JPH04182568A - コンクリート構造物の充填グラウトの介装状態検出方法及び装置 - Google Patents

コンクリート構造物の充填グラウトの介装状態検出方法及び装置

Info

Publication number
JPH04182568A
JPH04182568A JP2308869A JP30886990A JPH04182568A JP H04182568 A JPH04182568 A JP H04182568A JP 2308869 A JP2308869 A JP 2308869A JP 30886990 A JP30886990 A JP 30886990A JP H04182568 A JPH04182568 A JP H04182568A
Authority
JP
Japan
Prior art keywords
grout
state
filling
concrete structure
steel rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2308869A
Other languages
English (en)
Other versions
JPH0768763B2 (ja
Inventor
Masayoshi Enozono
正義 榎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KENSETSU KIKAIKA KYOKAI
Original Assignee
NIPPON KENSETSU KIKAIKA KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KENSETSU KIKAIKA KYOKAI filed Critical NIPPON KENSETSU KIKAIKA KYOKAI
Priority to JP2308869A priority Critical patent/JPH0768763B2/ja
Publication of JPH04182568A publication Critical patent/JPH04182568A/ja
Publication of JPH0768763B2 publication Critical patent/JPH0768763B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、土木、建築工事におけるコンクリート構造
物に介設されたPC鋼棒周囲のシース内のグラウトの充
填状態等を非破壊的に測定する技術の分野に属する。
〈要旨の概要〉 而して、この出願の発明は山間の橋梁等の大型のコンク
リート構造物のプレストレスコンクリート部材に用いら
れているPC鋼棒周辺に於いて、シース内に充填されて
いるセメントモルタル等のグラウトの充填の有無状態、
或いは、充填後の経時的凝固状態、更には、腐蝕による
空隙やひび割れ発生等の状態を超音波等の弾性波を入力
し、その反射波を測定することにより該グラウトの介装
状態を経時的に連続的に、或いは、間欠的に検出する方
法、及び、該方法に直接使用する装置に関する発明であ
り、特に、グラウト内に対し介装したPC鋼棒の開放側
の一端から数十kHz〜数11tHχの高周波パルスの
超音波の弾性波を発信センサの振動子により入力し、他
端側からの反射波を受信センサの振動子から出力受信し
、超音波は発信装置の同期作動するオシロスコープによ
りpcm棒周四周囲ラウトの介装状態を非破壊的に測定
するようにしたコンクリート構造物の充填グラウトの介
装状態検出方法、及び、装置に係る発明である。
〈従来の技術〉 周知の如く、近代文明は科学技術に裏付けられた多くの
種類の器具類2機械装置、構造物等により支持されてい
る。
而して、かかる器具類1機械装置、構造物等はその本来
的な機能を設計通り充分、且つ、確実に発揮するために
はこれらの完成に至るまでの間、そして、稼動中におけ
る定期、不定期的な試験。
機能検査、保守点検整備等が不可欠であり、中には法的
に義務づけられているものもある。
蓋し、これらの器具、装置、構造物は初期製造。
組立、構築時の誤差、振動、稼働中での種々の外力、熱
挙動、環境変化等により、機能か充分果せられなくなる
場合があるからである。
このうち、各種の機械装置類はその殆どか複数部品の組
付体1組立体であることから、各要素に亘って分解可能
であり、したがって、組付9組立時のプロセスや完成後
の試験や機能検査は概してし易く、又、定期、不定期点
検の際に分解して充分に検査することもまた比較的容易
ではある。
しかしながら、これらの器具、装置類の機能を不充分に
する誤差、振動、外力、熱挙動9周辺環境の変化等は比
較的小さく、又、本体自体も小サイズであるが、本体自
体が大サイズで、印加される外力や振動も大きく、環境
変化も激しい鉄骨。
コンクリート構造物等、或いは、これらの複合タイプの
構造物、就中、大型構造物はいったん構築されると、取
り扱い容易な部分に分解、解体等して各個に検査するこ
とは殆ど不可能に近く、又、検査装置、記録装置の取付
け、取外し、操作が高所作業等から安全対策上極めて難
しく、又、周辺環境等を本体側へ調整すること等は全く
出来ないものであり、したがって、これに対処するに完
成後や稼動中における機能検査には所謂非破壊検査が必
要とされる。
そこで、例えば、山間地に構築された橋梁等のコンクリ
ート構造物等に対する非破壊的検査方法としては、−射
的にエックス線法、超音波検査法(AE検査法)、更に
はレーダー検査法等がある。
〈発明が解決しようとする課題〉 さりながら、かかる構造物、就中、大型構造物に対する
非破壊的検査においては検査装置のセットが構造物の山
間部の高位置構築や長高サイズ等、それ自体の構造や周
辺との取合いの関係上、危険性が高く、又、入りくんだ
構造部分にはセットし難いという難点があり、しかも、
検査部位の数が多く、広範囲に亘る場合であると、大規
模な検査となり、コスト高となる不利点があり、特に、
コンクリート構造物にあってはPC鋼棒の定着部の一部
を除いてはコンクリート内部に埋設されているために必
要部分等への装置のセットが実質的には不可能であると
いう欠点があった。
例えば、橋梁等のコンクリート構造物のPC鋼棒を用い
てプレストレスを導入している等の態様において、PC
鋼棒か不測にして経時的に腐蝕等によりひび割れが生じ
たり、疲労したりすることから損傷し、該プレストレス
が大きく減少し、耐力が低下するような場合には、極め
てゆゆしい問題があり、したがって、コンクリート構造
物等ではPC鋼棒の腐食防止や耐疲労のために導入した
プレストレスの応力伝達のためにPC鋼棒を囲繞するシ
ース内にグラウトのセメントモルタル等が充填されてP
C鋼棒との付着力を図るようにしているが、不測にして
当該セメントモルタルの充填量が不充分であったり、不
幸にして充填忘れ等が生じたり、腐蝕による空隙が発生
したりしてPC鋼棒とグラウトとの付着力が低下したり
、不足したりすると、付着破壊が生じ、PC鋼棒の破断
に至り、大事故が生ずるという虞がある。
かかる付着破壊による付着力の低下は、ひび割れ発生状
況の違いやひび割れの集中を生したり、桁のたわみ増加
として現われ、更に、付着破壊が定着部まで達すると、
そのネジ部で疲労破断を生じる可能性が大きくなる。
したがって、これに対処するには、PC鋼棒の外周部に
於けるシース内のセメントモルタル等のグラウトの注入
充填が設計通りに行われているかどうかの測定検査が直
接的にも、又、後の管理のためにも必要となってくる。
そこで、比較的に装置の設置がし易く、危険性も少く、
安全性が高く、取扱いもし易く、ノイズに対して強い超
音波探傷試験法が実用化されており、平面的で近距離に
ある欠陥に対する検査に用いる超音波は最小欠陥部に応
じて1〜10メガヘルツの直進波が用いられているが、
導波棒としてのPC鋼棒の周囲に充填されているセメン
トモルタル等のグラウトによる影響が少いために、逆に
該PC鋼棒周囲のグラウトの適性充填量、ひび割れ、疲
労発生の有無等のグラウトの充填直後からの経時的な介
装状態の検出が出来ないという不具合があった。
又、コンクリート構造物のPC鋼棒周囲のシース内のグ
ラウトの既成充填の有無とは別に充填直後からの経時的
な凝固充填状態の変化を時間的に計測する必要がある場
合(腐蝕による空隙発生の検査や予測)があるが、かか
る場合には、上記1〜10メガヘルツの指向性を有する
直進波の超音波ではPC鋼棒の周囲の影響状態が検出出
来ないために所定の検査が出来ないという不都合さがあ
った。
そして、シース内のグラウト充填の有無、充分か不充分
か、又、該グラウトとPC鋼棒の付着状態の良否検出は
極めて重要であり、その計測手段が強く望まれているに
もかかわらず、これに応える技術は開発されておらず、
その現出が大きく期待されているのが現状である。
〈発明の目的〉 この出願の発明の目的は上述従来技術に基づくコンクリ
ート構造物のPC鋼棒周囲のグラウトの適性充填量の有
無の状態や介装状態の稼動中における、或いは、充填直
後からの経時的な状態変化検査測定の問題点、及び、関
係業界の期待を解決すべき技術的課題とし、数十kHz
〜数MHzの広領域の弾性波を発生させるに数十kHx
から数百kHxの指向性のない高周波パルス周波数領域
での距離による減衰が小さく、しかも、分解能を必要と
しない高周波パルスの超音波を用いることにより、PC
鋼棒一端に弾性波として入力させ、その反射波を他端か
ら受信して測定することにより充填されたグラウトの介
装状態を所定タイミングで、或いは、経時的に介装状態
をリアルタイムで把握することが出来るようにして建設
産業等における測定技術利用分野に益する優れたコンリ
ート構造物の充填グラウトの介装状態検出方法、及び、
該方法に直接使用する装置を提供せんとするものである
〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とするこの出
願の発明の構成は前述課題を解決するために、山間の橋
梁等のコンクリート構造物のプレキャストコンクリート
内のシース内のセメントモルタル等の充填グツトの内部
にPC鋼棒を挿入。
埋設してその開放部の一端に発信センサの振動子を当接
一体化させ、数十kHxから数MHzの高周波パルスの
超音波を入力させて広帯域の弾性波を発生させ、高周波
の数MToの波動はその指向性によりPC鋼棒内を直進
し、低周波数の数十k)Iz〜数百kHzの波動はPC
鋼棒内で反射を繰返し、他端に設けた受信センサの振動
子に受信されるようにされ、弾性波はPC鋼棒の周囲に
グラウトが存在する場合には、その影響を大きく受け、
無い場合には影響を受けない反射波(エコー)が出力受
信センサの振動子により出力されてオシロスコープによ
り測定され、グラウトの経時的な凝固やゲル化も弾性波
の反射波に対する影響として観測され、したがって、グ
ラウトの充填の有無や充填後の経時的な凝固やゲル化状
態、更には、空隙やひび割れ等もリアルタイムで観測、
測定され、又、接写。
記録されて適宜に対処し得るようにし、発受信センサの
振動子はPC鋼棒の開放端に困難性なく着脱が出来、容
易に装着、取外しが出来、測定がスムースに行えるよう
にし、又、超音波測定であるために安全でノイズも拾い
難い状態で測定が出来るようにした技術的手段を講した
ものである。
〈発明の原理的背景〉 鋼棒の一端に設置した発信センサに超音波等の高周波パ
ルスを入力して、数十kHx〜数MH+の広帯域の弾性
波動を発生すると、該弾性波が鋼棒の長手方向へと伝播
する場合、周波数の高い数MHzの波動は指向性がある
ため、直進し、これに対し比較的低い周波数の数十kH
r〜数百kHrの波動は指向性がないため、鋼棒の内部
で反射を繰返して、反対側に設置した受信センサで感知
される。
このような波動が鋼棒中を軸方向に伝播する場合、該鋼
棒の伝播距離に応じて音圧が低下することが分っている
而して、第1図に示す様に、アンボンドの鋼棒lが自由
表面状態では振動子2により発生された弾性波は直進す
る縦波P、の他にも鋼棒1の内部で反射して伝播する反
射波P5は音速の違いから速度分散を生じて複数の彼群
となる。
これに比し、第2図に示す様に、ボンド状態の鋼棒1が
グラウト3内に埋設されて自由表面でない場合は、該鋼
棒1の側面とグラウト3の境界で反射を繰返すたびに鋼
棒Iの外へと波動の逸散を生じて、そのエネルギーは徐
々に減衰する。
かかる第1.2図の弾性波の状態は図示しない受信セン
サを介してオシロスコープのCRTで目視することが出
来、横軸に時間軸を縦軸に電圧軸をとると、第3図(第
1図対応)、第4図(第2図対応)の様になる(T、は
波動スタートからP。
波受信までの時間)。
このような現象はアンボンド部材(グラウト無し)中の
PC鋼棒については自由表面状態であることにより波動
をほぼ完全に反射し、一方、ボンド部材(グラウト有り
)中のPC鋼棒についてはシース内のグラウトによる拘
束から、PC鋼棒内の反射波は該グラウトとPC鋼棒と
の境界からグラウト中に吸収され易い状態となることが
分り、このことから、PC鋼棒内を伝播してきた弾性波
動の受信波形を測定すれば、その変化からPC鋼棒とそ
れを囲繞するグラウトの充填介装状況が検出出来る。
この出願の発明は上述原理的背景の基に開発。
案出されたものである。
〈実施例〉 次に、この出願の発明についてコンクリート構造物のプ
レストレスコンクリート部材のPC鋼棒の周囲にシース
を介して充填したグラウトのセメントモルタルの既成充
填状態検出測定の態様を実施例として図面を参照して説
明すれば以下の通りである。
図示実施例は、橋桁のプレストレスコンクリート部材P
C桁のプレストレス付与のためのPC鋼棒に対しシース
を介してのグラウトのセメントモルタルが設定状態に充
填しであるか否かを非破壊的に検査する態様であり、第
5図に示す様に、プレストレス付与のために橋桁の20
桁4に埋設介装したPC鋼棒5の外側にはシース6が在
来態様同様に同軸的に配設され、そして、PC鋼棒5と
シース6との間にはグラウトのセメントモルタル3が充
填介装されている。
又、PC鋼棒5の一端には発信センサとしての超音波振
動子2が添着されて超音波発生装置7に回路8を介して
電気的に接続されている。
そして、PC鋼棒5の他端には受信センサとしての超音
波振動子2′が添着されてオシロスコープ9に回路lO
を介して電気的に接続されている。
超音波発生装置7とオシロスコープ9とは同期信号回路
11で接続され、又、オシロスコープ9には記録用の接
写装置12が接続されている。
上述構成において、超音波発生装置7からの出力パルス
信号は回路8を介し超音波振動子2を起振し、弾性波を
PC鋼棒5内に伝播させる。
そして、PC鋼棒5内を伝播した弾性波(反射波を含め
て)は他端の受信センサの超音波振動子2′に受信され
、その受信信号は回路10を介しオシロスコープ9に目
視波形を形成して所定に測定され、又、併せて、接写装
置12より接写記録される。
而して、オシロスコープ9で形成される波形は前述第1
〜4図に示した様に、基本的に介装されているグラウト
のセメントモルタル3が充填されているボンド状態の場
合、反射波は認められず、直線波形が現われ、非充填の
アンボンド状態の場合は反射波が現われ波形が乱れる。
したがって、オシロスコープ9の弾性波の受信波形を測
定することによりグラウトのセメントモルタル3の有無
、介装状態(腐蝕、空隙、ひび割れ)等がアナログ的に
リアルタイムで観測され、又、検出データは接写装置1
2で記録され、直ちに最適対応がなされ得る。
そして、このようにして、PC鋼棒5内を伝播した弾性
波は受信波形変化を測定して該PC鋼棒5と周囲の介装
グラウト3の介装状態が観測出来ることになる。
次に、上述実施例に則す実験例を示す。
用いた供試体は第6〜9図に示す様な20桁(桁高さ6
5an、幅50aa、長さ6.4m)4で、内部にφ4
5mmのシース6を配置し、その中にφ320のPC鋼
棒(8種2号 φ32 5BPR95/120 ) 5
を1本セットした短形断面のボストテンション方式のも
の5体を用いた。
尚、13は仕切板、14は埋込み型の支圧板である。
該PC@棒5には52.8Hのプレストレスを導入し、
その後、4本はPC桁4のシース6内へグラウト3を注
入した。
コンクリート、及び、グラウト材の配合を表1゜2に、
圧縮強度を表3に示す。
尚、セメントは早強セメントを用いた。
表2 表3 そして、載荷試験には、容量+511 Ifの電気油圧
式疲労試験機(50+f レンジ)を用い、載荷方法は
、第10図に示す様な荷重分配桁15を用いた2点集中
載荷による曲げ試験で、疲労試験は下限荷重21  t
((PC鋼棒応力60 kg I/wa 2相当)とし
、上限荷重は応力変動分を上乗せした荷重で、繰返し速
度は2〜2.5Htとした。
弾性波計測の測定方法については、各供試体4の試験供
用前と疲労試験中の任意の繰返し回数で測定した。
伝播弾性波の観測は、受信センサ2′からの電気信号を
直接オシロスコープ(20M)lり9で受信してリアル
タイムで観察した。
そして、受信波形の状況はCIITの画面を接写装置1
2で撮影して記録をした。
その後、受信波形の面積をプラニメータで図り、そのデ
ータを波面率(s/so XIH% S:ボンド部材の
面積、so :アンボンド部材の面積)として整理した
尚、PC鋼棒5とグラウト3の付着破壊の確認は、20
桁4の両端の固定側、及び、緊張側の定着用ナツト(デ
ィビダークエ法)に貼り付けたひずみゲージによるモニ
タ一方法で行った。
そして、PC桁供試体4の試験供用前と疲労試験時の波
面率を次の表4に示す。
尚、疲労試験時の波面率は20桁4の破壊に最も近い繰
返し載荷時の値とした。
以下余白 表  4 グラウト3無しのアンボンド供試体No、  1につい
ては、PC鋼棒5内では完全反射状態のため受信波形の
減衰は小さく、P、波と速度分散により発生したP、波
がつづいた波群となった。
このグラウト無しの状態の波面率を100%とした。
一方、グラウトを充填したボンド供試体NO12〜No
、  5の試験前の受信波形は、P、波(音速5540
 m/s)のみで、PS波の存在は認められなかった。
これは、P、波がPC鋼棒5内での反射を繰返す際に、
該PC鋼棒5とグラウト3の音響インピーダンスが近い
ため、該グラウト3との境界から徐々にエネルギーが吸
収されてP、波の振幅が減衰したためと判断される。
このように試験前の付着の良好状態の波面率は0.4〜
1,1%と著しく小さいことが判った。
以上の試験データから、20桁4中のシース6内のグラ
ウト3の充填の有・無については、PC鋼棒5内の伝播
弾性波の受信波形として明瞭な形でその現象がオシロス
コープ9のCRT上で観測された。
したがって、グラウト3の充填度についてキャリブレー
ションを行うことにより評価が可能であると判断された
弾性波のPC鋼棒5内での反射の繰返し回数(N)に応
じた受信波形の例を供試体N014について第11.1
2.13図(受信感度:20mV/d1v 、時間軸:
 [1,5m5ec/div )に示す。
試験供用前の受信波形は第11図N=0に示す様に、P
1波のみ(波面率0.5%)で、繰返し回数Nの増加(
N=1.6万回:第12図波面率2%。
N=20,8万回:第13図波面率24%)に応じてP
、波が多く受信される傾向が判った。
各応力度のPC鋼棒5端の締付は定着用のナツトのひず
みと反射繰返し回数の関係を第14図に示す。
反射繰返し回数の増加と共に付着破壊が進行し定着用の
ナツトの位置まで達した結果、ナツトには試験荷重によ
る変動が伝播し始め、ひずみ(圧縮)振幅が増加して、
PC鋼棒5とグラウト3との付着力が低下することが判
った。
又、波面率は第15図に示す様に、上記第14図に対応
してナツトひずみ振幅の増大に伴って増加することも判
った。
いづれの供試体N011〜5においても、波面率の変化
はひずみ振幅の挙動と良く一致していることが判る。
そして、応力振幅が高い場合や、試験前でも波面率が大
きい場合は付着破壊の進行も早く、その影響が現れてい
ることが判った。
又、表4に示した様に、破断位置が定着部に在る供試体
No、  3は繰返し載荷時に波面率が20%程度を維
持し、更に、応力振幅により8%程度の波面率の変動が
認められた。
これに対し、供試体N015では繰返し載荷時の波面率
が10%前後と小さく、応力振幅による変動も2%以下
であった。
一旦、疲労試験を中止(破断せず)した供試体N072
の受信波形には除荷重時でもP1波とP。
波が観測され、付着力の低下か認められた。
このように、波面率の増加はPCM棒5とグラウト3と
の付着力の低下傾向を明らかに示しているものであった
これらのことから、PC鋼棒5内の伝播弾性波の受信波
形におけるP5波の観測がPC鋼棒5とグラウト3との
付着性状の評価に有力な検出手段となることが試験から
も確認されたものである。
〈発明の効果〉 以上、この出願の発明によれば、基本的に橋梁等のコン
クリート構造物のプレストレス付与のPC鋼棒の一端か
ら数十kHxから数MH2の超音波等の弾性波を入力さ
せ、該PC鋼棒の周囲のセメントモルタル等のグラウト
の弾性波吸収による他端からの反射波を受信しオシロス
コープ等により観測し、該グラウトの介装状態を観測す
ることにより、シース内のグラウトの良好な設計充填状
態や経時的な凝固状態や腐蝕発生状態、空隙、ひび割れ
の存在状態等を検出することか出来、したがって、構造
物の稼動中における非破壊的検査が行え、しかも、デー
タをアナログデジタル化してリアルタイムで観測したり
記録することか出来、そのため、しかるべき早急の対処
手段か取れ大事に至らなくて済み、そのうえ、他の構造
物の参考データにも供することが出来るという優れた効
果か奏される。
このようにPC桁等のコンクリート構造物中のPC鋼棒
に弾性波の超音波を入力し、該PC鋼棒を伝播してきた
波動状況からシース内のグラウト充填の有・無を検知す
ることが出来、PC鋼棒と該グラウトの付着破壊状況は
、P5波の存在による波面率の変化から観測出来、これ
らのことは繰返し載荷時は勿論のこと、荷重保持状態、
或いは、除荷重時でも適用可能である効果がある而して
、検出装置においてはPC鋼棒の定着部の開放端の端面
に発信センサとして超音波振動子を、他端に受信センサ
の超音波振動子を添着させたことにより、複数のPC鋼
棒に対する取付け。
取外しが簡単に行え、取り扱いがし易く、早急な能率的
な介装状態の検出が行えるという効果もある。
又、超音波は数十kH2から数MH2のパルスの超音波
を用いるために安全でノイズを拾うこともなく、しかも
、指向性の無いグラウトの影響を充分に受けた状態で過
渡的な現象から他端面の反射波を分離して受信すること
が出来るという効果かあり、コンクリート構造物等の工
事終了検査や稼動中における耐久性の検討や保全管理等
に寄与することが出来るという効果がある。
【図面の簡単な説明】
図面はこの出願の発明の詳細な説明図であり、第1,2
図は基本実施例のグラウトの弾性波の伝播状態の概略模
式断面図、第3,4図はPC鋼棒内に於ける弾性波の百
kH2の受信波のCRT波形図、第5図は検出装置の模
式図、第6〜9図は供試体のPC桁の平面図、側面図、
第7図■x−■x断面図、第7図IX−IX断面図、第
10図は載荷試験模式側面図、第11〜13図は受信波
形のCRT図、第14図は反射繰返し回数とナツトひず
みの特性グラフ図、第15図は反射繰返し回数と波面率
の特性グラフ図である。 3・・・グラウト     5・・・PC鋼棒6・・・
シース 出願人  社団法人日本建設機械化協会代理人   富
    1)   幸    春    ゛、−”′ 14図 第15図 a丘しε(史(10’)− 第1図 第3図 3 ・グラウト 6 ンース 1に2図 ど 第4図 5−pc@棒

Claims (6)

    【特許請求の範囲】
  1. (1)シース内に充填したグラウトに挿通されたPC鋼
    棒に対し弾性波を付与して該弾性波の反射波を測定し該
    グラウトの充填介装状態を検出する方法において、上記
    PC鋼棒の一端から数十kHz〜数MHzの弾性波を入
    力し、他端から反射波を受信して該PC鋼棒周囲のグラ
    ウトの充填体の介装状態を非破壊的に測定するようにし
    たことを特徴とするコンクリート構造物の充填グラウト
    の介装状態検出方法。
  2. (2)上記入力弾性波が超音波であることを特徴とする
    特許請求の範囲第1項記載のコンクリート構造物の充填
    グラウトの介装状態検出方法。
  3. (3)上記グラウトがセメントモルタルであることを特
    徴とする特許請求の範囲第1項記載のコンクリート構造
    物の充填グラウトの介装状態検出方法。
  4. (4)上記測定が経時的に連続的、或いは間欠的に行わ
    れるようにしたことを特徴とする特許請求の範囲第1項
    記載のコンクリート構造物の充填グラウトの介装状態検
    出方法。
  5. (5)シースのグラウト内に挿入したPC鋼棒の端部に
    振動子を設けて測定装置に電気的に接続したコンクリー
    ト構造物の充填グラウトの介装状態検出装置において、
    上記振動子の一方が発信センサであって超音波パルス発
    振装置に電気的に接続され、他方の振動子が受信センサ
    であって、上記超音波パルス発信装置に同期的に接続さ
    れたオシロスコープに電気的に接続されていることを特
    徴とするコンクリート構造物の充填グラウトの介装状態
    検出装置。
  6. (6)上記オシロスコープに接写装置が接続されている
    ことを特徴とする特許請求の範囲第5項記載のコンクリ
    ート構造物の充填グラウトの介装状態検出装置。
JP2308869A 1990-11-16 1990-11-16 コンクリート構造物の充填グラウトの介装状態検出方法及び装置 Expired - Fee Related JPH0768763B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2308869A JPH0768763B2 (ja) 1990-11-16 1990-11-16 コンクリート構造物の充填グラウトの介装状態検出方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2308869A JPH0768763B2 (ja) 1990-11-16 1990-11-16 コンクリート構造物の充填グラウトの介装状態検出方法及び装置

Publications (2)

Publication Number Publication Date
JPH04182568A true JPH04182568A (ja) 1992-06-30
JPH0768763B2 JPH0768763B2 (ja) 1995-07-26

Family

ID=17986241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2308869A Expired - Fee Related JPH0768763B2 (ja) 1990-11-16 1990-11-16 コンクリート構造物の充填グラウトの介装状態検出方法及び装置

Country Status (1)

Country Link
JP (1) JPH0768763B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054106A2 (en) 1999-05-17 2000-11-22 Anderson Technology Corporation Box girder structure for bridge provided with outer cable and method of building the box girder
KR100862028B1 (ko) * 2007-03-12 2008-10-07 주식회사 포스코건설 록볼트의 그라우팅 결함 측정 시스템 및 이를 이용한측정방법
JP2013088304A (ja) * 2011-10-19 2013-05-13 Ihi Corp 複合構造物の界面検査方法及び界面検査装置
CN107894459A (zh) * 2017-11-09 2018-04-10 四川陆通检测科技有限公司 基于波动信号特征分析的预应力孔道压浆密实度测试方法
CN110068611A (zh) * 2019-05-14 2019-07-30 山东住工装配建筑有限公司 智能检测注浆装置及检测方法
CN117420810A (zh) * 2023-12-19 2024-01-19 中铁三局集团广东建设工程有限公司 一种用于高压旋喷桩控制的多模态数据处理方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054106A2 (en) 1999-05-17 2000-11-22 Anderson Technology Corporation Box girder structure for bridge provided with outer cable and method of building the box girder
KR100862028B1 (ko) * 2007-03-12 2008-10-07 주식회사 포스코건설 록볼트의 그라우팅 결함 측정 시스템 및 이를 이용한측정방법
JP2013088304A (ja) * 2011-10-19 2013-05-13 Ihi Corp 複合構造物の界面検査方法及び界面検査装置
CN107894459A (zh) * 2017-11-09 2018-04-10 四川陆通检测科技有限公司 基于波动信号特征分析的预应力孔道压浆密实度测试方法
CN110068611A (zh) * 2019-05-14 2019-07-30 山东住工装配建筑有限公司 智能检测注浆装置及检测方法
CN117420810A (zh) * 2023-12-19 2024-01-19 中铁三局集团广东建设工程有限公司 一种用于高压旋喷桩控制的多模态数据处理方法及装置
CN117420810B (zh) * 2023-12-19 2024-03-12 中铁三局集团广东建设工程有限公司 一种用于高压旋喷桩控制的多模态数据处理方法及装置

Also Published As

Publication number Publication date
JPH0768763B2 (ja) 1995-07-26

Similar Documents

Publication Publication Date Title
Chaki et al. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands
Beard Guided wave inspection of embedded cylindrical structures
Liu et al. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave
Chen et al. Measurement of tensile forces in a seven-wire prestressing strand using stress waves
Lanza di Scalea et al. Stress measurement and defect detection in steel strands by guided stress waves
Chaki et al. Stress level measurement in prestressed steel strands using acoustoelastic effect
US7614303B2 (en) Device for measuring bulk stress via insonification and method of use therefor
Sun et al. Nondestructive evaluation of steel-concrete composite structure using high-frequency ultrasonic guided wave
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
Dzaye et al. Study on mechanical acoustic emission sources in fresh concrete
Sun et al. Application of low-profile piezoceramic transducers for health monitoring of concrete structures
CN103424470A (zh) 一种钢管混凝土粘结状态超声波检测的方法
Im et al. Non-destructive testing methods to identify voids in external post-tensioned tendons
Ongpeng et al. Contact and noncontact ultrasonic nondestructive test in reinforced concrete beam
Li et al. Stress measurement for steel slender waveguides based on the nonlinear relation between guided wave group velocity and stress
Cao et al. Debonding detection in FRP-strengthened concrete structures utilising nonlinear Rayleigh wave mixing
JPH04182568A (ja) コンクリート構造物の充填グラウトの介装状態検出方法及び装置
Shield Comparison of acoustic emission activity in reinforced and prestressed concrete beams under bending
Pollock et al. Stress-wave-emission monitoring of a military bridge
CN218911991U (zh) 一种内建环形超声波传感器阵列的智能灌浆套筒
Li et al. Influence of backing layer on the non-metallic encapsulated acoustic emission sensor for concrete monitoring
Seshu et al. Non destructive testing of bridge pier-a case study
Cao et al. Study on non-destructive testing method of grouting sleeve compactness with wavelet packet energy ratio change
Mahbaz et al. De-bonding assessment of rebars using an ultrasonic method with laser vibrometer tests and numerical simulations
Chen et al. Non-linear ultrasonic investigation of interface debonding of steel-concrete composites

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees