子区域移动到另一个子区域,由于EID的变化,会导致UADD更改。一般地,用户设备具有获取实时位置信息(例如经度和纬度信息)的能力。因此,若用户设备移动到另一个子区域,用户设备会检测到子区域的更改,然后更新EID,从而获取更新的UADD。
一个示例中,用户设备也可以根据当前的位置信息确认第二子区域的EID,所述位置信息包括所述用户设备当前的经度和纬度。一个示例中,用户设备根据EID与所述多个子区域的经纬度范围之间的映射关系确定第二子区域的EID。例如,用户设备可存储如EID与各子区域经纬度范围之间映射关系表,查询映射关系表,即可确定当前所处的子区域的EID。以图2为例,举例来说,假设该用户设备当前的位置为东经80度(80E)、北纬85度(85N),则用户设备可查表确定用户设备当前所处的子区域的EID为36。
可以理解的,用户设备确定EID的方式不局限于地球表面的子区域采用何种方式划分以 及子区域的EID采用何种方式编码。也就是说,地球表面的子区域可以采用不考虑轨道数和各轨道卫星数的方式进行划分,且被划分的多个子区域的EID可以任意编址,只需满足各个子区域的经纬度范围与各个子区域的EID的对应关系是一一对应的即可。因此,这种方式更灵活。
一个示例中,用户设备地址信息的结构可以如图4b所示,包括地球表面子区域编号EID和用户设备的设备编号UDID。
S202:向第一卫星发送所述用户设备地址信息;
该用户设备地址信息可以承载于数据消息中,也可以承载在注册请求消息,或其他类型的消息中。第一卫星确定这些消息的发送端的地址信息,以方便卫星和用户设备间的寻址和双向通信。
S203:第一卫星接收所述用户设备地址信息。
S204:第一卫星根据所述用户设备地址信息,确定所述用户设备当前时刻所处的第二子区域的EID和所述用户设备的设备ID。
基于上述用户设备地址信息,卫星通信网络中的用户设备可实时地更新自身的地址信息,可适应卫星的移动性,动态拓扑等特性,提升了卫星通信系统中通信的稳定性。
基于上述命名和编址方法,图6示出了本申请实施例的一种卫星网络注册方法的流程示意图,包括:
S301:第一卫星确定卫星地址信息,所述卫星地址信息包括:第一子区域编号(Earth surface ID,EID);所述第一子区域EID用于指示所述第一卫星当前时刻覆盖的区域所对应的第一子区域;可选的,还包括卫星设备编号(satellite device Identification,SDID),所述卫星设备号用于指示第一卫星与所述用户设备之间的网络接口。
步骤S301与步骤S101相类似,已在步骤S101中详细介绍,此处不再赘述。
S302:第一卫星发送信标消息,所述信标消息包括所述卫星地址信息;
卫星通过USL/GSL链路向覆盖范围广播信标消息(beacon message)。可选的,卫星可周期性地通过USL/GSL链路广播信标消息。
信标消息中包括卫星地址信息,可选的,还可以包括第一卫星的其他信息,例如,第一卫星的纬度和第一卫星的经度,还可以包括第一卫星的高度。用户设备可获取信标消息中的地址信息和/或其他信息,以使得用户设备可根据这些信息判断是否接入该卫星。例如,卫星地址信息和/或经度和纬度可用于用户设备确定其注册卫星。需要说明的是,为描述方便,称用户设备发送注册请求消息的目的地址所指示的卫星为注册卫星,可以理解的,还可以有其他名称,本申请实施例不限定。
S303:用户设备接收信标消息;
用户设备接收卫星广播的信标消息,从广播的信标消息中获取第一卫星的卫星地址信息。可选的,还可以获取卫星的经度和纬度,高度等信息,或其他信令信息等。
S304:用户设备根据卫星地址信息,确定所述第一卫星当前覆盖的区域所对应的第一子区域的EID和所述卫星设备编号SDID;
S304步骤与S104步骤相类似,已在步骤S104中详细介绍,此处不再赘述。
S305:用户设备确定用户设备地址信息,所述用户设备地址信息包括:第二子区域编号(Earth surface identify,EID)和用户设备的设备编号UDID(User device identify,UDID);所述第二子区域EID用于指示所述用户设备当前所处的第二子区域;所述用户设备的 UDID用于标识所述用户设备。
步骤S305与步骤S201相类似,已在步骤S201中详细介绍,此处不再赘述。
需要说明的是,步骤S305与步骤S303之间的顺序并不是严格限定的,只要满足S305在S306之前执行即可。例如,用户设备可先执行S305,再执行S303和S304;或者是,用户设备可同时执行S303和S305,再执行S304。并且步骤S305还可以与步骤S301并行执行,或在步骤S301之前执行。因此,图7所示的交互流程仅是一种情况的示意。
S306:用户设备向第一卫星发送注册请求消息,所述注册请求消息包括所述用户设备地址信息;
可选的,用户设备可根据卫星地址信息和用户设备地址信息,确定注册卫星。一种情形中,用户设备仅接收到第一卫星发送的信标消息,而未接收到其他卫星的信标消息,则用户设备可确定第一卫星即为该用户设备的注册卫星,即用户设备向第一卫星发送注册请求消息;另一种情形中,用户设备接收到多个卫星发送的注册请求消息,其中包括第一卫星发送的注册请求消息,用户设备根据卫星地址信息和用户设备地址信息,确定用户设备的注册卫星。用户设备确定注册卫星的方式包括多种,将在下面实施例中详细介绍,此处假设第一卫星即为用户设备的注册卫星,用户设备向第一卫星发送注册请求消息。
S307:第一卫星接收所述注册请求消息;
接收到注册请求消息的第一卫星,从注册请求消息中提取出用户设备地址信息,存储用户设备的用户设备地址信息。第一卫星根据注册请求消息中的用户设备地址信息,确定所述用户设备当前所处的第二子区域的EID和所述用户设备的UDID。可选的,第一卫星可建立一个注册用户设备表,将向第一卫星发送注册请求消息的用户设备的地址存储至注册用户设备表中。因此基于注册请求消息,第一卫星就可以获知用户设备的地址信息,方便卫星和用户设备之间的寻址和双向通信。
在步骤S307之后,可选的,如图7所示:所述方法还包括S317:确定第一卫星的第一子区域与所述用户设备的第二子区域是否相同;也即确定第一EID与第二EID是否相同。
第一种情形中:如图7所示,若第一卫星的第一子区域与所述用户设备的第二子区域不同,即第一EID和第二EID不同,还包括步骤S327,S337、S347。
其中,S327:第一卫星向相邻卫星转发所述注册请求消息,所述相邻卫星中包括第二卫星,第二卫星当前覆盖的区域所对应的子区域与用户设备所处的第二子区域相同。可选的,第一卫星的相邻卫星可以为当前覆盖的区域所对应的子区域与第一卫星当前覆盖的区域所对应的子区域相邻的一个或多个卫星;可选的,相邻卫星还可以为当前与卫星的距离小于一定阈值的卫星。为描述方便,可称当前覆盖的区域所对应的子区域与用户设备所处的第二子区域相同的第二卫星为服务卫星,可以理解的,还可以有其他名称,本申请实施例不限定。
S337:第二卫星(服务卫星)接收第一卫星转发的注册请求消息;
可选的,第二卫星(服务卫星)还将第一卫星的SID存储于路由转发表中。而非服务卫星接收到第一卫星转发的注册请求消息,将忽略该注册请求消息。
基于注册请求消息,第二卫星(服务卫星)也可以获取用户设备的用户设备地址信息,并可以确定该用户设备是注册在第一卫星(注册卫星)中。
第二卫星向第一卫星发送用于响应注册请求消息的注册响应消息,以使得第一卫星将该注册响应消息转发给所述用户设备,使得用户设备知晓是否注册成功。
S347:第一卫星(注册卫星)接收第二卫星(服务卫星)发送的用于响应所述注册请求消息的注册响应消息。
第二种情形中,如图7所示,若所述第一卫星的第一子区域与所述用户设备的第二子区域相同,即第一EID与第二EID相同,那么第一卫星既为用户设备的服务卫星,还为用户设备的注册卫星,则第一卫星不执行上述步骤S327,S337、S347,直接执行步骤S308。
S308:第一卫星向所述用户设备发送注册响应消息,所述注册响应消息用于响应所述注册请求消息。
需要说明的是,对于第一卫星既为用户设备的服务卫星,又为用户设备的注册卫星的情形,注册响应消息为第一卫星生成并发送的;对于第一卫星只为用户设备的注册卫星,第二卫星为用户设备的服务卫星的情形,注册响应消息为第二卫星生成并发送给第一卫星,再由第一卫星转发给用户设备的。
S309:用户设备接收所述注册响应消息。
用户设备接收到注册响应请求,即可确认是否注册成功。
本申请实施例,采用子区域的EID作为卫星地址或用户设备地址的一部分,标识卫星或用户设备的位置,使得卫星和用户设备可实时地更新自身的地址。且基于注册流程,卫星和用户设备都可以获取对方的地址信息。对于卫星网络中卫星和用户设备都存在移动性的场景,其寻址可能更复杂。若采用IP编址技术,用户设备和卫星不随移动性而实时地更新IP地址,可能使得初始为该用户设备提供服务的卫星,当前已经移动至较远区域,而该卫星与用户设备的注册关系仍然保持,导致卫星无法正常寻址到该用户设备,用户设备也无法正常寻址到服务卫星,从而导致通信效率低下,可靠性降低。而本申请采用子区域的EID作为卫星地址或用户设备地址的一部分,可随卫星和用户设备移动而被实时地更新,可适应卫星网络中移动性等特性,提升卫星通信的可靠性和效率。
图8示出了本申请实施例还提供一种卫星通信系统中的注册方法的流程示意图,该方法包括:
S401:用户设备接收一个或多个卫星发送的一个或多个信标消息,每一个信标消息包括一个卫星地址信息。一个所述卫星地址信息包括:子区域编号(Earth surface ID,EID)和卫星设备编号SDID;所述子区域EID用于指示一个所述卫星当前覆盖的区域所对应的子区域;所述卫星设备编号SDID用于指示所述卫星与所述用户设备之间通信的网络接口。
可选的,所述信标消息中还包括卫星的位置信息或高度,所述卫星的位置信息包括卫星当前的经度和纬度。
在一种情形中,用户设备可接收到一个卫星发送的信标消息。
在另一种情形中,用户设备可接收到多个卫星发送的多个信标消息。多个信标消息与多个卫星一一对应,一个信标消息中包括发送该信标消息的卫星的卫星地址信息。
用户设备接收到信标消息后,从一个或多个信标消息中获取各个卫星的卫星地址信息,可选的,还可获取卫星的位置信息或高度信息。
可选的,由于卫星的移动性,卫星的地址信息会发生改变。若卫星监测到卫星覆盖的区域所对应的子区域发生变化,则卫星可更新该地址信息,以确保信标消息中携带的卫星地址信息为当前的最新的地址信息。
S402:根据所述一个或多个信标消息,从所述一个或多个卫星中确定注册卫星。
确定注册卫星的方法包括但不限于以下几种实施方式:
对于用户设备仅接收到一个卫星发送的信标消息的情形,一个示例中,用户设备可将发送该信标消息的卫星作为注册卫星。又一个示例,恰好该卫星覆盖的区域所对应的子 区域的EID与用户设备所处的子区域的EID相同,用户设备确定该卫星为注册卫星。
对于用户设备接收到多个卫星发送的信标消息的情形,用户设备可采用包括但不限于以下几种方式来确定注册卫星:
方式一:基于信标消息中携带的卫星地址信息,确定注册卫星。用户设备确定多个卫星中当前覆盖的区域所对应的子区域与所述用户设备当前所处的子区域相同的卫星作为注册卫星。具体的,基于多个卫星信标消息中携带的卫星地址信息,获取多个卫星当前时刻覆盖的区域所对应的子区域的EID,确定多个卫星中当前时刻所对应的EID与用户设备当前时刻所处的子区域的EID相同的卫星为注册卫星。
方式二:基于信标消息中携带的卫星的位置信息和高度信息,确定注册卫星。用户设备可确定多个卫星中卫星与用户设备之间的仰角大于第一阈值或仰角最大的卫星作为注册卫星。一个示例中,用户设备根据信标消息中携带的经度、纬度和高度计算多个卫星与用户设备之间的仰角,选择仰角大于第一阈值或仰角最大的卫星作为注册卫星。可选的,该第一阈值可以提前预设的,还可以是由用户设备自己确定的。
方式三:基于信标消息的信号强度,确定注册卫星。用户设备可确定多个卫星中信标消息的信号强度大于第二阈值或信号强度最大的卫星作为注册卫星。一个示例中,用户设备检测多个卫星发送的多个信标消息的信号强度,选择信号强度大于第二阈值或信号强度最大的信标消息所对应的卫星作为注册卫星。可选的,信号强度可以是信号功率,或信噪比(SNR),或接收信号电平。
可以理解的,上述方式二,方式三也可以运用于只接收到一个卫星发送的信标消息的场景中,对于方式二,仅判断该卫星的仰角即可;对于方式三,仅计算该卫星发送的信标消息的信号强度即可。
S403:用户设备向注册卫星发送注册请求消息。
采用方式一确定注册卫星,也就是说,用户设备向覆盖的区域所对应的子区域的EID与用户设备所处的EID相同的卫星发送注册请求消息;
采用方式二确定注册卫星,也就是说,用户设备向仰角最大的或仰角大于第一阈值的卫星发送注册请求消息;
采用方式三确定注册卫星,也就是说,用户设备向信号强度最大的信标消息所对应的卫星发送注册请求消息。
S404:用户设备接收所述注册卫星发送的注册响应消息。
用户设备根据注册响应消息,可确定是否注册成功。
举例来说,图9示出了本申请实施例的一种注册方法的示例,其中,卫星1、卫星2和卫星3是图1所示出的轨道5上的3颗卫星。在当前各个卫星的所对应的子区域分别为:卫星1对应的EID1=91,卫星2对应的EID2=92,卫星3对应的EID3=93;各个卫星的卫星设备编号SDID分别为:卫星1的SDID1=51、卫星2的SDID2=52、卫星3的SDID3=53。卫星1的SADD可以表示为:91.0.0.51,卫星2的SADD可以表示为:92.0.0.52。用户设备1的EID1=91,用户设备2的EID2=92;用户设备1的UDID1=10,用户设备2的UDID2=20,则用户设备1的用户设备地址可以表示为UADD1(91.0.0.10),用户设备2的用户设备地址可以表示为UADD2(92.0.0.20)。
对于用户设备1,仅收到了卫星1发送的信标消息1,信标消息1中包括卫星1的SADD1。在信标消息1的SADD1中提取卫星1所对应的子区域的EID,确定卫星1对应的子区域的EID1与用户设备1所处子区域的EID1相等,则可确定卫星1即为用户设备1 的注册卫星。进一步的,用户设备1可向卫星1发送注册请求消息,注册请求消息携带用户设备1的UADD1,卫星1收到注册请求消息后,向用户设备1发送注册响应消息。
对于用户设备2,既收到了卫星1发送的信标消息1,还收到了卫星2发送的信标消息2。信标消息1中包括卫星1的SADD1,信标消息2中包括卫星2的SADD2。在信标消息1的SADD1中提取卫星1所对应的子区域的EID,在信标消息2的SADD中提取卫星2所对应的子区域的EID。可选的,信标消息1中还可以包括卫星1的高度和经纬度信息,信标消息2中还可以包括卫星2的高度和经纬度信息。
以用户设备2采用方式一确定注册卫星为例,用户设备2确定卫星2对应的子区域的EID2与用户设备2所处子区域的EID2相等,则可确定卫星2即为用户设备2的注册卫星。进一步的,用户设备2可向卫星2发送注册请求消息,注册请求消息携带用户设备1的UADD1,卫星1收到注册请求消息后,向用户设备2发送注册响应消息。
以用户设备2采用方式二确定注册卫星为例,用户设备2计算自身与卫星1的仰角1、自身与卫星2的仰角2。一个示例中,用户设备确定仰角2大于仰角1,则可确定卫星2即为用户设备2的注册卫星,进一步的,用户设备2可向卫星2发送注册请求消息,注册请求消息携带用户设备1的UADD1,卫星1收到注册请求消息后,向用户设备2发送注册响应消息。
以用户设备2采用方式三确定注册卫星为例,用户设备2检测信标消息1的信号强度1和信标消息2的信号强度2。一个示例中,用户设备确定信号强度2大于信号强度1,则可确定卫星2即为用户设备2的注册卫星。进一步的,用户设备2可向卫星2发送注册请求消息,注册请求消息携带用户设备1的UADD1,卫星1收到注册请求消息后,向用户设备2发送注册响应消息。
随着用户设备的移动或卫星的移动,用户设备所处的子区域可能会发生变化,若用户设备检测到自身所处的子区域发生变化,用户设备更新自身的用户设备地址信息。进一步的。用户设备还可以自发地启动注册流程,即用户设备主动发送注册请求消息,注册请求消息中携带更新后的用户设备地址信息,接收到注册请求消息的卫星的处理流程与前述步骤S307、S317和S308相类似或与步骤S307、S317、S327、S337或S347相类似,此处不再赘述。
本申请实施例,采用子区域作为卫星地址或用户设备地址的一部分,表示卫星的位置和用户设备的位置,使得卫星和用户设备可实时的更新自身的地址。且基于注册流程,卫星和用户设备都可以实时的获取对方的地址信息。对于卫星网络中卫星和用户设备都存在移动性的场景,其寻址可能更复杂。若采用IP编址技术,用户设备和卫星不随移动性而实时地更新IP地址,可能使得初始为该用户设备提供服务的卫星,在当前已经移动至较远区域,而该卫星与用户设备的注册关系仍然保持,导致卫星无法正常寻址到该用户设备,用户设备也无法正常寻址到服务卫星。而本申请采用子区域作为卫星地址或用户设备地址的一部分,可随卫星和用户设备移动实时更新地址信息,可适应卫星网络中移动性,动态拓扑等特性,提升卫星通信的可靠性和效率。
上述实施例提供了卫星通信系统中的一种注册方法的流程示意图,基于上述命名和编址方法,本申请实施提供卫星通信系统中的一种数据通信方法的流程示意图。如图10所示,包括:
S501:用户设备生成数据消息;
S502:用户设备向第一卫星发送数据消息,所述数据消息包括目的地址和源地址,所述源地址包括所述用户设备当前所处的第一子区域的第一EID和所述用户设备的设备编号UDID;所述目的地址包括所述数据消息的目标用户设备当前时刻所处的第三子区域的第三EID和所述目标用户设备的UDID;
其中,源地址即为用户设备的用户设备地址信息;目的地址即为目标用户设备的用户设备地址信息。确定源地址的方法与前述实施例中用户设备确定用户设备地址信息的方法相类似,具体可参考步骤S201或步骤S305,此处不再赘述。
可选的,还包括S503:用户设备接收所述第一卫星发送的确认消息;所述确认消息的目标地址包括所述第一EID和所述用户设备的UDID,所述确认消息的源地址包括所述第三EID和所述目标用户设备的UDID。
接收到确认消息的用户设备,可以确定目标接收用户设备是否成功接收到用户设备发送的数据消息。
本申请实施例,采用子区域作为卫星地址或用户设备地址的一部分,表示卫星的位置和用户设备的位置,使得卫星和用户设备可实时的更新自身的地址。对于卫星网络中卫星和用户设备都存在移动性的场景,其寻址可能更复杂。若采用IP编址技术,用户设备和卫星不随移动性而实时地更新IP地址,可能使得初始为该用户设备提供服务的卫星,在当前已经移动至较远区域,而该卫星与用户设备的注册关系仍然保持,导致卫星无法正常寻址到该用户设备,用户设备也无法正常寻址到服务卫星,从而无法实现正常或高效的双向通信。而本申请实施例采用子区域作为卫星地址或用户设备地址的一部分,可随卫星和用户设备移动实时更新地址信息,可适应卫星网络中移动性,动态拓扑等特性,提升卫星通信的可靠性和效率。
本实施例提供了卫星通信系统中的另一种数据通信方法的流程示意图。如图11所示,包括:
S601:第一卫星接收用户设备发送的数据消息,所述数据消息包括目的地址和源地址,所述源地址包括所述用户设备当前所处的第一子区域的第一EID和所述用户设备的UDID;所述目的地址包括所述数据消息的目标用户设备当前所处的第三子区域的第三EID和所述目标用户设备的UDID。
第一卫星接收到用户设备发送的数据消息后,可从数据消息中获取目的地址和源地址,该目的地址为目标用户设备的用户设备地址信息,源地址为用户设备的用户设备地址信息。第一卫星从用户设备的目标地址中提取出目标用户设备当前所处的第三子区域的第三EID和所述目标用户设备的UDID。
可选的,第一卫星当前覆盖的区域所对应的子区域为第一子区域,也就是说第一卫星可以为用户设备的服务卫星。
S602:第一卫星确定第三子区域的第三EID与所述第一子区域的第一EID是否相同。
第一卫星确定卫星当前覆盖的区域所对应的子区域的第一EID与第三子区域的EID是否相等,即可确定目标用户设备所在的子区域是否与用户设备所在的子区域是相同的。
若第三EID与第一EID相同,也就是说,用户设备和目标用户设备在当前同处于同一个子区域,则第一卫星执行步骤S603,可选的,还可执行S604和S605。
S603:第一卫星向所述目标用户设备转发所述数据消息。
接收到所述数据消息的目标用户设备,可进一步向第一卫星反馈响应消息,以告知用户 设备其是否成功接收所述数据消息。
因此,可选的,还包括S604:第一卫星接收所述目标用户设备发送的响应消息;所述确认消息的目标地址包括所述第一EID和所述用户设备的UDID,所述确认消息的源地址包括所述第三EID和所述目标用户设备的UDID。
S605:第一卫星向所述用户设备转发所述响应消息。
接收到响应消息的用户设备,可判断目标用户设备是否接收成功。
若第三EID与第一EID相同,也就是说,用户设备和目标接收用户设备在当前不同处于同一个子区域,而是处于不同的子区域时,第一卫星执行步骤S606,可选的,还可以执行S608和S609。
S606:第一卫星根据目的地址中的第三子区域的第三EID,确定与所述第三子区域所对应的第三卫星的卫星编号SID。所述第三卫星的SID用于指示所述第三卫星。第三卫星当前覆盖的区域所对应的子区域为第三子区域。
第一子区域和第三子区域都为地球表面被划分的子区域中的一个,其地球表面的子区域划分以及子区域的EID的编码需要考虑轨道数和各轨道卫星数,其具体划分方法和可参考步骤S101的第二种实现方式,被划分的子区域的编址方法可参考步骤S101中的示例一和示例二的描述,一个具体的子区域划分和编号的示例可参考图2。
确定与所述第三子区域所对应的第三卫星的卫星编号SID包括:根据第三卫星的卫星编号SID与所述多个子区域的EID之间的映射关系,确定所述第三卫星的SID;
对于示例一,同一轨道对应的N个子区域的EID为连续的整数,所述第三卫星的SID与多个子区域的EID之间的映射关系为:
Figure PCTCN2019122257-appb-000008
其中,EID t表示当前时刻所述第三卫星覆盖的区域所对应的第三子区域的第三EID,第三卫星的SID等于初始时刻所述第三卫星覆盖的区域所对应的子区域的编号EID 0,N为所述第三卫星所处轨道上的卫星的数目,T为所述轨道上卫星的运行周期;int为取整运算,mod为取模运算。
以图2示出的EID编码为例来说,假设轨道0上的18颗卫星,假设卫星从EID小的子区域向EID大的子区域方向移动,且当前时刻t(t=T/N)卫星所对应子区域的EID依次为:0、1、2、3、…、18,第三卫星当前时刻覆盖的区域所对应的子区域的EID为2,则根据公式(1)可确定第三卫星初始时刻覆盖的区域所对应的EID 0为1,则第三卫星所对应的SID等于初始时刻的EID 0,即SID=1。
对于示例二,同一轨道对应的各个子区域的EID为等差数,公差d为大于1的整数,所述卫星的SID与多个子区域的EID之间的映射关系为:
Figure PCTCN2019122257-appb-000009
其中,EID t表示当前时刻所述第三卫星覆盖的区域所对应的第三子区域的第三子区域编号EID,第三卫星的SID等于初始时刻所述第三卫星覆盖的区域所对应的子区域的编号EID 0,N为所述第三卫星所处轨道上的卫星的数目,T为所述轨道上卫星的运行周期;int为取整运算,mod为取模运算。
基于上述方法,基于SID和EID的一对一映射,卫星可根据卫星在当前覆盖的区域所对应的子区域的EID确定卫星的SID,而不需要存储SID与EID编址表之间的映射关系或其他 形式的映射关系表,因此可以显著节省卫星的内存空间大小。此外,采用实时计算确定EID,其计算的时延将远远小于查找表的时延,尤其是当卫星数量很大时,可显著降低时延,提升系统工作效率。
S607:第一卫星向第三卫星转发所述数据消息,所述数据消息的目的地址更新为包括所述第三卫星的SID和所述目标用户设备的UDID,所述源地址更新为包括所述第一卫星的SID和所述用户设备的UDID。
第一卫星获取到第三卫星的SID后,可将数据消息中的目的地址和源地址更新。目的地址更新为包括所述第三卫星的SID和所述目标用户设备的UDID,所述源地址更新为包括所述第一卫星的SID和所述用户设备的UDID。
更新后的目的地址和源地址不包括子区域的EID,可以使得数据消息或其他消息在卫星之间进行路由转发时,与子区域分离开,则可以使得卫星的移动性问题和路由问题分离开,可以复用传统的路由算法直接以SID作为路由索引在ISL/IOL链路进行路由转发,而不需要重新设计新的卫星间路由算法,兼容性较好。
由于随着卫星的高速移动,卫星对应的EID会发生变化,但卫星与卫星之间的链路相对稳定,因此采用与EID分离开的地址进行卫星与卫星之间的路由,可将卫星的移动性和路由问题分离开,可提升路由的效率。本申请采用SID作为索引号进行卫星间路由,可避免卫星频繁的更新路由表,降低路由复杂和路由时延,减少系统资源的占用,且可采用传统的路由算法进行卫星间路由,兼容性好。卫星实时更新地址信息,使得卫星网络可正确寻址到当前为用户设备提供服务的服务卫星,可提升卫星网络的通信效率。
第三卫星接收到数据消息后,至少存在两种情形:
情形1:第三卫星为目标用户设备的注册卫星。
第三卫星可通过查找注册用户信息表,确定目标用户设备是否为注册到第三卫星的注册用户,如果是,则第三卫星将该数据消息转发给所述目标用户设备。可选的,第三卫星转发的数据消息的目的地址包括:所述目标用户设备所处的子区域的EID和所述目标用户设备的DID;源地址包括:所述用户设备所处的子区域的EID和所述用户设备的DID。可选的,用户设备接收到数据消息后,还可以向第三卫星反馈确认消息。
情形2:第三卫星不为目标用户设备的注册卫星。第三卫星可通过查找注册用户信息表,确定目标用户设备是否为注册到第三卫星的注册用户。如果不是,则第三卫星可进一步查找注册卫星信息表,查找到该目标用户设备的注册卫星,并将该数据消息转发给所述注册卫星,再由所述注册卫星将所述数据消息转发给所述目标用户设备。可选的,所述方法还包括:用户设备向注册卫星反馈确认消息,所述注册卫星进一步将所述确认消息转发给所述第三卫星,所述第三卫星将所述确认消息转发给所述第一卫星。所述注册用户信息表包括注册到第三卫星的用户设备的用户设备地址信息。
可选的,S608:第一卫星接收所述第三卫星发送的用于确认所述数据消息的确认消息,所述确认消息的目标地址包括所述第一EID和所述用户设备的UDID,所述确认消息的源地址包括所述第三EID和所述目标用户设备的UDID。
可选的,S609:第一卫星向所述用户设备转发所述响应消息。
本申请实施例提出了一种卫星网络中的通信方法,采用子区域作为卫星地址或用户设备地址的一部分,指示卫星的位置和用户设备的位置,使得卫星和用户设备可实时的更新自身的地址。对于卫星网络中卫星和用户设备都存在移动性的场景,其寻址可能更复杂。若采用IP编址技术,用户设备和卫星不随移动性而实时地更新IP地址,可能使得 初始为该用户设备提供服务的卫星,在当前已经移动至较远区域,而该服务卫星与用户设备的注册关系仍然保持,导致卫星无法正常寻址到该用户设备,用户设备也无法正常寻址到服务卫星,从而无法实现正常或高效的双向通信。而本申请实施例采用子区域作为卫星地址或用户设备地址的一部分,卫星和用户设备可根据用户设备的地址信息和卫星的地址信息,快速寻址到为用户设备提供服务的服务卫星,从而提高通信效率,降低通信时延,且可适应卫星网络中移动性,动态拓扑等特性。
图12示出了一种卫星网络数据通信流程的具体示例。如图12所示,用户设备2需要通过卫星网络与用户设备1通信。用户设备2的UADD2为101.0.0.20,其中,用户设备2当前所处的子区域的EID2=101,用户设备2的设备编号UDID2=20。用户设备1为UADD1=101.0.0.10,其中,用户设备1当前所处的子区域的EID1=101,用户设备1的设备编号UDID1=10。
用户设备2可以通过USL/GSL向卫星1发送数据消息,数据消息的源地址(source address,Src)为101.0.0.20;目的地址(destination address,Dst)为101.0.0.10。接收到数据消息的卫星1,从数据消息中获取EID1,卫星1确定EID2和EID1相等。进一步的,卫星1可以通过USL/GSL向用户设备1发送该数据消息,从而用户设备1接收到了该数据消息。相类似的流程,用户设备1还可以向用户设备2反馈确认消息,具体的,用户设备1向卫星1发送确认消息,确认消息的目的地址为101.0.10,源地址为101.0.0.20,接收到确认消息的卫星1确定EID2等于EID1,则向用户设备2发送确认消息,用户设备2基于确认消息可以判断用户设备1是否成功接收所述数据消息。
图13示出了另一种卫星网络数据通信流程的具体示例。如图13所示,用户设备3需要通过卫星网络与用户设备1通信。用户设备3的UADD3为103.0.0.30,其中,用户设备3当前所处的子区域的EID3=103,用户设备3的UDID3=30。用户设备1为UADD1=91.0.0.10,其中,用户设备1当前所处的子区域的EID1=91,用户设备1的UDID1=10。假设卫星1为用户设备1的服务卫星和注册卫星。
用户设备3可以通过USL/GSL向卫星3发送数据消息,数据消息的源地址(source address,Src)为103.0.0.30;目的地址(destination address,Dst)为91.0.0.10。接收到数据消息的卫星3,从数据消息中获取EID1,确定EID3与EID1不相等。卫星3基于SID与EID的映射关系(例如,公式6或公式7),确定EID1所对应的SID1。进一步的,卫星3通过查找路由表,可获取下一跳SID和端口ID,该端口ID可以为ISL/IOL链接ID。卫星3发送该数据消息,该数据消息的目的地址更新为SID1.0.0.10,源地址更新为SID3.0.0.30。该数据消息可以经过卫星网络的路径选择算法选择路径后,经过ISL/IOL链路被卫星1接收。卫星1确定数据消息中的目的地址包括的用户设备为由卫星1提供服务的用户设备,则向该用户设备1发送数据消息,该数据消息的目的地址进一步更新为91.0.0.10,源地址更新为103.0.0.30,用户设备1从而接收到了该数据消息。相类似的流程,用户设备1还可以向用户设备3反馈确认消息。具体的,用户设备1向卫星1发送确认消息,确认消息的目的地址为103.0.10,源地址为91.0.0.20,接收到确认消息的卫星1向卫星3转发确认消息,进一步再由卫星3将该确认消息转发给用户设备3。
图14示出了又一种卫星网络数据通信流程的具体示例。如图14所示,用户设备3需要通过卫星网络与用户设备2通信。用户设备3的UADD3为103.0.0.30,其中,用户设备3当 前所处的子区域的EID3=103,用户设备3的UDID3=30。用户设备2为UADD2=92.0.0.20,其中,用户设备2当前所处的子区域的EID2=92,用户设备2的UDID2=92。假设卫星1为用户设备2的注册卫星,卫星2为用户设备2的服务卫星。
用户设备3可以通过USL/GSL向卫星3发送数据消息,数据消息的源地址(source address,Src)为103.0.0.30;目的地址(destination address,Dst)为92.0.0.20,接收到数据消息的卫星3,从数据消息中获取EID2,确定EID3与EID2不相等。卫星3基于SID与EID的映射关系(例如,公式6或公式7),确定EID2所对应的SID2。卫星3通过查找路由表,可获取下一跳SID和端口ID,该端口ID可以为ISL/IOL链接ID。卫星3发送该数据消息,该数据消息的目的地址更新为SID2.0.0.20,源地址更新为SID3.0.0.30,该数据消息可以经过卫星网络的路径选择算法选择路径后被卫星2接收。卫星2从目的地址中提取用户设备2的DID2,确定自身不是用户设备2的注册卫星,则卫星2查找注册卫星信息表,确定用户设备2的注册卫星为卫星1,则卫星2向注册卫星1转发该数据消息。卫星1接收到该数据消息后,可以通过USL/GSL向该用户设备2发送数据消息,该数据消息的目的地址进一步更新为92.0.0.20,源地址更新为103.0.0.30;用户设备2从而接收到了该数据消息。相类似的流程,用户设备2还可以向用户设备3反馈确认消息,具体的,用户设备1向卫星1发送确认消息,确认消息的目的地址为103.0.10,源地址为92.0.0.20,接收到确认消息的卫星1向卫星2转发确认消息,卫星2再向卫星3转发,进一步卫星3将该确认消息转发给用户设备3。
本申请实施例提供了一种通信装置,该通信装置可应用于用户设备端,可以用于实现上述实施例中涉及用户设备的方法和步骤。用户设备可以是如图1所示的位于地面段的通信装置,例如,用户终端、卫星终端、蜂窝终端、地面站、蜂窝基站和接入点等。该通信装置可以是用户设备,还可以是用户设备内的芯片。参见图15,该通信装置1500包括:确定模块1501,发送模块1502。
确定模块1501,可以用于确定用户设备的用户设备地址信息,用户设备地址信息包括:第二子区域编号EID和用户设备的设备编号UDID;所述第二EID用于指示所述用户设备当前所处的第二子区域。一种可能的实施方式中,确定模块1501,还用于根据卫星地址信息,确定卫星当前覆盖的区域所对应的第一子区域的EID和卫星设备编号SDID。一种可能的实施方式中,确定模块1501,从一个或多个卫星中确定一个注册卫星。例如,用于实现S104、S201、S304、S305和S402等。
发送模块1502,用于发送所述用户设备地址信息。一种可能的实施方式中,发送模块1502,还用于发送注册请求消息,所述注册请求消息包括用户设备地址信息。一种可能的实施方式中,发送模块1502,还用于发送数据消息,所述数据消息包括用户设备地址信息。例如,发送模块1502用于实现S202、S306、S403和S502。
可选的,通信装置1500还包括:接收模块1503,用于接收第一卫星发送的卫星地址信息。一个可能的实施方式中,接收模块1503,还用于接收第一卫星发送的信标消息,信标消息包括所述卫星地址信息。一个可能的实施方式中,接收模块1503,还用于接收第一卫星发送的注册响应消息。一个可能的实施方式中,接收模块1504,还用于接收第一卫星反馈的确认消息或数据消息。例如,接收模块用于实现S103、S303、S309、S304或S503。
本申请实施例还提供一种通信装置。该通信装置可应用于用户设备端,可以用于实现上述实施例中涉及用户设备的方法和步骤。用户设备可以是如图1所示的位于地面段的通信装置,例如,用户终端、卫星终端、蜂窝终端、地面站、蜂窝基站和接入点等。该通信装置可以是用户设备,还可以是用户设备内的芯片。参见图16,该通信装置1600包括:处理器1601,发送器1602,可选的,还包括接收器1603。
处理器1601,可以用于确定用户设备的用户设备地址信息,用户设备地址信息包括:第二子区域编号EID和用户设备的设备编号UDID;所述第二EID用于指示所述用户设备当前所处的第二子区域。一种可能的实施方式中,处理器1601,还用于根据卫星地址信息,确定卫星当前覆盖的区域所对应的第一子区域的EID和卫星设备编号SDID。一种可能的实施方式中,处理器1601,从一个或多个卫星中确定一个注册卫星。例如,用于实现S104、S201、S304、S305和S402等。
发送器1602,用于发送所述用户设备地址信息。一种可能的实施方式中,发送器1502,还用于发送注册请求消息,所述注册请求消息包括用户设备地址信息。一种可能的实施方式中,发送器1602,还用于发送数据消息,所述数据消息包括用户设备地址信息。例如,发送器1602用于实现S202、S306、S403和S502。
可选的,通信装置1600还包括:接收器1603,用于接收第一卫星发送的卫星地址信息。一个可能的实施方式中,接收器1603,还用于接收第一卫星发送的信标消息,信标消息包括所述卫星地址信息。一个可能的实施方式中,接收器1603,还用于接收第一卫星发送的注册响应消息。一个可能的实施方式中,接收器1603,还用于接收第一卫星反馈的确认消息或数据消息。例如,接收器用于实现S103、S303、S309、S304或S503。
本申请实施例还提供一种通信装置。该通信装置可应用于用户设备端,可以用于实现上述实施例中涉及用户设备的方法和步骤。用户设备可以是如图1所示的位于地面段的通信装置,例如,用户终端、卫星终端、蜂窝终端、地面站、蜂窝基站和接入点等。该通信装置可以是用户设备,还可以是用户设备内的芯片。
一个示例中,该用户设备为一种终端设备。图17示出了上述实施例中所涉及的用户设备的一种可能的设计结构的简化示意图。所述用户设备包括发射器1701,接收器1702,控制器/处理器1703,存储器1704和调制解调处理器1705。
发射器1701调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的卫星。在下行链路上,天线接收上述实施例中卫星发射的下行链路信号。接收器1702调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1705中,编码器1706接收要在链路(例如,如图1所示的GSL/USL链路)上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1707进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1709处理(例如,解调)该输入采样并提供符号估计。解码器1708处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1706、调制器1707、解调器1709和解码器1708可以由合成的调制解调处理器1705来实现。
控制器/处理器1703对用户设备的动作进行控制管理,用于执行上述实施例中由用户设备进行的处理。例如用于确定用户设备的用户设备地址信息;可选的,还用于根据卫星地址信息,确定卫星当前覆盖的区域所对应的第一子区域的EID和卫星设备编号SDID。可选的,还用于从一个或多个卫星中确定一个注册卫星。作为示例,控制器/处理器1703 用于支持用户设备实现S104、S201、S304、S305和S402等。
存储器1703用于存储用户设备的程序代码和数据。
可以理解的是,图17仅仅示出了用户设备的简化设计。在实际应用中,用户设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请的用户设备都在本发明的保护范围之内。
另一个示例中,该用户设备是一种基站,例如为,可以与卫星进行通信的蜂窝基站,地面等,图18示出了上述实施例中所涉及的基站的一种可能的结构示意图。
基站包括发射器/接收器1801,控制器/处理器1802,存储器1803以及通信单元1804。所述发射器/接收器1801用于支持基站与上述实施例中的所述的卫星之间收发信息,以及支持蜂窝终端与其他蜂窝终端之间进行无线电通信。所述控制器/处理器1802执行各种用于与卫星通信的功能。在下行链路,来自所述卫星的信号经由天线接收,由接收器1801进行调解,并进一步由控制器/处理器1182进行处理来恢复UE所发送到业务数据和信令信息。在上行链路上,业务数据和信令消息由控制器/处理器1802进行处理,并由发射器1801进行调解来产生上行链路信号,并经由天线发射给卫星。控制器/处理器1802还执行图3至图11中涉及用户设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器1803用于存储基站的程序代码和数据。通信单元1804用于支持基站与其他网络实体进行通信。
可以理解的是,图18仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
本申请实施例提供了一种通信装置,该通信装置可应用于卫星端,可以用于实现上述实施例中涉及卫星的方法和步骤。用户设备可以是如图1所示的位于空间段的卫星。该通信装置还可以是卫星内的芯片。参见图19,该通信装置1900包括:确定模块1901,发送模块1902,可选的,还包括接收模块1903。
确定模块1901,可以用于确定卫星的卫星地址信息。一种可能的实施方式中,确定模块1901,还用于根据用户设备的地址信息,确定用户设备当前所处的第二子区域的EID和用户设备编号UDID。一种可能的实施方式中,确定模块1901,还用于确定第一子区域与第二子区域是否相同。例如,用于实现S101、S204、S301、S317和S602等。
发送模块1902,用于发送所述卫星地址信息。一种可能的实施方式中,发送模块1902,还用于发送信标消息,所述信标消息包括卫星地址信息。一种可能的实施方式中,发送模块1902,还用于发送注册响应消息.一种可能的实现方式中,发送模块1902还用于发送数据消息。一个可能的实施方式中,发送模块1902还用于转发注册请求消息给相邻卫星。例如,发送模块1902用于实现S102、S302、S327、S308、S607和S605。
接收模块1903,用于接收用户设备发送的用户设备地址信息。一个可能的实施方式中,接收模块1903,还用于接收用户设备发送的注册请求消息,注册请求消息包括所述用户设备地址信息。一个可能的实施方式中,接收模块1903,还用于接收用户设备发送的数据消息或确认消息。一个可能的实施方式中,接收模块1903,还用于接收其他卫星发送的确认消息或数据消息。例如,接收模块用于实现S203、S307、S347、S601、S608和S604。
本申请实施例还提供一种通信装置。该通信装置可应用于用户设备端,可以用于实 现上述实施例中涉及用户设备的方法和步骤。用户设备可以是如图1所示的位于地面段的通信装置,例如,用户终端、卫星终端、蜂窝终端、地面站、蜂窝基站和接入点等。该通信装置可以是用户设备,还可以是用户设备内的芯片。参见图20,该通信装置2000包括:处理器2001,发送器2002,可选的,还包括接收器2003。
参见图20,该通信装置2000包括:确定器2001,发送器2002,可选的,还包括接收器2003。
确定器2001,可以用于确定卫星的卫星地址信息。一种可能的实施方式中,确定器2001,还用于根据用户设备的地址信息,确定用户设备当前所处的第二子区域的EID和用户设备编号UDID。一种可能的实施方式中,确定器2001,还用于确定第一子区域与第二子区域是否相同。例如,用于实现S101、S204、S301、S317和S602等。
发送器2002,用于发送所述卫星地址信息。一种可能的实施方式中,发送器2002,还用于发送信标消息,所述信标消息包括卫星地址信息。一种可能的实施方式中,发送器2002,还用于发送注册响应消息.一种可能的实现方式中,发送器2002还用于发送数据消息。一个可能的实施方式中,发送器2002还用于转发注册请求消息给相邻卫星。例如,发送器2002用于实现S102、S302、S327、S308、S607和S605。
接收器2003,用于接收用户设备发送的用户设备地址信息。一个可能的实施方式中,接收器2003,还用于接收用户设备发送的注册请求消息,注册请求消息包括所述用户设备地址信息。一个可能的实施方式中,接收器2003,还用于接收用户设备发送的数据消息或确认消息。一个可能的实施方式中,接收器2003,还用于接收其他卫星发送的确认消息或数据消息。例如,接收器用于实现S203、S307、S347、S601、S608和S604。
需要说明的是,上述实施例中“发送”的动作也可以指的是“提供”或“输出”;上述“接收”的动作也可以指的是“获取”或“输入”。
本申请实施例还提供一种计算机存储介质,该计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持分布式单元、集中式单元、以及卫星或用户设备以实现上述实施例中所涉及的功能,例如生成或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于保存分布式单元、集中式单元以及卫星或用户设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请实施例还提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。
本申请实施例还提供另一种芯片,该芯片可以成为用户设备或卫星设备的一部分,该芯片包括:输入接口、输出接口和电路,所述输入接口、所述输出接口与所述电路之间通过内部连接通路相连,所述电路用于执行上述各示例中的方法。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一 实施例中涉及卫星或用户设备的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及卫星或用户设备的方法和功能。
本申请实施例还提供一种通信系统,该系统包括上述实施例中涉及的卫星和至少一个用户设备。
本申请实施例还提供一种装置,用于实现上述各实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。

Claims (30)

  1. 一种卫星网络通信方法,其特征在于,所述方法包括:
    确定用户设备的用户设备地址信息,所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备当前所处的第二子区域;其中,所述第二子区域为地球表面被划分成的多个子区域中的一个;
    所述用户设备向第一卫星发送所述用户设备地址信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述第一卫星发送的卫星地址信息;所述卫星地址信息包括:第一子区域编号EID和卫星的设备编号SDID;所述第一子区域编号EID用于指示所述第一卫星当前覆盖的区域所对应的第一子区域;所述卫星设备编号用于指示所述第一卫星的网络接口,所述网络接口用于所述第一卫星与所述用户设备之间通信;所述第一子区域为所述多个子区域中的一个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个子区域是基于卫星轨道的数量和/或每个轨道中的卫星数量被划分的。
  4. 根据权利要求3所述的方法,其特征在于,所述卫星轨道的数量为M,每个轨道中的卫星数量为N,一个轨道对应N个子区域,所述多个子区域的数量为M*N。
  5. 根据权利要求4所述的方法,其特征在于,每个所述子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述多个子区域中同一轨道对应的N个子区域的EID为连续的正整数;或,
    所述多个子区域中同一轨道对应的N个子区域的EID为公差为d的等差数列,所述公差d为大于1的整数。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述卫星地址信息携带在信标消息中;所述接收卫星地址信息,包括:接收所述第一卫星发送的所述信标消息;
    所述发送用户地址信息,包括:向所述第一卫星发送所述注册请求消息;所述注册请求消息携带所述用户地址信息;
    所述方法还包括:接收所述第一卫星反馈的注册响应消息,所述注册响应消息用于响应所述注册请求消息。
  8. 根据权利要求7所述的方法,其特征在于,发送所述注册请求消息,包括:
    若所述第一卫星的第一EID与所述用户设备的第二EID相同,所述用户设备向所述第一卫星发送所述注册请求消息;或,
    若所述第一卫星与所述用户设备的仰角大于第一阈值或最大,所述用户设备向所述第一卫星发送所述注册请求消息。
  9. 一种卫星网络通信方法,其特征在于,包括:
    第一卫星确定卫星地址信息,所述卫星地址信息包括:第一子区域编号EID;所述第一EID用于指示所述第一卫星当前覆盖的区域所对应的第一子区域;所述第一子区域为地球表面被划分成的多个子区域中的一个;
    向用户设备发送所述卫星地址信息。
  10. 根据权利要求1所述的方法,其特征在于,所述卫星地址信息还包括第一卫星的卫星设备编号,所述卫星设备编号用于指示所述第一卫星的网络接口,所述网络接口用于所述第一卫星与所述用户设备之间通信。
  11. 根据权利要求9或10所述的方法,其特征在于,所述多个子区域是基于卫星轨道的数量和/或每个轨道中的卫星数量进行划分的。
  12. 根据权利要求11所述的方法,其特征在于,所述卫星的轨道数量为M,每个轨道中的卫星数量为N,一个轨道对应N个子区域,所述多个子区域的个数为M*N个。
  13. 根据权利要求12所述的方法,其特征在于,每个所述子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述确定卫星地址信息包括:根据第一卫星的卫星编号SID与所述多个子区域的EID之间的映射关系,确定所述第一子区域的所述第一EID;其中,所述第一卫星的卫星编号SID用于标识所述第一卫星。
  15. 根据权利要求14所述的方法,其特征在于,所述映射关系为:
    Figure PCTCN2019122257-appb-100001
    其中,EID t表示所述第一卫星当前覆盖的区域所对应的第一子区域的所述第一EID,所述SID为所述第一卫星的卫星编号,所述SID等于所述第一卫星初始覆盖的区域所对应的子区域的EID,N为所述卫星所处轨道上的卫星的数目,T为所述第一卫星的运行周期;int为取整运算,mod为取模运算。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述卫星地址信息携带在信标消息中;所述发送所述卫星地址信息包括:发送所述信标消息;
    所述方法还包括:接收用户设备发送的注册请求消息;所述注册请求消息包括:所述用户设备地址信息;其中,所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备在当前所处的第二子区域;
    向所述用户设备反馈注册响应消息,所述注册响应消息用于响应所述注册请求消息。
  17. 根据权利要求16所述的方法,其特征在于,
    若所述第二EID与所述第一EID不相同,所述方法还包括:
    向相邻卫星发送所述注册请求消息,所述相邻卫星包括当前覆盖的区域所对应的子区域为所述第二子区域的第二卫星;
    向所述用户设备发送所述注册响应消息,包括:
    接收所述第二卫星发送的所述注册响应消息;
    向所述第二子区域内的所述用户设备转发所述注册响应消息。
  18. 一种卫星网络的通信装置,其特征在于,所述装置包括:
    确定模块,用于确定用户设备的用户设备地址信息,所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备当前所处的第二子区域;其中,所述第二子区域为地球表面被划分成的多个子区域中的一个;
    发送模块,用于向第一卫星发送所述用户设备地址信息。
  19. 根据权利要求18所述的通信装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第一卫星发送的卫星地址信息;所述卫星地址信息包括:第一子区域编号EID和卫星设备编号SDID;所述第一子区域编号EID用于指示所述第一卫星当前覆盖的区域所对应的第一子区域;所述卫星设备编号用于标识所述第一卫星的网络接口,所述网络接口用于所述第一卫星与所述用户设备之间通信;所述第一子区域为所述多个子区域中的一个。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述多个子区域是基于卫星轨道的数量和/或每个轨道中的卫星数量被划分的。
  21. 根据权利要求20所述的通信装置,其特征在于,所述卫星轨道的数量为M,每个轨道中的卫星数量为N,一个轨道对应N个子区域,所述多个子区域的数量为M*N。
  22. 根据权利要求21所述的通信装置,其特征在于,每个所述子区域的大小为:180°/M的经度范围和180°/N的纬度范围。
  23. 根据权利要求21或22所述的通信装置,其特征在于,
    所述多个子区域中同一轨道对应的N个子区域的EID为连续的正整数;或,
    所述多个子区域中同一轨道对应的N个子区域的EID为公差为d的等差数列,公差d为大于1的整数。
  24. 根据权利要求19至23中任一项所述的通信装置,其特征在于,所述卫星地址信息携带在信标消息中;所述接收模块,具体用于接收所述第一卫星发送的所述信标消息;
    所述发送模块,具体用于向所述第一卫星发送所述注册请求消息;所述注册请求消息携带所述用户地址信息;
    所述接收模块,还用于接收所述第一卫星反馈的注册响应消息,所述注册响应消息用于响应所述注册请求消息。
  25. 根据权利要求24所述的通信装置,其特征在于,
    若所述第一卫星的第一EID与所述用户设备的第二EID相同,所述发送模块,用于向所述第一卫星发送所述注册请求消息;或,
    若所述第一卫星与所述用户设备的仰角大于第一阈值或最大,所述发送模块,用于向所述第一卫星发送所述注册请求消息。
  26. 一种卫星网络的通信装置,其特征在于,包括:
    确定模块,用于确定卫星地址信息,所述卫星地址信息包括:第一子区域编号EID;所述第一EID用于指示第一卫星当前覆盖的区域所对应的第一子区域;所述第一子区域为地球表面被划分成的多个子区域中的一个;
    发送模块,用于向用户设备发送所述卫星地址信息。
  27. 根据权利要求26所述的通信装置,其特征在于,所述确定模块还用于根据所述第一卫星的卫星编号SID与所述多个子区域的EID之间的映射关系,确定所述第一子区域的所述第一EID;其中,所述第一卫星的卫星编号SID用于标识所述第一卫星。
  28. 根据权利要求27所述的通信装置,其特征在于,所述映射关系为:
    Figure PCTCN2019122257-appb-100002
    其中,EID t表示所述第一卫星当前覆盖的区域所对应的第一子区域的所述第一EID,所述SID为所述第一卫星的卫星编号,所述SID等于所述第一卫星初始覆盖的区域所对应的子区域的EID,N为所述卫星所处轨道上的卫星的数目,T为所述第一卫星的运行周期;int为取整运算,mod为取模运算。
  29. 根据权利要求26至28中任一项所述的通信装置,其特征在于,所述卫星地址信息携带在信标消息中;所述发送模块,用于发送所述信标消息;所述装置还包括:接收模块;
    所述接收模块,用于接收用户设备发送的注册请求消息;所述注册请求消息包括:所述用户设备地址信息;其中,所述用户设备地址信息包括:第二子区域编号EID和所述用户设备的设备编号UDID;所述第二EID用于指示所述用户设备在当前所处的第二子区域;
    所述发送模块,还用于向所述用户设备反馈注册响应消息,所述注册响应消息用于响应所述注册请求消息。
  30. 根据权利要求29所述的通信装置,其特征在于,
    若所述第二EID与所述第一EID不相同,所述发送模块,还用于向相邻卫星发送所述注册请求消息,所述相邻卫星包括当前覆盖的区域所对应的子区域为所述第二子区域的第二卫星;
    所述接收模块,还用于接收所述第二卫星发送的所述注册响应消息;
    所述发送模块,具体用于向所述第二子区域内的所述用户设备转发所述注册响应消息。
PCT/CN2019/122257 2018-12-14 2019-11-30 卫星网络通信方法、相关装置及系统 WO2020119494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19895553.6A EP3886337A4 (en) 2019-11-30 Satellite network communication method, related apparatus, and system
US17/346,658 US11968028B2 (en) 2018-12-14 2021-06-14 Satellite network communication method, related apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811534818.6 2018-12-14
CN201811534818.6A CN111327354B (zh) 2018-12-14 2018-12-14 卫星网络通信方法、相关装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/346,658 Continuation US11968028B2 (en) 2018-12-14 2021-06-14 Satellite network communication method, related apparatus, and system

Publications (1)

Publication Number Publication Date
WO2020119494A1 true WO2020119494A1 (zh) 2020-06-18

Family

ID=71077119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122257 WO2020119494A1 (zh) 2018-12-14 2019-11-30 卫星网络通信方法、相关装置及系统

Country Status (3)

Country Link
US (1) US11968028B2 (zh)
CN (1) CN111327354B (zh)
WO (1) WO2020119494A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671449A (zh) * 2020-12-09 2021-04-16 中国电子科技集团公司第五十四研究所 一种基于地面规划路由区的低轨卫星通信寻呼方法
CN115776329A (zh) * 2022-11-17 2023-03-10 云南电网有限责任公司 一种星间链路构建方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230299844A1 (en) 2020-07-02 2023-09-21 Eutelsat S A Methods for the transmission of data between a resource constrained device and a non-geostationary satellite and associated method
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
JP7150126B1 (ja) * 2021-12-28 2022-10-07 株式会社ワープスペース 中継衛星及びデータ中継方法
CN117121399B (zh) * 2022-05-13 2024-09-24 北京小米移动软件有限公司 卫星覆盖信息确定方法、装置、通信设备和存储介质
TWI849533B (zh) * 2022-10-14 2024-07-21 財團法人工業技術研究院 用於低軌衛星網路交換路由的方法及用戶終端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265879A1 (en) * 2009-04-17 2010-10-21 Viasat, Inc. Multi-satellite architecture
CN102118456A (zh) * 2011-01-19 2011-07-06 中国科学技术大学 一种基于地理位置信息的天地网络混合编址方法
CN106549703A (zh) * 2016-10-26 2017-03-29 北京邮电大学 天地一体化网络中低轨卫星通信的方法及系统
CN107580365A (zh) * 2016-07-05 2018-01-12 中兴通讯股份有限公司 卫星通信的区域管理方法和系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563606A (en) * 1994-10-03 1996-10-08 Motorola, Inc. Dynamic mapping apparatus for mobile unit acquisition and method therefor
US6456234B1 (en) * 2000-06-07 2002-09-24 William J. Johnson System and method for proactive content delivery by situation location
US20020142781A1 (en) * 2000-12-29 2002-10-03 Globalstar L.P. Resolution of ambiguity of position location for user terminals operating in a low earth orbit satellite system
JP4595241B2 (ja) * 2001-05-15 2010-12-08 ソニー株式会社 放送システム、放送装置、受信装置
US20030073435A1 (en) * 2001-10-11 2003-04-17 Steven Thompson System and method for controlling interference affecting satellite terminals in a satellite communications network by establishing and using virtual cells which are independent of the cells formed by the spot beams generated by the satellite
US8055271B2 (en) * 2007-02-05 2011-11-08 Yahoo! Inc. Intelligent location-to-cell mapping using annotated media
CN102025588B (zh) * 2009-09-15 2015-04-01 中兴通讯股份有限公司 身份位置分离网络与互联网的互通方法及互通网络
JP6305736B2 (ja) * 2013-11-20 2018-04-04 測位衛星技術株式会社 情報管理システム、データバンク装置、データの管理方法、データベースの管理方法、および、プログラム
CN104796187B (zh) * 2014-01-16 2018-08-28 中国人民解放军总参谋部第六十一研究所 基于平流层准静态卫星基站的增强传输方法
JP6324101B2 (ja) * 2014-02-21 2018-05-16 株式会社ゼンリン 旅行時間データ調製装置、旅行時間データ調製方法およびプログラム
CA2965318C (en) * 2014-10-24 2020-09-01 Mutualink, Inc. System and method for dynamic wireless aerial mesh network
US10158492B2 (en) * 2015-02-25 2018-12-18 Guardtime Ip Holdings Limited Blockchain-supported device location verification with digital signatures
US9473510B2 (en) * 2015-02-25 2016-10-18 Guardtime IP Holdings, Ltd. System and method for location verification
CN106533536B (zh) * 2016-11-07 2019-07-26 北京航空航天大学 极地轨道低轨道卫星网络ip编址方法及装置
WO2018129838A1 (zh) * 2017-01-11 2018-07-19 华为技术有限公司 一种定位方法、终端及服务器
CN107509203A (zh) * 2017-08-23 2017-12-22 哈尔滨工业大学 一种基于动态频谱分配的融合星地系统频率共享方法及系统
US10560261B1 (en) * 2018-05-24 2020-02-11 DeepTruth, LLC Systems and techniques for capture of trusted media data
US11683180B1 (en) * 2018-05-24 2023-06-20 Swear Inc. Protecting digital media with nested hashing techniques
CN108881029B (zh) 2018-06-07 2020-10-16 北京邮电大学 基于星地解耦的低轨卫星网络编址和路由方法及系统
EP3621255A1 (en) * 2018-09-06 2020-03-11 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Gateway, user terminal, methods for operating the same and wireless communication network
AT522277B1 (de) * 2019-03-26 2021-11-15 Frequentis Ag Verfahren zur paketweisen Übermittlung von Daten
EP3751908B1 (en) * 2019-06-14 2022-02-16 Ofinno, LLC Non-access stratum connection handling in ntn
US11483789B2 (en) * 2019-08-02 2022-10-25 Ofinno, Llc Geographical zone-based registration area tracking
US11641564B2 (en) * 2019-08-16 2023-05-02 Ofinno, Llc Flexible zone-based registration area tracking in a wireless network
CN113395115B (zh) * 2020-03-11 2022-12-27 华为技术有限公司 一种光载无线通信系统和非线性补偿方法
CN113703005B (zh) * 2020-05-21 2023-05-02 华为技术有限公司 卫星网络中定位的方法和通信装置
US20220046424A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Systems and methods for supporting location and country determination for 5g satellite access
US12095545B2 (en) * 2020-09-18 2024-09-17 Qualcomm Incorporated 5G base stations supporting satellite wireless access by user equipments
US11477632B2 (en) * 2021-02-17 2022-10-18 Qualcomm Incorporated Systems and techniques to support cell identification for satellite wireless access
US12041570B2 (en) * 2021-03-31 2024-07-16 Qualcomm Incorporated Systems and methods to improve registration of a user equipment with satellite wireless access
US11671892B2 (en) * 2021-05-12 2023-06-06 At&T Intellectual Property I, L.P. Device and method for evaluating target cells for aerial equipment communicating over a terrestrial network
US11907929B2 (en) * 2022-02-08 2024-02-20 Geotoll, Inc. Method and system for detecting multiple users traveling together and charging a single toll among the users automatically

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265879A1 (en) * 2009-04-17 2010-10-21 Viasat, Inc. Multi-satellite architecture
CN102118456A (zh) * 2011-01-19 2011-07-06 中国科学技术大学 一种基于地理位置信息的天地网络混合编址方法
CN107580365A (zh) * 2016-07-05 2018-01-12 中兴通讯股份有限公司 卫星通信的区域管理方法和系统
CN106549703A (zh) * 2016-10-26 2017-03-29 北京邮电大学 天地一体化网络中低轨卫星通信的方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671449A (zh) * 2020-12-09 2021-04-16 中国电子科技集团公司第五十四研究所 一种基于地面规划路由区的低轨卫星通信寻呼方法
CN115776329A (zh) * 2022-11-17 2023-03-10 云南电网有限责任公司 一种星间链路构建方法及系统

Also Published As

Publication number Publication date
US11968028B2 (en) 2024-04-23
CN111327354A (zh) 2020-06-23
EP3886337A1 (en) 2021-09-29
CN111327354B (zh) 2022-01-11
US20210306069A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020119494A1 (zh) 卫星网络通信方法、相关装置及系统
EP4055726B1 (en) Systems and methods for supporting fixed tracking areas and fixed cells for mobile satellite wireless access
CN106549703B (zh) 天地一体化网络中低轨卫星通信的方法及系统
US7751835B2 (en) Non-circular paging areas
KR101572215B1 (ko) 네트워크 시스템
WO2021004233A1 (zh) 卫星通信方法、装置、终端设备、卫星及可读存储介质
CN102118456B (zh) 一种基于地理位置信息的天地网络混合编址方法
CN118019066A (zh) 一种定位资源协调方法、装置、网络节点、终端及基站
WO2017088837A1 (zh) 分层网络的注册方法、装置和系统
WO2021233059A1 (zh) 卫星网络中定位的方法和通信装置
WO2021092503A1 (en) Systems and methods for supporting fixed tracking areas and fixed cells for mobile satellite wireless access
US11431405B2 (en) Method for packet transmission of data
JP2024526818A (ja) 方法、基地局、コアネットワークノード
CN113852410A (zh) 用于低轨网络宽带用户空闲态场景的星地标签路由方法
CN116017617A (zh) 一种卫星网络中的控制路由方法、装置及系统
CN114827004B (zh) 一种适用于星上ip路由交换的rip协议优化方法
JP4879479B2 (ja) 位置情報に基づくipアドレスを有する受信パケット判定方法、並びに装置及びプログラム
CN115720108A (zh) 一种通信方法和通信装置
JP2005184482A (ja) Ipアドレスに地理範囲情報を有するパケットの経路制御装置、経路制御プログラム及び経路制御方法
CN113973373A (zh) 一种波束信息指示方法及装置
US20050117535A1 (en) Information transfer method, information transfer system, and base station
JP7552771B1 (ja) 基地局、通信経路設定方法、及びプログラム
JP2001177463A (ja) 周回衛星を利用した衛星通信システム
CN102215451B (zh) 定位业务的处理方法及系统
WO2023210547A1 (en) Method, user equipment and network node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895553

Country of ref document: EP

Effective date: 20210623