WO2020118513A1 - 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法 - Google Patents

一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法 Download PDF

Info

Publication number
WO2020118513A1
WO2020118513A1 PCT/CN2018/120254 CN2018120254W WO2020118513A1 WO 2020118513 A1 WO2020118513 A1 WO 2020118513A1 CN 2018120254 W CN2018120254 W CN 2018120254W WO 2020118513 A1 WO2020118513 A1 WO 2020118513A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
turbofan engine
state
controller
output
Prior art date
Application number
PCT/CN2018/120254
Other languages
English (en)
French (fr)
Inventor
杜宪
马艳华
孙希明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/462,521 priority Critical patent/US11392094B2/en
Priority to PCT/CN2018/120254 priority patent/WO2020118513A1/zh
Publication of WO2020118513A1 publication Critical patent/WO2020118513A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Definitions

  • the invention relates to a multi-variable control method for turbofan engine steady-state transition state based on auto-disturbance rejection theory. Specifically, it is based on the auto-disturbance rejection theory to establish a multi-variable control framework for an aero-engine to optimize the turbofan engine in idle and The control effect during the running process of the above rotation speed belongs to the technical field of aero engine control.
  • the background that the present invention relies on is a certain type of dual-rotor turbofan engine control technology.
  • the related technologies of my country's aero-engines mostly improve the efficiency of aero-engines from the perspective of materials and structures, and there are few improvements and optimizations in the field of control. Improvements from the perspective of materials and structures can certainly improve the efficiency of turbofan engines, but optimizing them from the control field can better exploit the potential of current aeroengines and extend the service life of turbofan engines.
  • the controller was implemented in the form of mechanical devices and hydraulic structures. Although it has good stability, it can only implement simple control laws and cannot apply complex control algorithms.
  • the full authority digital electronic controller FADEC
  • the full authority digital electronic controller is gradually applied to the specific implementation of the turbofan engine control system, and reflects many advantages such as easy to modify the control strategy and the ability to implement complex algorithms.
  • the control of the turbofan engine can be divided into multiple stages such as start and stop control, steady state control, acceleration and deceleration control and afterburner control according to the different stages it is in.
  • the invention does not involve the start-stop control part.
  • Steady-state control refers to a control process in which the turbofan engine maintains the engine speed at any point during the process from the idle speed to the maximum speed.
  • the traditional turbofan engine's steady-state control mostly uses the PID control algorithm. It is necessary to obtain a linear model of the turbofan engine's small deviation at each steady-state point, and adjust the PID parameters for all linear models to obtain the turbofan engine's fuel increment. , Together with the steady-state fuel as the actual fuel input of the turbofan engine.
  • the principle of this method is simple, but involves many aspects such as linear model identification, PID parameter adjustment, gain scheduling, etc. The design process is quite complicated.
  • Acceleration and deceleration control refers to the control process of rapid change of the gas turbine between the idle and rated speed states.
  • the aerodynamic characteristics of the turbofan engine change greatly, and the use of the above steady-state controller is not competent for the acceleration and deceleration process.
  • the acceleration and deceleration plan is usually used to limit the operation of the turbofan engine within a reasonable range. Once the turbofan engine is in the acceleration and deceleration plan, the controller of the turbofan engine will hand over control to the acceleration and deceleration plan, and the control effect is also determined by the preset acceleration and deceleration plan.
  • turbofan engines have gradually become a breakthrough direction.
  • the addition of the turbofan engine afterburner makes it impossible to maintain the stable state of the turbofan engine only by adjusting the fuel in the main combustion chamber.
  • the relevant actions of the turbofan engine after the start of the afterburner are also based on the plan, and the control effect depends on the setting of the previous plan.
  • the multi-variable control of the turbofan engine can provide a new optimization space for aeroengine control, which is beneficial to improve the comprehensive performance of the turbofan engine and give full play to the potential of the engine during operation.
  • the current turbofan engine control technology has many deficiencies.
  • the design of the turbofan engine controller mainly focuses on the design of the steady state controller. During the acceleration and deceleration and afterburning periods, different plans are used to limit the working boundary of the turbofan engine.
  • the design of the controller can only guarantee the steady state performance. It cannot change the performance of the transition state;
  • there is a problem of the exchange of control power between the steady state controller and the acceleration and deceleration plan during the operation of the turbofan engine which results in the controller's control strategy in the steady state and acceleration and deceleration are not unified, which requires design
  • the current turbofan engine control strategy is not suitable for the requirements of variable control, and a large amount of current control system structure is required.
  • the existing turbofan engine control system needs to adjust multiple sets of parameters and a large number of planning curves multiple times, and the controller design process is redundant and inefficient.
  • the present invention designs a multi-variable control system for turbofan engine based on the auto-immunity theory.
  • the multivariable control system of the present invention not only treats the steady state and the transition state of the turbofan engine as the same situation, but also avoids the uncertainty introduced by the switching of different methods.
  • the present invention uses the method of total disturbance estimation to observe the internal state changes of the turbofan engine and the effects of external disturbances uniformly, and implement compensation cancellation, which is more robust than traditional methods.
  • the invention is also applicable to gas turbines and other devices having the same functional structure or similar operating characteristic lines.
  • the present invention provides a multivariable control of the steady state transition state of the turbofan engine based on the auto-disturbance theory method.
  • a multi-variable control method for the steady-state transition state of a turbofan engine based on the auto-disturbance theory the steps are as follows:
  • m refers to the number of data sampling points of this group
  • r t is the parameter to be adjusted, which is used to adjust the length of the transition time for tracking the output variable of the differentiator.
  • h is the simulation step;
  • sign(fx) is the sign function, d,d 0 ,fx,a 0 ,a are internal variables introduced for the convenience of calculation,
  • f han is the output of the function f han (p,q,r t ,h);
  • a tracking differentiator (TD) module is constructed.
  • the input of the tracking differentiator is the control instruction v i of the i-th loop, and the outputs are respectively
  • the trajectory g i and the derivative g i ′ of the trajectory are updated in discrete form as follows:
  • g i ′ g i ′+h ⁇ f han (g i -v i ,g i ′,r t,i ,h)
  • b 0,i ,w o,i are the parameters of the extended state observer
  • b 0,i are the model characterization parameters, which are related to the actual model
  • w o,i are the bandwidth parameters of the extended state observer
  • u i , y i is the input of the expanded state observer
  • Z is the state variable of the expanded state observer
  • Is the output of the expanded state observer
  • the three outputs are the estimated values of the turbofan engine output y i Change trend of y i
  • u PD,i K p,i fal(e i , ⁇ p,i , ⁇ p,i )+K d,i fal(e i ′, ⁇ d,i , ⁇ d,i )
  • S3.6 forms a closed loop between the controller and the turbofan engine, and then comprehensively adjusts K p,i ,K d,i ,w o,i ,b 0,i to ensure that the controlled variable y i can better track the given trajectory ;
  • x i is the turbofan engine parameter that needs to be protected
  • x i,l is the maximum value allowed by the parameter x i
  • x i,dl is the size of the working range of the limit protection working controller, that is, the controller is x i >x i,l -x i,dl starts to work
  • u j,l represents the maximum value that the limit protection controller can output, where j is the controller output corresponding to the limit protection parameter is not
  • the control order of turbofan engine is related;
  • fun out (k) means to limit the output of the protection controller at the k- th time, x i, k , x i, k-1 , x i, k-2 are k, k-1, k respectively -2
  • the value of the turbofan engine parameters at time 2, ⁇ i , ⁇ i ′ are the size of position dead zone and speed dead zone, respectively;
  • the beneficial effects of the present invention are: the design of the turbofan engine steady-state transition state multivariable control system of the present invention can not only achieve the target of the turbofan engine requiring multiple inputs and multiple outputs while operating according to a predetermined trajectory to achieve the control requirements, but also, relative to The traditional control controller design method is less difficult, the number of parameters to be adjusted is small and the physical meaning is very clear. The robustness of the system has also been greatly improved.
  • the present invention provides a new and more effective control idea for the multi-variable control of turbofan engine, which is the basis of meeting the multi-variable control requirements, steady-state control requirements, servo control requirements and anti-interference performance requirements of turbofan engine
  • a real-time limit protection controller to ensure that the turbofan engine runs at all times within the safety envelope to prevent the turbofan engine from being dangerous.
  • this method makes full use of the estimation capability of auto disturbance rejection theory for unknown disturbances, and estimates the coupling between the loops in the turbofan engine multivariable control as the total disturbance without special treatment for the coupled part.
  • This method can completely replace the traditional PID-based control strategy, and can also be used in conjunction with the traditional limited protection strategy with min-max as the core.
  • the implementation method is flexible and diverse, and the logical structure is relatively simple.
  • the method is also applicable to the design of control systems for gas turbines with similar structures and internal combustion engines with similar working principles, and has a wide range of applications.
  • FIG. 1 is a control structure diagram of a turbofan engine steady-state transition state multivariable control method based on auto disturbance rejection theory
  • FIG. 2 is a design flow chart of a turbofan engine steady-state transition state multivariable control method based on auto-interference immunity theory
  • Figure 3 is a flow chart for determining the controlled variable and control amount
  • Figure 4 is a flow chart of establishing a steady-state transition state controller
  • Figure 5 is a structural diagram of an auto disturbance rejection controller
  • Fig. 6 is the flow chart of parameter adjustment of the steady state transition state controller
  • Figure 7 is the design flow chart of the limit protection controller
  • Figure 8 is a speed control effect diagram of a turbofan engine under a certain working condition
  • Fig. 9 is a control effect diagram of the drop pressure ratio of a turbofan engine under a certain working condition
  • FIG. 10 is a speed anti-disturbance effect diagram of a turbofan engine under a certain working condition
  • Figure 11 is a graph of the anti-disturbance effect of a certain turbofan engine under a certain operating condition
  • Fig. 12 is a temperature control effect diagram of a turbofan engine under certain operating conditions
  • the background of the present invention is a non-linear model of a certain dual-rotor turbofan engine, and the control structure diagram is shown in FIG. 1.
  • a multi-variable control method for turbofan engine steady-state transition state based on auto-immunity theory mainly includes the following steps:
  • r t is the parameter to be adjusted, which is used to adjust the length of the transition time for tracking the output variable of the differentiator.
  • h is the simulation step;
  • sign(fx) is the sign function, d,d 0 ,fx,a 0 ,a are internal variables introduced for the convenience of calculation,
  • f han is the output of the function f han (p,q,r t ,h).
  • g i ′ g i ′+h ⁇ f han (g i -v i ,g i ′,r t,i ,h)
  • b 0,i ,w o,i are the parameters to be adjusted
  • b 0,i are the model characterization parameters, which are related to the actual model
  • w o,i are the bandwidth parameters of the extended state observer
  • u i ,y i Is the output of the expanded state observer
  • Z is the state variable of the expanded state observer
  • the three outputs are the estimated values of the turbofan engine output y i Change trend of y i And the total disturbance of the turbofan engine in this circuit
  • u PD,i K p,i fal(e i , ⁇ p,i , ⁇ p,i )+K d,i fal(e i ′, ⁇ d,i , ⁇ d,i )
  • the steps of adjusting the first group of control parameters of the steady-state transition state controller are as follows, and the adjustment of the second group of control parameters is also the same as this:
  • the control effect of the multi-variable controller of the steady-state transition state of the turbofan engine based on the auto-disturbance theory is shown in Figures 8 and 9, the overshoot is 0 during the speed control, the adjustment time is 9.93 seconds, and the steady state error It is 0.05r/min, and the proportion in the whole process is less than 0.01%; in the process of falling pressure ratio control, the overshoot is 0.55%, the adjustment time is 9.83 seconds, the peak time is 12.13 seconds, and the steady-state error is 0.0074, accounting for 0.15% of the whole process.
  • Figures 10 and 11 are images of adding afterburning fuel with an amplitude of 2000 kg/h at 20 seconds after stable operation and canceling the disturbance at 30 seconds.
  • the overshoot of the speed during the afterburning process is 0.14%
  • the adjustment time is 6.83 seconds
  • the overshoot of the dropout ratio is 2.17%
  • the adjusting time is 11.55 seconds
  • the overshoot of the speed 0.13% the adjustment time is 6.88 seconds
  • the overshoot of the pressure drop ratio is 2.45%
  • the adjustment time is 9.88 seconds.
  • the use of a multi-variable control method for the turbofan engine based on the auto-interference immunity theory can achieve the control requirements of the turbofan engine, and can ensure that the turbofan engine operates within a safe range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法,首先初步选取多组涡扇发动机的控制量和被控量,然后使用相关性分析法进一步确定相关性较大的控制量与被控量;采用跟踪微分器将每组控制指令规划为跟踪轨迹,再与扩张状态观测器估计的当前状态一起作为非线性比例-微分控制器的输入计算控制量,同时使用恰当结构抵消扩张状态观测器观测包括多变量各回路间的耦合在内的总扰动,以达到良好的控制效果。该控制方法不仅达到涡扇发动机要求多输入多输出同时按照预定轨迹运行达到控制要求的目标,相对于传统控制控制器设计方法难度更小,需要调节的参数数量少且物理意义十分明确,系统的鲁棒性也得到了极大的提升。

Description

一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法 技术领域
本发明涉及一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法,具体的说,是基于自抗扰理论,建立航空发动机的多变量控制框架,优化涡扇发动机在慢车及以上的转速的运行过程中的控制效果,属于航空发动机控制技术领域。
背景技术
本发明依托的背景为某型的双转子涡扇发动机的控制技术。目前,我国航空发动机的相关技术多从材料和结构的角度对航空发动机的效能进行提高,从控制领域的改进和优化较少。从材料和结构的角度的改进固然能够提高涡扇发动机的效率,但从控制领域对其进行优化能够更好地发挥当前航空发动机的潜能,延长涡扇发动机的使用寿命。航空发动机设计初期,其控制器的实现形式为机械装置和液压结构,虽然具有很好的稳定性,但只能实现简单的控制规律,无法应用复杂的控制算法。随着数字电子技术的提高,全权限数字电子控制器(FADEC)逐步应用于涡扇发动机控制系统的具体实现,并体现出了易于修改控制策略、能够实现复杂算法等诸多优势。
涡扇发动机的控制按照其处于的不同阶段可以分为启动停车控制、稳态控制、加减速控制和加力控制等多个阶段。本发明不涉及启动停车控制部分。
稳态控制是指涡扇发动机在慢车转速到最大转速的过程中,维持发动机转速在其中任意一点不发生变化的控制过程。传统涡扇发动机的稳态控制多采用的是PID控制算法,需要获得涡扇发动机在每个稳态点的小偏离的线性模型,针对所有线性模型调整PID参数以获得涡扇发动机燃油的增量,与稳态燃油共同作用作为涡扇发动机的实际燃油输入量。这种方法原理简单,但涉及线性模型辨识、PID参数调整、增益调度等多个方面,设计流程相当复杂。
加减速控制是指燃气轮机在慢车和额定转速状态之间快速变化的控制过程,该过程涡扇发动机的气动热力学特性变化巨大,使用上述的稳态控制器无法胜任加减速过程的工作,在实际过程中通常使用加减速计划的方式限制涡扇发动机运行在合理的范围之内。一旦涡扇发动机处于加减速计划之中,涡扇发动机的控制器就将控制权交给加减速计划,控制效果也由预先设定好的加减速计划确定。
而且随着对机动性和工作效率的要求不断提高,涡扇发动机的多变量控制也逐渐成为突破的方向。尤其是涡扇发动机加力燃烧室的加入使得不能只通过调节主燃烧室的燃油的方式维持涡扇发动机的稳定状态。目前,加力部分启动后涡扇发动机的相关动作也是基于计划的,控制效果依赖于前期计划的设定。涡扇发动机的多变量控制可以为航空发动机控制提供新的优化空间,有利于提高涡扇发动机的综合性能,充分发挥发动机在运行过程中的潜能。
综上,当前的涡扇发动机控制技术存在许多不足。首先,涡扇发动机控制器的设计主要集中在稳态控制器的设计,在加减速和加力时期多以不同的计划来限制涡扇发动机的工作边界,控制器的设计只能保证稳态性能而无法改变其过渡态性能;其次,涡扇发动机的运行过程中存在稳态控制器和加减速计划控制权交换的问题,导致控制器在稳态和加减速的控制策略不统一,既需要设计稳态控制器,又要设计合理的过渡态计划、加力过程的执行机构动作计划等;而且,当前涡扇发动机控制策略不适用于多变控制的要求,需要对当前控制系统的结构进行大量的修改以适应解耦等新需求;最后,现有的涡扇发动机控制系统需要多次调整多组参数和大量的计划曲线,控制器设计流程冗杂、低效。
所以,为了克服当前航空发动机控制系统设计的不足,本发明设计了基于自抗扰理论的涡扇发动机多变量控制系统。本发明的多变量控制系统不仅将涡扇发动机的稳态和过渡态作为同一种情况统一处理,避免了不同方法的切换引入的不确定性。而且本发明使用总扰动估计的方式对涡扇发动机的内部状态变化和外部干扰影响统一观测,并实施补偿抵消,比传统方法具有更好的鲁棒性。本发明也适用于具有相同功能结构或者相似工作特性线的燃气轮机和其他装置。
发明内容
针对现有方法设计涡扇发动机控制系统设计过程中流程复杂、依赖计划难以实现多变量控制等多个问题,本发明提供了一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法。
本发明的技术方案:
一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法,步骤如下:
S1.基于多变量控制目标,选择两组或者多组被控变量,并确定每个被控变量的控制参数要求,然后结合机理分析和相关性分析的方法确定每个被控变量对应的控制量;
确定被控变量和控制量的步骤如下:
S1.1分析涡扇发动机控制要求,根据涡扇发动机的机理初步确定控制量U=[u 1,…,u i,…,u n] T与被控变量Y=[y 1,…,y i,…y n] T,其中u i与y i是在第i个回路中的同组变量;
S1.2选取第i组的控制量和被控变量进行分析,保持涡扇发动机的其他输入量[u 1,…,u i-1,u i+1,…u n]为合理常值,将第i组控制量的序列设置为
Figure PCTCN2018120254-appb-000001
式中:满足
Figure PCTCN2018120254-appb-000002
并且
Figure PCTCN2018120254-appb-000003
在控制量u i正常运行的范围之内,m是指本组数据采 样点个数;
S1.3运行涡扇发动机模型,获取输出数据
Figure PCTCN2018120254-appb-000004
S1.4对获得的涡扇发动机的输入
Figure PCTCN2018120254-appb-000005
和输出
Figure PCTCN2018120254-appb-000006
进行归一化,归一化方法如下:
Figure PCTCN2018120254-appb-000007
Figure PCTCN2018120254-appb-000008
S1.5运用相关性分析的方法计算相关性系数Re i,具体公式如下:
Figure PCTCN2018120254-appb-000009
Figure PCTCN2018120254-appb-000010
Figure PCTCN2018120254-appb-000011
Figure PCTCN2018120254-appb-000012
Figure PCTCN2018120254-appb-000013
S1.6根据所得的相关系数Re i确定控制量u i是否用于被控变量y i的控制,若相关系数符合要求,则该组参数选择正确,否则,控制量与被控变量相关度不大,则需重新更换控制量,直至相关系数满足要求;
S2.根据自抗扰的基本原理,建立跟踪微分器模块、线性扩张状态观测模块和非线性PD模块三个模块,构建稳态过渡态控制器,并保留跟踪微分器的时间常数r t、线性扩张状态观测器的w o、非线性PD的K p和K d作为待调参数;
建立稳态过渡态控制器的步骤如下:
S2.1建立二阶离散系统最速控制综合函数f han(p,q,r t,h),其表达式如下:
d=r t×h
d 0=h×d
fx=p+hq
Figure PCTCN2018120254-appb-000014
Figure PCTCN2018120254-appb-000015
Figure PCTCN2018120254-appb-000016
式中,r t为待调参数,用以调节跟踪微分器输出变量的过渡时间的长度,r t越大,过渡时间越短;h为仿真步长;sign(fx)为符号函数,
Figure PCTCN2018120254-appb-000017
d,d 0,fx,a 0,a是为了便于计算引入的内部变量,f han为函数f han(p,q,r t,h)的输出;
S2.2根据建立的f han(p,q,r t,h)函数,构建跟踪微分器(Tracking Differential,TD)模块,跟踪微分器的输入是第i回路的控制指令v i,输出分别为跟踪轨迹g i和轨迹的导数g i′,其离散形式的更新表达式如下:
g i=g i+h×g i
g i′=g i′+h×f han(g i-v i,g i′,r t,i,h)
S2.3建立线性扩张状态观测器,使用涡扇发动机输入u i和输出y i作为扩张状态观测的输入观测当前输出量的状态
Figure PCTCN2018120254-appb-000018
和总扰动
Figure PCTCN2018120254-appb-000019
其表达形式如下所示:
Z=[z 1,i,z 2,i,z 3,i] T
Figure PCTCN2018120254-appb-000020
Figure PCTCN2018120254-appb-000021
Figure PCTCN2018120254-appb-000022
式中,b 0,i,w o,i分别为扩张状态观测器参数,b 0,i为模型表征参数,与实际模型相关,w o,i是扩张状态观测器的带宽参数;u i,y i为扩张状态观测器的输入,Z为扩张状态观测器的状态变量,
Figure PCTCN2018120254-appb-000023
是扩张状态观测器的输出,三个输出量分别是涡扇发动机输出y i的估计值
Figure PCTCN2018120254-appb-000024
y i的变化趋势
Figure PCTCN2018120254-appb-000025
和涡扇发动机在该回路的总扰动
Figure PCTCN2018120254-appb-000026
S2.4建立非线性函数fal(e,α,δ),其形式如下所示:
Figure PCTCN2018120254-appb-000027
S2.5依据建立的非线性函数,建立非线性PD反馈控制器如下所示:
u PD,i=K p,ifal(e ip,ip,i)+K d,ifal(e i′,α d,id,i)
S2.6依据自抗扰理论中各模块的结构,组装建立涡扇发动机稳态过渡态控制器;
S3.选定一组控制量和被控变量为调参控制回路,保持其余回路的控制量不变或者按照期望轨迹运行,调节稳态过渡态控制器参数至基本达到控制要求;
调节稳态过渡态控制器第i组控制参数步骤如下:
S3.1根据涡扇发动机的数据
Figure PCTCN2018120254-appb-000028
Figure PCTCN2018120254-appb-000029
初步选择扩张状态观测器参数以满足下式条件:
Figure PCTCN2018120254-appb-000030
S3.2使用涡扇发动机的数据
Figure PCTCN2018120254-appb-000031
Figure PCTCN2018120254-appb-000032
作为扩张状态观测器的输入,调整扩张状态观测器参 数w o,i至扩张状态观测器输出
Figure PCTCN2018120254-appb-000033
正确跟踪
Figure PCTCN2018120254-appb-000034
S3.3输入参考指令v i,调节参数r t,i以获得期望的过渡轨迹g i,当轨迹过渡时间过长时,增大参数r t,i,反之则减小r t,i
S3.4使用
Figure PCTCN2018120254-appb-000035
Figure PCTCN2018120254-appb-000036
作为非线性PD控制器的输入,并调节K p,i,K d,i至合理值,其输出为u PD,i
S3.5计算稳态过渡态控制器的输出为
Figure PCTCN2018120254-appb-000037
S3.6将控制器与涡扇发动机构成闭环,然后综合调节K p,i,K d,i,w o,i,b 0,i以保证被控量y i能够较好的跟踪给定轨迹;
S4.建立上限保护函数fun l(x i,x i,l,x i,dl,u j,l),以该函数为基础设计涡扇发动机状态参数限制保护控制器,对控制回路的输出进行限制,保证系统被控量达到控制要求的同时其状态参数不超限;
建立涡扇发动机状态参数限制保护控制器的步骤如下:
S4.1根据涡扇发动机控制目标确定限制保护参数的限制值x i,l以及限制保护控制器作用范围x i,dl
S4.2建立上限保护函数fun l(x i,x i,l,x i,dl,u j,l),其公式为
Figure PCTCN2018120254-appb-000038
式中,x i是需要限制保护的涡扇发动机参数,x i,l是参数x i允许的最大值,x i,dl是该限制保护工作控制器的工作范围的大小,即该控制器在x i>x i,l-x i,dl时开始起作用,u j,l表示的是限制保护控制器能够输出的最大值,这里j是表示限制保护参数所对应的控制器输出量不与涡扇发动机控制量排序相关;
S4.3基于限制保护函数建立离散状态下死区环节,其表达式如下所示:
Figure PCTCN2018120254-appb-000039
式中,fun out(k)表示的是限制保护控制器在第k时刻的输出,x i,k,x i,k-1,x i,k-2分别为第k,k-1,k-2时刻涡扇发动机参数的数值,Δ ii′分别是位置死区和速度死区的大小;
S4.4将限制保护控制器的输出以负反馈的形式接入控制回路,调整限制保护控制器能输出的最大值u j,l,保证限制保护控制器能够满足超限保护的作用。
S5.进行多变量控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统对外部环境变化的适应能力。
本发明的有益效果为:本发明的设计的涡扇发动机稳态过渡态多变量控制系统,不仅能够达到涡扇发动机要求多输入多输出同时按照预定轨迹运行达到控制要求的目标,而且,相对于传统控制控制器设计方法难度更小,需要调节的参数数量少且物理意义十分明确,系统的鲁棒性也得到了极大的提升。因此,本发明为涡扇发动机多变量控制提供了一种新的更为有效的控制思路,在满足涡扇发动机的多变量控制要求、稳态控制要求、伺服控制要求和抗扰性能要求的基础上,建立实时限制保护控制器,保证涡扇发动机运行所有时刻均运行在安全包线之内,防止涡扇发动机发生危险。同时,本方法充分利用自抗扰理论对于未知扰动的估计能力,将涡扇发动机多变量控制中各回路间的耦合作为总扰动进行估计,无需对耦合部分做特殊处理。本方法既可以完全替代以PID为主的传统控制策略,又可以与以min-max为核心的传统限制保护策略配合使用,实现方式灵活多样,逻辑结构较为简单。同时,本方法也适用于具有相似结构的燃气轮机以及相似工作原理的内燃机的控制系统的设计,应用范围很广。
附图说明
图1为基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法的控制结构图;
图2为基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法的设计流程图;
图3为确定被控变量和控制量的流程图;
图4为建立稳态过渡态控制器流程图;
图5为自抗扰控制器结构图;
图6为稳态过渡态控制器参数调节流程图;
图7为限制保护控制器设计流程图;
图8为某型涡扇发动机在某一工况下转速控制效果图;
图9为某型涡扇发动机在某一工况下落压比控制效果图;
图10为某型涡扇发动机在某一工况下转速抗扰效果图;
图11为某型涡扇发动机在某一工况下落压比抗扰效果图;
[根据细则26改正21.12.2018] 
图12为某型涡扇发动机在某一工况下温度控制效果图;
具体实施方式
下面结合附图对本发明作进一步说明,本发明的依托背景为某型双转子涡扇发动机的非线性模型,控制结构图如图1所示。
如图2所示,一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法,主要包括如下步骤:
S1.基于多变量控制目标,选择两组或者多组被控变量,并确定每个被控变量的控制参数要求,然后结合机理分析和相关性分析的方法确定每个被控变量对应的控制量;
S2.根据自抗扰的基本原理,建立跟踪微分器模块、线性扩张状态观测模块和非线性PD模块三个模块,构建稳态过渡态控制器,并保留跟踪微分器的时间常数r t、线性扩张状态观测器的w o、非线性PD的K p和K d作为待调参数;
S3.选定一组控制量和被控量为调参控制回路,保持其余回路的控制量不变或者按照期望轨迹运行,调节稳态过渡态控制器参数至基本达到控制要求;
S4.建立上限保护函数fun l(x i,x i,l,x i,dl,u j,l),以该函数为基础设计涡扇发动机状态参数限制保护控制器,对控制回路的输出进行限制,保证系统被控量达到控制要求的同时其状态参数不超限;
S5.进行多变量控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统对外部环境变化的适应能力。
如图3,确定被控变量和控制量的步骤如下:
S1.分析涡扇发动机控制要求,根据涡扇发动机的机理选取涡扇发动机主燃烧室燃油F和尾喷管面积A 8为控制量,选取高压转子转速N 2和落压比π T为被控量即U=[F,A 8] T,Y=[N 2T] T
S2.选取第1组的控制变量和被控变量为例进行分析,保持涡扇发动机的输入量A 8=0.2602m 2,将第1组控制量的值设置为
Figure PCTCN2018120254-appb-000040
式中满足单调递增条件且在合理范围之内;
S3.运行涡扇发动机模型,获取输出数据
Figure PCTCN2018120254-appb-000041
S4.对获得的涡扇发动机的输入
Figure PCTCN2018120254-appb-000042
和输出
Figure PCTCN2018120254-appb-000043
进行归一化,归一化方法如下:
Figure PCTCN2018120254-appb-000044
Figure PCTCN2018120254-appb-000045
S5.运用相关性分析的方法计算相关性系数Re 1,具体公式如下:
Figure PCTCN2018120254-appb-000046
Figure PCTCN2018120254-appb-000047
Figure PCTCN2018120254-appb-000048
Figure PCTCN2018120254-appb-000049
Figure PCTCN2018120254-appb-000050
S6.通过上述计算可得,Re 1=0.9916>0.5,说明两者相关性较高,可以作为一组控制变量;同理可得A 8和π T的相关性系数Re 2=0.9979>0.5,那么他们也可以作为第二组控制变量。控制量与被控量相关度系数小于0.5,则需重新更换控制量,直至相关系数满足要求。
如图4所示,建立稳态过渡态控制器的步骤如下:
S1.建立二阶离散系统最速控制综合函数f han(p,q,r t,h),其表达式如下:
d=r t×h
d 0=h×d
fx=p+hq
Figure PCTCN2018120254-appb-000051
Figure PCTCN2018120254-appb-000052
Figure PCTCN2018120254-appb-000053
式中,r t为待调参数,用以调节跟踪微分器输出变量的过渡时间的长度,r t越大,过渡时间越短;h为仿真步长;sign(fx)为符号函数,
Figure PCTCN2018120254-appb-000054
d,d 0,fx,a 0,a是为了便于计算引入的内部变量,f han为函数f han(p,q,r t,h)的输出。
S2.根据建立的f han(p,q,r t,h)函数,构建跟踪微分器(Tracking Differential,TD)模块,跟踪微分器的输入为控制系统的输入指令v i,输出分别为跟踪轨迹g i和轨迹的导数g i′,其离散形式的更新表达式如下:
g i=g i+h×g i
g i′=g i′+h×f han(g i-v i,g i′,r t,i,h)
S3.建立线性扩张状态观测器,用于根据当前的输入u i和输出y i观测当前输出量的状态和总扰动。其表达形式如下所示
Z=[z 1,i,z 2,i,z 3,i] T
Figure PCTCN2018120254-appb-000055
Figure PCTCN2018120254-appb-000056
Figure PCTCN2018120254-appb-000057
式中,b 0,i,w o,i分别为待调参数,b 0,i为模型表征参数,与实际模型相关,w o,i是扩张状态观测器的带宽参数;u i,y i为扩张状态观测器的输出,Z为扩张状态观测器的状态变量,
Figure PCTCN2018120254-appb-000058
扩张状态观测器的估计输出,三个输出量分别是涡扇发动机输出y i的估计值
Figure PCTCN2018120254-appb-000059
y i的变化趋势
Figure PCTCN2018120254-appb-000060
和涡扇发动机在该回路的总扰动
Figure PCTCN2018120254-appb-000061
S4.建立非线性函数fal(e,α,δ),其形式如下所示:
Figure PCTCN2018120254-appb-000062
S5.依据建立的非线性函数,建立非线性PD反馈控制器如下所示
u PD,i=K p,ifal(e ip,ip,i)+K d,ifal(e i′,α d,id,i)
S6.依据图5中各模块的结构,组建涡扇发动机稳态过渡态控制器。
如图6所示,调节稳态过渡态控制器第1组控制参数步骤如下,第2组控制参数的调整也与此相同:
S1.根据涡扇发动机的数据
Figure PCTCN2018120254-appb-000063
Figure PCTCN2018120254-appb-000064
初步选择扩张状态观测器中的模型表征参数b 1,0=200,满足下式条件
Figure PCTCN2018120254-appb-000065
S2.初步选定扩张状态观测器的w o,1=1,使用涡扇发动机的数据
Figure PCTCN2018120254-appb-000066
Figure PCTCN2018120254-appb-000067
作为扩张状态观测器的输入,观测其输出即N 2的估计值
Figure PCTCN2018120254-appb-000068
是否能够正确跟踪
Figure PCTCN2018120254-appb-000069
若跟踪效果较差,增大w o,1的值,观测跟踪效果;若w o,1较大(如w o,1>100)效果仍然不好,适当减小b 0,1,重新调整观测跟踪效果直至观测效果良好;
S3.输入参考指令v 1,调节参数r t,1以获得期望的过渡轨迹g i,当轨迹过渡时间过长时,增大参数r t,1,反之则减小r t,1
S4.使用
Figure PCTCN2018120254-appb-000070
Figure PCTCN2018120254-appb-000071
作为非线性PD控制器的输入,并调节K p,1,K d,1至合理值,其输出为u PD,1
S5.计算稳态过渡态控制器的输出为
Figure PCTCN2018120254-appb-000072
S6.综合调节K p,1,K d,1,w o,1,b 0,1以保证被控量N 2能够较好的跟踪给定轨迹g 1。经过多次调节,最终得到效果较好的参数组合为K p,1=600,K d,1=30,b 0,1=200,w o,1=40,r t,1=5000;同理可得A 8T控制回路的参数为K p,2=50,K d,2=10,b 0,2=3000,w o,2=30,r t,2=1时效果较好。
如图7所示,建立涡扇发动机状态参数限制保护控制器的步骤如下:
S1.根据涡扇发动机控制目标确定温度限制为T 4,1C,l=1700K以及限制保护控制器开始作用时的参数值T 4,1C,dl=30K;
S2.依据公式建立上限保护函数fun l(T 4,1C,T 4,1C,l,T 4,1C,dl,F l),即
Figure PCTCN2018120254-appb-000073
S3.基于限制保护函数建立离散状态下死区环节,其表达式如下所示
Figure PCTCN2018120254-appb-000074
式中,死区的两个参数分别选取为Δ 1=2,Δ 1′=5;
S4.将限制保护控制器的输出以负反馈的形式接入控制回路,选取限制保护控制器能输出的最大值F l=300kg/h,保证限制保护控制器能够满足超限保护的作用。
设计完成后基于自抗扰理论的涡扇发动机稳态过渡态多变量控制器的控制效果如图8和图9所示,转速控制过程中超调量为0,调节时间为9.93秒,稳态误差为0.05r/min,在整个过程中的占比小于0.01%;落压比控制过程中,超调量为0.55%,调节时间为9.83秒,峰值时间为12.13秒,稳态误差为0.0074,占整个过程的0.15%。
对于该方法的抗扰性能,在不改变控制器参数的情况下运行涡扇发动机至额定工况,通过施加加力燃油,观测该扰动对控制效果的影响。图10和图11是在稳定运行后第20秒添加幅值为2000kg/h的加力燃油并在第30秒将该扰动撤销的图像。由图可以看出,加力过程中转速超调量为0.14%,调节时间为6.83秒,落压比超调量为2.17%,调节时间为11.55秒;撤销加力过程中,转速超调量0.13%,调节时间为6.88秒,落压比超调量为2.45%,调节时间为9.88秒。
对于限制保护控制器性能的测试,由于正常情况下不会触发该控制器,需要降低限制保护参数的限制值以观察其作用。这里将温度限制保护修改为T 4,1C,l=1600K,控制效果如图12所示。由图12可以看出,在温度限制保护控制器作用后其输出温度低于1600K。
综上,使用基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法能够达到涡扇发动机的控制要求,且能够保证涡扇发动机运行在安全范围内。

Claims (1)

  1. 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法,其特征在于,步骤如下:
    S1.基于多变量控制目标,选择两组或者多组被控变量,并确定每个被控变量的控制参数要求,然后结合机理分析和相关性分析的方法确定每个被控变量对应的控制量;
    确定被控变量和控制量的步骤如下:
    S1.1分析涡扇发动机控制要求,根据涡扇发动机的机理初步确定控制量U=[u 1,…,u i,…,u n] T与被控变量Y=[y 1,…,y i,…y n] T,其中u i与y i是在第i个回路中的同组变量;
    S1.2选取第i组的控制量和被控变量进行分析,保持涡扇发动机的其他输入量[u 1,…,u i-1,u i+1,…u n]为合理常值,将第i组控制量的序列设置为
    Figure PCTCN2018120254-appb-100001
    式中:满足
    Figure PCTCN2018120254-appb-100002
    并且
    Figure PCTCN2018120254-appb-100003
    在控制量u i正常运行的范围之内,m是指本组数据采样点个数;
    S1.3运行涡扇发动机模型,获取输出数据
    Figure PCTCN2018120254-appb-100004
    S1.4对获得的涡扇发动机的输入
    Figure PCTCN2018120254-appb-100005
    和输出
    Figure PCTCN2018120254-appb-100006
    进行归一化,归一化方法如下:
    Figure PCTCN2018120254-appb-100007
    Figure PCTCN2018120254-appb-100008
    S1.5运用相关性分析的方法计算相关性系数Re i,具体公式如下:
    Figure PCTCN2018120254-appb-100009
    Figure PCTCN2018120254-appb-100010
    Figure PCTCN2018120254-appb-100011
    Figure PCTCN2018120254-appb-100012
    Figure PCTCN2018120254-appb-100013
    S1.6根据所得的相关系数Re i确定控制量u i是否用于被控变量y i的控制,若相关系数符合要求,则该组参数选择正确,否则,控制量与被控变量相关度不大,则需重新更换控制量,直至相关系数满足要求;
    S2.根据自抗扰的基本原理,建立跟踪微分器模块、线性扩张状态观测模块和非线性PD模块三个模块,构建稳态过渡态控制器,并保留跟踪微分器的时间常数r t、线性扩张状态观测器的w o、非线性PD的K p和K d作为待调参数;
    建立稳态过渡态控制器的步骤如下:
    S2.1建立二阶离散系统最速控制综合函数f han(p,q,r t,h),其表达式如下:
    d=r t×h
    d 0=h×d
    fx=p+hq
    Figure PCTCN2018120254-appb-100014
    Figure PCTCN2018120254-appb-100015
    Figure PCTCN2018120254-appb-100016
    式中,r t为待调参数,用以调节跟踪微分器输出变量的过渡时间的长度,r t越大,过渡 时间越短;h为仿真步长;sign(fx)为符号函数,
    Figure PCTCN2018120254-appb-100017
    d,d 0,fx,a 0,a是为了便于计算引入的内部变量,f han为函数f han(p,q,r t,h)的输出;
    S2.2根据建立的f han(p,q,r t,h)函数,构建跟踪微分器(Tracking Differential,TD)模块,跟踪微分器的输入是第i回路的控制指令v i,输出分别为跟踪轨迹g i和轨迹的导数g i′,其离散形式的更新表达式如下:
    g i=g i+h×g i
    g i′=g i′+h×f han(g i-v i,g i′,r t,i,h)
    S2.3建立线性扩张状态观测器,使用涡扇发动机输入u i和输出y i作为扩张状态观测的输入观测当前输出量的状态
    Figure PCTCN2018120254-appb-100018
    和总扰动
    Figure PCTCN2018120254-appb-100019
    其表达形式如下所示:
    Z=[z 1,i,z 2,i,z 3,i] T
    Figure PCTCN2018120254-appb-100020
    Figure PCTCN2018120254-appb-100021
    Figure PCTCN2018120254-appb-100022
    式中,b 0,i,w o,i分别为扩张状态观测器参数,b 0,i为模型表征参数,与实际模型相关,w o,i是扩张状态观测器的带宽参数;u i,y i为扩张状态观测器的输入,Z为扩张状态观测器的状态变量,
    Figure PCTCN2018120254-appb-100023
    是扩张状态观测器的输出,三个输出量分别是涡扇发动机输出y i的估计值
    Figure PCTCN2018120254-appb-100024
    y i的变化趋势
    Figure PCTCN2018120254-appb-100025
    和涡扇发动机在该回路的总扰动
    Figure PCTCN2018120254-appb-100026
    S2.4建立非线性函数fal(e,α,δ),其形式如下所示:
    Figure PCTCN2018120254-appb-100027
    S2.5依据建立的非线性函数,建立非线性PD反馈控制器如下所示:
    u PD,i=K p,ifal(e ip,ip,i)+K d,ifal(e i′,α d,id,i)
    S2.6依据自抗扰理论中各模块的结构,组装建立涡扇发动机稳态过渡态控制器;
    S3.选定一组控制量和被控变量为调参控制回路,保持其余回路的控制量不变或者按照期望轨迹运行,调节稳态过渡态控制器参数至基本达到控制要求;
    调节稳态过渡态控制器第i组控制参数步骤如下:
    S3.1根据涡扇发动机的数据
    Figure PCTCN2018120254-appb-100028
    Figure PCTCN2018120254-appb-100029
    初步选择扩张状态观测器参数以满足下式条件:
    Figure PCTCN2018120254-appb-100030
    S3.2使用涡扇发动机的数据
    Figure PCTCN2018120254-appb-100031
    Figure PCTCN2018120254-appb-100032
    作为扩张状态观测器的输入,调整扩张状态观测器参数w o,i至扩张状态观测器输出
    Figure PCTCN2018120254-appb-100033
    正确跟踪
    Figure PCTCN2018120254-appb-100034
    S3.3输入参考指令v i,调节参数r t,i以获得期望的过渡轨迹g i,当轨迹过渡时间过长时,增大参数r t,i,反之则减小r t,i
    S3.4使用
    Figure PCTCN2018120254-appb-100035
    Figure PCTCN2018120254-appb-100036
    作为非线性PD控制器的输入,并调节K p,i,K d,i至合理值,其输出为u PD,i
    S3.5计算稳态过渡态控制器的输出为
    Figure PCTCN2018120254-appb-100037
    S3.6将控制器与涡扇发动机构成闭环,然后综合调节K p,i,K d,i,w o,i,b 0,i以保证被控量y i能够较好的跟踪给定轨迹;
    S4.建立上限保护函数fun l(x i,x i,l,x i,dl,u j,l),以该函数为基础设计涡扇发动机状态参数限制保护控制器,对控制回路的输出进行限制,保证系统被控量达到控制要求的同时其状态参数不超限;
    建立涡扇发动机状态参数限制保护控制器的步骤如下:
    S4.1根据涡扇发动机控制目标确定限制保护参数的限制值x i,l以及限制保护控制器作用范围x i,dl
    S4.2建立上限保护函数fun l(x i,x i,l,x i,dl,u j,l),其公式为
    Figure PCTCN2018120254-appb-100038
    式中,x i是需要限制保护的涡扇发动机参数,x i,l是参数x i允许的最大值,x i,dl是该限制保护工作控制器的工作范围的大小,即该控制器在x i>x i,l-x i,dl时开始起作用,u j,l表示的是限制保护控制器能够输出的最大值,这里j是表示限制保护参数所对应的控制器输出量不与涡扇发动机控制量排序相关;
    S4.3基于限制保护函数建立离散状态下死区环节,其表达式如下所示:
    Figure PCTCN2018120254-appb-100039
    式中,fun out(k)表示的是限制保护控制器在第k时刻的输出,x i,k,x i,k-1,x i,k-2分别为第k,k-1,k-2时刻涡扇发动机参数的数值,Δ ii′分别是位置死区和速度死区的大小;
    S4.4将限制保护控制器的输出以负反馈的形式接入控制回路,调整限制保护控制器能输出的最大值u j,l,保证限制保护控制器能够满足超限保护的作用;
    S5.进行多变量控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统对外部环境变化的适应能力。
PCT/CN2018/120254 2018-12-11 2018-12-11 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法 WO2020118513A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/462,521 US11392094B2 (en) 2018-12-11 2018-12-11 Steady state and transition state multi-variable control method of a turbofan engine based on an active disturbance rejection control theory (ADRC)
PCT/CN2018/120254 WO2020118513A1 (zh) 2018-12-11 2018-12-11 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120254 WO2020118513A1 (zh) 2018-12-11 2018-12-11 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法

Publications (1)

Publication Number Publication Date
WO2020118513A1 true WO2020118513A1 (zh) 2020-06-18

Family

ID=70971640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120254 WO2020118513A1 (zh) 2018-12-11 2018-12-11 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法

Country Status (2)

Country Link
US (1) US11392094B2 (zh)
WO (1) WO2020118513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021131310A1 (de) 2021-11-29 2023-06-01 Mecana Umwelttechnik Gmbh Verfahren zur Entfernung von gelösten organischen Substanzen in Flüssigkeiten mit einem superfeinen Adsorbens
DE102022112174A1 (de) 2022-05-16 2023-11-16 Mecana Umwelttechnik Gmbh Verwendung eines Adsorbens und Dosiereinheit aus Adsorbens für diese Verwendung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852662A (zh) * 2020-06-15 2020-10-30 西北工业大学 航空发动机最大推力状态容错二自由度h∞控制器
CN112494281B (zh) * 2020-11-23 2023-02-17 延边大学 机器人控制装置、机器人、机器人控制方法及存储介质
CN112764346B (zh) * 2020-12-24 2022-04-01 暨南大学 分散式自抗扰多变量控制方法
CN113031435B (zh) * 2021-02-03 2022-07-12 北京航空航天大学 数字式双频扩张状态观测器及扰动观测方法
CN113031436B (zh) * 2021-02-25 2024-02-02 西安建筑科技大学 一种基于事件触发的移动机器人模型预测轨迹跟踪控制系统及方法
CN113065206B (zh) * 2021-03-24 2022-08-23 北京航空航天大学 一种过渡态控制方法、装置、电子设备及存储介质
JP7409345B2 (ja) * 2021-03-31 2024-01-09 横河電機株式会社 学習処理装置、制御装置、学習処理方法、制御方法、学習プログラムおよび制御プログラム
CN113110333A (zh) * 2021-04-16 2021-07-13 上海电机学院 一种风电机组变桨距控制的改进自抗扰控制器和系统
CN113267314A (zh) * 2021-04-25 2021-08-17 中国航天空气动力技术研究院 一种暂冲式风洞的超声速流场总压控制系统
CN113759718B (zh) * 2021-08-20 2023-10-20 中国航空工业集团公司西安飞行自动控制研究所 一种飞机机翼损伤自适应控制方法
CN114035429B (zh) * 2021-09-14 2024-05-24 南京航空航天大学 一种基于干扰观测器的涡扇发动机切换系统的输出跟踪控制方法
CN113759727B (zh) * 2021-09-30 2023-08-29 中国航发控制系统研究所 航空发动机多变量控制器的综合优化设计方法
CN114167721B (zh) * 2021-11-08 2023-07-25 中国民航大学 一种载人机器人的线性自抗扰轨迹跟踪控制方法和控制器
CN114237029B (zh) * 2021-12-16 2023-09-22 南京航空航天大学 基于主动切换逻辑的涡扇发动机加速过程控制方法及装置
CN114594688A (zh) * 2022-03-07 2022-06-07 哈尔滨理工大学 一种基于电液伺服系统的自抗扰控制器改进方法
CN114893301B (zh) * 2022-04-14 2023-09-08 北京动力机械研究所 小型涡扇发动机参控温度参数判故方法及冗余控制方法
CN114879502B (zh) * 2022-05-23 2023-06-30 中国科学院光电技术研究所 一种位置环自抗扰控制器参数自整定方法
CN116700319B (zh) * 2023-08-04 2023-10-20 西安交通大学 基于微型雷达阵列的空中机器人自主起降系统及方法
CN118331076B (zh) * 2024-06-17 2024-08-13 中国空气动力研究与发展中心高速空气动力研究所 一种主动增稳的飞行器横航向飞控设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926001A2 (en) * 2006-11-17 2008-05-28 United Technologies Corporation Reducing gas turbine performance tracking estimation non-repeatability
US20090005886A1 (en) * 2002-04-18 2009-01-01 Cleveland State University Extended Active Disturbance Rejection Controller
CN103267644A (zh) * 2012-06-28 2013-08-28 沈阳黎明航空发动机(集团)有限责任公司 发动机性能仿真方法
CN103942357A (zh) * 2014-02-13 2014-07-23 南京航空航天大学 包线内全状态的涡扇发动机机载实时模型构建方法
CN104462653A (zh) * 2014-11-10 2015-03-25 沈阳黎明航空发动机(集团)有限责任公司 一种发动机仿真设计方法
CN106886151A (zh) * 2017-04-17 2017-06-23 大连理工大学 一种航空发动机多工况下约束预测控制器的设计及调度方法
CN107239634A (zh) * 2017-06-26 2017-10-10 大连理工大学 一种航空发动机过渡过程建模方法
CN108762089A (zh) * 2018-06-15 2018-11-06 大连理工大学 一种基于模型预测的航空发动机在线优化及多变量控制设计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090005886A1 (en) * 2002-04-18 2009-01-01 Cleveland State University Extended Active Disturbance Rejection Controller
EP1926001A2 (en) * 2006-11-17 2008-05-28 United Technologies Corporation Reducing gas turbine performance tracking estimation non-repeatability
CN103267644A (zh) * 2012-06-28 2013-08-28 沈阳黎明航空发动机(集团)有限责任公司 发动机性能仿真方法
CN103942357A (zh) * 2014-02-13 2014-07-23 南京航空航天大学 包线内全状态的涡扇发动机机载实时模型构建方法
CN104462653A (zh) * 2014-11-10 2015-03-25 沈阳黎明航空发动机(集团)有限责任公司 一种发动机仿真设计方法
CN106886151A (zh) * 2017-04-17 2017-06-23 大连理工大学 一种航空发动机多工况下约束预测控制器的设计及调度方法
CN107239634A (zh) * 2017-06-26 2017-10-10 大连理工大学 一种航空发动机过渡过程建模方法
CN108762089A (zh) * 2018-06-15 2018-11-06 大连理工大学 一种基于模型预测的航空发动机在线优化及多变量控制设计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021131310A1 (de) 2021-11-29 2023-06-01 Mecana Umwelttechnik Gmbh Verfahren zur Entfernung von gelösten organischen Substanzen in Flüssigkeiten mit einem superfeinen Adsorbens
DE102022112174A1 (de) 2022-05-16 2023-11-16 Mecana Umwelttechnik Gmbh Verwendung eines Adsorbens und Dosiereinheit aus Adsorbens für diese Verwendung
WO2023222428A1 (de) 2022-05-16 2023-11-23 Mecana Umwelttechnik Gmbh Verwendung eines adsorbens und dosiereinheit aus adsorbens für diese verwendung

Also Published As

Publication number Publication date
US20200183342A1 (en) 2020-06-11
US11392094B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020118513A1 (zh) 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法
CN109441644B (zh) 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法
CN110219736B (zh) 基于非线性模型预测控制的航空发动机直接推力控制方法
CN112483261B (zh) 一种航空发动机抗加力扰动方法
CA2975772A1 (en) Model reference adaptive controller
Haji et al. Adaptive model predictive control design for the speed and temperature control of a V94. 2 gas turbine unit in a combined cycle power plant
CN114237029B (zh) 基于主动切换逻辑的涡扇发动机加速过程控制方法及装置
WO2024149131A1 (zh) 航空发动机起动过程快速响应控制设计方法
CN112523874B (zh) 航空发动机多变量限制保护控制方法
CN116859872A (zh) 一种碳捕集电厂控制方法、系统及设备
Yang et al. Sliding controller design for aero-engines with the rate limitation of actuators
CN111219293A (zh) 基于线性自抗扰控制的变桨控制器设计方法
CN115808876A (zh) 发动机尾喷管执行机构自适应控制方法及装置
CN116047897A (zh) 一种基于参数自适应抗扰控制器的燃气轮机预测控制方法
Zhang et al. Study on multi-loop control strategy of three-shaft gas turbine for electricity generation
Dang et al. Design of transient state control mode based on rotor acceleration
CN113669167B (zh) 涡扇发动机加力燃油执行机构自适应控制方法及装置
Cai et al. Gas Temperature Control of a Supersonic Heat-Airflow Simulated Test System
Zhao et al. Optimization and control for variable cycle engine based on grey wolf algorithm
Yu et al. Direct Thrust Control of Aeroengines Based on Nonlinear Model Predictive Control
Hu et al. A novel robust event-triggered MPC with state feedback for aero-engines
Hadroug et al. Comparative study between several controller approaches: application to gas turbine system
Shu et al. Load regulation of the heat supply unit assisted by the energy storage in thermal networks via a reference model-based controller
CN113864067B (zh) 一种滚动优化预测闭环控制器及系统
CN114740761A (zh) 一种改进的低选-高选限制保护控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943326

Country of ref document: EP

Kind code of ref document: A1