WO2020119468A1 - 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法 - Google Patents

一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法 Download PDF

Info

Publication number
WO2020119468A1
WO2020119468A1 PCT/CN2019/121539 CN2019121539W WO2020119468A1 WO 2020119468 A1 WO2020119468 A1 WO 2020119468A1 CN 2019121539 W CN2019121539 W CN 2019121539W WO 2020119468 A1 WO2020119468 A1 WO 2020119468A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
outlet channel
sleeve
grouting
grout
Prior art date
Application number
PCT/CN2019/121539
Other languages
English (en)
French (fr)
Inventor
顾盛
潘永东
童寿兴
吴玉龙
张军
蒋向于
Original Assignee
昆山市建设工程质量检测中心
侬泰轲(昆山)检测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山市建设工程质量检测中心, 侬泰轲(昆山)检测科技有限公司 filed Critical 昆山市建设工程质量检测中心
Publication of WO2020119468A1 publication Critical patent/WO2020119468A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids

Definitions

  • the invention relates to the technical field of assembled construction, in particular to a method for detecting the grouting fullness of a sleeve along a single-sided ultrasonic method along a slurry outlet channel.
  • Prefabricated building means that some or all components and parts of the building are produced in a prefabrication plant, and then transported to the construction site, and the components are assembled using reliable connection methods and installation machinery to form a building with design and use functions.
  • the prefabricated structure Compared with the construction of cast-in-place structures, the prefabricated structure has the advantages of convenient construction, fast project progress, low environmental impact, and easy to ensure the quality of building components.
  • the prefabricated structure is widely used in industrial buildings in my country. In the past decade, it has been vigorously promoted and applied in civil buildings, especially residential buildings.
  • Grouting sleeve connection is one of the main connection methods of steel bars in prefabricated concrete structures.
  • This technology uses special grouting sleeves and high-strength non-shrinkage grouting to achieve steel bar connections. It has fast construction, simple stress, little additional stress, and is applicable. Wide range, easy to absorb construction errors and other advantages. Since the number of joints in the same section of the member is 100%, and it is generally in the important stress part of the member, the quality of the connection is very important. If the grouting inside the grouting sleeve is not full, the steel bar connection will not meet the design expectations. Performance may bring serious structural safety hazards.
  • the existing sleeve grouting fullness detection methods mainly include three categories: embedded detection methods, non-destructive detection methods, and local damage detection methods.
  • the pre-embedded detection method needs to set pre-embedded parts during the grouting construction process, such as the pre-embedded sensor method and the pre-embedded steel wire drawing method, to determine whether the grouting is full by detecting whether the pre-embedded parts inserted into the outlet of the sleeve are covered by the grouting material Sex. Affected by the position of the steel bar, when the steel bar is offset and close to the inner wall of the sleeve outlet side, the embedded part cannot extend into the sleeve cavity; the cost of the embedded part of the embedded sensor method is higher.
  • the hardening of the residual slurry on the sensor core element may lead to misjudgment; the embedded wire drawing method is left too long outside the surface of the prefabricated component due to the wire drawing section, which is susceptible to on-site disturbance or damage.
  • the biggest problem with the embedded inspection method is that the project cannot be randomly sampled and inspected, so that the parts where the embedded parts are installed can be finely constructed, and the quality of the remaining parts is more likely to be out of control.
  • the non-destructive testing method is to directly test on the surface of the prefabricated component without taking any pre-embedding measures, such as the impact echo method, X-ray method, ultrasonic CT method, and traditional ultrasonic method.
  • the impact echo method can find that the grouting is not full to a certain extent, but there is an error between the quantitative results and the actual situation, and overall it is still immature; the X-ray method is limited to the penetrating ability of the portable X-ray machine and is currently only applicable
  • the local damage detection method is to remove the concrete protective layer on the outside of the sleeve or the concrete around the sleeve and then test.
  • the researchers have successively proposed the local damage X-ray detection method, sleeve surface ultrasound and sleeve surface for the limitations of the non-destructive detection method. Excitation method.
  • the local damage X-ray detection method is to enable the imaging plate to be placed on the back of the sleeve, and the range of chiseling concrete is large.
  • the technical problem to be solved by the present invention is to provide a method for detecting the fullness of the sleeve grouting along the slurry outlet channel by one-sided ultrasonic method, which can detect the fullness of the sleeve grouting non-destructively, quickly and effectively.
  • the present invention provides a method for detecting the grouting fullness of a sleeve along a single-sided ultrasonic method along a slurry outlet channel.
  • a slurry outlet channel is provided between the slurry outlet of the sleeve and the slurry outlet of the surface of the prefabricated member ,
  • the end surface of the grout in the pulp outlet channel close to the surface of the prefabricated member is set as an ultrasonic detection surface, the ultrasonic detection surface has a flat surface, and the pulp outlet channel is perpendicular to the ultrasonic detection surface;
  • An ultrasonic transducer is arranged on the ultrasonic detection surface, and the ultrasonic transducer can simultaneously excite and receive ultrasonic waves on the ultrasonic detection surface;
  • the ultrasonic wave After the ultrasonic transducer excites the ultrasonic wave, the ultrasonic wave propagates along the pulp outlet to the back of the prefabricated component.
  • the sleeve When the sleeve is filled with grouting, there is no cavity area within the propagation path of the ultrasonic wave.
  • the ultrasonic wave is reflected on the back of the prefabricated component.
  • the grout When the grout is not full, there is a cavity area within the range of the propagation path of the ultrasonic wave, and the ultrasonic wave is scattered at the end of the grout defect in the slurry outlet channel close to the sleeve side; the ultrasonic transducer receives the echo signal of the ultrasonic wave;
  • the pulp outlet channel is perpendicular to the surface of the prefabricated member, and the pulp outlet channel is formed by a PVC rigid straight pipe.
  • a slurry outlet channel positioning mold is added above the sleeve, and the pulp outlet channel The positioning mold positions the PVC rigid straight pipe, and aligns the slurry outlet channel with the surface of the prefabricated component vertically.
  • the ultrasonic testing surface is located inside the pulp outlet on the surface of the prefabricated member, and the flat ultrasonic testing surface is obtained in the following manner:
  • the pulp outlet on the surface of the prefabricated component is blocked by a sealing plug.
  • the surface of the sealing plug on the side of the plug end should be a flat surface.
  • the sealing plug is a mold that forms a flat ultrasonic testing surface.
  • the diameter of the ultrasonic transducer is 15 mm or less, the length is 10 mm or more, and the frequency is 1 MHz or less.
  • the obvious degree of the echo signal includes the amplitude of the echo signal.
  • an obvious echo signal appears in the area corresponding to the pulp outlet channel, and the amplitude of the echo signal exceeds the air test time.
  • the noise amplitude of this position is twice, that is, the ultrasonic wave is judged to be scattered at the end of the grouting defect on the side of the sleeve in the slurry outlet channel, thereby obtaining the conclusion that the grouting is not full.
  • the echo signal is displayed through the waveform display screen, and the area range corresponding to the pulp hole on the acoustic time coordinate axis of the waveform display screen is determined by the following steps:
  • Step 1) According to the buried position of the sleeve in the prefabricated component, determine the length L 1 of the pulp hole;
  • Step 2 Use a measuring tool to measure the vertical distance L 2 between the ultrasonic testing surface and the surface of the prefabricated component;
  • Step 4) Convert according to the reference sound velocity v and the change coefficient ⁇ of the sound velocity propagating in the grout;
  • the ultrasonic wave When the sleeve grouting is not full, the ultrasonic wave is scattered through the grouting defect end near the sleeve side in the slurry outlet channel. After the scattering, the ultrasonic transducer receives the echo signal, and the ultrasonic wave goes back and forth to the slurry body under the critical length
  • the required time t 2L/( ⁇ v), when ⁇ takes the minimum value ⁇ min in its variation range, the corresponding sound velocity is the lowest, and the maximum sound time required for the ultrasonic to return to the slurry under the critical length:
  • the starting point of the noise area on the acoustic time coordinate axis of the waveform display screen to t max is the area range corresponding to the pulp outlet channel.
  • the grouting material in the sleeve is set and hardened for 3 days or more.
  • a three-dimensional stereoscopic endoscope is used to quantitatively test the fullness of the grouting. The steps are as follows:
  • Step 1) Use the drilling equipment to drill along the pulp hole and make the detection hole;
  • Step 2) Every 20mm-30mm, pause operation, use cleaning equipment to clean the grout debris and powder in the detection hole;
  • Step 3 When the distance from the outlet of the sleeve is less than 20mm, slow down the drilling speed, every 3mm-5mm, pause the operation, use the cleaning equipment to clean the grout debris and powder in the detection channel, observe the drilling Advance the situation until the detection hole penetrates;
  • Step 4) Send the side-view measuring lens of the three-dimensional stereoscopic endoscope into the sleeve cavity from the detection hole to observe downward, measure the length of the grouting defect area, and then convert the length of the grouting defect area to obtain the grouting fullness.
  • the present invention reduces the medium environment in the ultrasonic propagation path to a single grouting under the condition that the sleeve grouting is not full by transmitting ultrasonic waves along the slurry outlet and receiving ultrasonic echoes at the transmitting point.
  • the position and strength of the echo signal are used to judge the grouting fullness, which is not disturbed by other media in the prefabricated components, so that the ultrasonic method can detect the grouting fullness from impossible to possible.
  • the detection method of the present invention is not limited by the spatial position of the prefabricated member and the arrangement of the sleeve. As long as there is a single-side operation surface, the detection can be performed, which solves the difficulty of detecting the outer wall, and the detection speed is fast and the efficiency is high ;
  • the detection method of the present invention is a non-destructive detection method, which will not cause damage to the connecting parts of the components, and the clogging of the pulp outlet seal can be used as a forming mold for the ultrasonic detection surface, without increasing any detection cost.
  • FIG. 1 is a schematic structural view of a reinforced sleeve grouting connection of the present invention
  • FIG. 3 is a schematic diagram of ultrasonic detection of the state of grouting under fullness of the present invention.
  • Fig. 6 is an A-scan waveform diagram of the ultrasonic transducer test of the present invention when the grout is full.
  • Figure 1 shows a schematic structural view of the grouting connection of the steel sleeve, including the prefabricated member 1, the sleeve 2 pre-buried in the prefabricated member, the upper and lower ends of the sleeve are inserted into the upper and lower steel bars, and the sleeve outlet 3
  • a grout hole 5 is provided between the grout port 4 on the surface of the prefabricated member
  • a grout hole 8 is provided between the sleeve grout port 6 and the grout port 7 on the surface of the prefabricated member.
  • the grout hole 8 is filled into the high Strength non-shrinkage grouting 9, the grouting is stopped after the outgoing grouting flows out of the slurry outlet, the grouting coagulates and hardens to achieve the connection between the upper and lower steel bars, and the fullness of the grouting material in the sleeve is related to the connection between the upper and lower steel bars Strength;
  • the end surface of the grout in the slurry outlet channel close to the surface of the prefabricated member is the ultrasonic detection surface 10.
  • an embodiment of the method for detecting the grouting sufficiency of a sleeve along a single-sided ultrasonic method of the present invention is to set the grout end surface close to the surface of the prefabricated member in the outgoing channel
  • the ultrasonic detection surface has a flat surface, which is convenient for the abutment of the end of the ultrasonic transducer, so that the ultrasonic can effectively penetrate into the grout after using the coupling agent; wherein, the slurry outlet channel is perpendicular to the ultrasonic detection surface, By maintaining a vertical angle, the ultrasonic waves emitted by the ultrasonic transducer are sent along the axial direction of the pulp outlet channel, thereby ensuring that the echoes of the ultrasonic waves can also be transmitted back axially;
  • the grout in the sleeve usually coagulates and hardens and it takes more than or equal to 3 days to reach a certain strength, to ensure that the speed of ultrasonic wave propagation in the grout is close to the reference sound velocity v, which is about 4000m/s.
  • the ultrasonic transducer 11 is arranged on the ultrasonic detection surface, and the ultrasonic transducer has transmitting and receiving functions, that is, it can simultaneously excite and receive ultrasonic waves on the ultrasonic detection surface;
  • the ultrasonic wave After the ultrasonic transducer excites the ultrasonic wave, the ultrasonic wave propagates along the pulp outlet to the back of the prefabricated component.
  • the sleeve grouting When the sleeve grouting is full, there is no cavity area within the propagation path of the ultrasonic wave.
  • the ultrasonic wave is reflected on the back surface 12 of the prefabricated component.
  • the barrel grouting When the barrel grouting is not full, there is a cavity area 13 in the range of the propagation path of the ultrasonic wave, and the ultrasonic wave is scattered at the grouting defect end 14 near the sleeve side in the pulp outlet channel; the ultrasonic transducer receives the echo signal of the ultrasonic wave ;
  • the ultrasonic can only grouting in the slurry outlet channel close to the side of the sleeve cavity Scattering at the end surface will produce a significant echo signal;
  • the ultrasonic grouting is transmitted to the back of the prefabricated member and reflected back to the ultrasonic testing surface by the back of the prefabricated member.
  • multiple scattering and reflection occur at the interface between the grout and the steel bar, the grout and the sleeve, and the sleeve and the concrete.
  • the attenuation of the ultrasonic energy causes the echo signal to be weak. Therefore, the judgment of the echo signal can determine the fullness of the grout.
  • the obvious degree of the echo signal includes the amplitude of the echo signal.
  • an obvious echo signal appears in the area corresponding to the pulp outlet channel, and the amplitude of the echo signal exceeds the position noise during the air test.
  • the amplitude is 2 times, it is judged that the ultrasonic waves are scattered at the end of the grout defect in the slurry outlet channel close to the sleeve, thus obtaining the conclusion that the grout is not full.
  • a GTZQ416 model sleeve of a certain brand as an example, the sleeve radius is 24mm, the sleeve is arranged in a plum blossom pile in the prefabricated member, and the outlet hole is perpendicular to the surface of the prefabricated member, measured The sleeve is located at the distal end of the front surface of the prefabricated member on the side of the ultrasonic detection surface, and the vertical distance of the center line of the sleeve from the back surface of the prefabricated member is 55 mm.
  • the echo signal is mainly displayed through the waveform display screen, and the area corresponding to the pulp hole on the acoustic time coordinate axis of the waveform display screen is determined by the following steps:
  • the coefficient ⁇ has a value range of 0.9-1.1.
  • FIG. 4 is the A-scan waveform of the ultrasonic transducer during the air measurement
  • FIG. 5 it can be seen that an obvious echo signal appears at the position of 33 ⁇ s on the acoustic time coordinate axis in the area corresponding to the pulp hole, and the amplitude of the echo signal exceeds twice the amplitude of the position noise during the air test. Therefore, it is determined that the grouting is not full.
  • the relative position of the pulp outlet channel and the surface of the prefabricated member is adjusted vertically.
  • the pulp outlet channel is formed by a PVC rigid straight pipe.
  • the pulp outlet positioning mold locates the PVC rigid straight pipe, and the pulp outlet channel is vertically aligned with the surface of the prefabricated component.
  • the ultrasonic testing surface is located on the inside of the pulp outlet on the surface of the prefabricated component.
  • the flat ultrasonic testing surface is obtained by: before the grouting is completed, the pulp outlet on the surface of the prefabricated component is blocked by sealing, and the sealing plug is located in the plug.
  • the surface on the side of the end should be a flat surface, and the sealing block should be a mold that forms a flat ultrasonic testing surface.
  • the blocked surface is in contact with the grout, and the to-be-grouted slurry will solidify and harden to form the required ultrasonic testing surface.
  • the ultrasonic detection surface is located inside the pulp outlet on the surface of the prefabricated member, and the inner diameter of the pulp outlet channel is generally small, the parameters of the ultrasonic transducer are limited, the diameter is less than or equal to 15mm, the length is greater than or equal to 10mm, the frequency Less than or equal to 1MHz to meet the testing needs of conventional sleeve models.
  • a three-dimensional stereoscopic endoscope can be used for quantitative testing of the fullness of the grouting. The steps are as follows:
  • the side-view measuring lens of the three-dimensional stereoscopic endoscope is sent into the sleeve cavity from the detection hole to observe downward, the length of the grouting defect area is measured, and then the grouting fullness is converted according to the length of the grouting defect area .

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种沿着出浆孔道(5)单侧超声法检测套筒(2)灌浆饱满性的方法,将出浆孔道(5)内靠近预制构件(1)表面一侧的灌浆料端面设置成具有平整的表面且与出浆孔道(5)垂直的超声检测面(10)。检测步骤包括在超声检测面(10)布置能够同时激发超声波和接收超声波的超声换能器(11);超声换能器(11)激发超声波后,超声波沿着出浆孔道(5)向预制构件(1)背面传播,当套筒(2)灌浆饱满时,超声波在预制构件(1)背面发生反射,当套筒(2)灌浆不饱满时,超声波在出浆孔道(5)内靠近套筒(2)一侧的灌浆料缺损端部(14)发生散射;超声换能器(11)接收超声波的回波信号;根据出浆孔道(5)对应的区域范围内是否有明显的回波信号判断灌浆饱满性。能够无损、快速且有效的检测套筒(2)灌浆是否饱满。

Description

一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法 技术领域
本发明涉及装配式建筑技术领域,具体涉及一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法。
背景技术
预制装配式建筑是指建筑的部分或全部构件及部品在预制厂生产完成,再运输到施工现场,采用可靠的连接方式和安装机械将构件组装起来,形成具备设计使用功能的建筑物。与现浇结构施工相比,预制装配式结构具有施工方便、工程进度快、周围环境影响小、建筑构件质量容易得到保证等优点。装配式结构在我国的工业建筑中应用较多,近十年来在民用建筑特别是住宅建筑中大力推广应用。
灌浆套筒连接是目前预制装配式混凝土结构中钢筋主要连接方式之一,该技术通过专用灌浆套筒和高强度无收缩灌浆料实现钢筋连接,具有施工快捷、受力简单、附加应力小、适用范围广、易吸收施工误差等优点。因该连接方式在构件同一个截面的接头数量是100%,且一般处于构件重要受力部位,故连接质量至关重要,如果灌浆套筒内部灌浆不饱满,钢筋连接将达不到设计的预期性能,则可能带来严重的结构安全隐患。
在施工过程中,灌浆套筒内部漏浆、少灌、堵塞的情况时有发生,灌浆套筒连接质量不符合要求的工程问题也有所报道,工程验收时对灌浆饱满度问题尤为关注。由于钢筋套筒灌浆连接构造复杂又属于隐蔽工程,灌浆饱满度检测是国内外公认的难题。
目前,现有的套筒灌浆饱满度检测方法主要包括三大类:预埋检测方法、无损检测方法、局部破损检测方法。
预埋检测方法需要在灌浆施工过程中设置预埋件,如预埋传感器法、预埋钢丝拉拔法,通过检测插入套筒出浆口内的预埋件是否被灌浆料包覆来判断灌浆饱满性。受钢筋位置的影响,当钢筋偏置且紧贴套筒出浆口一侧的内壁时,预埋件无法伸入套筒内腔;预埋传感器法的预埋件成本较高,预埋后无法回收利用,且回浆后,传感器核心元件上残留浆体的硬化可能导致误判;预埋钢丝拉拔法因钢丝拉拔段在预制构件表面外留置过长,检测前易受到现场扰动或破坏。此外,预埋检测方法的最大问题是对工程无法进行随机抽样检测,致使设置预埋件的部位能得到精细施工,而其余部位的质量更易失控的不良后果。
无损检测方法是事先不采取任何预埋措施,直接在预制构件表面进行测试,如冲击回波法、X射线法、超声CT法、传统超声法。冲击回波法在一定程度上可以发现灌浆不饱满的情况,但定量结果与实际情况存在误差,总体而言尚不成熟;X射线法受限于便携式X射线机的穿透能力,目前只适用于套筒居中或梅花桩布置的200mm厚预制剪力墙套筒灌浆饱满度检测,且检测时须在辐射范围内进行人员清场;超声CT法虽可方便快捷地定性检测,但若套筒与外部混凝土之间或套筒与内部灌浆料之间存在微小的脱空,就会导致误判,将灌浆饱满的套筒测成空套筒;传统超声法是在预制构件两侧的混凝土表面进行超声对测,由于受到混凝土、钢筋、套筒、灌浆料、保温层等多因素耦合影响,尤其是超声波极可能沿套筒壁绕行而进入不了套筒内部,导致该项无损检测技术进展缓慢,现有成果尚不能满足工程使用要求。
局部破损检测方法是将套筒外侧混凝土保护层或套筒周围混凝土剔除后再进行检测,研究人员针对无损检测方法的局限性相继提出了局部破损X射线检测法、套筒表面超声及套筒表面激振法。局部破损X射线检测法为使套筒背面能够放置成像板,剔凿混凝土的范围大,现场不宜操作,且X射线法的其他局限性仍然存在;套筒表面超声及套筒表面激振法需要针对不同规格型号的套筒 做预先标定试验,效率较低,且人为操作因素影响较大。
因此,亟需研发一种能够快速、有效地检测套筒灌浆是否饱满的无损检测方法。
发明内容
本发明要解决的技术问题是提供一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,能够无损、快速且有效的检测套筒灌浆是否饱满。
为了解决上述技术问题,本发明提供了一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,在套筒出浆口及预制构件表面出浆口之间设置有出浆孔道,将出浆孔道内靠近预制构件表面一侧的灌浆料端面设置成超声检测面,所述超声检测面具有平整的表面,所述出浆孔道与超声检测面垂直设置;
包含以下检测步骤:
在超声检测面上布置超声换能器,所述超声换能器在超声检测面上能够同时激发超声波和接收超声波;
超声换能器激发超声波后,超声波沿着出浆孔道向预制构件背面传播,当套筒灌浆饱满时,在超声波的传播路径范围内无空腔区,超声波在预制构件背面发生反射,当套筒灌浆不饱满时,在超声波的传播路径范围内有空腔区,超声波在出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射;所述超声换能器接收超声波的回波信号;
根据出浆孔道对应的区域范围内是否有明显的回波信号来判断灌浆饱满性。
进一步的,所述出浆孔道与预制构件表面垂直,所述出浆孔道由PVC硬直管制备形成,在预制构件制作过程中,通过在套筒上方增设出浆孔道定位模具,所述出浆孔道定位模具定位PVC硬直管,将出浆孔道与预制构件表面垂直校准。
进一步的,所述超声检测面位于预制构件表面出浆口的内侧,平整的超声检测面通过以下方式获得:
灌浆结束前,在预制构件表面出浆口通过封堵塞进行封堵,封堵塞位于塞入端一侧的表面应为平面,所述封堵塞为形成平整超声检测面的模具。
进一步的,所述超声换能器直径小于等于15㎜,长度大于等于10㎜,频率小于等于1MHz。
进一步的,所述回波信号的明显程度包括该回波信号的振幅大小,当检测时在出浆孔道对应的区域范围内,出现明显的回波信号,且回波信号的振幅超过空测时该位置噪声幅度的2倍,即判定超声波在出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射,由此得到灌浆不饱满的结论。
进一步的,回波信号通过波形显示屏进行显示,波形显示屏的声时坐标轴上出浆孔道对应的区域范围由如下步骤确定:
步骤1)根据套筒在预制构件内的埋设位置,确定出浆孔道的长度L 1
步骤2)使用量具测量超声检测面到预制构件表面的垂直距离L 2
步骤3)根据步骤1)与步骤2)计算套筒灌浆不饱满时出浆孔道内浆体的临界长度L,其中L=L 1-L 2
步骤4)根据超声波在灌浆料中传播的参考声速v和声速变化系数β进行换算;
当套筒灌浆不饱满时,超声波经过出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射,散射后,超声换能器接收到回波信号,超声波往返临界长度下的浆体所需的时间t=2L/(β·v),当β取其变化范围内的最小值β min时,对应的声速最低,超声波往返临界长度下的浆体所需的最大声时:
t max=2L/(β min·v);
波形显示屏的声时坐标轴上噪声区起点至t max即为出浆孔道对应的区域范围。
进一步的,在检测前,套筒中的灌浆料凝结硬化大于等于3天。
进一步的,当判定灌浆不饱满时,采用三维立体测量内窥镜进行灌浆饱满度定量检验,步骤如下:
步骤1)使用钻孔设备顺着出浆孔道进行钻孔,制作检测孔道;
步骤2)每前进20㎜-30㎜,暂停操作,使用清理设备对检测孔道内的灌浆料碎屑和粉末进行清理;
步骤3)在距离套筒出浆口小于20㎜时,减缓钻进速度,每前进3㎜-5㎜,暂停操作,使用清理设备对检测通道内的灌浆料碎屑和粉末进行清理,观察钻进情况,直至检测孔道贯穿;
步骤4)将三维立体测量内窥镜的侧视测量镜头从检测孔道送入套筒内腔往下观测,测出灌浆缺陷区的长度,再根据灌浆缺陷区的长度换算得到灌浆饱满度。
本发明的有益效果:
1、本发明通过沿着出浆孔道发射超声波并在发射点接收超声回波的方式,在套筒灌浆不饱满的工况下,将超声波传播路径中的介质环境精简为单一的灌浆料,根据回波信号的位置及强弱来判断灌浆饱满性,不受预制构件内其他介质的干扰,使超声波法检测灌浆饱满性从不可能变为可能。
2、本发明的检测方法不受预制构件空间位置、套筒布置方式的限制,只要有单侧的操作面,即可进行检测,解决了外墙难以检测的困扰,且检测速度快、效率高;
3、本发明的检测方法是一种无损检测方法,对构件连接部位不会造成损害,且出浆口封堵塞可兼做超声检测面的成型模具,不会增加任何检测成本。
附图说明
图1是本发明钢筋套筒灌浆连接的结构示意图;
图2是本发明灌浆饱满状态超声检测示意图;
图3是本发明灌浆不饱满状态超声检测示意图;
图4是本发明超声换能器空测时的A扫波形图;
图5是本发明在灌浆不饱满时超声换能器测试的A扫波形图;
图6是本发明在灌浆饱满时超声换能器测试的A扫波形图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
图1给出了钢筋套筒灌浆连接的结构示意图,包括预制构件1,预埋在预制构件内的套筒2,套筒的上下端分别插入上部钢筋和下部钢筋,在套筒出浆口3及预制构件表面出浆口4之间设置有出浆孔道5,在套筒灌浆口6及预制构件表面灌浆口7之间设置有灌浆孔道8,进行灌浆连接时,通过灌浆孔道8灌入高强度无收缩灌浆料9,待定灌浆料从出浆孔道流出后停止灌浆,灌浆料凝结硬化后实现上部钢筋和下部钢筋的连接,套筒内灌浆料的饱满程度关系到上部钢筋和下部钢筋的连接强度;在本申请中,出浆孔道内靠近预制构件表面一侧的灌浆料端面即为超声检测面10。
参照图2和图3所示,本发明的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法的一实施例,将出浆孔道内靠近预制构件表面一侧的灌浆料端面设置成超声检测面,超声检测面具有平整的表面,便于超声换能器端部的抵接, 以使得采用耦合剂后超声波能有效穿入灌浆料;其中,出浆孔道与超声检测面垂直设置,通过保持垂直的角度,使得超声换能器发出的超声波是沿着出浆孔道的轴向进行发送,从而保证超声波的回波也能够轴向回传;
在检测前,一般套筒中的灌浆料凝结硬化且达到一定强度需要大于等于3天,保证超声波在灌浆料内传播的速度接近参考声速v,参考声速v约为4000m/s。
具体的,包含以下检测步骤:
先在超声检测面上布置超声换能器11,超声换能器具有发射和接收功能,即在超声检测面上能够同时激发超声波和接收超声波;
超声换能器激发超声波后,超声波沿着出浆孔道向预制构件背面传播,当套筒灌浆饱满时,在超声波的传播路径范围内无空腔区,超声波在预制构件背面12发生反射,当套筒灌浆不饱满时,在超声波的传播路径范围内有空腔区13,超声波在出浆孔道内靠近套筒一侧的灌浆料缺损端部14发生散射;超声换能器接收超声波的回波信号;
根据出浆孔道对应的区域范围内是否有明显的回波信号来判断灌浆饱满性;其中,当套筒灌浆不饱满时,超声波只能在出浆孔道内灌浆料靠近套筒内腔一侧的末端面处发生散射,会产生明显的回波信号;当套筒灌浆饱满时,灌浆超声波在向预制构件背面传播及经预制构件背面反射回到超声检测面的过程中,超声测距较长加之传播途中经灌浆料与钢筋界面、灌浆料与套筒交界面、套筒与混凝土界面发生多次散射与反射,超声波的能量衰减导致回波信号会比较弱。因此对回波信号的判断能够确定灌浆饱满性。
其中,回波信号的明显程度包括该回波信号的振幅大小,当检测时在出浆孔道对应的区域范围内,出现明显的回波信号,且回波信号的振幅超过空测时该位置噪声幅度的2倍时,即判定超声波在出浆孔道内靠近套筒一侧的灌浆料 缺损端部发生散射,由此得到灌浆不饱满的结论。
以200㎜厚的预制剪力墙,某品牌GTZQ416型号的套筒为例,套筒半径为24㎜,套筒在预制构件内成梅花桩布置,出浆孔道与预制构件表面垂直设置,所测套筒位于超声检测面一侧的预制构件正面的远端,套筒中心线距离预制构件背面的垂直距离55㎜。
回波信号主要通过波形显示屏进行显示,波形显示屏的声时坐标轴上出浆孔道对应的区域范围由如下步骤确定:
根据套筒在预制构件内的埋设位置,可计算得到出浆孔道的长度L 1=200-55-24=121㎜,超声检测面距离预制构件表面的垂直距离L 2经测量为11㎜,则套筒灌浆不饱满时出浆孔道内浆体的临界长度L=L 1-L 2=121-11=110㎜,超声波在灌浆料中传播的参考声速v=4000m/s,通常情况下声速变化系数β的取值范围为0.9-1.1,当β取其变化范围内的最小值β min=0.9时,对应的声速最低,超声波往返临界长度下的浆体所需的最大声时t max=2L/(β min·v)=(2×0.11)/(0.9×4000)·10 6=61μs,波形显示屏的声时坐标轴上噪声区起点至61μs即为出浆孔道对应的区域范围。
其中,参照图4所示,为超声换能器空测时的A扫波形,可以清楚的看到波形的波动幅度很小,且相对稳定。参照图5所示,可以看到出浆孔道对应的区域范围内在声时坐标轴上33μs位置出现了明显的回波信号,且回波信号的幅度超过空测时该位置噪声幅度的2倍,因此判定为灌浆不饱满。进一步,可以根据超声波在灌浆料中传播的参考声速计算出套筒灌浆不饱满时出浆孔道内浆体的实际长度L 3,L 3=(4000×33·10 -6)/2=0.066m,即出浆孔道内浆体的实际长度约为66mm,小于套筒灌浆不饱满时出浆孔道内浆体的临界长度110mm,说明当套筒内灌浆料发生漏浆而不饱满时,出浆孔道内的灌浆料也会部分回流至套筒内腔。
参照图6所示,出浆孔道对应的区域范围内未出现明显的回波信号,且其他区域(声时坐标轴上61μs右侧区域)也未发现明显的回波信号出现,因此判定为灌浆饱满,并由此说明当灌浆饱满时,超声波在向预制构件背面传播及经预制构件背面反射回到超声检测面的过程中,超声测距较长加之传播途中经灌浆料与钢筋界面、灌浆料与套筒交界面、套筒与混凝土界面发生多次散射与反射,超声波的能量衰减导致回波信号比较弱。
在一实施例中,在制作超声检测面前,先将出浆孔道与预制构件表面相对位置调节垂直,出浆孔道由PVC硬直管制备形成,在预制构件制作过程中,通过在套筒上方增设出浆孔道定位模具,出浆孔道定位模具定位PVC硬直管,将出浆孔道与预制构件表面垂直校准。
主要的,超声检测面位于预制构件表面出浆口的内侧,平整的超声检测面通过以下方式获得:灌浆结束前,在预制构件表面的出浆口通过封堵塞进行封堵,封堵塞位于塞入端一侧的表面应为平面,封堵塞为形成平整超声检测面的模具,封堵塞的平面与灌浆料抵接,待灌浆料凝结硬化形成所需的超声检测面。
由于超声检测面位于预制构件表面出浆口的内侧,且出浆孔道的内径一般较小,因此对超声换能器的参数做出限定,其直径小于等于15㎜,长度大于等于10㎜,频率小于等于1MHz,以满足常规套筒型号的检测需要。
在一实施例中,当判定灌浆不饱满时,可以采用三维立体测量内窥镜进行灌浆饱满度定量检验,步骤如下:
使用钻孔设备顺着出浆孔道进行钻孔,制作检测孔道;
先进行粗钻,每钻孔前进20㎜-30㎜时,暂停操作,使用清理设备对检测孔道内的灌浆料碎屑和粉末进行清理;
当距离套筒出浆口小于20㎜时,进行精钻,减缓钻进速度,每钻孔前进3㎜-5㎜时,暂停操作,使用清理设备对检测通道内的灌浆料碎屑和粉末进行清 理,观察钻进情况,直至检测孔道贯穿;通过精钻的方式能够避免粗钻情况下大量灌浆料碎屑和粉末进入套筒空腔区内,从而对后续灌浆饱满度定量检测造成困难;
钻孔结束后,将三维立体测量内窥镜的侧视测量镜头从检测孔道送入套筒内腔往下观测,测出灌浆缺陷区的长度,再根据灌浆缺陷区的长度换算得到灌浆饱满度。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

  1. 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,在套筒出浆口及预制构件表面出浆口之间设置有出浆孔道,其特征在于,将出浆孔道内靠近预制构件表面一侧的灌浆料端面设置成超声检测面,所述超声检测面具有平整的表面,所述出浆孔道与超声检测面垂直设置;
    包含以下检测步骤:
    在超声检测面上布置超声换能器,所述超声换能器在超声检测面上能够同时激发超声波和接收超声波;
    超声换能器激发超声波后,超声波沿着出浆孔道向预制构件背面传播,当套筒灌浆饱满时,在超声波的传播路径范围内无空腔区,超声波在预制构件背面发生反射,当套筒灌浆不饱满时,在超声波的传播路径范围内有空腔区,超声波在出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射;所述超声换能器接收超声波的回波信号;
    根据出浆孔道对应的区域范围内是否有明显的回波信号来判断灌浆饱满性。
  2. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,所述出浆孔道与预制构件表面垂直。
  3. 如权利要求2所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,所述出浆孔道由PVC硬直管制备形成,在预制构件制作过程中,通过在套筒上方增设出浆孔道定位模具,所述出浆孔道定位模具定位PVC硬直管,将出浆孔道与预制构件表面垂直校准。
  4. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,所述超声检测面位于预制构件表面出浆口的内侧,平整的超 声检测面通过以下方式获得:
    灌浆结束前,在预制构件表面出浆口通过封堵塞进行封堵,封堵塞位于塞入端一侧的表面应为平面,所述封堵塞为形成平整超声检测面的模具。
  5. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,所述超声换能器直径小于等于15㎜,长度大于等于10㎜,频率小于等于1MHz。
  6. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,所述回波信号的明显程度包括该回波信号的振幅大小,当检测时在出浆孔道对应的区域范围内,出现明显的回波信号,且回波信号的振幅超过空测时该位置噪声幅度的2倍,即判定超声波在出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射,由此得到灌浆不饱满的结论。
  7. 如权利要求2所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,回波信号通过波形显示屏进行显示,波形显示屏的声时坐标轴上出浆孔道对应的区域范围由如下步骤确定:
    步骤1)根据套筒在预制构件内的埋设位置,确定出浆孔道的长度L 1
    步骤2)使用量具测量超声检测面到预制构件表面的垂直距离L 2
    步骤3)根据步骤1)与步骤2)计算套筒灌浆不饱满时出浆孔道内浆体的临界长度L,其中L=L 1-L 2
    步骤4)根据超声波在灌浆料中传播的参考声速v和声速变化系数β进行换算;
    当套筒灌浆不饱满时,超声波经过出浆孔道内靠近套筒一侧的灌浆料缺损端部发生散射,散射后,超声换能器接收到回波信号,超声波往返临界长度下的浆体所需的时间t=2L/(β·v),当β取其变化范围内的最小值β min时,对 应的声速最低,超声波往返临界长度下的浆体所需的最大声时:
    t max=2L/(β min·v);
    波形显示屏的声时坐标轴上噪声区起点至t max即为出浆孔道对应的区域范围。
  8. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,在检测前,套筒中的灌浆料凝结硬化大于等于3天。
  9. 如权利要求1所述的沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法,其特征在于,当判定灌浆不饱满时,采用三维立体测量内窥镜进行灌浆饱满度定量检验,使用钻孔设备顺着出浆孔道进行钻孔,制作检测孔道,步骤如下:
    步骤1)每前进20㎜-30㎜,暂停操作,使用清理设备对检测孔道内的灌浆料碎屑和粉末进行清理;
    步骤2)在距离套筒出浆口小于20㎜时,减缓钻进速度,每前进3㎜-5㎜,暂停操作,使用清理设备对检测通道内的灌浆料碎屑和粉末进行清理,观察钻进情况,直至检测孔道贯穿;
    步骤3)将三维立体测量内窥镜的侧视测量镜头从检测孔道送入套筒内腔往下观测,测出灌浆缺陷区的长度,再根据灌浆缺陷区的长度换算得到灌浆饱满度。
PCT/CN2019/121539 2018-12-14 2019-11-28 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法 WO2020119468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811533201.2A CN109632948B (zh) 2018-12-14 2018-12-14 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法
CN201811533201.2 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020119468A1 true WO2020119468A1 (zh) 2020-06-18

Family

ID=66074085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121539 WO2020119468A1 (zh) 2018-12-14 2019-11-28 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法

Country Status (2)

Country Link
CN (1) CN109632948B (zh)
WO (1) WO2020119468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856201A (zh) * 2022-06-02 2022-08-05 昆山市建设工程质量检测中心 一种用于修复套筒灌浆缺陷的补浆孔道制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632948B (zh) * 2018-12-14 2019-11-26 昆山市建设工程质量检测中心 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法
CN113702504B (zh) * 2020-07-28 2023-06-20 广州建筑产业研究院有限公司 一种套筒灌浆饱满度检测方法及计算机设备
CN112098514B (zh) * 2020-09-15 2021-06-18 交通运输部公路科学研究所 基于点线体三层次定量判断预应力管道灌浆情况的方法
CN113219056B (zh) * 2021-05-06 2024-08-09 昆山匹希通检测科技有限公司 一种装配式混凝土结构套筒灌浆饱满性的超声检测方法
CN113092590B (zh) * 2021-05-17 2024-05-14 中国人民解放军63653部队 一种无临空面水泥塞干缩测量方法
CN113504135B (zh) * 2021-06-24 2022-04-05 昆山市建设工程质量检测中心 判断套筒出浆孔道内灌浆料受冲击时是否滑移的方法
CN113589295A (zh) * 2021-07-29 2021-11-02 浙江大学 一种基于声学测距的灌浆套筒监测装置及使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014451A (ja) * 2008-07-01 2010-01-21 Railway Technical Res Inst 連結手段の空隙の充填状態非破壊検査方法
CN102590347A (zh) * 2012-03-07 2012-07-18 重庆交通大学 预应力锚固结构体系砂浆注浆饱满度超声波检测装置、方法
CN106959341A (zh) * 2017-03-16 2017-07-18 福州大学 一种小样本容量的灌浆套筒密实性的超声波检测方法
CN107037123A (zh) * 2016-11-21 2017-08-11 上海同济建设工程质量检测站 一种灌浆料充盈度的检测方法
CN108802187A (zh) * 2018-08-03 2018-11-13 中国建筑科学研究院有限公司 基于套筒表面超声的灌浆饱满度检测方法及系统
CN108827825A (zh) * 2018-05-30 2018-11-16 广州建设工程质量安全检测中心有限公司 一种钢筋套筒中灌浆料密实度检测系统及检测方法
CN109632948A (zh) * 2018-12-14 2019-04-16 昆山市建设工程质量检测中心 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法
CN109702866A (zh) * 2019-01-29 2019-05-03 江苏科技大学 一种预制墙体制作模具及便于灌浆饱满性检测的墙体
CN110261477A (zh) * 2019-06-13 2019-09-20 侬泰轲(昆山)检测科技有限公司 超声收发处理模块、超声检测仪、以及对预制构件套筒灌浆饱满性进行检测的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD145961A1 (de) * 1979-09-28 1981-01-14 Juergen Brueckner Verfahren zur kontaktlosen kontrol e von gasen in behaeltern
GB2261901B (en) * 1991-08-05 1996-03-27 Michael John Radley Young Method and apparatus for removing grout and mortar
WO2013157977A1 (en) * 2012-04-19 2013-10-24 Esaulov Evgeny Igorevich An underwater self-propelled robotic system
CN106120877B (zh) * 2016-06-21 2018-08-21 中铁十八局集团第五工程有限公司 一种用于确保钻孔灌注桩中超声波正常检测的预处理方法
KR101877766B1 (ko) * 2016-07-20 2018-07-13 (주)엠에스플로우 초음파 활성탄 계면 측정 장치
CN107389797B (zh) * 2017-07-06 2020-07-21 上海市建筑科学研究院 一种预制剪力墙底部水平接缝灌浆缺陷的检测方法
CN108982535B (zh) * 2018-08-01 2019-03-19 昆山市建设工程质量检测中心 基于内窥镜三维尺寸测量技术的套筒灌浆饱满度检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014451A (ja) * 2008-07-01 2010-01-21 Railway Technical Res Inst 連結手段の空隙の充填状態非破壊検査方法
CN102590347A (zh) * 2012-03-07 2012-07-18 重庆交通大学 预应力锚固结构体系砂浆注浆饱满度超声波检测装置、方法
CN107037123A (zh) * 2016-11-21 2017-08-11 上海同济建设工程质量检测站 一种灌浆料充盈度的检测方法
CN106959341A (zh) * 2017-03-16 2017-07-18 福州大学 一种小样本容量的灌浆套筒密实性的超声波检测方法
CN108827825A (zh) * 2018-05-30 2018-11-16 广州建设工程质量安全检测中心有限公司 一种钢筋套筒中灌浆料密实度检测系统及检测方法
CN108802187A (zh) * 2018-08-03 2018-11-13 中国建筑科学研究院有限公司 基于套筒表面超声的灌浆饱满度检测方法及系统
CN109632948A (zh) * 2018-12-14 2019-04-16 昆山市建设工程质量检测中心 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法
CN109702866A (zh) * 2019-01-29 2019-05-03 江苏科技大学 一种预制墙体制作模具及便于灌浆饱满性检测的墙体
CN110261477A (zh) * 2019-06-13 2019-09-20 侬泰轲(昆山)检测科技有限公司 超声收发处理模块、超声检测仪、以及对预制构件套筒灌浆饱满性进行检测的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856201A (zh) * 2022-06-02 2022-08-05 昆山市建设工程质量检测中心 一种用于修复套筒灌浆缺陷的补浆孔道制备方法
CN114856201B (zh) * 2022-06-02 2023-09-29 昆山市建设工程质量检测中心 一种用于修复套筒灌浆缺陷的补浆孔道制备方法

Also Published As

Publication number Publication date
CN109632948A (zh) 2019-04-16
CN109632948B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2020119468A1 (zh) 一种沿着出浆孔道单侧超声法检测套筒灌浆饱满性的方法
CN108802187B (zh) 基于套筒表面超声的灌浆饱满度检测方法及系统
CN109470769B (zh) 一种超声反射法检测套筒灌浆饱满度的方法及系统
CN103424470B (zh) 一种钢管混凝土粘结状态超声波检测的方法
Beard Guided wave inspection of embedded cylindrical structures
CN108277926B (zh) 带检测孔的浆锚连接件灌浆饱满度检测方法
CN108978740A (zh) 基于分布式超声波传感器的钻孔桩质量检测方法
Shokouhi et al. Nondestructive detection of delamination in concrete slabs: Multiple-method investigation
GB2537906A (en) A method of identifying a material and/or condition of a material in a borehole
JP5491005B2 (ja) 連結手段の空隙の充填状態非破壊検査方法
CN101851936B (zh) 一种塑料衬管抽拔钢管超声波检测孔的施工方法
CN110879252B (zh) 一种声波检测混凝土结合面质量的方法
CN113219056B (zh) 一种装配式混凝土结构套筒灌浆饱满性的超声检测方法
KR100862028B1 (ko) 록볼트의 그라우팅 결함 측정 시스템 및 이를 이용한측정방법
CN109239183B (zh) 一种基于套筒表面超声波反射判断测点处无灌浆的方法
CN111156936B (zh) 基于干耦合超声检测技术的套筒内钢筋插入长度测量方法
Seshu et al. Non destructive testing of bridge pier-a case study
Kumar et al. Detection of concrete damage using ultrasonic pulse velocity method
He et al. Health monitoring of rock bolts using ultrasonic guided waves
Yanagihara et al. Development and application of non-destructive inspection for steel-concrete composite structures
Tinkey et al. Applications and limitations of impact echo scanning for void detection in posttensioned bridge ducts
Iyer et al. Ultrasonic imaging-A novel way to investigatecorrosion status in post-tensioned concrete mambers
Jung et al. Damage detection in concrete using Lamb waves
CN111595950B (zh) 一种声波检测混凝土结合面强度的方法
JPH04182568A (ja) コンクリート構造物の充填グラウトの介装状態検出方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895763

Country of ref document: EP

Kind code of ref document: A1