WO2020119196A1 - 一种超深立井环向分布式摩擦提升系统 - Google Patents

一种超深立井环向分布式摩擦提升系统 Download PDF

Info

Publication number
WO2020119196A1
WO2020119196A1 PCT/CN2019/105543 CN2019105543W WO2020119196A1 WO 2020119196 A1 WO2020119196 A1 WO 2020119196A1 CN 2019105543 W CN2019105543 W CN 2019105543W WO 2020119196 A1 WO2020119196 A1 WO 2020119196A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
friction
compound
wire rope
composite
Prior art date
Application number
PCT/CN2019/105543
Other languages
English (en)
French (fr)
Inventor
曹国华
朱真才
彭玉兴
周公博
卢昊
汤裕
李翔
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3097225A priority Critical patent/CA3097225C/en
Priority to RU2020133782A priority patent/RU2749285C1/ru
Priority to AU2019399566A priority patent/AU2019399566B2/en
Publication of WO2020119196A1 publication Critical patent/WO2020119196A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/10Arrangements of ropes or cables for equalising rope or cable tension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to an ultra-deep vertical shaft hoisting system, in particular to an ultra-deep vertical shaft hoist distributed friction lifting system.
  • each steel wire rope acts on the friction wheel with radial force in the same direction, the load is too large, and the bending stress of the friction wheel is often very large, which threatens the life of the friction wheel and Improve the security of the system.
  • the tension of the wire rope is often uneven, and the wear degree of each wire rope is different, which directly affects the service life of the wire rope.
  • the traditional container tension balancing device is mostly used to adjust the tension of the steel wire rope, but the use of this device will increase the larger dead weight, and the adjustment range of the hydraulic tension balancing device connected to the container is relatively small.
  • the present invention provides an ultra-deep vertical hoisting distributed friction lifting system, which can effectively reduce the bending stress of the friction wheel shaft, and can overcome the problem of excessive bending stress of the friction wheel shaft of the traditional friction lifting system. It can also conveniently adjust the tension balance of the steel wire rope at a large distance.
  • the technical solutions adopted by the present invention to solve its technical problems are: including several wire ropes, a left guide wheel, a right guide wheel, a friction wheel, as many composite wheel sets as the number of wire ropes, a left lifting container, a right lifting container
  • the friction wheel is set in the middle
  • the composite wheel group is distributed in a circle around the friction wheel
  • the left guide wheel and the right guide wheel are horizontally aligned and symmetrically arranged at the lower left of the friction wheel Square and lower right
  • the horizontal distance between the right rim of the left guide wheel and the left rim of the right guide wheel is the horizontal distance between the left lifting container and the right lifting container
  • each compound wheel group consists of an A compound wheel It is composed of a B compound wheel and the two are distributed in the radial direction of the friction wheel.
  • the B compound wheel in each compound wheel group has the freedom to move in the radial direction of the friction wheel.
  • the A compound wheel is set between the B compound wheel and the friction Between the wheels; a composite wheel set corresponds to a steel wire rope; a composite wheel set on the left side of the friction wheel, one end of the steel wire rope is connected to the left lifting container, and the other end sequentially bypasses the left guide wheel, B composite wheel, friction wheel, and A composite wheel After the friction wheel and the right guide wheel, connect to the right lifting container; the compound wheel group on the right side of the friction wheel, one end of which is connected to the left lifting container, and the other end sequentially bypasses the left guide wheel, friction wheel, A composite wheel, and friction wheel After the B composite wheel and the right guide wheel, connect to the right lifting container; the winding position of each steel wire rope on the left composite wheel group of the friction wheel on the friction wheel and each steel wire rope on the right composite wheel group of the friction wheel on the friction wheel The winding positions on the top are staggered or adjacent to each
  • the ultra-deep vertical hoisting distributed friction lifting system of the present invention has the following beneficial effects: 1) Each composite wheel group is distributed around the friction wheel in a hoop direction, which helps reduce the bending stress of the friction wheel shaft , Overcoming the problem of excessive bending stress on the friction wheel shaft of the traditional friction hoisting system; 2) Adding a composite wheel set, effectively improving the wrap angle of the wire rope and increasing the traction of the lifting system; 3) By adjusting the B compound in the composite wheel set The position of the wheel is used to adjust the tension of each steel wire rope without the need to install a traditional container tension balancing device, which effectively overcomes the problem of tension imbalance caused by the difference in displacement of different steel wire ropes and the large self-weight problem added by the traditional container tension balancing device; 4) At the same time, the position adjustment range of the compound wheel is relatively large, which can avoid the problem of small adjustment range of the traditional hydraulic tension balance device connected to the container.
  • FIG. 1 is a schematic structural diagram of a first embodiment of the present invention, and the number of steel ropes is six.
  • FIG. 2 is a schematic diagram of the relative positional relationship between the 2A composite wheel, the 2B composite wheel and the friction wheel in the embodiment of FIG. 1.
  • FIG. 3 is a schematic diagram of the first wire rope in the embodiment of FIG. 1.
  • Fig. 4 is a schematic diagram of a second wire rope in the embodiment of Fig. 1.
  • FIG. 5 is a schematic diagram of a third wire rope in the embodiment of FIG. 1.
  • FIG. 6 is a schematic diagram of the fourth wire rope in the embodiment of FIG. 1.
  • FIG. 7 is a schematic diagram of the fifth wire rope in the embodiment of FIG. 1.
  • FIG. 8 is a schematic diagram of the sixth wire rope in the embodiment of FIG. 1.
  • FIG. 9 is a schematic view of the steel wire rope on the left composite wheel group of the friction wheel and the steel wire rope on the right composite wheel group of the friction wheel in the embodiment of FIG.
  • FIG. 10 is a schematic view of the steel wire rope on the composite wheel group on the left side of the friction wheel and the steel wire rope on the composite wheel group on the right side of the friction wheel in the embodiment of FIG.
  • FIG. 11 is a schematic diagram of a reel arrangement on the left lifting container in the embodiment of FIG. 1.
  • FIG. 12 is a schematic structural view of the second embodiment when the number of steel ropes is 4.
  • FIG. 13 is a schematic structural view of the third embodiment when the number of steel cords is 8.
  • the ultra-deep vertical hoist distributed friction lifting system of the first embodiment of the present invention is composed of a first steel wire rope 111, a second steel wire rope 112, a third steel wire rope 113, a fourth steel wire rope 114, a fifth steel wire rope 115,
  • the friction wheel 130 is arranged in the middle, the first compound wheel group 141, the second compound wheel group 142, the third compound wheel group 143, the fourth compound wheel group 144, the fifth compound wheel group 145 and the sixth compound wheel group 146
  • the friction wheel 130 is distributed in a circumferential direction, and the left guide wheel 121 and the right guide wheel 122 are horizontally aligned and symmetrically disposed at the lower left and lower right of the friction wheel 130, respectively.
  • the horizontal distance between the right rim of the left guide wheel 121 and the left rim of the right guide wheel 122 is the horizontal distance between the left lift container 151 and the right lift container 152.
  • the lower ends of the left lifting container 151 and the right lifting container 152 are connected by each balance rope 160.
  • the first compound wheel set 141, the second compound wheel set 142, the third compound wheel set 143, the fourth compound wheel set 144, the fifth compound wheel set 145 and the sixth compound wheel set 146 are composed of the 1A compound wheel 141- 1 and 1B compound wheel 141-2, 2A compound wheel 142-1 and 2B compound wheel 142-2, 3A compound wheel 143-1 and 3B compound wheel 143-2, 4A compound wheel 144-1 and The 4B compound wheel 144-2, the 5A compound wheel 145-1 and the 5B compound wheel 145-2, and the 6A compound wheel 146-1 and 6B compound wheel 146-2, that is, each compound wheel group consists of an A
  • the compound wheel and a B compound wheel are composed of two compound wheels in the same compound wheel group distributed along the radial direction of the friction wheel 130, wherein the B compound wheel has freedom to move in the radial direction of the friction wheel 130, and the A compound wheel It is provided between the B composite wheel and the friction wheel 130.
  • the tension adjustment system 170 includes an adjustment cylinder group and a hydraulic line.
  • the adjustment cylinder I 171-1 on the left side of the adjustment cylinder group is combined with B of the first compound wheel group 141, the second compound wheel group 142, and the third compound wheel group 143 respectively The wheels are connected for radial communication.
  • the right adjustment cylinder II 172-1 is connected to the B compound wheels of the fourth compound wheel set 144, the fifth compound wheel set 145, and the sixth compound wheel set 146 respectively for radial Connected to the movement, the left adjustment cylinder I171-1 is connected through the left hydraulic line I171-2, the right adjustment cylinder II 172-1 is connected through the right hydraulic line II172-2, and the hydraulic line I171- 2 It is not connected with the hydraulic line II172-2.
  • the 2A compound wheel 142-1 and the 2B compound wheel 142-2 are distributed along the radial direction of the friction wheel 130, wherein the 2B compound wheel 142-2 has The degree of freedom of movement in the radial direction of the friction wheel 130.
  • the 2A compound wheel 142-1 is provided between the 2B compound wheel 142-2 and the friction wheel 130.
  • the 2B compound wheel 142-2 is distributed on the 2A compound wheel 142 -1 Within ⁇ angle of the line connecting with the friction wheel 130.
  • takes 10 degrees.
  • the position relationship between the A composite wheel, the B composite wheel and the friction wheel 130 in the remaining composite wheel sets is similar.
  • the first wire rope 111 is wound in alphabetical order: the first wire rope 111 is connected to the left lifting container 151 at one end, and the left guide wheel 121, the 1B composite wheel 141-2, and the friction wheel are sequentially bypassed at the other end 130. After the 1A composite wheel 141-1, the friction wheel 130, and the right guide wheel 122, the right lift container 152 is connected to form a single-rope friction lift in a multi-rope friction lift system. At the same time, when the left lifting container 151 is lifted, the first wire rope 111 moves in alphabetical order as shown in the figure.
  • the second wire rope 112 is wound in alphabetical order as shown in the figure: the second wire rope 112 is connected to the left lifting container 151 at one end, and the left guide wheel 121, the 2B composite wheel 142-2, and the friction wheel are sequentially bypassed at the other end 130. After the 2A composite wheel 142-1, the friction wheel 130, and the right guide wheel 122, the right lift container 152 is connected to form a single rope friction lift in a multi-rope friction lift system. At the same time, when the left lifting container 151 is lifted, the second wire rope 112 moves in alphabetical order as shown.
  • the third wire rope 113 is wound in alphabetical order as shown in the figure: the third wire rope 113, one end is connected to the left lifting container 151, and the other end sequentially bypasses the left guide wheel 121, the 3B composite wheel 143-2, and the friction wheel 130.
  • the right lift container 152 is connected to form a single-rope friction lift in a multi-rope friction lift system.
  • the third wire rope 113 moves in alphabetical order as shown in the figure.
  • the fourth wire rope 114 is wound in alphabetical order as shown in the figure: the fourth wire rope 114, one end is connected to the left lifting container 151, and the other end sequentially bypasses the left guide wheel 121, the friction wheel 130, and the 4A composite wheel 144- 1. After the friction wheel 130, the 4B compound wheel 144-2 and the right guide wheel 122, the right lifting container 152 is connected to form a single rope friction lift in a multi-rope friction lift system. At the same time, when the left lifting container 151 is lifted, the fourth wire rope 114 moves in alphabetical order as shown.
  • the fifth wire rope 115 is wound in alphabetical order as shown in the figure: the fifth wire rope 115 is connected to the left lifting container 151 at one end, and the left guide wheel 121, the friction wheel 130, and the 5A composite wheel 145- 1. After the friction wheel 130, the 5B composite wheel 145-2 and the right guide wheel 122, the right lifting container 152 is connected to form a single rope friction lift in a multi-rope friction lift system. At the same time, when the left lifting container 151 is lifted, the fifth wire rope 115 moves in alphabetical order as shown.
  • the sixth wire rope 116 is wound in alphabetical order as shown in the figure: the sixth wire rope 116 is connected to the left lifting container 151 at one end, and the left guide wheel 121, the friction wheel 130, and the 6A composite wheel 146 are sequentially bypassed at the other end 1. After the friction wheel 130, the 6B composite wheel 146-2 and the right guide wheel 122, the right lifting container 152 is connected to form a single rope friction lift in a multi-rope friction lift system. At the same time, when the left lifting container 151 is lifted, the sixth wire rope 116 moves in alphabetical order as shown.
  • the winding positions of the steel ropes on the left and right sides of the friction wheel 130 on the friction wheel 130 are arranged as follows: the first wire rope 111, the second wire rope 112, and the third wire rope 113 are wound on the friction wheel 130
  • the positions and the winding positions of the fourth wire rope 114, the fifth wire rope 115, and the sixth wire rope 116 on the friction wheel 130 are staggered with each other.
  • the winding positions of the wire ropes on the left and right sides of the friction wheel 130 on the friction wheel 130 are arranged in the second way: the first wire rope 111, the second wire rope 112, and the third wire rope 113 are wound on the friction wheel 130 The positions are adjacent to each other, and the fourth wire rope 114, the fifth wire rope 115, and the sixth wire rope 116 are adjacent to each other at the winding positions on the friction wheel 130.
  • the first wire rope 111 and the fourth wire rope 114 each apply a torque to the drum 180 that causes the drum 180 to rotate, when the first wire rope 111
  • the tension of the fourth wire rope 114 is unequal, the two moments are unequal, and the drum 180 rotates from the upper side to the side of the steel wire rope with the lower tension in the two steel ropes, and the wire rope with the higher tension moves from the drum 180 Panasonic, the wire rope with less tension is wound on the drum 180 until the tension of the two wire ropes is equal, and the drum 180 no longer rotates, thus completing the tension balance adjustment of the first wire rope 111 and the fourth wire rope 114 at the left lifting container 151 end.
  • the three drums 180 respectively complete the tension balance adjustment of the first wire rope 111 and the fourth wire rope 114 at the end of the left lifting container 151, the tension balance adjustment of the second wire rope 112 and the fifth wire rope 115 at the end of the left lifting container 151, the third wire rope 113, The tension balance of the sixth wire rope 116 at the end of the left lift container 151 is adjusted.
  • the tension balance adjustment of the different-side steel rope on the right lifting container 152 through the drum 180 is similar to the above adjustment process, and will not be described in detail.
  • FIG. 12 shows the ultra-deep vertical hoisting distributed friction hoisting system of the second embodiment when the number of steel ropes is 4. The difference from the first embodiment is only that the number of steel ropes, balance ropes 260 and the composite wheel set is two less.
  • Fig. 13 shows the super-deep vertical hoisting distributed friction hoisting system of the third embodiment when the number of steel ropes is 8.
  • the difference from the first embodiment is only that there are two more steel ropes, balance ropes 360 and composite wheel sets. That is, the seventh wire rope 317 and the eighth wire rope 318 and the seventh compound wheel set 347 and the eighth compound wheel set 348 are added, and two balance ropes 360 are added.

Landscapes

  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)
  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)

Abstract

一种超深立井环向分布式摩擦提升系统,包括摩擦轮(130)、左导向轮(121)、右导向轮(122)、左提升容器(151)、右提升容器(152)、平衡绳(160)、张力调节系统(170)、复合轮组(141,142,143,144,145,146)、钢丝绳(111,112,113,114,115,116)、卷筒(180)和钢丝绳卡扣(190);各复合轮组(141,142,143,144,145,146)绕摩擦轮(130)环向分布,通过调整复合轮组中的B复合轮(141-2,142-2,143-2,144-2,145-2,146-2)的位置来调整每一钢丝绳的张力,有助于摩擦轮轴的弯曲应力的减小,克服了传统摩擦提升系统摩擦轮轴弯曲应力过大的问题,不需要再设置传统容器张力平衡装置,有效克服了不同钢丝绳的位移差而导致的张力不均衡问题以及传统容器张力平衡装置增加的大自重问题,同时,复合轮的位置调整范围较大,避免了传统连接在容器上的液压张力平衡装置调节幅度小的问题。

Description

一种超深立井环向分布式摩擦提升系统 技术领域
本发明涉及一种超深立井提升系统,尤其是一种超深立井环向分布式摩擦提升系统。
背景技术
超深立井多绳摩擦提升中,传统的摩擦提升系统,各条钢丝绳以同一方向对摩擦轮作用以径向力,载荷过大,摩擦轮的弯曲应力往往很大,威胁着摩擦轮的寿命和提升系统的安全性。另一方面,由于钢丝绳在制造、安装过程中的误差以及提升过程中的偏载,钢丝绳张力往往不均衡,各钢丝绳磨损程度不一,直接影响到钢丝绳的使用寿命。目前多采用传统容器张力平衡装置来调节钢丝绳的张力,但采用该装置将增加较大的自重,而且连接在容器上的液压张力平衡装置调节幅度比较小。
发明内容
为了克服现有技术的上述不足,本发明提供一种超深立井环向分布式摩擦提升系统,可有效减小摩擦轮轴的弯曲应力,能克服传统摩擦提升系统摩擦轮轴弯曲应力过大问题,同时还能大距离方便地进行钢丝绳张力平衡调节。
本发明解决其技术问题采用的技术方案是:包括若干根钢丝绳、一个左导向轮、一个右导向轮、一个摩擦轮、与钢丝绳数量一样多个复合轮组、一个左提升容器、一个右提升容器、与钢丝绳数量一样多根平衡绳以及一个张力调节系统,摩擦轮设置在中间,复合轮组围绕摩擦轮呈环向分布,左导向轮和右导向轮水平对齐并分别对称设置在摩擦轮的左下方和右下方,左导向轮的右轮缘与右导向轮的左轮缘所在竖直切线的水平距离为左提升容器与右提升容器之间的水平间距;每一复合轮组由一个A复合轮和一个B复合轮组成,二者沿摩擦轮的径向分布,每一复合轮组中的B复合轮具有沿摩擦轮的径向方向移动的自由度,A复合轮设置在B复合轮与摩擦轮之间;一个复合轮组对应一根钢丝绳;位于摩擦轮左侧的复合轮组,其钢丝绳一端连接左提升容器,另一端依次绕过左导向轮、B复合轮、摩擦轮、A复合轮、摩擦轮及右导向轮后,连接到右提升容器;位于摩擦轮右侧的复合轮组,其一端连接左提升容器,另一端依次绕过左导向轮、摩擦轮、A复合轮、摩擦轮、B复合轮及右导向轮后,连接到右提升容器;摩擦轮左侧复合轮组上的各钢丝绳在摩擦轮上的绕线位置与摩擦轮右侧复合轮组上的各钢丝绳在摩擦轮上的绕线位置,彼此交错或分别相邻成块;在左提升容器和右提升容器的顶端,均固定有三个卷筒;每一复合轮组所对应的钢丝绳的左右两端,均通过卷筒与左提升容器、右提升容器连接,每一卷筒连接两根钢丝绳;张力调节系统分别与摩擦轮左、右侧复合轮组的B复合轮相连接,且两侧独立进行径向的连通运动;左提升容器和右提升容器的下端由平衡绳连接。
相比现有技术,本发明的一种超深立井环向分布式摩擦提升系统,有益效果是:1)各复合轮组绕摩擦轮环向分布,有助于摩擦轮轴的弯曲应力的减小,克服了传统摩擦提升系统摩擦轮轴弯曲应力过大问题;2)增加了复合轮组,有效提高了钢丝绳的围包角,增加了 提升系统的牵引力;3)通过调整复合轮组中的B复合轮的位置来调整每一钢丝绳的张力,不需要再设置传统容器张力平衡装置,有效克服了不同钢丝绳的位移差而导致的张力不均衡问题以及传统容器张力平衡装置增加的大自重问题;4)同时复合轮的位置调整范围较大,可以避免传统连接在容器上的液压张力平衡装置调节幅度小的问题。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明第一实施例的结构示意图,其钢丝绳的数目为6。
图2为图1实施例中第2A复合轮、第2B复合轮与摩擦轮相对位置关系的示意图。
图3为图1实施例中第1钢丝绳的绕绳示意图。
图4为图1实施例中第2钢丝绳的绕绳示意图。
图5为图1实施例中第3钢丝绳的绕绳示意图。
图6为图1实施例中第4钢丝绳的绕绳示意图。
图7为图1实施例中第5钢丝绳的绕绳示意图。
图8为图1实施例中第6钢丝绳的绕绳示意图。
图9为图1实施例中摩擦轮左侧复合轮组上钢丝绳与摩擦轮右侧复合轮组上钢丝绳,二者在摩擦轮上绕绳位置交错排布的示意图(俯视图)。
图10为图1实施例中摩擦轮左侧复合轮组上钢丝绳与摩擦轮右侧复合轮组上钢丝绳,二者在摩擦轮上绕绳位置分块排布的示意图(俯视图)。
图11为图1实施例中左提升容器上的一种卷筒布置示意图。
图12为当钢丝绳数目为4时的第二实施例的结构示意图。
图13为当钢丝绳数目为8时的第三实施例的结构示意图。
图中:111、211、311、第1钢丝绳,112、212、312、第2钢丝绳,113、213、313、第3钢丝绳,114、214、314、第4钢丝绳,115、315、第5钢丝绳,116、316、第6钢丝绳,317、第7钢丝绳,318、第8钢丝绳,121、221、321、左导向轮,122、222、322、右导向轮,130、230、330、摩擦轮,141、241、341、第1复合轮组,141-1、第1A复合轮,141-2、第1B复合轮,142、242、342、第2复合轮组,142-1、第2A复合轮,142-2、第2B复合轮,143、243、343、第3复合轮组,143-1、第3A复合轮,143-2、第3B复合轮,144、244、344、第4复合轮组,144-1、第4A复合轮,144-2、第4B复合轮,145、345、第5复合轮组,145-1、第5A复合轮,145-2、第5B复合轮,146、346、第6复合轮组,146-1、第6A复合轮,146-2、第6B复合轮,347、第7复合轮组,348、第8复合轮组,151、251、351、左提升容器,152、252、352、右提升容器,160、260、360、平衡绳,170、270、370、张力调节系统,171-1、271-1、371-1、调节油缸Ⅰ,171-2、271-2、371-2、液压管路Ⅰ,172-1、272-1、372-1、调节油缸Ⅱ,172-2、272-2、372-2、液压管路Ⅱ,180、280、380、卷筒,190、钢丝绳卡扣。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示,本发明第一实施例的超深立井环向分布式摩擦提升系统,由第1钢丝绳111、第2钢丝绳112、第3钢丝绳113、第4钢丝绳114、第5钢丝绳115、第6钢丝绳116、左导向轮121、右导向轮122、摩擦轮130,第1复合轮组141、第2复合轮组142、第3复合轮组143、第4复合轮组144、第5复合轮组145、第6复合轮组146、左提升容器151、右提升容器152、6条平衡绳160、张力调节系统170、卷筒180和钢丝绳卡扣190组成。其中:摩擦轮130设置在中间,第1复合轮组141、第2复合轮组142、第3复合轮组143、第4复合轮组144、第5复合轮组145和第6复合轮组146围绕摩擦轮130呈环向分布,左导向轮121和右导向轮122水平对齐并分别对称设置在摩擦轮130的左下方和右下方。左导向轮121的右轮缘与右导向轮122的左轮缘所在竖直切线的水平距离为左提升容器151、右提升容器152之间的水平间距。左提升容器151、右提升容器152的下端由各条平衡绳160连接。第1复合轮组141、第2复合轮组142、第3复合轮组143、第4复合轮组144、第5复合轮组145和第6复合轮组146,分别由第1A复合轮141-1和第1B复合轮141-2、第2A复合轮142-1和第2B复合轮142-2、第3A复合轮143-1和第3B复合轮143-2、第4A复合轮144-1和第4B复合轮144-2、第5A复合轮145-1和第5B复合轮145-2以及第6A复合轮146-1和第6B复合轮146-2组成,即每一复合轮组由一个A复合轮和一个B复合轮组成,同一复合轮组中的两个复合轮沿摩擦轮130的径向分布,其中,B复合轮具有沿摩擦轮130的径向方向移动的自由度,A复合轮设置在B复合轮与摩擦轮130之间。
张力调节系统170包括调节油缸组和液压管路,调节油缸组中左侧的调节油缸Ⅰ171-1分别与第1复合轮组141、第2复合轮组142、第3复合轮组143的B复合轮相连接进行径向的连通运动,右侧的调节油缸Ⅱ172-1分别与第4复合轮组144、第5复合轮组145、第6复合轮组146的B复合轮相连接进行径向的连通运动,左侧的调节油缸Ⅰ171-1经左侧的液压管路Ⅰ171-2相连通,右侧的调节油缸Ⅱ172-1经右侧的液压管路Ⅱ172-2相连通,液压管路Ⅰ171-2和液压管路Ⅱ172-2不连通。
如图2所示,以第2复合轮组142为例,第2A复合轮142-1和第2B复合轮142-2沿摩擦轮130的径向分布,其中,第2B复合轮142-2具有沿摩擦轮130的径向方向移动的自由度,第2A复合轮142-1设置在第2B复合轮142-2与摩擦轮130之间,第2B复合轮142-2分布在第2A复合轮142-1与摩擦轮130连线的环向±α角度内。此处α取10度。其余复合轮组中的A复合轮、B复合轮与摩擦轮130的位置关系类似。
如图3所示,第1钢丝绳111按图示字母顺序绕绳:第1钢丝绳111,一端连接左提升容器151,另一端依次绕过左导向轮121、第1B复合轮141-2、摩擦轮130、第1A复合轮141-1、摩擦轮130及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第1钢丝绳111按图示字母顺序运动。
如图4所示,第2钢丝绳112按图示字母顺序绕绳:第2钢丝绳112,一端连接左提升容器151,另一端依次绕过左导向轮121、第2B复合轮142-2、摩擦轮130、第2A复合轮142-1、摩擦轮130及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第2钢丝绳112按图示字母顺序运动。
如图5所示,第3钢丝绳113按图示字母顺序绕绳:第3钢丝绳113,一端连接左提升容器151,另一端依次绕过左导向轮121、第3B复合轮143-2、摩擦轮130、第3A复合轮143-1、摩擦轮130及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第3钢丝绳113按图示字母顺序运动。
如图6所示,第4钢丝绳114按图示字母顺序绕绳:第4钢丝绳114,一端连接左提升容器151,另一端依次绕过左导向轮121、摩擦轮130、第4A复合轮144-1、摩擦轮130、第4B复合轮144-2及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第4钢丝绳114按图示字母顺序运动。
如图7所示,第5钢丝绳115按图示字母顺序绕绳:第5钢丝绳115,一端连接左提升容器151,另一端依次绕过左导向轮121、摩擦轮130、第5A复合轮145-1、摩擦轮130、第5B复合轮145-2及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第5钢丝绳115按图示字母顺序运动。
如图8所示,第6钢丝绳116按图示字母顺序绕绳:第6钢丝绳116,一端连接左提升容器151,另一端依次绕过左导向轮121、摩擦轮130、第6A复合轮146-1、摩擦轮130、第6B复合轮146-2及右导向轮122后,连接右提升容器152,构成多绳摩擦提升系统中的单绳摩擦提升。同时,左提升容器151提升时,第6钢丝绳116按图示字母顺序运动。
如图9所示,是位于摩擦轮130左右两侧的钢丝绳在摩擦轮130上的缠绕位置布置方式一:第1钢丝绳111、第2钢丝绳112、第3钢丝绳113在摩擦轮130上的绕线位置和第4钢丝绳114、第5钢丝绳115、第6钢丝绳116在摩擦轮130上的绕线位置彼此交错。
如图10所示,是位于摩擦轮130左右两侧的钢丝绳在摩擦轮130上的缠绕位置布置方式二:第1钢丝绳111、第2钢丝绳112、第3钢丝绳113在摩擦轮130上的绕线位置相邻成块,第4钢丝绳114、第5钢丝绳115、第6钢丝绳116在摩擦轮130上的绕线位置相邻成块。
如图11所示,以左提升容器151上的一种卷筒布置为例:在左提升容器151上,有三个卷筒180通过轴承支座固定在左提升容器151的顶端,三个卷筒180分别连接第1钢丝绳111、第4钢丝绳114,第2钢丝绳112、第5钢丝绳115,第3钢丝绳113、第6钢丝绳116;与每个卷筒180连接的两根钢丝绳中,每根钢丝绳的一端,通过钢丝绳卡扣190在卷筒180的外圆柱侧面的靠近端面处与卷筒180连接;两条钢丝绳在卷筒180上有相同的螺旋缠绕方向;两条钢丝绳的出绳端分布于卷筒轴中部的两侧,均从卷筒180下侧出绳;三个卷筒180的共计六个出绳端处于与左导向轮121的轴线相平行的竖直平面内。
以与第1钢丝绳111、第4钢丝绳114连接的卷筒180为例,第1钢丝绳111、第4钢丝绳114各自对卷筒180施加于使卷筒180有转动倾向的力矩,当第1钢丝绳111、第4钢丝绳114张力不等时,该两个力矩不等,卷筒180从上侧向所述两条钢丝绳中张力较小的钢丝绳的一侧转动,张力较大的钢丝绳从卷筒180上松下,张力较小的钢丝绳在卷筒180上绕紧,直至两条钢丝绳张力相等,卷筒180不再转动,从而完成第1钢丝绳111、第4钢丝绳114在左提升容器151端的张力平衡调节。三个卷筒180分别完成第1钢丝绳111、第4钢丝绳114在左提升容器151端的张力平衡调节,第2钢丝绳112、第5钢丝绳115在左提升容器151端的张力平衡调节,第3钢丝绳113、第6钢丝绳116在左提升容器151端的张力平衡调节。
右提升容器152上通过卷筒180完成的异侧钢丝绳张力平衡调节与上述调节过程类似,不再赘述。
结合如下所述通过张力调节系统170完成的第1钢丝绳111、第2钢丝绳112、第3钢丝绳113的张力平衡调节和第4钢丝绳114、第5钢丝绳115、第6钢丝绳116的张力平衡调节,即可完成第1钢丝绳111、第2钢丝绳112、第3钢丝绳113、第4钢丝绳114、第5钢丝绳115、第6钢丝绳116的张力平衡调节。
张力调节系统的工作过程:当六条提升钢丝绳张力不均衡时,第1钢丝绳111、第2钢丝绳112、第3钢丝绳113的张力分别传递给相应的B复合轮,再传递给调节油缸组中左侧相应的调节油缸Ⅰ171-1,左侧各调节油缸Ⅰ171-1通过左侧的液压管路Ⅰ171-2相连通,各调节油缸Ⅰ171-1发生动作,重新调整B复合轮的位置,直至第1钢丝绳111、第2钢丝绳112、第3钢丝绳113张力相等时,调节油缸Ⅰ171-1停止动作,B复合轮停止移动,从而完成位于左侧的第1钢丝绳111、第2钢丝绳112、第3钢丝绳113的张力平衡调节;而位于右侧的第4钢丝绳114、第5钢丝绳115、第6钢丝绳116的张力分别传递给该侧相应的B复合轮,再传递给调节油缸组中右侧相应的调节油缸Ⅱ172-1,右侧各调节油缸Ⅱ172-1通过右侧的液压管路Ⅱ172-2相连通,各调节油缸Ⅱ172-1发生动作,重新调整B复合轮的位置,直至第4钢丝绳114、第5钢丝绳115、第6钢丝绳116张力相等时,调节油缸停止动作,B复合轮停止移动,从而完成第4钢丝绳114、第5钢丝绳115、第6钢丝绳116的张力平衡调节。
图12为当钢丝绳数目为4时第二实施例的超深立井环向分布式摩擦提升系统,与第一实施例的区别仅在于钢丝绳、平衡绳260及复合轮组的数量少两个。
图13为当钢丝绳数目为8时第三实施例的超深立井环向分布式摩擦提升系统,与第一实施例的区别也仅在于钢丝绳、平衡绳360及复合轮组的数量多两个,即多了第7钢丝绳317和第8钢丝绳318以及第7复合轮组347和第8复合轮组348,多了两根平衡绳360。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质,对以上实施例所做出任何简单修改和同等变化,均落入本发明的保护范围之内。

Claims (6)

  1. 一种超深立井环向分布式摩擦提升系统,其特征是:包括若干根钢丝绳、一个左导向轮(121,221,321)、一个右导向轮(122,222,322)、一个摩擦轮(130,230,330)、与钢丝绳数量一样多个复合轮组、一个左提升容器(151,251,351)、一个右提升容器(152,252,352)、与钢丝绳数量一样多根平衡绳(160,260,360)以及一个张力调节系统(170,270,370),摩擦轮(130,230,330)设置在中间,复合轮组围绕摩擦轮(130,230,330)呈环向分布,左导向轮(121,221,321)和右导向轮(122,222,322)水平对齐并分别对称设置在摩擦轮(130,230,330)的左下方和右下方,左导向轮(121,221,321)的右轮缘与右导向轮(122,222,322)的左轮缘所在竖直切线的水平距离为左提升容器(151,251,351)与右提升容器(152,252,352)之间的水平间距;
    每一复合轮组由一个A复合轮和一个B复合轮组成,二者沿摩擦轮(130,230,330)的径向分布,每一复合轮组中的B复合轮具有沿摩擦轮(130,230,330)的径向方向移动的自由度,A复合轮设置在B复合轮与摩擦轮(130,230,330)之间;
    一个复合轮组对应一根钢丝绳;位于摩擦轮(130,230,330)左侧的复合轮组,其钢丝绳一端连接左提升容器(151,251,351),另一端依次绕过左导向轮(121,221,321)、B复合轮、摩擦轮(130,230,330)、A复合轮、摩擦轮(130,230,330)及右导向轮(122,222,322)后,连接到右提升容器(152,252,352);位于摩擦轮(130,230,330)右侧的复合轮组,其一端连接左提升容器(151,251,351),另一端依次绕过左导向轮(121,221,321)、摩擦轮(130,230,330)、A复合轮、摩擦轮(130,230,330)、B复合轮及右导向轮(122,222,322)后,连接到右提升容器(152,252,352);
    摩擦轮(130,230,330)左侧复合轮组上的各钢丝绳在摩擦轮(130,230,330)上的绕线位置与摩擦轮(130,230,330)右侧复合轮组上的各钢丝绳在摩擦轮(130,230,330)上的绕线位置,彼此交错或分别相邻成块;
    在左提升容器(151,251,351)和右提升容器(152,252,352)的顶端,均固定有三个卷筒(180,280,380);每一复合轮组所对应的钢丝绳的左右两端,均通过卷筒(180,280,380)与左提升容器(151,251,351)、右提升容器(152,252,352)连接,每一卷筒连接两根钢丝绳;
    张力调节系统(170,270,370)分别与摩擦轮(130,230,330)左、右侧复合轮组的B复合轮相连接,且两侧独立进行径向的连通运动;
    左提升容器(151,251,351)和右提升容器(152,252,352)的下端由平衡绳(160,260,360)连接。
  2. 根据权利要求1所述的一种超深立井环向分布式摩擦提升系统,其特征是:左侧一个所述复合轮组所对应的钢丝绳的左端和右侧一个复合轮组所对应的钢丝绳的左端,通过连接左提升容器(151,251,351)上的同一个卷筒(180,280,380),与左提升容器(151,251,351)连接;左侧一个复合轮组所对应的钢丝绳的右端,和右侧一个复合轮组所对应的钢丝绳的右端,通过连接右提升容器(152,252,352)上的同一个卷筒(180,280,380),与右提升容器(152,252,352)连接。
  3. 根据权利要求2所述的一种超深立井环向分布式摩擦提升系统,其特征是:所述卷筒(180,280,380)上每条钢丝绳的一端,通过钢丝绳卡扣(190)在卷筒(180,280,380)的外圆柱侧面的靠近端面处与卷筒(180,280,380)连接;两条钢丝绳在卷筒(180,280,380)上有相同的螺旋缠绕方向;两条钢丝绳的出绳端分布于卷筒(180,280,380)轴中部的两侧,均从卷 筒(180,280,380)下侧出绳。
  4. 根据权利要求3所述的一种超深立井环向分布式摩擦提升系统,其特征是:所述的卷筒(180,280,380)通过轴承支座固定在提升容器顶端;在每一提升容器上,三个卷筒(180,280,380)的共计六个出绳端处于与该三个卷筒(180,280,380)同侧的导向轮的轴线相平行的竖直平面内。
  5. 根据权利要求1或2或3或4所述的一种超深立井环向分布式摩擦提升系统,其特征是:所述的张力调节系统(170,270,370)包括调节油缸组和液压管路,调节油缸组中左侧的调节油缸Ⅰ(171-1,271-1,371-1)分别与左侧的复合轮组的B复合轮相连接进行径向的连通运动,右侧的调节油缸Ⅱ(172-1,272-1,372-1)分别与右侧的复合轮组的B复合轮相连接进行径向的连通运动,左侧的调节油缸Ⅰ(171-1,271-1,371-1)经左侧的液压管路相连通,右侧的调节油缸Ⅱ(172-1,272-1,372-1)经右侧的液压管路相连通。
  6. 根据权利要求1或2或3或4所述的一种超深立井环向分布式摩擦提升系统,其特征是:所述的B复合轮分布在A复合轮与摩擦轮(130,230,330)连线的环向±α角度内,α为10度。
PCT/CN2019/105543 2018-12-13 2019-09-12 一种超深立井环向分布式摩擦提升系统 WO2020119196A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3097225A CA3097225C (en) 2018-12-13 2019-09-12 Circular distribution type friction hoisting system for ultra-deep vertical shaft
RU2020133782A RU2749285C1 (ru) 2018-12-13 2019-09-12 Подъемная система для сверхглубокого вертикального ствола
AU2019399566A AU2019399566B2 (en) 2018-12-13 2019-09-12 Circular distribution type friction hoisting system for ultra-deep vertical shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811527219.1A CN109650219B (zh) 2018-12-13 2018-12-13 一种超深立井环向分布式摩擦提升系统
CN201811527219.1 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020119196A1 true WO2020119196A1 (zh) 2020-06-18

Family

ID=66114388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105543 WO2020119196A1 (zh) 2018-12-13 2019-09-12 一种超深立井环向分布式摩擦提升系统

Country Status (5)

Country Link
CN (1) CN109650219B (zh)
AU (1) AU2019399566B2 (zh)
CA (1) CA3097225C (zh)
RU (1) RU2749285C1 (zh)
WO (1) WO2020119196A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960509A (zh) * 2021-03-25 2021-06-15 中国矿业大学 一种大距离多绳牵引提升系统及提升方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921469A (zh) * 2019-12-11 2020-03-27 中国矿业大学 一种可消除应力波动的超深井摩擦提升系统及使用方法
CN112960511B (zh) * 2021-03-25 2022-03-15 中国矿业大学 一种张力自均衡的多绳缠绕提升系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108280A (en) * 1976-02-13 1978-08-22 Canadian General Electric Company, Ltd. Plural rope friction hoist with braking apparatus
CN205419426U (zh) * 2016-03-14 2016-08-03 中国矿业大学 一种曳引钢丝绳张力平衡装置
CN206051222U (zh) * 2016-10-13 2017-03-29 安徽理工大学 摩擦式提升机游动天轮自动注油装置及游动天轮
CN107500173A (zh) * 2017-08-21 2017-12-22 枣庄矿业(集团)有限责任公司蒋庄煤矿 一种提升设备制动系统及摩擦式提升机
CN108059056A (zh) * 2017-12-19 2018-05-22 中国矿业大学 一种超深立井双滚筒驱动大载荷摩擦提升系统及方法
CN108163675A (zh) * 2017-12-28 2018-06-15 洛阳矿山机械工程设计研究院有限责任公司 一种改进型井塔式多绳摩擦式提升系统
CN108383020A (zh) * 2018-03-07 2018-08-10 中国矿业大学 一种超深井大载重高速复绕式摩擦提升装置
CN108516442A (zh) * 2018-05-29 2018-09-11 中国矿业大学 一种分体式浮动天轮组多钢丝绳煤炭深井提升系统
CN108584616A (zh) * 2018-07-11 2018-09-28 中国矿业大学 一种超深立井用牵引力均衡的提升装置及控制方法
WO2018211165A1 (en) * 2017-05-15 2018-11-22 Kone Corporation Method and apparatus for adjusting tension in the suspension arrangement of an elevator
CN108861962A (zh) * 2018-07-06 2018-11-23 中国矿业大学 一种大距离调绳的钢丝绳张力自动均衡装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291451A (en) * 1965-06-08 1966-12-13 Ingersoll Rand Canada Braking control for mine hoist
SU1333627A1 (ru) * 1981-12-11 1987-08-30 Ивано-Франковский Институт Нефти И Газа Шахтна многоканатна подъемна установка
SU1114607A1 (ru) * 1982-12-10 1984-09-23 Государственный Макеевский Ордена Октябрьской Революции Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Шахтна многоканатна подъемна установка
SU1257048A1 (ru) * 1985-03-21 1986-09-15 Производственное Объединение "Ждановтяжмаш" Устройство дл выравнивани нат жени канатов подвесных систем
CN2331637Y (zh) * 1998-07-06 1999-08-04 徐州煤矿安全设备制造厂 矿用多绳提升容器悬挂装置
CN203998524U (zh) * 2014-06-16 2014-12-10 山东泰安煤矿机械有限公司 用于钢丝绳张力自动平衡悬挂装置的自动纠偏装置
CN104444707B (zh) * 2014-10-30 2017-04-12 中国矿业大学 一种超深立井提升机钢丝绳张力平衡系统及其方法
CN106865384B (zh) * 2017-05-02 2018-12-28 中国矿业大学 超深立井双绳提升钢丝绳张力自动平衡系统及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108280A (en) * 1976-02-13 1978-08-22 Canadian General Electric Company, Ltd. Plural rope friction hoist with braking apparatus
CN205419426U (zh) * 2016-03-14 2016-08-03 中国矿业大学 一种曳引钢丝绳张力平衡装置
CN206051222U (zh) * 2016-10-13 2017-03-29 安徽理工大学 摩擦式提升机游动天轮自动注油装置及游动天轮
WO2018211165A1 (en) * 2017-05-15 2018-11-22 Kone Corporation Method and apparatus for adjusting tension in the suspension arrangement of an elevator
CN107500173A (zh) * 2017-08-21 2017-12-22 枣庄矿业(集团)有限责任公司蒋庄煤矿 一种提升设备制动系统及摩擦式提升机
CN108059056A (zh) * 2017-12-19 2018-05-22 中国矿业大学 一种超深立井双滚筒驱动大载荷摩擦提升系统及方法
CN108163675A (zh) * 2017-12-28 2018-06-15 洛阳矿山机械工程设计研究院有限责任公司 一种改进型井塔式多绳摩擦式提升系统
CN108383020A (zh) * 2018-03-07 2018-08-10 中国矿业大学 一种超深井大载重高速复绕式摩擦提升装置
CN108516442A (zh) * 2018-05-29 2018-09-11 中国矿业大学 一种分体式浮动天轮组多钢丝绳煤炭深井提升系统
CN108861962A (zh) * 2018-07-06 2018-11-23 中国矿业大学 一种大距离调绳的钢丝绳张力自动均衡装置
CN108584616A (zh) * 2018-07-11 2018-09-28 中国矿业大学 一种超深立井用牵引力均衡的提升装置及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960509A (zh) * 2021-03-25 2021-06-15 中国矿业大学 一种大距离多绳牵引提升系统及提升方法

Also Published As

Publication number Publication date
AU2019399566B2 (en) 2021-11-11
CA3097225C (en) 2021-07-20
CN109650219B (zh) 2020-07-24
AU2019399566A1 (en) 2020-11-19
CN109650219A (zh) 2019-04-19
CA3097225A1 (en) 2020-06-18
RU2749285C1 (ru) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020119196A1 (zh) 一种超深立井环向分布式摩擦提升系统
WO2020119197A1 (zh) 一种超深井摩擦提升驱动端钢丝绳张力平衡系统及方法
CN202848895U (zh) 一种起重机起升机构
CN105417418B (zh) 一种卷筒及其卷扬机构
CN106865384A (zh) 超深立井双绳提升钢丝绳张力自动平衡系统及方法
CN106946122B (zh) 一种三绳缠绕式矿山提升机钢丝绳张力复合锥齿轮平衡装置
CN102556869A (zh) 双卷筒起升机构
CN109019251A (zh) 一种超深提升系统多根钢丝绳的张力平衡装置
CN104627782A (zh) 一种多绳缠绕式提升机用可调整平衡的浮动天轮装置
CN108892019B (zh) 一种平面内任意位置多点作用力系统自适应张力平衡装置
WO2020125089A1 (zh) 一种地下水平驱动布置式超深牵引系统及使用方法
CN101003347A (zh) 平衡起重机吊点不同步的装置
CN206692241U (zh) 一种串联动力及双吊点的缆索吊起重系统
CN103407921B (zh) 一种起重机起升机构
CN108996366A (zh) 一种多点作用力系统均衡调节装置
WO2020006889A1 (zh) 一种并行承载钢丝绳张力的自动平衡装置
CN111980865B (zh) 减小预制混凝土筒片错动的筒节吊装方法
CN207713240U (zh) 一种适用于不同尺寸钢板的磁力起吊装置
CN113307150B (zh) 一种起重机提升装置及其钢丝绳缠绕方法
CN209957282U (zh) 一种卷筒结构
CN113526369B (zh) 一种锅炉超长启动分离器多机配合吊装方法
CN220265023U (zh) 一种新型的行车起升双限位结构
CN216426513U (zh) 一种新型行车防止滑轮组钢丝绳跑槽装置
CN215626400U (zh) 钻井气动小绞车自动排绳器
CN217676330U (zh) 一种起重机单绳单排平行绕绳系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3097225

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019399566

Country of ref document: AU

Date of ref document: 20190912

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894771

Country of ref document: EP

Kind code of ref document: A1