WO2020119292A1 - 一种自带相移的正交压控振荡器电路 - Google Patents

一种自带相移的正交压控振荡器电路 Download PDF

Info

Publication number
WO2020119292A1
WO2020119292A1 PCT/CN2019/113796 CN2019113796W WO2020119292A1 WO 2020119292 A1 WO2020119292 A1 WO 2020119292A1 CN 2019113796 W CN2019113796 W CN 2019113796W WO 2020119292 A1 WO2020119292 A1 WO 2020119292A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
voltage
controlled oscillator
node
Prior art date
Application number
PCT/CN2019/113796
Other languages
English (en)
French (fr)
Inventor
李超
薛泉
吴亮
廖绍伟
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020119292A1 publication Critical patent/WO2020119292A1/zh
Priority to US17/138,916 priority Critical patent/US11245359B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B27/00Generation of oscillations providing a plurality of outputs of the same frequency but differing in phase, other than merely two anti-phase outputs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1246Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance
    • H03B5/1253Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance the transistors being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1271Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the frequency being controlled by a control current, i.e. current controlled oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0074Locking of an oscillator by injecting an input signal directly into the oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0078Functional aspects of oscillators generating or using signals in quadrature

Definitions

  • the present invention relates to the field of quadrature voltage controlled oscillators, and in particular to a quadrature voltage controlled oscillator circuit with phase shift.
  • the present invention provides a quadrature voltage controlled oscillator circuit with a phase shift, through a simple circuit
  • the structure can make the oscillator work stably in a mode, can provide a good phase shift for the resonant circuit in a lower frequency band, and at the same time improve the tuning range of the oscillator without increasing the phase noise.
  • a quadrature voltage controlled oscillator circuit with a phase shift includes a first voltage controlled oscillator and a second voltage controlled oscillator with the same structure, the first voltage controlled oscillator and the second voltage controlled oscillator The transmitters are connected to each other through the input and output ports; wherein, the first voltage-controlled oscillator includes a first cross-coupled oscillation circuit, a first injection-lock circuit, a first resonance circuit, and a first voltage-controlled current source circuit electrically connected to each other.
  • the oscillation circuit is composed of four transistors, wherein the gate of the first transistor and the gate of the third transistor are commonly connected to the bias voltage, and the drain of the first transistor is connected to the gate of the fourth transistor through the first node
  • the drain of the third transistor is connected to the gate of the second transistor through the second node, and the source of the second transistor is connected to the source of the fourth transistor through the third node.
  • the source of the first transistor and the drain of the second transistor are connected to each other to form a cascode structure
  • the source of the third transistor and the drain of the fourth transistor are connected to each other to form a cascode structure.
  • the first injection lock circuit is composed of four transistors, the gate of the fifth transistor and the gate of the seventh transistor are commonly connected to the bias voltage, and the drain of the fifth transistor is connected to the first A node, the drain of the seventh transistor is connected to the second node, the source of the sixth transistor is connected to the source of the eighth transistor through the fourth node, and the gate of the sixth transistor is connected to the positive For the quadrature input port, the gate of the eighth transistor is connected to the negative quadrature input port.
  • the source of the fifth transistor and the drain of the sixth transistor are connected to each other to form a cascode structure, and the source of the seventh transistor and the drain of the eighth transistor are connected to each other to form a cascode structure.
  • a cascode structure is provided in the first injection locking circuit.
  • the orthogonal voltage controlled oscillator circuit By adding a cascode structure to the first cross-coupled oscillation circuit and the first injection lock circuit, the oscillation signal and the injection signal can be phase shifted at the same time, thereby generating an output signal synthesized by the oscillation signal and the injection signal Good phase shift to produce a larger tuning range. Therefore, the orthogonal voltage controlled oscillator circuit according to the present invention can realize its own phase shift without introducing a complicated phase shift circuit. In this way, the circuit structure is simple, while providing phase shift, it will not increase the complexity of the circuit, and the circuit occupation area is greatly reduced, and it will not occupy a large area in the integrated chip.
  • the first resonance circuit further includes a first middle-tap inductor, two ends of the first middle-tap inductor are respectively connected to the first node and the second node, and the middle tap is connected to the power supply voltage.
  • the first voltage-controlled current source circuit includes a first cross-coupled current source and a first injection-locked current source, wherein the drain of the ninth transistor is connected to the third node, the source is grounded, and the gate is connected
  • the first control voltage constitutes a first cross-coupling current source; the drain of the tenth transistor is connected to the fourth node, the source is grounded, and the gate is connected to the second control voltage to constitute the first injection locking current source.
  • the second voltage controlled oscillator includes a second cross-coupled oscillation circuit electrically connected to each other, a second injection lock circuit, a second resonance circuit and a second voltage controlled current source circuit, and the first voltage controlled
  • the oscillator has the same structure, and in the second injection lock circuit, the gate of the sixteenth transistor is connected to the positive in-phase input port, and the gate of the eighteenth transistor is connected to the negative in-phase input port.
  • the first node of the first voltage-controlled oscillator is connected to a negative in-phase output port, and the first negative in-phase output port is connected to a negative in-phase input port of a second voltage-controlled oscillator;
  • the second node of the first voltage controlled oscillator is connected to the positive in-phase output port, and the first positive in-phase output port is connected to the positive in-phase input port of the second voltage-controlled oscillator;
  • the fifth of the second voltage-controlled oscillator The node is connected to the positive quadrature output port, the second positive quadrature output port is connected to the positive quadrature input port of the first voltage controlled oscillator;
  • the sixth node of the second voltage controlled oscillator is connected to the negative A quadrature output port, the negative quadrature output port is connected to the negative quadrature input port of the first voltage controlled oscillator.
  • a quadrature voltage controlled oscillator circuit with phase shift of the present invention has the following beneficial effects and advantages:
  • the circuit realizes its own phase shift, and the oscillator can be stably operated in a mode by using a simple circuit structure
  • the circuit can provide a phase shift of at least 5 times for the resonant circuit in a lower frequency band (10GHZ-40GHZ), and this boosting factor increases as the frequency increases;
  • FIG. 1 is a schematic diagram of a quadrature voltage controlled oscillator circuit with phase shift of the present invention.
  • FIG. 2 is a schematic diagram of a conventional quadrature voltage controlled oscillator circuit.
  • FIG. 3 is a schematic diagram of a quadrature voltage controlled oscillator circuit of the present invention.
  • FIG. 4 is a comparison diagram of the phase shift performance of the present invention and a conventional phase shift circuit.
  • FIG. 5 is a time-domain waveform diagram of the output end of the present invention.
  • FIG. 6 is a diagram of a frequency adjustment range of a conventional circuit.
  • a quadrature voltage controlled oscillator circuit with phase shift includes a first voltage controlled oscillator and a second voltage controlled oscillator with the same structure, and the first voltage controlled oscillator And the second voltage-controlled oscillator are connected to each other through an input and output port; wherein, the first voltage-controlled oscillator includes a first cross-coupled oscillation circuit, a first injection lock circuit, a first resonance circuit, and a first voltage In the controlled current source circuit, the signal is injected through the injection lock circuit and coupled with the oscillator circuit, thereby outputting a quadrature signal.
  • the first cross-coupled oscillation circuit is composed of four transistors, wherein the gate of the first transistor 101 and the gate of the third transistor 103 are commonly connected to the bias voltage V b , the drain of the first transistor 101 The electrode is connected to the gate of the fourth transistor 104 through the first node A, the drain of the third transistor 103 is connected to the gate of the second transistor 102 through the second node B, and the source of the second transistor 102 The electrode is connected to the source of the fourth transistor 104 through the third node C.
  • the first injection locking circuit is constituted by four transistors, the gate of the fifth transistor 105 and the seventh transistor 107 are connected in common to a bias voltage V b, the fifth transistor 105 The drain is connected to the first node A, the drain of the seventh transistor 107 is connected to the second node B, and the source of the sixth transistor 106 is connected to the source of the eighth transistor 108 through the fourth node D, The gate of the sixth transistor 106 is connected to a positive quadrature input port, and the gate of the eighth transistor 108 is connected to a negative quadrature input port.
  • the first resonance circuit further includes a first middle-tap inductor 109, two ends of the first middle-tap inductor 109 are respectively connected to a first node A and a second node B, and the middle tap is connected to a power supply Voltage.
  • the first voltage-controlled current source circuit is composed of a first cross-coupled current source and a first injection locked current source, wherein the drain of the ninth transistor 110 is connected to the third node C, and the source is grounded, Gate connection control
  • the voltage V i constitutes a first cross-coupled current source
  • the drain of the tenth transistor 111 is connected to the fourth node D, the source is grounded, and the gate is connected to the control voltage 2 to constitute a first injection-locked current source, the first voltage-controlled current source
  • the circuit can adjust the magnitude of the control voltage, adjust the amplitude and phase of the injection signal and the oscillation signal, so that the oscillator has a wider tuning range;
  • the placement of the first voltage-controlled current source circuit has multiple implementation forms, such as The structure of the upper current bias.
  • the second voltage-controlled oscillator includes a second cross-coupled oscillation circuit electrically connected to each other, a second injection lock circuit, a second resonance circuit and a second voltage-controlled current source circuit, the second cross
  • the coupled oscillation circuit is composed of four transistors, wherein the source of the eleventh transistor 112 and the drain of the twelfth transistor 113 are connected to each other to form a cascode structure, and the source of the thirteenth transistor 114 and the fourteenth transistor 115 The drains of are connected to each other to form a cascode structure, the gate of the eleventh transistor 112 and the gate of the thirteenth transistor 114 are commonly connected to the bias voltage V b , and the drain of the eleventh transistor 112 Connected to the gate of the fourteenth transistor 115 through the fifth node E, the drain of the thirteenth transistor 114 is connected to the gate of the twelfth transistor 113 through the sixth node F, and the twelfth transistor The source of 113 is connected to the source of the
  • the second injection locking circuit is composed of four transistors, wherein the source of the fifteenth transistor 116 and the drain of the sixteenth transistor 117 are connected to each other to form a cascode structure, the seventeenth transistor The source of 11 8 and the drain of the eighteenth transistor 119 are connected to each other to form a cascode structure.
  • the gate of the fifteenth transistor 116 and the gate of the seventeenth transistor 118 are commonly connected to the bias voltage V b
  • the drain of the fifteenth transistor 116 is connected to the node E
  • the drain of the seventeenth transistor 118 is connected to the node F
  • the source of the sixteenth transistor 117 is connected to the th
  • the source of the eighteenth transistor 119, the gate of the sixteenth transistor 117 is connected to the positive input port
  • the gate of the eighteenth transistor 119 is connected to the negative input port.
  • the second resonance circuit includes a second middle-tap inductor 120, and two ends of the second middle-tap inductor 120 are connected to a fifth node E and a sixth node F, respectively, and the middle tap is connected to a power supply voltage .
  • the second voltage-controlled current source circuit is composed of a second cross-coupled current source and a second injection locked current source, wherein the drain of the nineteenth transistor 121 is connected to the seventh node G, and the source is grounded The gate is connected to the control voltage V to form a second cross-coupled current source; the drain of the twentieth transistor 122 is connected to the eighth node H, the source is grounded, and the gate is connected to the control voltage V 2 to form a second injection locking current source.
  • the first node A of the first voltage-controlled oscillator is connected to a negative in-phase output port, and the first negative in-phase output port is connected to a negative in-phase input port of the second voltage-controlled oscillator;
  • the second node B of the first voltage controlled oscillator is connected to the positive in-phase output port, and the first positive in-phase output port is connected to the positive in-phase input port of the second voltage-controlled oscillator;
  • a fifth node E is connected to a positive quadrature output port, the second positive quadrature output port is connected to a positive quadrature input port of the first voltage controlled oscillator;
  • a sixth node of the second voltage controlled oscillator F is connected to a negative quadrature output port, and the negative quadrature output port is connected to a negative quadrature input port of the first voltage controlled oscillator.
  • the injected signal may lead or lag the oscillating signal
  • phase shift circuit is added between the output signal and the output signal of the oscillator oscillation circuit and the injection locking circuit, and the phase shift circuit may be composed of two cascodes
  • the transistors of the structure are cascaded.
  • the cascode structure is formed by cascading two transistors, which can convert a voltage signal into a current signal and provide a certain negative phase shift within a certain frequency range.
  • Each cascode transistor in the circuit will change with the operating frequency under the same parameter, with the help of its own parasitic parameter value
  • the desired phase shift can be obtained, which will cause the oscillation signal and the injection signal to be flipped at a certain angle at the same time to achieve what is required for the quadrature signal, thereby oscillating
  • the device works at the position where Mode 1 is located (the frequency in Figure 3), and Mode 2 cannot work because the impedance at the corresponding position (the frequency in Figure 3) is small, as shown in Figure 3.
  • the invention oscillates the oscillator at the center of the highest impedance position
  • the signal of the oscillation signal and the injection signal superimposed can be kept at a position that deviates from the intermediate position in a wider range Maintain a high impedance at the point to maintain oscillation in a wide range.
  • the traditional oscillator is in the mode 1 or mode 2
  • the voltage-controlled current source circuit changes the magnitude of the control voltage
  • the oscillator cannot work because it enters a state of smaller impedance.
  • the cascode structure Compared with the traditional circuit, the cascode structure also has a larger output impedance, which can prevent the parasitic parameters of the transistor from affecting the resonant circuit and make the circuit easier to start.
  • Using the cascode structure as a phase shift circuit in this way not only plays the role of oscillation and injection, but more importantly, compared with the prior art, it can greatly simplify the complexity of the circuit and can be used in lower frequency bands. Generate a phase shift that satisfies the phase deflection.
  • the use of a varactor in the resonant circuit will greatly affect the quality factor of the oscillator, but using the structure of the present invention, the cascode in the cascode structure can be adjusted
  • the width-to-length ratio of the transistor keeps the phase shift at about 45° in the frequency band greater than 10GHz, and does not cause the attenuation of the quality factor of the resonant circuit due to the introduction of variable capacitance
  • FIG. 4 it is a comparison diagram of the phase shift performance of the present invention and the conventional phase shift circuit.
  • the TSMC 65nm CMOS technology is used to design and manufacture a quadrature voltage controlled oscillator with phase shift in the 28GHz band.
  • FIG. 5 it is a time-domain waveform diagram of the output end of the present invention, which shows the waveform of each output end of the present invention in the analog time domain, and the voltages of the four output ports are orthogonal, that is, mutually The phase difference is 90°.
  • FIGS. 6 and 7 it shows the frequency adjustment range of the conventional circuit under different bias voltages and the present invention
  • the invention increases the initial phase shift, so that the frequency adjustment range is expanded from the original 27.5GHz-30GHz to 24GHz-30.5GHz, and the relative bandwidth is increased from 9% to 23%.
  • phase noise in the present invention at the offset frequency Z ⁇ f can be obtained using the following formula:
  • F the noise figure
  • 27 the loop quality factor
  • Is the output voltage amplitude is the Bozeman constant
  • r is the absolute temperature
  • c is the loop capacitance
  • FIG. 8 shows the simulated phase noise change of the manufactured quadrature voltage controlled oscillator with phase shift as the frequency changes.
  • a quadrature voltage controlled oscillator circuit with phase shift of the present invention can make the oscillator work stably in a mode through a simple circuit structure, which can be in a lower frequency band Provides a good phase shift for the resonant circuit, while increasing the tuning range of the oscillator without increasing the phase noise.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种自带相移的正交压控振荡器电路,包括两个结构相同的压控振荡器,两个压控振荡器通过输入输出端口相互连接,两个压控振荡器均包括彼此电连接的交叉耦合振荡电路、注入锁定电路、谐振电路和压控电流源电路;信号通过注入锁定电路注入并与振荡电路进行耦合,从而输出正交信号。通过简单的电路结构即可使振荡器稳定地工作在一种模式,可以在较低频段内为谐振电路提供良好的相移,同时提高振荡器的调谐范围,并不增大相位噪声。

Description

一种自带相移的正交压控振荡器电路 技术领域
[0001] 本发明涉及正交压控振荡器领域, 具体涉及一种自带相移的正交压控振荡器电 路。
背景技术
[0002] 现代无线接收发射机要求正交振荡信号进行上变频和下变频的混频, 通常为了 产生正交信号, 一种最流行的方法是利用注入锁定的 LC交叉耦合结构以产生正 交信号, 同时, 为了避免谐振回路中变容管降低品质因数, 衍生出多种去变容 管的频率调节技术, 但是传统的注入锁定正交振荡器由于注入信号方向的不确 定性, 会引入两种工作模式, 两种模式对称存在, 对应的阻抗值相同, 振荡器 将不确定振荡在这两个模式中的哪一个模式, 这将导致无法预知准确的工作频 率。 因此, 有必要提供一种自带相移的正交压控振荡器电路, 以解决现有技术 存在的前述不足。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 有鉴于此, 为解决上述现有技术中的问题, 需要在振荡器电路中引入相移, 本 发明提供了一种自带相移的正交压控振荡器电路, 通过简单的电路结构即可使 振荡器稳定地工作在一种模式, 可以在较低频段内为谐振电路提供良好的相移 , 同时提高振荡器的调谐范围, 并不增大相位噪声。
[0004] 为实现上述目的, 本发明的技术方案如下。
[0005] 一种自带相移的正交压控振荡器电路, 包括结构相同的第一压控振荡器和第 二压控振荡器, 所述第一压控振荡器和第二压控振荡器通过输入输出端口相互 连接; 其中, 所述第一压控振荡器包括彼此电连接的第一交叉耦合振荡电路、 第一注入锁定电路、 第一谐振电路和第一压控电流源电路, 所述第一交叉耦合 振荡电路由四个晶体管构成, 其中第一晶体管的栅极和第三晶体管的栅极共同 连接到偏置电压, 所述第一晶体管的漏极通过第一结点连接到第四晶体管的栅 极, 所述第三晶体管的漏极通过第二结点连接到第二晶体管的栅极, 所述第二 晶体管的源极通过第三结点连接到第四晶体管的源极。
[0006] 通过上述电路构造, 第一晶体管的源极与第二晶体管的漏极相互连接构成共 源共栅结构, 第三晶体管的源极与第四晶体管的漏极相互连接构成共源共栅结 构。 如此, 在第一交叉耦合震荡电路中能提供相位偏移, 通过简单的电路结构 即可使振荡器稳定地工作在一种模式。
[0007] 进一步地, 所述第一注入锁定电路由四个晶体管构成, 第五晶体管的栅极和 第七晶体管的栅极共同连接到偏置电压, 所述第五晶体管的漏极连接到第一结 点, 所述第七晶体管的漏极连接到第二结点, 第六晶体管的源极通过第四结点 连接到第八晶体管的源极, 所述第六晶体管的栅极连接到正正交输入端口, 所 述第八晶体管的栅极连接到负正交输入端口。
[0008] 通过上述电路构造, 第五晶体管的源极与第六晶体管的漏极相互连接构成共 源共栅结构, 第七晶体管的源极与第八晶体管的漏极相互连接构成共源共栅结 构。 如此, 在第一注入锁定电路中提供共源共栅结构。
[0009] 通过在第一交叉耦合振荡电路和第一注入锁定电路中添加共源共栅结构, 可 以使振荡信号和注入信号同时进行相位偏移, 从而使振荡信号与注入信号合成 的输出信号产生良好的相移, 以产生更大的调谐范围。 因此, 根据本发明的正 交压控振荡器电路无需额外引入复杂的相移电路, 即能实现自带相移。 如此, 电路结构简单, 在提供相移的同时不会增加电路的复杂度, 且电路占用面积大 幅度减小, 不会占据集成芯片中大量的面积。
[0010] 进一步地, 所述第一谐振电路还包括第一中间抽头电感, 所述第一中间抽头 电感的两端分别连接第一结点和第二结点, 中间抽头连接电源电压。
[0011] 进一步地, 所述第一压控电流源电路包括第一交叉耦合电流源和第一注入锁 定电流源, 其中第九晶体管的漏极连接第三结点, 源极接地, 栅极接第一控制 电压构成第一交叉耦合电流源; 第十晶体管漏极连接第四结点, 源极接地, 栅 极接第二控制电压构成第一注入锁定电流源。 [0012] 进一步地, 所述第二压控振荡器包括彼此电连接的第二交叉耦合振荡电路、 第二注入锁定电路、 第二谐振电路和第二压控电流源电路, 与第一压控振荡器 结构相同, 并且在所述第二注入锁定电路中, 第十六晶体管的栅极连接到正同 相输入端口, 第十八晶体管的栅极连接到负同相输入端口。
[0013] 进一步地, 所述第一压控振荡器的第一结点连接到负同相输出端口, 所述第 一负同相输出端口连接到第二压控振荡器的负同相输入端口; 所述第一压控振 荡器的第二结点连接正同相输出端口, 所述第一正同相输出端口连接到第二压 控振荡器的正同相输入端口; 所述第二压控振荡器的第五结点连接到正正交输 出端口, 所述第二正正交输出端口连接到第一压控振荡器的正正交输入端口; 所述第二压控振荡器的第六结点连接到负正交输出端口, 所述负正交输出端口 连接到第一压控振荡器的负正交输入端口。
发明的有益效果
有益效果
[0014] 与现有技术比较, 本发明的一种自带相移的正交压控振荡器电路具有以下有益 效果和优点:
[0015] ⑴该电路实现自带相移, 利用简单的电路结构即可使振荡器稳定地工作在 一种模式;
[0016] (2)该电路可以在较低频段 ( 10GHZ-40GHZ) 内为谐振电路提供至少 5倍的相 位偏移, 并且这个提升倍数随着频率的升高而增加;
[0017] (3)该电路与传统注入锁定振荡器相比, 提高振荡器的调谐范围, 并不增大 相位噪声。
对附图的简要说明
附图说明
[0018] 图 1为本发明的一种自带相移的正交压控振荡器电路的原理示意图。
[0019] 图 2为传统正交压控振荡器电路的模式图。
[0020] 图 3为本发明正交压控振荡器电路的模式图。
[0021] 图 4为本发明与传统相移电路相移性能比较图。
[0022] 图 5为本发明输出端时域波形图。 [0023] 图 6为传统电路的频率调节范围图。
[0024] 图 7为本发明电路的频率调节范围图。
[0025] 图 8为本发明的频率偏移在 1M和 10M时的相位噪声图。
发明实施例
本发明的实施方式
[0026] 下面将结合附图和具体的实施例对本发明的具体实施作进一步说明。 需要指出 的是, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例, 基 于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
[0027] 如图 1所示, 一种自带相移的正交压控振荡器电路, 包括结构相同的第一压 控振荡器和第二压控振荡器, 所述第一压控振荡器和第二压控振荡器通过输入 输出端口相互连接; 其中, 所述第一压控振荡器包括彼此电连接的第一交叉耦 合振荡电路、 第一注入锁定电路、 第一谐振电路和第一压控电流源电路, 信号 通过注入锁定电路注入并与振荡器电路进行耦合, 从而输出正交信号。
[0028] 所述第一交叉耦合振荡电路由四个晶体管构成, 其中第一晶体管 101的栅极 和第三晶体管 103的栅极共同连接到偏置电压 V b, 所述第一晶体管 101的漏极通 过第一结点 A连接到第四晶体管 104的栅极, 所述第三晶体管 103的漏极通过第二 结点 B连接到第二晶体管 102的栅极, 所述第二晶体管 102的源极通过第三结点 C 连接到第四晶体管 104的源极。
[0029] 优选的, 所述第一注入锁定电路由四个晶体管构成, 第五晶体管 105的栅极 和第七晶体管 107的栅极共同连接到偏置电压 V b, 所述第五晶体管 105的漏极连 接到第一结点 A, 所述第七晶体管 107的漏极连接到第二结点 B, 第六晶体管 106 的源极通过第四结点 D连接到第八晶体管 108的源极, 所述第六晶体管 106的栅极 连接到正正交输入端口, 所述第八晶体管 108的栅极连接到负正交输入端口。
[0030] 优选的, 所述第一谐振电路还包括第一中间抽头电感 109, 所述第一中间抽 头电感 109的两端分别连接第一结点 A和第二结点 B, 中间抽头连接电源电压。
[0031] 优选的, 所述第一压控电流源电路由第一交叉耦合电流源和第一注入锁定电 流源组成, 其中第九晶体管 110的漏极连接第三结点 C, 源极接地, 栅极接控制 电压 V i构成第一交叉耦合电流源; 第十晶体管 111漏极连接第四结点 D, 源极接 地, 栅极接控制电压 2构成第一注入锁定电流源, 所述第一压控电流源电路可 以通过调节控制电压的大小, 调节注入信号和振荡信号的幅度和相位, 从而使 振荡器拥有较宽的调谐范围; 同时第一压控电流源电路的放置位置有多种实现 形式, 例如采用上端电流偏置的结构。
[0032] 优选的, 所述第二压控振荡器包括彼此电连接的第二交叉耦合振荡电路, 第 二注入锁定电路, 第二谐振电路和第二压控电流源电路, 所述第二交叉耦合振 荡电路由四个晶体管构成, 其中第十一晶体管 112的源极与第十二晶体管 113的 漏极相互连接构成共源共栅结构, 第十三晶体管 114的源极与第十四晶体管 115 的漏极相互连接构成共源共栅结构, 所述第十一晶体管 112的栅极和第十三晶体 管 114的栅极共同连接到偏置电压 V b, 所述第十一晶体管 112的漏极通过第五结 点 E连接到第十四晶体管 115的栅极, 所述第十三晶体管 114的漏极通过第六结点 F连接到第十二晶体管 113的栅极, 所述第十二晶体管 113的源极通过第七结点 G 连接到第十四晶体管 115的源极。
[0033] 优选的, 所述第二注入锁定电路由四个晶体管构成, 其中第十五晶体管 116 的源极与第十六晶体管 117的漏极相互连接构成共源共栅结构, 第十七晶体管 11 8的源极与第十八晶体管 119的漏极相互连接构成共源共栅结构, 所述第十五晶 体管 116的栅极和第十七晶体管 118的栅极共同连接到偏置电压 V b, 所述第十五 晶体管 116的漏极连接到结点 E, 所述第十七晶体管 118的漏极连接到结点 F, 所 述第十六晶体管 117的源极通过结点 H连接到第十八晶体管 119的源极, 所述第十 六晶体管 117的栅极连接到正相同输入端口, 所述第十八晶体管 119的栅极连接 到负相同输入端口。
[0034] 优选的, 所述第二谐振电路包括第二中间抽头电感 120, 所述第二中间抽头 电感 120的两端分别连接第五结点 E和第六结点 F, 中间抽头连接电源电压。
[0035] 优选的, 所述第二压控电流源电路由第二交叉耦合电流源和第二注入锁定电 流源组成, 其中第十九晶体管 121的漏极连接第七结点 G, 源极接地, 栅极接控 制电压 V ,构成第二交叉耦合电流源; 第二十晶体管 122漏极连接第八结点 H, 源 极接地, 栅极接控制电压 V 2构成第二注入锁定电流源。 [0036] 优选的, 所述第一压控振荡器的第一结点 A连接到负同相输出端口, 所述第 一负同相输出端口连接到第二压控振荡器的负同相输入端口; 所述第一压控振 荡器的第二结点 B连接正同相输出端口, 所述第一正同相输出端口连接到第二压 控振荡器的正同相输入端口; 所述第二压控振荡器的第五结点 E连接到正正交输 出端口, 所述第二正正交输出端口连接到第一压控振荡器的正正交输入端口; 所述第二压控振荡器的第六结点 F连接到负正交输出端口, 所述负正交输出端口 连接到第一压控振荡器的负正交输入端口。
[0037] 注入锁定正交压控振荡器电路的原理: 在第一压控振荡器中, 由第一振荡电 路中的两对共源共栅晶体管产生振荡信号, 具有共源共栅晶体管的第一注入锁 定电路将从第二压控振荡器输出的信号注入到第一振荡电路中, 振荡信号和注 入信号进行矢量叠加, 通过同相输出端口注入到第二压控振荡器的第二注入锁 定电路中, 第二锁定电路的注入信号通过相同的方式与第二振荡电路产生的信 号矢量叠加, 又通过正交输出端口注入到第一压控振荡器中。 当第一振荡电路 产生的等效跨导 G ml与第二振荡电路产生的等效跨导 G m2满足 G ml=-G m2时, 从输 出端口产生的信号即会满足 V f-V f+jV ^-jV ^ 在四个输出端口处会产生两 两相差 90度的四路正交信号。 进一步, 通过同时改变第一压控电流源电路和第 二压控电流源电路的控制电压 V PV 2, 即可改变振荡信号和注入信号的大小, 进而改变矢量叠加的信号相移发生改变, 从而达到调谐的功能。
[0038] 在传统正交压控振荡器电路中, 由于注入信号可能超前或者滞后于振荡信号
, 所以会使两者合成的输出信号的相位出现 ±两种未知的偏移, 导致最终输出的 频率为或者, 对应图 2中的模式 1和模式 2, 这两种模式在实际应用中无法预测。
[0039] 因此, 在传统电路结构的基础上, 为振荡器的振荡电路和注入锁定电路的输 出信号和输出信号之间增加一个相移电路, 这个相移电路可以由两个组成共源 共栅结构的晶体管级联而成, 用这个结构取代传统电路中的单一晶体管, 既可 以取代原有的功能, 又可以提供一个稳定的相移。
[0040] 其中, 共源共栅结构由两个晶体管级联而成, 其可以将电压信号转换成电流 信号, 并在一定频率范围内提供一定的负相移。 电路中的每个共源共栅晶体管 会在相同的参数的情况下, 借助其本身寄生参数值随着工作频率的变化而变化 的特性, 通过同时改变每个共源共栅晶体管的尺寸, 即可得到所希望的相移, 这会使得振荡信号和注入信号同时翻转一定的角度, 达到正交信号所需的, 从 而使振荡器工作在模式 1所处的位置 (如图 3中的频率) , 模式 2由于对应位置 ( 如图 3中的频率) 的阻抗较小而不能工作, 如图 3所示。
[0041] 同时, 由于本发明使振荡器振荡在中心最高阻抗位置, 当压控电流源电路改 变控制电压的大小时, 振荡信号和注入信号叠加的信号可以保持在偏离中间位 置较宽范围的位置处保持较高阻抗, 即可在较宽范围内保持振荡。 而传统的振 荡器在模式 1或者模式 2的位置时, 当压控电流源电路改变控制电压的大小时, 会因为进入一个较小阻抗的状态而使振荡器无法工作。
[0042] 相比较于传统的电路, 共源共栅结构还具有较大的输出阻抗, 这可以防止晶 体管的寄生参数对谐振电路造成影响, 并且使电路更容易的起振。 这样利用共 源共栅结构作为相移电路, 不仅仅起到了振荡和注入的作用, 更重要的是, 与 5见有技术相比较, 能够大大简化电路的复杂度, 并且能够的在较低频段内产生 满足相位偏转的相移。 通过仿真验证, 在工作频率大于 10GHz的振荡器中, 在谐 振电路中使用变容管将大大影响振荡器的品质因数, 但是使用本发明的结构, 可以通过调节共源共栅结构中的共栅晶体管的宽长比, 使相移在大于 10GHz的频 段内保持在 45°左右, 不会因为可变电容的引入而导致谐振回路品质因数的衰减
[0043] 如图 4所示, 为本发明与传统相移电路相移性能比较图, 传统振荡电路晶体 管的输出电流与输入电压的相移曲线与本发明中晶体管的输出电流与输入电压 的相移曲线进行比较, 共源共栅结构通过其内部寄生参数和相应的电压-电流转 换, 得到了大于传统数倍的相移。
[0044] 实施例 1
[0045] 以 TSMC 65nm CMOS技术设计并制造了在 28GHz频段内自带相移的正交压控振 荡器。
[0046] 如图 5所示, 为本发明输出端时域波形图, 展示出了本发明在模拟时域中每 个输出端的波形, 其四个输出端口的电压都是正交的, 即彼此相位相差 90°。
[0047] 如图 6、 图 7所示, 展示了传统电路在不同偏置电压下的频率调节范围和本发明 电路在不同偏置电压下的频率调节范围, 在图 6和图 7中, 上方线段都表示在 V 2 =1V的情况下,
Figure imgf000010_0001
压的频率调谐范围, 下方线段都表示在 V 1=1V的情况 下, 改变 2电压的频率调谐范围。 本发明增加了初始相移, 使得频率调节范围 从原有的 27.5GHz-30GHz拓展到 24GHz-30.5GHz, 相对带宽从 9%提升到了 23%。
[0048] 在偏移频率 Z\f的本发明中的相位噪声能够使用以下公式得到:
[0049]
[0050] 其中 F是噪声系数, 2 7是回路品质因数,
Figure imgf000010_0002
是输出电压幅度, 是波兹曼常 数, r是绝对温度, c是回路电容, 是中心振荡频率。
[0051] 如图 8所示, 展示了所制造的自带相移的正交压控振荡器随着频率变化的模拟 相位噪声变化。
[0052] 综上所述, 本发明的一种自带相移的正交压控振荡器电路, 通过简单的电路结 构即可使振荡器稳定地工作在一种模式, 可以在较低频段内为谐振电路提供良 好的相移, 同时提高振荡器的调谐范围, 并不增大相位噪声。

Claims

权利要求书
[权利要求 1] 一种自带相移的正交压控振荡器电路, 包括结构相同的第一压控振荡 器和第二压控振荡器, 所述第一压控振荡器和第二压控振荡器通过输 入输出端口相互连接; 其中, 所述第一压控振荡器包括彼此电连接的 第一交叉耦合振荡电路、 第一注入锁定电路、 第一谐振电路和第一压 控电流源电路, 其特征在于: 所述第一交叉耦合振荡电路由四个晶体管构成, 其中第一晶体管 (10 1) 的栅极和第三晶体管 (103) 的栅极共同连接到偏置电压 (V b
, 所述第一晶体管 (101) 的漏极通过第一结点 (A) 连接到第四晶 体管 (104) 的栅极, 所述第三晶体管 (103) 的漏极通过第二结点 ( B) 连接到第二晶体管 (102) 的栅极, 所述第二晶体管 (102) 的源 极通过第三结点 (C) 连接到第四晶体管 (104) 的源极。
[权利要求 2] 根据权利要求 1所述的一种自带相移的正交压控振荡器电路, 其特征 在于: 所述第一注入锁定电路由四个晶体管构成, 第五晶体管 (105 ) 的栅极和第七晶体管 (107) 的栅极共同连接到偏置电压 (V b) , 所述第五晶体管 (105) 的漏极连接到第一结点 (A) , 所述第七晶 体管 (107) 的漏极连接到第二结点 (B) , 第六晶体管 (106) 的源 极通过第四结点 (D) 连接到第八晶体管 (108) 的源极, 所述第六 晶体管 (106) 的栅极连接到正正交输入端口, 所述第八晶体管 (108 ) 的栅极连接到负正交输入端口。
[权利要求 3] 根据权利要求 1所述的一种自带相移的正交压控振荡器电路, 其特征 在于: 所述第一谐振电路还包括第一中间抽头电感 (109) , 所述第 一中间抽头电感 (109) 的两端分别连接第一结点 (A) 和第二结点 (B) , 中间抽头连接电源电压。
[权利要求 4] 根据权利要求 2所述的一种自带相移的正交压控振荡器电路, 其特征 在于: 所述第一压控电流源电路包括第一交叉耦合电流源和第一注入 锁定电流源, 其中第九晶体管 (110) 的漏极连接第三结点 (C) , 源极接地, 栅极接第一控制电压 (V ,) 构成第一交叉耦合电流源; 第十晶体管 (111) 漏极连接第四结点 (D) , 源极接地, 栅极接第 二控制电压 (V 2) 构成第一注入锁定电流源。
[权利要求 5] 根据权利要求 1所述的一种自带相移的正交压控振荡器电路, 其特征 在于: 所述第二压控振荡器包括彼此电连接的第二交叉耦合振荡电路 、 第二注入锁定电路、 第二谐振电路和第二压控电流源电路, 与第一 压控振荡器结构相同, 并且在所述第二注入锁定电路中, 第十六晶体 管 (117) 的栅极连接到正同相输入端口, 第十八晶体管 (119) 的栅 极连接到负同相输入端口。
[权利要求 6] 根据权利要求 1所述的一种自带相移的正交压控振荡器电路, 其特征 在于: 所述第一压控振荡器的第一结点 (A) 连接到负同相输出端口 , 所述第一负同相输出端口连接到第二压控振荡器的负同相输入端口 ; 所述第一压控振荡器的第二结点 (B) 连接正同相输出端口, 所述 第一正同相输出端口连接到第二压控振荡器的正同相输入端口; 所述 第二压控振荡器的第五结点 (E) 连接到正正交输出端口, 所述第二 正正交输出端口连接到第一压控振荡器的正正交输入端口; 所述第二 压控振荡器的第六结点 (F) 连接到负正交输出端口, 所述负正交输 出端口连接到第一压控振荡器的负正交输入端口。
PCT/CN2019/113796 2018-12-15 2019-10-28 一种自带相移的正交压控振荡器电路 WO2020119292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/138,916 US11245359B2 (en) 2018-12-15 2020-12-31 Quadrature voltage-controlled oscillator circuit with phase shift

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811537853.3 2018-12-15
CN201811537853 2018-12-15
CN201811641561.4 2018-12-29
CN201811641561.4A CN109525198B (zh) 2018-12-15 2018-12-29 一种自带相移的正交压控振荡器电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,916 Continuation US11245359B2 (en) 2018-12-15 2020-12-31 Quadrature voltage-controlled oscillator circuit with phase shift

Publications (1)

Publication Number Publication Date
WO2020119292A1 true WO2020119292A1 (zh) 2020-06-18

Family

ID=65798634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113796 WO2020119292A1 (zh) 2018-12-15 2019-10-28 一种自带相移的正交压控振荡器电路

Country Status (3)

Country Link
US (1) US11245359B2 (zh)
CN (1) CN109525198B (zh)
WO (1) WO2020119292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525198B (zh) * 2018-12-15 2024-04-23 华南理工大学 一种自带相移的正交压控振荡器电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355258A (zh) * 2011-08-03 2012-02-15 复旦大学 一种基于注入锁定倍频器的低相噪正交压控振荡器
CN103762945A (zh) * 2014-01-20 2014-04-30 复旦大学 一种相位可调的精确正交压控振荡器电路
US9484858B1 (en) * 2015-12-31 2016-11-01 Texas Instruments Incorporated Inductive coupled pass transistor quadrature voltage controlled oscillator
CN106712719A (zh) * 2016-12-05 2017-05-24 中国科学技术大学 低功耗低相位噪声的正交电感电容压控振荡器
CN109525198A (zh) * 2018-12-15 2019-03-26 华南理工大学 一种自带相移的正交压控振荡器电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456167B1 (en) * 2000-07-13 2002-09-24 Industrial Technology Research Institute Quadrature oscillator
US6870432B2 (en) * 2003-06-02 2005-03-22 Intel Corporation Unilateral coupling for a quadrature voltage controlled oscillator
DE102004008844B4 (de) * 2004-02-20 2013-08-14 Wipro Limited Hochfrequenz-Quadratur-Teiler
KR100818241B1 (ko) * 2005-02-14 2008-04-01 삼성전자주식회사 쿼드러쳐 전압 제어 발진기
US8198945B2 (en) * 2005-06-13 2012-06-12 Nxp B.V. Quadrature oscillator with high linearity
KR100691281B1 (ko) * 2005-09-15 2007-03-12 삼성전기주식회사 쿼드러처 전압제어발진기
CN201039084Y (zh) * 2007-04-20 2008-03-19 杭州中科微电子有限公司 基于电容补偿的低幅度误差低相噪射频压控振荡器
CN101986556A (zh) * 2009-07-29 2011-03-16 中国科学院微电子研究所 用于提高相位噪声性能的正交lc压控振荡器结构
US20120249250A1 (en) * 2011-03-31 2012-10-04 Agency For Science, Technology And Research Quadrature Voltage Controlled Oscillator
CN106100585B (zh) * 2016-06-02 2019-01-01 中国科学技术大学先进技术研究院 一种低噪声低相位误差的宽带正交压控振荡器
CN106953598B (zh) * 2017-03-16 2023-07-07 杭州电子科技大学 一种基于二次谐波交叉注入锁定技术的正交压控振荡器电路
CN206727960U (zh) * 2017-03-16 2017-12-08 杭州电子科技大学 一种基于二次谐波交叉注入锁定技术的正交压控振荡器电路
US9923599B1 (en) * 2017-04-20 2018-03-20 City University Of Hong Kong Terahertz injection-locked radiator
US10382015B2 (en) * 2017-06-01 2019-08-13 City University Of Hong Kong Phase-tuning oscillators
CN210273972U (zh) * 2018-12-15 2020-04-07 华南理工大学 一种自带相移的正交压控振荡器电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355258A (zh) * 2011-08-03 2012-02-15 复旦大学 一种基于注入锁定倍频器的低相噪正交压控振荡器
CN103762945A (zh) * 2014-01-20 2014-04-30 复旦大学 一种相位可调的精确正交压控振荡器电路
US9484858B1 (en) * 2015-12-31 2016-11-01 Texas Instruments Incorporated Inductive coupled pass transistor quadrature voltage controlled oscillator
CN106712719A (zh) * 2016-12-05 2017-05-24 中国科学技术大学 低功耗低相位噪声的正交电感电容压控振荡器
CN109525198A (zh) * 2018-12-15 2019-03-26 华南理工大学 一种自带相移的正交压控振荡器电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, DEPING ET AL.: "An Optimally Coupled Low Phase Noise Wideband Quadrature Voltage-Controlled Oscillator", JOURNAL OF FUDAN UNIVERSITY (NATURAL SCIENCE), vol. 49, no. 2, 15 April 2010 (2010-04-15), pages 249 - 256, ISSN: 0427-7104 *

Also Published As

Publication number Publication date
CN109525198A (zh) 2019-03-26
US11245359B2 (en) 2022-02-08
CN109525198B (zh) 2024-04-23
US20210119578A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US7383033B2 (en) Differential and quadrature harmonic VCO and methods therefor
TWI290416B (en) Oscillator and communication device
US7557664B1 (en) Injection-locked frequency divider
US7375596B2 (en) Quadrature voltage controlled oscillator
JP4932572B2 (ja) カップリングキャパシタを備える4位相電圧制御発振器
US20100301955A1 (en) Frequency divider using an injection-locking-range enhancement technique
US9444438B2 (en) Frequency doubler and related method of generating an oscillating voltage
US20120249250A1 (en) Quadrature Voltage Controlled Oscillator
US7902930B2 (en) Colpitts quadrature voltage controlled oscillator
KR100523802B1 (ko) 소스 단자의 병렬 커플링을 이용한 4위상 전압 제어 발진기
US7710211B2 (en) Injection-locked frequency divider with a wide injection-locked frequency range
CN103762945A (zh) 一种相位可调的精确正交压控振荡器电路
US7319366B2 (en) Offset local oscillator without using frequency divider
TWI450492B (zh) 電感電容振盪器
WO2020119292A1 (zh) 一种自带相移的正交压控振荡器电路
CN210273972U (zh) 一种自带相移的正交压控振荡器电路
US9106179B2 (en) Voltage-controlled oscillators and related systems
CN110690897A (zh) 宽频带锁定范围的低功耗注入锁定分频器
KR20090072905A (ko) 백 게이트를 통한 제 2 고조파 직접 결합 4위상 전압 제어발진기
CN104333329B (zh) 一种注入增强型低功耗宽锁定范围的注入锁定三倍频器
CN108599762B (zh) 一种双模低功耗宽锁定范围的注入锁定分频器
US8493155B2 (en) Multiband voltage controlled oscillator without switched capacitor
WO2023221276A1 (zh) 一种减少闪烁噪声上变频的翻转互补低噪声压控振荡器
TWI536730B (zh) 四相位弛張震盪器
Saha et al. A C-band wide locking range injection locked oscillator based phase shifter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895556

Country of ref document: EP

Kind code of ref document: A1