WO2020118740A1 - 电池原位同步辐射x射线吸收谱测试装置 - Google Patents

电池原位同步辐射x射线吸收谱测试装置 Download PDF

Info

Publication number
WO2020118740A1
WO2020118740A1 PCT/CN2018/121836 CN2018121836W WO2020118740A1 WO 2020118740 A1 WO2020118740 A1 WO 2020118740A1 CN 2018121836 W CN2018121836 W CN 2018121836W WO 2020118740 A1 WO2020118740 A1 WO 2020118740A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission window
protective film
insulating structure
intermediate insulating
ray absorption
Prior art date
Application number
PCT/CN2018/121836
Other languages
English (en)
French (fr)
Inventor
唐永炳
刘齐荣
石磊
周小龙
蒋春磊
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020118740A1 publication Critical patent/WO2020118740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor

Definitions

  • the present application relates to the technical field of secondary batteries, in particular to a battery in-situ synchrotron radiation X-ray absorption spectrum testing device.
  • lithium-ion batteries have been widely used in various aspects of social life, such as smart phones and electric vehicles.
  • the development of new secondary battery energy storage systems based on other ions has begun to attract attention.
  • In-depth study of the energy storage mechanism of different material systems is the key to improving battery performance, and can provide guidance for effectively improving the electrochemical energy storage performance of materials.
  • the charge and discharge state of the positive and negative electrode materials of secondary ion batteries involves the deintercalation and intercalation of ions to cause a reversible electrochemical reaction, and this process often results in changes in the microstructure.
  • Synchrotron radiation X-ray absorption near-edge fine structure spectrum can effectively characterize the microscopic performance and local structure of the material, and can provide experimental data support for the study of the physicochemical mechanism of the electrode material in the electrochemical process, thereby facilitating the analysis of the electrode material.
  • the chemical energy storage mechanism and its cycle characteristics provide a deep theoretical basis for the development and modification of high-performance electrode materials.
  • the in-situ characterization method can provide real-time monitoring of the structural changes of the electrode material during charging and discharging, which is conducive to in-depth analysis of the development process of physicochemical properties and energy storage of the electrode material and even the electrode/electrolyte interface during the electrochemical charging and discharging process mechanism.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum test device provides the necessary structural basis for the battery in-situ synchrotron radiation X-ray absorption spectrum test.
  • the shortcomings of the battery in-situ synchrotron X-ray absorption spectrum test device are As the X-ray transmission window made of metal beryllium contacts the electrolyte, it will be corroded and needs to be replaced frequently, which is not conducive to cost savings.
  • the purpose of the present application is to provide a battery in-situ synchrotron radiation X-ray absorption spectrum test device to alleviate the X-ray transmission window and electrolyte composed of metal beryllium in the battery in-situ synchrotron radiation X-ray absorption spectrum test device in the prior art Contact, will be corroded and need to be replaced frequently, which is not conducive to cost-saving technical problems.
  • the in-situ synchrotron radiation X-ray absorption spectrum testing device includes an upper cover, an upper transmission window, an intermediate insulating structure, a lower transmission window and a base arranged from top to bottom, the upper cover is provided with an upper transmission penetrating up and down Hole, the intermediate insulating structure is provided with an accommodating cavity penetrating up and down and configured to accommodate a test component, the base is provided with a lower transmissive hole penetrating up and down, the top of the accommodating cavity and the upper transmissive hole are both The upper transmission window is opposite, the bottom end of the accommodating cavity and the lower transmission hole are opposite to the lower transmission window, and the lower transmission window is hermetically connected to the base;
  • first transmission window protective film is disposed between the upper transmission window and the intermediate insulating structure, and is configured to separate the upper transmission window from The accommodating cavity;
  • second transmissive window protective film is disposed between the lower transmissive window and the intermediate insulating structure, and is configured to separate the lower transmissive window and the accommodating cavity;
  • the upper cover The intermediate insulation structure and the intermediate insulation structure and the base are sealed and detachably fixed connection.
  • the first transmission window protective film includes a first aluminum film, and the electrode to be measured is located on a side of the first aluminum film facing the intermediate insulating structure; or, the first transmission window protective film includes an intermediate setting A first protective film with a hole, the electrode to be tested and the hole of the first protective film are sealed and fixedly connected;
  • the second transmission window protective film includes a second aluminum film.
  • the thickness of the first aluminum film is 5 ⁇ m-500 ⁇ m.
  • the thickness of the second aluminum film is 5 ⁇ m-500 ⁇ m.
  • the test component includes a battery component to be tested and a pressing component, the battery component to be tested and the pressing component are sequentially disposed in the receiving cavity, and the pressing component is located in the receiving The bottom of the cavity.
  • the pressing assembly includes an elastic sheet and a gasket with a through hole in the middle, the gasket is in contact with the battery assembly to be tested, and the elastic sheet is located on the gasket and protected by the second transmission window Between the films, and the elastic sheet is in contact with the gasket and the second transmission window protective film.
  • the battery assembly to be tested includes an electrode to be tested, a diaphragm, and a counter electrode, the diaphragm cover is disposed at an end of the accommodating cavity away from the base, and the electrode to be tested is disposed at the diaphragm close to the On the side of the upper cover, the counter electrode is disposed on the side of the diaphragm close to the accommodating cavity; both the upper transmission window and the electrode to be measured are in close contact with the first transmission window protective film.
  • the top end of the intermediate insulating structure is provided with a first annular groove surrounding the accommodating cavity
  • the bottom end of the intermediate insulating structure is provided with a second annular groove surrounding the accommodating cavity
  • the Sealing rings are embedded in both the first annular groove and the second annular groove
  • the intermediate insulating structure is sealingly connected to the upper cover and the base through the sealing ring.
  • the size of the first transmission window protective film is greater than or equal to the size of the seal ring at the top of the intermediate insulating structure, and the size of the second transmission window protective film is greater than or equal to the seal ring at the bottom end of the intermediate insulating structure size of.
  • the battery in-situ synchrotron radiation X-ray absorption spectroscopy test device includes multiple sets of connection components, each of which includes a bolt and an insulating sleeve sleeved on the bolt; the upper cover is provided with multiple intervals A first connection hole, a plurality of second connection holes are provided on the intermediate insulating structure, a third connection hole is provided on the base, the first connection hole, the second connection hole and the third The connection holes are in one-to-one correspondence; the bolts pass through the corresponding first connection holes, the second connection holes, and the third connection holes to tighten the upper cover, the intermediate insulating structure, and the base Fixed together; the insulating sleeve is configured to isolate the bolt and the upper cover.
  • the in-situ synchrotron radiation X-ray absorption spectrum testing device provided by the present application provides a first transmission window protective film between the upper transmission window and the intermediate insulating structure, and a second transmission window protective film between the lower transmission window and the intermediate insulating structure.
  • the upper transmission window (for example: beryllium window) and the accommodating cavity configured to accommodate the test component in the intermediate insulating structure are separated by the first transmission window protective film, and the lower transmission window (for example: beryllium) is separated by the second transmission window protective film Window) and the intermediate insulation structure are configured to accommodate the test cavity, which can reduce or even prevent the transmission window from being corroded by the electrolyte in the in-situ synchrotron X-ray absorption spectrum test of the battery, which is beneficial to prolong the service life of the transmission window, thereby Conducive to cost savings.
  • FIG. 1 is an exploded view of a battery in-situ synchrotron X-ray absorption spectrum testing device provided by an embodiment of the present application;
  • FIG. 2 is a cross-sectional view of a battery in-situ synchrotron X-ray absorption spectrum testing device provided by an embodiment of the present application;
  • FIG. 3 is an enlarged view at A of FIG. 2;
  • FIG. 4 is a charging and discharging curve of a battery in-situ synchrotron radiation X-ray absorption spectrum testing device provided by an embodiment of the present application.
  • Icons 1-upper cover; 2-upper transmission window; 3-intermediate insulating structure; 4-lower transmission window; 5-base; 6-first transmission window protective film; 7-second transmission window protective film; 8-shrapnel ; 9- gasket; 10- electrode to be tested; 11- diaphragm; 12- counter electrode; 13- sealing ring; 14- bolt; 15- insulating sleeve; 16- conductive column.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a removable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a removable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum testing device includes an upper cover 1, an upper transmission window 2, an intermediate insulating structure 3, and a lower transmission window 4 provided from top to bottom And the base 5,
  • the upper cover 1 is provided with an upper penetrating hole penetrating up and down
  • the intermediate insulating structure 3 is provided with an accommodating cavity penetrating up and down and configured to accommodate the test component
  • the base is provided with a penetrating hole penetrating up and down to accommodate the cavity
  • Both the top end and the upper transmission hole are opposite to the upper transmission window 2, the bottom end of the accommodating cavity and the lower transmission hole are opposite to the lower transmission window 4, and the lower transmission window 4 and the base 5 are hermetically connected.
  • the in-situ synchrotron radiation X-ray absorption spectrum testing device further includes a first transmission window protective film 6 and a second transmission window protective film 7, the first transmission window protective film 6 is disposed on the upper transmission window 2 and is insulated from the middle Between the structures 3, the upper transmission window 2 and the accommodating cavity are separated.
  • the second transmission window protective film 7 is disposed between the lower transmission window 4 and the intermediate insulating structure 3, and is configured to separate the lower transmission window 4 and the accommodating cavity. Both the upper cover 1 and the intermediate insulating structure 3 and between the intermediate insulating structure 3 and the base 5 are sealed and detachably fixed.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum testing device provided in this embodiment is provided with a first transmission window protective film 6 between the upper transmission window 2 and the intermediate insulating structure 3, and a third transmission window between the lower transmission window 4 and the intermediate insulating structure 3.
  • Two transmission window protective films 7 are used to separate the upper transmission window 2 (for example: beryllium window) and the intermediate insulating structure 3 into the accommodating cavity configured to accommodate the test component by the first transmission window protective film 6 and are protected by the second transmission window
  • the membrane 7 separates the lower transmission window 4 (for example: beryllium window) and the intermediate insulating structure 3 from the accommodating cavity configured to accommodate the test component, which can reduce or even prevent the transmission window from being used in the in-situ synchrotron X-ray absorption spectrum test of the battery Electrolyte corrosion is beneficial to prolong the service life of the transmission window, thereby contributing to cost savings.
  • the upper cover 1 and the intermediate insulating structure 3 and the intermediate insulating structure 3 and the base 5 are sealed and detachably fixed, which is beneficial to the in-situ synchrotron radiation X-ray absorption spectrum testing device of the battery provided by this embodiment reuse.
  • the upper cover 1 is sealed and detachably fixedly connected to the intermediate insulating structure 3, and the upper transmission window 2 and the first transmission window protective film 6 in the middle are pressed tightly; the intermediate insulation structure 3 is sealed and detachably fixedly connected to the base 5, Press the lower transmission window 4 and the second transmission window protective film 7 in between.
  • both the upper transmission window 2 and the lower transmission window 4 mentioned in this embodiment may be beryllium windows, but not limited to beryllium windows.
  • the material of the base 5 may be a material that is resistant to electrolyte corrosion and has good electrical conductivity, such as stainless steel (including SUS310S, SUS316, 316L, 316F, 304, 304L, 321, 303, 303CU, 302, 301, 202 And 201 and other brands), aluminum and its alloys, copper and its alloys or nickel and its alloys.
  • stainless steel including SUS310S, SUS316, 316L, 316F, 304, 304L, 321, 303, 303CU, 302, 301, 202 And 201 and other brands
  • aluminum and its alloys copper and its alloys or nickel and its alloys.
  • the material of the intermediate insulation structure 3 can be polyamide (nylon), polyvinyl chloride (PVC), polycarbonate (PC plastic), polytetrafluoroethylene (PTFE plastic), polytetrafluoroethylene-ethylene copolymer (ETFE plastic) , Soluble polytetrafluoroethylene (PFA plastic), phenolic plastic, epoxy resin (EP), silicone plastic (IS) or polysulfone (PSU plastic), etc., preferably polytetrafluoroethylene, which has high hardness and Strong corrosion resistance.
  • the first transmission window protective film 6 includes a first aluminum film, and the electrode to be measured 10 is located on the side of the first aluminum film facing the intermediate insulating structure 3.
  • the first transmission window protective film 6 includes a first protective film with a hole in the middle, and the electrode to be measured 10 is sealed and fixedly connected to the hole of the first protective film.
  • the second transmission window protective film 7 includes a second aluminum film.
  • the first transmission window protective film 6 and the second transmission window protective film 7 are made of aluminum.
  • the aluminum film has good X-ray transmission performance, which is conducive to the smooth in-situ synchronous radiation X-ray absorption spectrum test of the battery.
  • the material of the electrode to be measured 10 may be directly coated on the first transmission window protective film 6, so that the first transmission window protective film 6 itself directly serves as a current collector.
  • the first protective film with a hole in the middle may be made of a metal or non-metal film material (for example: polyimide film), and the electrode 10 to be tested passes polyurethane sealant, polysulfide sealant, silicone sealant, acrylate Sealant, silane-modified polyether sealant, thermosetting adhesive, photo-curable adhesive, or epoxy resin adhesive are pasted at the hole in the middle of the first protective film.
  • the hole diameter of the electrode 10 to be measured is larger than the hole diameter of the middle hole of the first protective film, so as to facilitate sticking.
  • the first transmission window protective film 6 and the second transmission window protective film 7 can also be made of different materials through polyurethane sealant, polysulfide sealant, silicone sealant, acrylic sealant, silane modified polyether sealant, heat It is composed of solid glue, light solid glue or epoxy resin adhesive.
  • the thickness of the first aluminum film is 5 ⁇ m-500 ⁇ m.
  • the thickness of the first aluminum film is 10 ⁇ m-50 ⁇ m.
  • the thickness of the second aluminum film is 5 ⁇ m-500 ⁇ m.
  • the thickness of the second aluminum film is 10 ⁇ m-50 ⁇ m.
  • the test component includes a battery component to be tested and a pressing component.
  • the battery component to be tested and the pressing component are sequentially disposed in the receiving cavity, and the pressing component is located at the bottom of the receiving cavity.
  • the pressing assembly includes an elastic sheet 8 and a gasket 9 with a through hole in the middle, the gasket 9 is in contact with the battery component to be tested, and the elastic sheet 8 is located on the pad Between the sheet 9 and the second transmission window protective film 7, and the elastic sheet 8 abuts against the gasket 9 and the second transmission window protective film 7.
  • the compression assembly adopts the above structure, which is simple and compact, and the price is low, so that the in-situ synchrotron radiation X-ray absorption spectrum testing device provided by this embodiment does not require a special compression device, and will not cause excessive components and excessive complexity of individual components As a result, the electrical conductivity between the components is unstable during charging and discharging, resulting in the phenomenon that the battery cannot be charged and discharged normally.
  • the thickness of the spacer 9 is determined by the thickness of the intermediate insulating structure 3, and may be 0.5 mm-5 mm smaller than the thickness of the intermediate insulating structure 3.
  • the diameter of the accommodating cavity is determined by the maximum diameter of the gasket 9, which may be larger than the diameter of the gasket 9 by 0.05 mm to 10 mm, and preferably is larger than the diameter of the gasket 9 by 0.5 mm.
  • the shrapnel 8 can adopt the models CR3032, CR2477, CR2450, CR2430, CR2412, CR2354, CR2335, CR2330, CR2325, CR2320, CR2032, CR2025, CR2016, CR1632, CR1620, CR1616, CR1225, CR1216, CR1025, CR1220, LIR2450, LIR2032, LIR2025, LIR2016, LIR2477, LIR2430, LIR2025, LIR1654, LIR1632, LIR1620, LIR1616, LIR1254, LIR1220, LIR1025, ML2032 or ML1220, etc. used in the snap-type battery 8, which can not only reduce costs, but also ensure the electrode and base 5 Good contact.
  • the battery assembly to be tested includes an electrode 10 to be tested, a separator 11 and a counter electrode 12, and the cover of the separator 11 is disposed at an end of the accommodating cavity away from the base 5,
  • the electrode 10 to be tested is disposed on the side of the diaphragm 11 close to the upper cover 1
  • the counter electrode 12 is disposed on the side of the diaphragm 11 close to the accommodating cavity.
  • Both the upper transmission window 2 and the electrode to be tested 10 are in close contact with the first transmission window protective film 6, thereby ensuring good electrical contact performance.
  • the amount of electrolyte dripping needs to soak the separator 11.
  • the upper end of the intermediate insulating structure 3 has a groove configured to place the diaphragm 11, the inner diameter of the groove is larger than the diameter of the diaphragm 11 by 0.05 mm-20 mm, preferably larger than the diameter of the diaphragm 11 by 1 mm;
  • the thickness of the separator 11 is determined, and the value range is 0.05 mm to 10 mm, preferably 1 mm.
  • the separator 11 may be a glass fiber membrane, a PE (polyethylene) membrane, a PP (polypropylene) membrane, a PP plus ceramic coating film, a PE plus ceramic coating film, a PP/PE double-layer film, a PP/PP double-layer film, Commonly used separators such as PP/PE/PP three-layer film, polyester film (PET), cellulose film, polyimide film (PI), polyamide film (PA), spandex film or aramid film.
  • the electrode 10 to be measured may also be a thin sheet with a thickness of 10 ⁇ m to 300 ⁇ m, preferably 50 ⁇ m to 100 ⁇ m thick; it may also be a thin film prepared on the separator 11 by coating or deposition.
  • the top end of the intermediate insulating structure 3 is provided with a first annular groove surrounding the accommodating cavity, and the bottom end of the intermediate insulating structure 3 is provided with a second annular groove surrounding the accommodating cavity.
  • a ring groove and a second ring groove are embedded with a sealing ring 13, and the intermediate insulating structure 3 is sealingly connected to the upper cover 1 and the base 5 through the sealing ring 13, and the intermediate insulating structure 3 is connected to the upper cover 1 and the base 5 The fixed connection between them makes the sealing between the upper cover 1 and the base 5 and the intermediate insulating structure 3 more reliable.
  • the shape and size of the first annular groove and the shape and size of the second annular groove may be the same or different, and both may be circular but not limited to circular.
  • the material of the sealing ring 13 may be rubber material, for example: nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, butyl rubber, neoprene rubber, ethylene propylene rubber, acrylic rubber, natural rubber, polyurethane rubber, poly Acrylate rubber, fluororubber, silicone rubber, fluorosilicone rubber, metal rubber, styrene-butadiene rubber, polysulfide rubber, chloroether rubber, chlorinated polyethylene rubber, chlorosulfonated polyethylene rubber or styrene rubber. It is preferably perfluorosensitive rubber, which has good resistance to electrolyte corrosion.
  • annular groove configured to provide a sealing ring 13 may be provided on the base 5 and the upper cover 1 respectively.
  • the size of the first transmission window protective film 6 is greater than or equal to the size of the sealing ring 13 at the top of the intermediate insulating structure 3, and the size of the second transmission window protective film 7 is greater than or equal to the intermediate insulating structure 3
  • the size of the sealing ring 13 at the bottom end is advantageous for ensuring that the transmission window is isolated from the electrolyte liquid.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum testing device includes multiple sets of connection components, each of which includes a bolt 14 and an insulating sleeve 15 sleeved on the bolt 14.
  • the upper cover 1 is provided with a plurality of first connection holes at intervals
  • the intermediate insulating structure 3 is provided with a plurality of second connection holes
  • the base 5 is provided with a third connection hole, the first connection hole, the second connection hole and the third The connection holes correspond to each other.
  • the bolt 14 passes through the corresponding first connection hole, second connection hole and third connection hole to fasten the upper cover 1, the intermediate insulating structure 3 and the base 5 together.
  • the insulating sleeve 15 is configured to isolate the bolt 14 and the upper cover 1.
  • the insulating sleeve 15 can insulate the bolt 14 and the upper cover 1 to prevent short circuit of the battery.
  • the material of the insulating sleeve 15 can be polyamide (nylon), polyvinyl chloride (PVC), polycarbonate (PC plastic), polytetrafluoroethylene (PTFE plastic), polytetrafluoroethylene-ethylene copolymer (ETFE plastic), Soluble polytetrafluoroethylene (PFA plastic), phenolic plastic, epoxy resin (EP), silicone plastic IS or polysulfone (PSU plastic), etc.
  • Both the upper cover 1 and the base 5 may be provided with a groove configured to install a transmission window.
  • the transmission window (for example: beryllium window) is modified by polyurethane sealant, polysulfide sealant, silicone sealant, acrylic sealant, silane Polyether sealant, thermosetting adhesive, photo-curable adhesive, epoxy resin adhesive, etc. are pasted into the grooves of the corresponding upper cover 1 or base 5, or connected to the corresponding upper cover 1 or base 5 by welding.
  • neither the upper cover 1 nor the base 5 is provided with a groove configured to install a transmission window, and the transmission window (for example: beryllium window) is sealed by polyurethane sealant, polysulfide sealant, silicone sealant, acrylic ester Adhesives, silane modified polyether sealants, thermosetting adhesives, light curing adhesives, or epoxy resin adhesives are pasted on the surface of the corresponding upper cover 1 or base 5, or welded to the corresponding upper cover 1 or base 5.
  • the upper cover 1 and the base 5 are fixedly connected to the conductive post 16 by screw connection or welding, and the conductive post 16 is configured as a terminal for battery testing.
  • the conductive pillar 16 may be a bolt.
  • an in-situ synchrotron radiation X-ray absorption spectrum test device is provided to assemble an aluminum graphite dual ion battery, in which the graphite sheet is used as the test electrode (positive electrode), the metal aluminum sheet is used as the counter electrode 12 (negative electrode), and the electrolyte is LiPF6 electrolyte (1MLiPF6/EMC-VC(5wt.%VC)), the charge-discharge curve is shown in Figure 4, and normal charge-discharge behavior can be observed from the test results.
  • the beryllium window has excellent X-ray transmission properties, from a technical perspective, it is completely feasible to perform in-situ synchrotron radiation X-ray absorption spectrum testing.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum testing device provided in this embodiment can also be applied to in-situ X-ray diffraction spectrum (reflection type) testing.
  • the battery in-situ synchrotron radiation X-ray absorption spectrum testing device provided in this embodiment is simple to operate, low in cost and environmentally friendly, prevents beryllium window corrosion, and has a high battery installation success rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种电池原位同步辐射X射线吸收谱测试装置,包括由上至下设置的上盖(1)、上透射窗(2)、中间绝缘结构(3)、下透射窗(4)和底座(5),上盖(1)设置有上透射孔,中间绝缘结构(3)设置有容置腔,底座(5)设置有下透射孔,容置腔的顶端和上透射孔均与上透射窗(2)相对,容置腔的底端和下透射孔均与下透射窗(4)相对,下透射窗(4)与底座(5)密封连接;第一透射窗保护膜(6)设置于上透射窗(2)与中间绝缘结构(3)之间,第二透射窗保护膜(7)设置于下透射窗(4)与中间绝缘结构(3)之间;上盖(1)、中间绝缘结构(3)和底座(5)中相邻的两个密封且可拆卸式固定连接。

Description

电池原位同步辐射X射线吸收谱测试装置
相关申请的交叉引用
本申请要求于2018年12月14日提交中国专利局的申请号为201811540393.X、名称为“电池原位同步辐射X射线吸收谱测试装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及二次电池技术领域,尤其是涉及一种电池原位同步辐射X射线吸收谱测试装置。
背景技术
当下,锂离子电池已经广泛应用于社会生活的各个方面,例如:智能手机和电动汽车等。然而受限于锂离子的储量,基于其它离子(例如Na +、K +和Ca 2+)的新型二次电池储能体系的开发开始引起人们的关注。而深入研究不同材料体系的储能机理是提高电池性能的关键,能为有效改善材料的电化学储能性能提供指导。
二次离子电池正负极材料的充放电状态涉及离子的脱嵌和嵌入而发生可逆的电化学反应,而该过程往往会导致微观结构的变化。同步辐射X射线吸收近边精细结构谱能有效地表征材料的微观性能以及局域结构,能为研究电极材料在电化学过程中的物理化学机理提供实验数据支撑,从而有利于剖析电极材料的电化学储能机理及其循环特性,为高性能电极材料的开发与改性提供深层次的理论基础。原位的表征手段则能够对电极材料在充放电过程中的结构变化提供实时的监测,有利于深入分析电极材料甚至电极/电解质界面在电化学充放电过程中物理化学性质的发展过程以及储能机理。
电池原位同步辐射X射线吸收谱测试装置为电池原位同步辐射X射线吸收谱测试提供了必要的结构基础,然而,现有技术中,电池原位同步辐射X射线吸收谱测试装置的缺点在于,金属铍构成的X射线透射窗口与电解质接触,会被腐蚀,需要经常更换,非常不利于成本的节约。
发明内容
本申请的目的在于提供一种电池原位同步辐射X射线吸收谱测试装置,以缓解现有技术中存在的电池原位同步辐射X射线吸收谱测试装置中金属铍构成的X射线透射窗口与电解质接触,会被腐蚀,需要经常更换,不利于成本节约的技术问题。
本申请提供的电池原位同步辐射X射线吸收谱测试装置包括由上至下设置的上盖、上透射窗、中间绝缘结构、下透射窗和底座,所述上盖设置有上下贯穿的上透射孔,所述中间绝缘结构设置有上下贯通且配置成容置测试组件的容置腔,所述底座设置有上下贯穿的 下透射孔,所述容置腔的顶端和所述上透射孔均与所述上透射窗相对,所述容置腔的底端和所述下透射孔均与所述下透射窗相对,所述下透射窗与所述底座密封连接;
还包括第一透射窗保护膜和第二透射窗保护膜,所述第一透射窗保护膜设置于所述上透射窗与所述中间绝缘结构之间,配置成隔开所述上透射窗与所述容置腔;所述第二透射窗保护膜设置于所述下透射窗与所述中间绝缘结构之间,配置成隔开所述下透射窗与所述容置腔;所述上盖与所述中间绝缘结构之间以及所述中间绝缘结构与所述底座之间均为密封且可拆卸式固定连接。
进一步地,所述第一透射窗保护膜包括第一铝膜,待测电极位于所述第一铝膜朝向所述中间绝缘结构的一侧;或者,所述第一透射窗保护膜包括中间设置有孔的第一保护膜,待测电极与所述第一保护膜的孔密封且固定连接;
和/或,所述第二透射窗保护膜包括第二铝膜。
进一步地,所述第一铝膜的厚度为5μm-500μm。
进一步地,所述第二铝膜的厚度为5μm-500μm。
进一步地,所述测试组件包括待测电池组件和压紧组件,所述待测电池组件和所述压紧组件依次设置于所述容置腔中,且所述压紧组件位于所述容置腔的底部。
进一步地,所述压紧组件包括弹片和中间设置有通孔的垫片,所述垫片与所述待测电池组件抵接,所述弹片位于所述垫片与所述第二透射窗保护膜之间,且所述弹片与所述垫片和所述第二透射窗保护膜均抵接。
进一步地,所述待测电池组件包括待测电极、隔膜和对电极,所述隔膜盖设置于所述容置腔远离所述底座的一端,所述待测电极设置于所述隔膜靠近所述上盖的一侧,所述对电极设置于所述隔膜靠近所述容置腔的一侧;所述上透射窗和所述待测电极均与所述第一透射窗保护膜紧密接触。
进一步地,所述中间绝缘结构的顶端设置有环绕所述容置腔的第一环形凹槽,所述中间绝缘结构的底端设置有环绕所述容置腔的第二环形凹槽,所述第一环形凹槽和所述第二环形凹槽中均嵌设有密封圈,所述中间绝缘结构通过密封圈与所述上盖和所述底座密封连接。
进一步地,所述第一透射窗保护膜的尺寸大于或者等于所述中间绝缘结构顶端的密封圈的尺寸,所述第二透射窗保护膜的尺寸大于或者等于所述中间绝缘结构底端的密封圈的尺寸。
进一步地,电池原位同步辐射X射线吸收谱测试装置包括多组连接组件,每组所述连接组件均包括螺栓和套设于所述螺栓上的绝缘套;所述上盖上间隔设置有多个第一连接孔,所述中间绝缘结构上设置有多个第二连接孔,所述底座上设置有第三连接孔,所述第一连 接孔、所述第二连接孔和所述第三连接孔一一对应;所述螺栓穿过对应的所述第一连接孔、所述第二连接孔和所述第三连接孔,将所述上盖、所述中间绝缘结构以及所述底座紧固在一起;所述绝缘套配置成隔离所述螺栓和所述上盖。
本申请提供的电池原位同步辐射X射线吸收谱测试装置与现有技术相比的有益效果为:
本申请提供的电池原位同步辐射X射线吸收谱测试装置在上透射窗与中间绝缘结构之间设置第一透射窗保护膜,在下透射窗与中间绝缘结构之间设置第二透射窗保护膜,通过第一透射窗保护膜隔开上透射窗(例如:铍窗)和中间绝缘结构中配置成容置测试组件的容置腔,通过第二透射窗保护膜隔开下透射窗(例如:铍窗)和中间绝缘结构中配置成容置测试组件的容置腔,能够减少甚至避免透射窗在电池原位同步辐射X射线吸收谱测试中被电解质腐蚀,有利于延长透射窗的使用寿命,从而有利于成本的节约。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电池原位同步辐射X射线吸收谱测试装置的分解图;
图2为本申请实施例提供的电池原位同步辐射X射线吸收谱测试装置的剖视图;
图3为图2的A处放大图;
图4为基于本申请实施例提供的电池原位同步辐射X射线吸收谱测试装置的充放电曲线。
图标:1-上盖;2-上透射窗;3-中间绝缘结构;4-下透射窗;5-底座;6-第一透射窗保护膜;7-第二透射窗保护膜;8-弹片;9-垫片;10-待测电极;11-隔膜;12-对电极;13-密封圈;14-螺栓;15-绝缘套;16-导电柱。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚且完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”和“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位或以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、 “第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”和“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1和图2所示,本实施例提供的电池原位同步辐射X射线吸收谱测试装置包括由上至下设置的上盖1、上透射窗2、中间绝缘结构3、下透射窗4和底座5,上盖1设置有上下贯穿的上透射孔,中间绝缘结构3设置有上下贯通且配置成容置测试组件的容置腔,底座设置有上下贯穿的下透射孔,容置腔的顶端和上透射孔均与上透射窗2相对,容置腔的底端和下透射孔均与下透射窗4相对,下透射窗4与底座5密封连接。本实施例提供的电池原位同步辐射X射线吸收谱测试装置还包括第一透射窗保护膜6和第二透射窗保护膜7,第一透射窗保护膜6设置于上透射窗2与中间绝缘结构3之间,配置成隔开上透射窗2与容置腔。第二透射窗保护膜7设置于下透射窗4与中间绝缘结构3之间,配置成隔开下透射窗4与容置腔。上盖1与中间绝缘结构3之间以及中间绝缘结构3与底座5之间均为密封且可拆卸式固定连接。
本实施例提供的电池原位同步辐射X射线吸收谱测试装置在上透射窗2与中间绝缘结构3之间设置第一透射窗保护膜6,在下透射窗4与中间绝缘结构3之间设置第二透射窗保护膜7,通过第一透射窗保护膜6隔开上透射窗2(例如:铍窗)和中间绝缘结构3中配置成容置测试组件的容置腔,通过第二透射窗保护膜7隔开下透射窗4(例如:铍窗)和中间绝缘结构3中配置成容置测试组件的容置腔,能够减少甚至避免透射窗在电池原位同步辐射X射线吸收谱测试中被电解质腐蚀,有利于延长透射窗的使用寿命,从而有利于成本的节约。
此外,上盖1与中间绝缘结构3之间以及中间绝缘结构3与底座5之间均密封且可拆卸式固定连接,有利于本实施例提供的电池原位同步辐射X射线吸收谱测试装置的重复使用。
上盖1与中间绝缘结构3密封且可拆卸式固定连接,压紧二者中间的上透射窗2和第一透射窗保护膜6;中间绝缘结构3与底座5密封且可拆卸式固定连接,压紧二者中间的下透射窗4和第二透射窗保护膜7。
需要说明的是本实施例中提到的上透射窗2和下透射窗4均可以为铍窗,但不限于为铍窗。
本实施例中,底座5的材料可选用耐电解液腐蚀且导电性能良好的材料,例如:不锈 钢(包括SUS310S、SUS316、316L、316F、304、304L、321、303、303CU、302、301、202和201等不同牌号)、铝及其合金、铜及其合金或者镍及其合金等。
中间绝缘结构3的材质可为聚酰胺(尼龙)、聚氯乙烯(PVC)、聚碳酸酯(PC塑料)、聚四氟乙烯(PTFE塑料)、聚四氟乙烯-乙烯共聚物(ETFE塑料)、可溶性聚四氟乙烯(PFA塑料)、酚醛塑料、环氧树脂(EP)、有机硅塑料(IS)或者聚砜(PSU塑料)等,优选为聚四氟乙烯,聚四氟乙烯硬度高且耐腐蚀性较强。
本实施例的可选技术方案中,第一透射窗保护膜6包括第一铝膜,待测电极10位于第一铝膜朝向中间绝缘结构3的一侧。或者,第一透射窗保护膜6包括中间设置有孔的第一保护膜,待测电极10与第一保护膜的孔密封且固定连接。和/或,第二透射窗保护膜7包括第二铝膜。
第一透射窗保护膜6和第二透射窗保护膜7采用铝膜,铝膜具有良好的X射线透射性能,有利于电池原位同步辐射X射线吸收谱测试的顺利进行。
第一透射窗保护膜6为第一铝膜时,待测电极10材料可以直接涂覆在第一透射窗保护膜6上,使第一透射窗保护膜6本身直接充当集流体。
中间有孔的第一保护膜可以是金属或者非金属膜材料制成的(例如:聚酰亚胺膜),待测电极10通过聚氨酯密封胶、聚硫密封胶、硅酮密封胶、丙烯酸酯密封胶、硅烷改性聚醚密封胶、热固胶、光固胶或者环氧树脂胶粘剂等粘贴在第一保护膜中间的孔处。待测电极10的孔径大于第一保护膜中间孔的孔径,以便于粘贴。
第一透射窗保护膜6和第二透射窗保护膜7也可以采用不同材质膜通过聚氨酯密封胶、聚硫密封胶、硅酮密封胶、丙烯酸酯密封胶、硅烷改性聚醚密封胶、热固胶、光固胶或者环氧树脂胶粘剂等密封粘贴构成。
本实施例的可选技术方案中,第一铝膜的厚度为5μm-500μm。
优选地,第一铝膜的厚度为10μm-50μm。
本实施例的可选技术方案中,第二铝膜的厚度为5μm-500μm。
优选地,第二铝膜的厚度为10μm-50μm。
本实施例的可选技术方案中,测试组件包括待测电池组件和压紧组件,待测电池组件和压紧组件依次设置于容置腔中,且压紧组件位于容置腔的底部。
如图1-图3所示本实施例的可选技术方案中,压紧组件包括弹片8和中间设置有通孔的垫片9,垫片9与待测电池组件抵接,弹片8位于垫片9与第二透射窗保护膜7之间,且弹片8与垫片9和第二透射窗保护膜7均抵接。
压紧组件采用上述结构,结构简单且紧凑,价格便宜,使得本实施例提供的电池原位同步辐射X射线吸收谱测试装置无需特殊压紧装置,不会产生由于部件过多以及单个部件 过于复杂造成的充放电时部件之间导电性能不稳定,导致电池无法正常充放电的现象。
垫片9厚度由中间绝缘结构3的厚度决定,可以是比中间绝缘结构3的厚度小0.5mm-5mm。
当容置腔和垫片9均为圆形时,容置腔的直径由垫片9的最大直径决定,可以是大于垫片9的直径0.05mm-10mm,优选为大于垫片9的直径0.5mm。
弹片8可以采用型号为CR3032、CR2477、CR2450、CR2430、CR2412、CR2354、CR2335、CR2330、CR2325、CR2320、CR2032、CR2025、CR2016、CR1632、CR1620、CR1616、CR1225、CR1216、CR1025、CR1220、LIR2450、LIR2032、LIR2025、LIR2016、LIR2477、LIR2430、LIR2025、LIR1654、LIR1632、LIR1620、LIR1616、LIR1254、LIR1220、LIR1025、ML2032或ML1220等的扣式电池中采用的弹片8,这样既可以减少成本,又能保证电极和底座5良好的接触。
如图1-图3所示,本实施例的可选技术方案中,待测电池组件包括待测电极10、隔膜11和对电极12,隔膜11盖设置于容置腔远离底座5的一端,待测电极10设置于隔膜11靠近上盖1的一侧,对电极12设置于隔膜11靠近容置腔的一侧。上透射窗2和待测电极10均与第一透射窗保护膜6紧密接触,从而保证良好的电接触性能。测试时,电解液滴入量需使隔膜11浸透。
本实施例中,可以是中间绝缘结构3的上端有配置成放置隔膜11的凹槽,凹槽内径大于隔膜11的直径0.05mm-20mm,优选地大于隔膜11的直径1mm;凹槽的高度由隔膜11厚度决定,取值范围为0.05mm~10mm,优选为1mm。
隔膜11可以为玻璃纤维膜,PE(聚乙烯)膜,PP(聚丙烯)膜、PP加陶瓷涂覆膜、PE加陶瓷涂覆膜、PP/PE双层膜、PP/PP双层膜、PP/PE/PP三层膜、聚酯膜(PET)、纤维素膜、聚酰亚胺膜(PI)、聚酰胺膜(PA)、氨纶膜或者芳纶膜等常用隔膜11。
待测电极10也可以为10μm-300μm厚的薄片,优选为50μm-100μm厚;还可以为通过涂布或者沉积制备于隔膜11上的薄膜。
本实施例的可选技术方案中,中间绝缘结构3的顶端设置有环绕容置腔的第一环形凹槽,中间绝缘结构3的底端设置有环绕容置腔的第二环形凹槽,第一环形凹槽和第二环形凹槽中均嵌设有密封圈13,中间绝缘结构3通过密封圈13与上盖1和底座5密封连接,加之中间绝缘结构3与上盖1和底座5之间的固定连接使得上盖1和底座5与中间绝缘结构3之间的密封更加可靠。
本实施例中,第一环形凹槽的形状和尺寸与第二环形凹槽的形状和尺寸可以相同,也可以不同,均可以为圆环形但不限于为圆环形。
密封圈13的材质可以为橡胶材质,例如:丁腈橡胶、氢化丁腈橡胶、氟素橡胶、丁基 橡胶、氯丁橡胶、乙丙橡胶、丙烯酸脂橡胶、天然橡胶、聚氨脂橡胶、聚丙烯酸酯橡胶、氟橡胶、硅橡胶、氟硅橡胶、金属橡胶、丁苯橡胶、聚硫橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯磺化聚乙烯橡胶或者丁吡橡胶等。优选为全氟敏橡胶,全氟敏橡胶具有良好的耐电解液腐蚀性能。
作为一种替换方式,也可以是底座5和上盖1上分别设置有配置成设置密封圈13的环形凹槽。
本实施例的可选技术方案中,第一透射窗保护膜6的尺寸大于或者等于中间绝缘结构3顶端的密封圈13的尺寸,第二透射窗保护膜7的尺寸大于或者等于中间绝缘结构3底端的密封圈13的尺寸,该种设置有利于保证透射窗与电解质液体相隔离。
本实施例的可选技术方案中,电池原位同步辐射X射线吸收谱测试装置包括多组连接组件,每组连接组件均包括螺栓14和套设于螺栓14上的绝缘套15。上盖1上间隔设置有多个第一连接孔,中间绝缘结构3上设置有多个第二连接孔,底座5上设置有第三连接孔,第一连接孔、第二连接孔和第三连接孔一一对应。螺栓14穿过对应的第一连接孔、第二连接孔和第三连接孔,将上盖1、中间绝缘结构3以及底座5紧固在一起。绝缘套15配置成隔离螺栓14和上盖1。
绝缘套15可使螺栓14和上盖1之间绝缘,从而杜绝电池短路。
绝缘套15的材质可为聚酰胺(尼龙)、聚氯乙烯(PVC)、聚碳酸酯(PC塑料)、聚四氟乙烯(PTFE塑料)、聚四氟乙烯-乙烯共聚物(ETFE塑料)、可溶性聚四氟乙烯(PFA塑料)、酚醛塑料、环氧树脂(EP)、有机硅塑料IS或者聚砜(PSU塑料)等。
上盖1和底座5上均可以设置有配置成安装透射窗的凹槽,透射窗(例如:铍窗)通过聚氨酯密封胶、聚硫密封胶、硅酮密封胶、丙烯酸酯密封胶、硅烷改性聚醚密封胶、热固胶、光固胶或者环氧树脂胶粘剂等粘贴在对应的上盖1或者底座5的凹槽中,或者通过焊接与对应的上盖1或者底座5相连接。
备选方案为上盖1和底座5上均不设置有配置成安装透射窗的凹槽,透射窗(例如:铍窗)通过聚氨酯密封胶、聚硫密封胶、硅酮密封胶、丙烯酸酯密封胶、硅烷改性聚醚密封胶、热固胶、光固胶或者环氧树脂胶粘剂等粘贴在对应的上盖1或者底座5的表面上,或者焊接于对应的上盖1或者底座5上。
本实施例的可选技术方案中,上盖1和底座5上均通过螺纹连接或者焊接等方式固定连接有导电柱16,导电柱16配置成作为电池测试时的接线柱。
可选地,导电柱16可以为螺栓。
根据本实施例提供电池原位同步辐射X射线吸收谱测试装置组装铝石墨双离子电池,其中石墨片作为测试电极(正极),金属铝片作为对电极12(负极),电解液采用LiPF6电 解液(1MLiPF6/EMC-VC(5wt.%VC)),充放电曲线如4图所示,从测试结果可以观察到正常的充放电行为。另外,由于铍窗具有优异的X射线透射性质,因此,从技术原理上来看,进行原位同步辐射X射线吸收谱测试是完全可行的。
需要说明的是,本实施例提供的电池原位同步辐射X射线吸收谱测试装置也可应用于原位X射线衍射谱(反射型)测试。
由上述内容可知,本实施例提供的电池原位同步辐射X射线吸收谱测试装置操作简单、成本低且环保、防铍窗腐蚀且电池安装成功率高。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电池原位同步辐射X射线吸收谱测试装置,其特征在于,包括由上至下设置的上盖(1)、上透射窗(2)、中间绝缘结构(3)、下透射窗(4)和底座(5),所述上盖(1)设置有上下贯穿的上透射孔,所述中间绝缘结构(3)设置有上下贯通且配置成容置测试组件的容置腔,所述底座设置有上下贯穿的下透射孔,所述容置腔的顶端和所述上透射孔均与所述上透射窗(2)相对,所述容置腔的底端和所述下透射孔均与所述下透射窗(4)相对,所述下透射窗(4)与所述底座(5)密封连接;
    还包括第一透射窗保护膜(6)和第二透射窗保护膜(7),所述第一透射窗保护膜(6)设置于所述上透射窗(2)与所述中间绝缘结构(3)之间,配置成隔开所述上透射窗(2)与所述容置腔;所述第二透射窗保护膜(7)设置于所述下透射窗(4)与所述中间绝缘结构(3)之间,配置成隔开所述下透射窗(4)与所述容置腔;所述上盖(1)与所述中间绝缘结构(3)之间以及所述中间绝缘结构(3)与所述底座(5)之间均为密封且可拆卸式固定连接。
  2. 根据权利要求1所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述第一透射窗保护膜(6)包括第一铝膜,待测电极(10)位于所述第一铝膜朝向所述中间绝缘结构(3)的一侧;或者,所述第一透射窗保护膜(6)包括中间设置有孔的第一保护膜,待测电极(10)与所述第一保护膜的孔密封且固定连接;
    和/或,所述第二透射窗保护膜(7)包括第二铝膜。
  3. 根据权利要求2所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述第一铝膜的厚度为5μm-500μm。
  4. 根据权利要求2所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述第二铝膜的厚度为5μm-500μm。
  5. 根据权利要求1-4任一项所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述测试组件包括待测电池组件和压紧组件,所述待测电池组件和所述压紧组件依次设置于所述容置腔中,且所述压紧组件位于所述容置腔的底部。
  6. 根据权利要求5所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述压紧组件包括弹片(8)和中间设置有通孔的垫片(9),所述垫片(9)与所述待测电池组件抵接,所述弹片(8)位于所述垫片(9)与所述第二透射窗保护膜(7)之间,且所述弹片(8)与所述垫片(9)和所述第二透射窗保护膜(7)均抵接。
  7. 根据权利要求6所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述待测电池组件包括待测电极(10)、隔膜(11)和对电极(12),所述隔膜(11) 盖设置于所述容置腔远离所述底座(5)的一端,所述待测电极(10)设置于所述隔膜(11)靠近所述上盖(1)的一侧,所述对电极(12)设置于所述隔膜(11)靠近所述容置腔的一侧;所述上透射窗(2)和所述待测电极(10)均与所述第一透射窗保护膜(6)紧密接触。
  8. 根据权利要求1-4任一项所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述中间绝缘结构(3)的顶端设置有环绕所述容置腔的第一环形凹槽,所述中间绝缘结构(3)的底端设置有环绕所述容置腔的第二环形凹槽,所述第一环形凹槽和所述第二环形凹槽中均嵌设有密封圈(13),所述中间绝缘结构(3)通过密封圈(13)与所述上盖(1)和所述底座(5)密封连接。
  9. 根据权利要求8所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,所述第一透射窗保护膜(6)的尺寸大于或者等于所述中间绝缘结构(3)顶端的密封圈(13)的尺寸,所述第二透射窗保护膜(7)的尺寸大于或者等于所述中间绝缘结构(3)底端的密封圈(13)的尺寸。
  10. 根据权利要求1-4任一项所述的电池原位同步辐射X射线吸收谱测试装置,其特征在于,包括多组连接组件,每组所述连接组件均包括螺栓(14)和套设于所述螺栓(14)上的绝缘套(15);所述上盖(1)上间隔设置有多个第一连接孔,所述中间绝缘结构(3)上设置有多个第二连接孔,所述底座(5)上设置有第三连接孔,所述第一连接孔、所述第二连接孔和所述第三连接孔一一对应;所述螺栓(14)穿过对应的所述第一连接孔、所述第二连接孔和所述第三连接孔,将所述上盖(1)、所述中间绝缘结构(3)以及所述底座(5)紧固在一起;所述绝缘套(15)配置成隔离所述螺栓(14)和所述上盖(1)。
PCT/CN2018/121836 2018-12-14 2018-12-18 电池原位同步辐射x射线吸收谱测试装置 WO2020118740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811540393.XA CN109856170A (zh) 2018-12-14 2018-12-14 电池原位同步辐射x射线吸收谱测试装置
CN201811540393.X 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020118740A1 true WO2020118740A1 (zh) 2020-06-18

Family

ID=66891321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121836 WO2020118740A1 (zh) 2018-12-14 2018-12-18 电池原位同步辐射x射线吸收谱测试装置

Country Status (2)

Country Link
CN (1) CN109856170A (zh)
WO (1) WO2020118740A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473754B (zh) * 2019-07-10 2020-07-31 中国科学院上海微系统与信息技术研究所 一种x射线薄膜窗口电极的制备优化方法以及由此得到的x射线薄膜窗口电极
CN112098466A (zh) * 2020-09-14 2020-12-18 大连理工大学 适用于600℃以下同步辐射原位成像的样品通电模块
CN112485275B (zh) * 2020-11-25 2022-05-17 中山大学 一种同步辐射x射线吸收光谱和质谱联用的电池装置与测试方法
CN112964740A (zh) * 2021-02-07 2021-06-15 香港城市大学深圳研究院 一种可用于同步辐射x射线原位表征的原位池
CN116148235B (zh) * 2023-04-18 2023-08-29 中国科学技术大学 一种固态电池转移和原位同步辐射吸收谱测试装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054809A (ja) * 1996-08-09 1998-02-24 Asahi Chem Ind Co Ltd 電池材料のx線吸収微細構造測定方法及び該測定用セル
CN101656129A (zh) * 2008-08-21 2010-02-24 斯考拉股份公司 在压力管道上的窗布置结构
CN202383265U (zh) * 2011-12-20 2012-08-15 中国科学院上海应用物理研究所 电池测试装置
CN102980903A (zh) * 2012-12-04 2013-03-20 中国科学院上海硅酸盐研究所 一种用于分析电极材料电化学性能的同步辐射x射线衍射装置及其应用
CN103599732A (zh) * 2013-10-30 2014-02-26 沈阳迈维科技有限公司 一种x光高温高压催化反应炉
JP2016162587A (ja) * 2015-03-02 2016-09-05 国立大学法人電気通信大学 固体高分子形燃料電池並びに計測装置及び方法
CN105973920A (zh) * 2016-06-30 2016-09-28 中国科学院上海应用物理研究所 用于催化剂实验的原位xafs燃料电池、系统及方法
JP2017067488A (ja) * 2015-09-28 2017-04-06 ダイハツ工業株式会社 X線吸収微細構造測定方法
CN108398446A (zh) * 2018-05-04 2018-08-14 中国科学技术大学 用于测试电池电极材料的同步辐射x射线吸收谱的原位装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200462183Y1 (ko) * 2011-01-14 2012-08-29 전자부품연구원 전지의 엑스선 회절 측정용 인시추 셀
US9057681B2 (en) * 2012-12-07 2015-06-16 The Regents Of The University Of California High-temperature strain cell for tomographic imaging
CN205352967U (zh) * 2015-11-04 2016-06-29 中国科学院上海微系统与信息技术研究所 锂离子电池的原位测试装置及组装支架
CN105390762B (zh) * 2015-11-04 2017-11-21 中国科学院上海微系统与信息技术研究所 锂离子电池的原位测试装置、组装支架及其装配方法
CN206557134U (zh) * 2017-01-24 2017-10-13 海南大学 铍窗原位xrd扣式电池
CN207600984U (zh) * 2018-02-28 2018-07-10 北京中研环科科技有限公司 二次电池x射线吸收荧光原位反应池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054809A (ja) * 1996-08-09 1998-02-24 Asahi Chem Ind Co Ltd 電池材料のx線吸収微細構造測定方法及び該測定用セル
CN101656129A (zh) * 2008-08-21 2010-02-24 斯考拉股份公司 在压力管道上的窗布置结构
CN202383265U (zh) * 2011-12-20 2012-08-15 中国科学院上海应用物理研究所 电池测试装置
CN102980903A (zh) * 2012-12-04 2013-03-20 中国科学院上海硅酸盐研究所 一种用于分析电极材料电化学性能的同步辐射x射线衍射装置及其应用
CN103599732A (zh) * 2013-10-30 2014-02-26 沈阳迈维科技有限公司 一种x光高温高压催化反应炉
JP2016162587A (ja) * 2015-03-02 2016-09-05 国立大学法人電気通信大学 固体高分子形燃料電池並びに計測装置及び方法
JP2017067488A (ja) * 2015-09-28 2017-04-06 ダイハツ工業株式会社 X線吸収微細構造測定方法
CN105973920A (zh) * 2016-06-30 2016-09-28 中国科学院上海应用物理研究所 用于催化剂实验的原位xafs燃料电池、系统及方法
CN108398446A (zh) * 2018-05-04 2018-08-14 中国科学技术大学 用于测试电池电极材料的同步辐射x射线吸收谱的原位装置

Also Published As

Publication number Publication date
CN109856170A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2020118740A1 (zh) 电池原位同步辐射x射线吸收谱测试装置
US11165088B2 (en) Button battery and manufacturing method therefor
CN104764780B (zh) 一种原位光谱分析用电池及其使用方法和应用
US11296351B1 (en) Rechargeable battery with pseudo-reference electrode
WO2014015451A1 (zh) 一种全密封耐腐蚀的焊接一体化锂离子电池
CN210198962U (zh) 锂电池耐高温拉曼/x射线衍射原位光谱测试装置
CN208173730U (zh) 电池充放电夹具
CN209656593U (zh) 电池原位x射线衍射测试辅助装置
CN108511783A (zh) 一种锂电池
WO2018145361A1 (zh) 一种柱型电池及其用途
CN202383265U (zh) 电池测试装置
CN103633259A (zh) 一种pp塑料外壳锂离子电池
JP6531388B2 (ja) 非水系電解質二次電池と、該電池を用いた電池内部ガス発生量の評価方法。
CN111175655A (zh) 电池原位应力测试装置
KR101757527B1 (ko) 이중 케이스 내에 배치된 가스 투과막을 갖는 전기화학적 에너지 저장장치
CN215451575U (zh) 一种可充电锂电池
CN213905431U (zh) 一种锂离子三电极电池
CN209264570U (zh) 电池原位拉曼测试装置
CN110146821B (zh) 电池测试装置及其使用方法
CN219915874U (zh) 一种三电极扣式电池测试硬件
CN214622971U (zh) 锂离子软包电池芯包测试用多功能装置
CN111141716A (zh) 电池原位拉曼测试装置
CN219534691U (zh) 一种锂电池负极密封结构
CN206271807U (zh) 一种具有较高安全性能的新型锂离子电池结构
CN218498136U (zh) 一种碳包覆镍钴锰酸锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942779

Country of ref document: EP

Kind code of ref document: A1