WO2020116601A1 - 非水系電解液二次電池 - Google Patents

非水系電解液二次電池 Download PDF

Info

Publication number
WO2020116601A1
WO2020116601A1 PCT/JP2019/047753 JP2019047753W WO2020116601A1 WO 2020116601 A1 WO2020116601 A1 WO 2020116601A1 JP 2019047753 W JP2019047753 W JP 2019047753W WO 2020116601 A1 WO2020116601 A1 WO 2020116601A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
mass
carbonate
secondary battery
active material
Prior art date
Application number
PCT/JP2019/047753
Other languages
English (en)
French (fr)
Inventor
藍子 渡邉
直人 丸
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217012513A priority Critical patent/KR20210058970A/ko
Priority to EP19891743.7A priority patent/EP3893292A4/en
Priority to CN201980080100.0A priority patent/CN113169299A/zh
Priority to JP2020560036A priority patent/JPWO2020116601A1/ja
Publication of WO2020116601A1 publication Critical patent/WO2020116601A1/ja
Priority to US17/302,141 priority patent/US20210249691A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0054Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery having excellent balance between output characteristics and battery swelling while maintaining cycle characteristics.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries have been put to practical use in a wide range of applications such as power sources for mobile phones, laptop computers, in-vehicle power sources for automobiles, large stationary power sources, etc.
  • non-aqueous electrolyte secondary batteries are required to achieve high levels of various characteristics such as battery characteristics such as cycle characteristics, input/output characteristics, storage characteristics, continuous charging characteristics, and safety.
  • battery characteristics such as cycle characteristics, input/output characteristics, storage characteristics, continuous charging characteristics, and safety.
  • Patent Document 1 discloses a technique for improving cycle characteristics by including tris(2,2,2-trifluoroethyl)phosphate in a non-aqueous electrolyte solution.
  • Patent Document 2 discloses a technique in which tris(2,2,2-trifluoroethyl)phosphite is contained in a non-aqueous electrolyte and graphite is used as a negative electrode.
  • Patent Document 1 has a problem that the improvement of cycle characteristics is insufficient.
  • the non-aqueous electrolyte secondary battery using the active material containing Si atoms as the negative electrode generally has a problem in cycle characteristics. It has been found that further improving the output characteristics and battery swell is a more difficult and important task.
  • Patent Document 2 Although it is described that an active material containing Si atoms can be used as the negative electrode, no specific evaluation or verification has been made, and therefore, an active material containing Si atoms is used. It is not recognized as a subject to further improve the battery swelling while maintaining the cycle characteristics, which is important in the case of the above, and no specific study has been made.
  • an object of the present invention is to provide a non-aqueous secondary battery containing Si atoms as a negative electrode, which has improved output characteristics and battery swelling while maintaining cycle characteristics.
  • the present inventor has conducted extensive studies to solve the above problems, and as a result, a non-aqueous electrolyte secondary battery using a negative electrode containing an active material containing Si atoms, wherein the non-aqueous electrolyte solution contains a phosphoric acid ester compound. It has been found that the above problems can be solved by containing a specific amount of carbonate having an unsaturated bond and a specific amount of the carbonate having an unsaturated bond, and the negative electrode containing an active material containing SiOx, and making the content not more than the specific amount. That is, the present invention provides the following aspects.
  • a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, a negative electrode and a positive electrode, the negative electrode containing Si atoms, wherein the non-aqueous electrolyte is a non-aqueous solvent and is represented by the following formula (1).
  • Compound (1) and a carbonate having an unsaturated bond and the content of the compound (1) is 0.07% by mass or more and 15.0% by mass or less based on the whole nonaqueous electrolytic solution, and the nonaqueous electrolytic solution is The content of the carbonate having an unsaturated bond with respect to the whole is 0.2% by mass or more and 8.0% by mass or less, and the active material containing SiOx (0.5 ⁇ x ⁇ 1.6) with respect to the whole active material in the negative electrode.
  • R 1 to R 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a halogen atom, and at least one of R 1 to R 3 Is a C 1-10 alkyl group having a halogen atom, and n is 0 or 1.
  • At least one of R 1 to R 3 is a trifluoroethyl group or a 1,1,1,3,3,3-hexafluoro-2-propyl group, [1] Alternatively, the non-aqueous electrolyte secondary battery according to [2].
  • the compound (1) is tris(2,2,2-trifluoroethyl)phosphate, tris(2,2,2-trifluoroethyl)phosphite, tris(1,1,1)phosphate. , 3,3,3-hexafluoro-2-propyl) and tris(1,1,1,3,3,3-hexafluoro-2-propyl) phosphite,
  • the non-aqueous electrolyte secondary battery according to any one of [1] to [3].
  • the carbonate having an unsaturated bond is at least one selected from the group consisting of vinylene carbonate, 4,5-diphenylvinylene carbonate, 4,5-dimethylvinylene carbonate, and vinylethylene carbonate, [1] To the non-aqueous electrolyte secondary battery according to any one of [4] to [4].
  • the non-aqueous electrolyte solution further contains at least one compound selected from the group consisting of a diisocyanate compound, a lithium salt having an F—S bond, and a silane compound.
  • the negative electrode contains an active material (B) containing a carbon material as a main component as an active material, and the content of the active material (B) is the active material (A) and the active material (B).
  • the non-aqueous electrolyte secondary battery according to any one of [1] to [6], which is 90.0% by mass or more and 99.9% by mass or less with respect to the total amount.
  • a non-aqueous electrolyte secondary battery using a negative electrode containing an active material containing SiOx which is excellent in balance of output characteristics and battery swelling while maintaining cycle characteristics.
  • a secondary battery can be provided.
  • the non-aqueous electrolyte secondary battery of the present embodiment includes a non-aqueous electrolyte, a negative electrode and a positive electrode, the negative electrode is a non-aqueous electrolyte secondary battery containing Si atoms, the non-aqueous electrolyte is a non-aqueous A solvent, a compound (1) represented by the following formula (1) and a carbonate having an unsaturated bond are contained, and the content of the compound (1) is 0.07% by mass or more and 15.0% with respect to the whole non-aqueous electrolyte solution.
  • An active material having a content of not more than 0.2% by mass and a content of a carbonate having an unsaturated bond with respect to the whole non-aqueous electrolyte solution is not less than 0.2% by mass and not more than 8.0% by mass, and containing SiOx with respect to the whole active material in the negative electrode.
  • the proportion of (A) is 9.0 mass% or less.
  • R 1 to R 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a halogen atom, and at least one of R 1 to R 3 Is a C 1-10 alkyl group having a halogen atom, and n is 0 or 1.
  • R 1 to R 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a halogen atom, and at least one of R 1 to R 3 Is a C 1-10 alkyl group having a halogen atom, and n is 0 or 1.
  • the non-aqueous electrolyte secondary battery according to the present embodiment has an effect of excellent balance of output characteristics and battery swelling while maintaining cycle characteristics, while using a negative electrode containing an active material containing SiOx.
  • the reason why the present invention exerts such an effect is not clear, but it is presumed to be due to the following reason. It is considered that the compound represented by the formula (1) contained in the non-aqueous electrolyte solution used in the present embodiment causes a specific reaction with SiOx contained in the negative electrode, and the compound (1) binds to the SiOx surface.
  • the non-aqueous electrolyte solution used in the present embodiment provides high adhesion on the active material. It is presumed that the formation of the film suppresses the side reaction of the electrolytic solution and suppresses the deterioration. In addition, it is presumed that when the active material containing SiOx is in a specific amount or less, the coating film can be sufficiently formed on the surface of the active material and the effect is exhibited.
  • Non-aqueous electrolyte solution used in the present embodiment contains a non-aqueous solvent, a compound (1) represented by the following formula (1) and a carbonate having an unsaturated bond, and the content of each non-aqueous electrolyte solution is the total amount of the non-aqueous electrolyte solution. On the other hand, it is 0.07 mass% or more and 15.0 mass% or less.
  • R 1 to R 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a halogen atom, and at least one of R 1 to R 3 Is a C 1-10 alkyl group having a halogen atom, and n is 0 or 1.
  • R 1 to R 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a halogen atom, and at least one of R 1 to R 3 is Is a C 1-10 alkyl group having a halogen atom, and n is 0 or 1.
  • examples of the halogen atom include fluorine, chlorine, iodine, and bromine, and among these, fluorine is preferable.
  • R 1 to R 3 each independently represent a hydrogen atom or a halogen atom-containing hydrocarbon group having 1 to 5 carbon atoms, and 1 to 5 carbon atoms having fluorine. It is more preferable that the hydrocarbon group is This is because the steric hindrance around the P atom, which is the reaction site with SiOx, is small, and the reduction reaction has the effect of forming lithium fluoride, which is considered to be a good film component.
  • R 1 ⁇ at least one of R 3, trifluoroethyl group or 3,3,3 is preferably hexafluoro-2-propyl group
  • R 1 ⁇ R 3 Is more preferably a trifluoroethyl group or a 1,1,1,3,3,3-hexafluoro-2-propyl group.
  • Examples of the compound (1) include tris(2,2,2-trifluoroethyl)phosphate, tris(2,2,2-trifluoroethyl)phosphite, and tris(1,1,3,3)phosphate.
  • At least one selected from the group consisting of 3,3-hexafluoro-2-propyl) and tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite is particularly preferable. preferable.
  • the content of the compound (1) in the non-aqueous electrolyte solution is 0.07 mass% or more and 15.0 mass% or less.
  • the content of the compound (1) in the non-aqueous electrolyte solution is preferably 0.1% by mass or more, more preferably 0.4% by mass or more, and 0.8% by mass or more. It is more preferably 1.1% by mass or more, further preferably 1.5% by mass or more, particularly preferably 2.0% by mass or more, while 12.0% by mass. It is preferably at most 10.0% by mass, more preferably at most 7.0% by mass, still more preferably at most 5.0% by mass, still more preferably 4.0% by mass or less.
  • the content is particularly preferably not more than mass%, most preferably not more than 3.5 mass%.
  • the non-aqueous electrolyte used in this embodiment contains a carbonate having an unsaturated bond. More specifically, it is preferably at least one selected from the group consisting of vinylene carbonate, 4,5-diphenylvinylene carbonate, 4,5-dimethylvinylene carbonate, and vinylethylene carbonate.
  • the content of the carbonate having an unsaturated bond in the non-aqueous electrolyte solution is 0.2% by mass or more and 8.0% by mass or less. Further, it is more preferably 0.3% by mass or more, while it is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and 1.0% by mass or less. It is more preferable that the amount is 0.5% by mass or less.
  • concentration of this compound is within the above range, the synergistic effect of the carbonate having an unsaturated bond used in combination with the compound (1) is more likely to be exhibited.
  • the non-aqueous electrolytic solution used in the present embodiment usually contains, as a main component, a non-aqueous solvent capable of dissolving an electrolyte to be treated later, like a general non-aqueous electrolytic solution.
  • the non-aqueous solvent used here is not particularly limited, and a known organic solvent can be used.
  • the organic solvent preferably includes at least one selected from saturated cyclic carbonates, chain carbonates, chain carboxylic acid esters, cyclic carboxylic acid esters, ether compounds, and sulfone compounds, but is not particularly limited thereto. .. These can be used alone or in combination of two or more.
  • saturated cyclic carbonate examples include those having an alkylene group having 2 to 4 carbon atoms.
  • saturated cyclic carbonate having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
  • ethylene carbonate and propylene carbonate are preferable from the viewpoint of improving the battery characteristics resulting from the improvement in the degree of lithium ion dissociation.
  • the saturated cyclic carbonate may be used alone or in combination of two or more in any combination and ratio.
  • the content of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the lower limit of the content when one type is used alone is usually 100% by volume of the non-aqueous solvent, It is at least 3% by volume, preferably at least 5% by volume.
  • the upper limit is usually 90% by volume or less, preferably 85% by volume or less, more preferably 80% by volume or less.
  • the viscosity of the non-aqueous electrolyte solution can be adjusted to an appropriate range, the decrease in ionic conductivity can be suppressed, and the input/output characteristics of the non-aqueous electrolyte secondary battery can be further improved, and the cycle characteristics and storage characteristics can be improved. It is preferable because durability such as characteristics can be further improved.
  • the chain carbonate preferably has 3 to 7 carbon atoms.
  • the chain carbonate having 3 to 7 carbon atoms dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, Examples thereof include n-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate and t-butyl ethyl carbonate.
  • dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate and methyl-n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are particularly preferable. preferable.
  • chain carbonates having a fluorine atom can be preferably used.
  • the number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, and preferably 4 or less.
  • the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or different carbons.
  • the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative, a fluorinated ethylmethyl carbonate derivative, a fluorinated diethyl carbonate derivative and the like.
  • chain carbonate one kind may be used alone, and two kinds or more may be used in optional combination and ratio.
  • the content of the chain carbonate is not particularly limited, but is usually 15% by volume or more, preferably 20% by volume or more, more preferably 25% by volume or more in 100% by volume of the non-aqueous solvent. Further, it is usually 90% by volume or less, preferably 85% by volume or less, more preferably 80% by volume or less.
  • the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, the decrease in ionic conductivity is suppressed, and thus the input/output characteristics and charge/discharge of the non-aqueous electrolyte secondary battery. It is easy to set the rate characteristic in a good range.
  • Chain carboxylic acid ester examples include those having a total carbon number of 3 to 7 in the structural formula. Specifically, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.
  • Cyclic carboxylic acid ester examples include those having a total carbon atom number of 3 to 12 in the structural formula. Specific examples thereof include gamma butyrolactone, gamma valerolactone, gamma caprolactone, and epsilon caprolactone. Among these, gamma-butyrolactone is particularly preferable from the viewpoint of improving the battery characteristics resulting from the improvement in the degree of lithium ion dissociation.
  • Ether compounds a chain ether having 3 to 10 carbon atoms and a cyclic ether having 3 to 6 carbon atoms are preferable.
  • chain ether having 3 to 10 carbon atoms, diethyl ether, di(2-fluoroethyl)ether, di(2,2-difluoroethyl)ether, di(2,2,2-trifluoroethyl)ether, ethyl (2-fluoroethyl)ether, ethyl(2,2,2-trifluoroethyl)ether, ethyl(1,1,2,2-tetrafluoroethyl)ether, (2-fluoroethyl)(2,2,2 -Trifluoroethyl)ether, (2-fluoroethyl)(1,1,2,2-tetrafluoroethyl)ether, (2,2,2-trifluoroethyl)(1,1,2,2-tetrafluoro Ethyl) ether, ethyl-n-propyl ether, ethyl (3-fluoro-n-propyl) ether, ethyl (3,3,
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, and the like. And these fluorinated compounds.
  • dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and dissociate lithium ions.
  • Is preferable in terms of improving Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are particularly preferable because they have low viscosity and high ionic conductivity.
  • Sulfone compounds > As the sulfone compound, a cyclic sulfone having 3 to 6 carbon atoms and a chain sulfone having 2 to 6 carbon atoms are preferable.
  • the number of sulfonyl groups in one molecule is preferably 1 or 2.
  • cyclic sulfone examples include trimethylenesulfones, tetramethylenesulfones, and hexamethylenesulfones, which are monosulfone compounds; trimethylenedisulfones, tetramethylenedisulfones, and hexamethylenedisulfones, which are disulfone compounds.
  • tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable, from the viewpoint of dielectric constant and viscosity.
  • the sulfolane is preferably sulfolane and/or a sulfolane derivative (hereinafter, it may be abbreviated as “sulfolane” including sulfolane).
  • the sulfolane derivative is preferably a sulfolane derivative in which one or more hydrogen atoms bonded to carbon atoms constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group.
  • chain sulfone dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, n-propyl ethyl sulfone, di-n-propyl sulfone, isopropyl methyl sulfone, isopropyl ethyl sulfone, diisopropyl sulfone, n- Butyl methyl sulfone, n-butyl ethyl sulfone, t-butyl methyl sulfone, t-butyl ethyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone, monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone
  • the non-aqueous electrolyte used in this embodiment usually contains an electrolyte.
  • the non-aqueous electrolyte secondary battery provided by the present embodiment is a lithium ion secondary battery, it usually contains a lithium salt.
  • the lithium salt which can be used in the nonaqueous electrolyte solution used in the present embodiment for example, LiClO 4, LiBF 4, LiPF 6, LiAsF 6, LiTaF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li ( CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, Li (CF 3) SO 2) 3 C, LiBF 3 (C 2 F 5), LiB (C 2 O 4) 2, LiB (C 6 F 5) 4, LiPF 3 (C 2 F 5) 3 and the like.
  • LiClO 4 LiBF 4 LiPF 6, LiAsF 6, LiTaF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li ( CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, Li (CF 3) SO 2) 3 C, LiBF 3 (C 2 F 5), LiB (C 2 O 4) 2, LiB (C 6 F 5) 4, LiPF 3 (C 2 F 5) 3 and the like.
  • the lithium salt having an FS bond is classified into (B)
  • the concentration of the electrolyte such as a lithium salt in the final composition of the non-aqueous electrolytic solution used in the present embodiment is arbitrary as long as the effect of the present invention is not significantly impaired, but is preferably 0.5 mol/L or more, It is more preferably 0.6 mol/L or more, still more preferably 0.7 mol/L or more, while preferably 3 mol/L or less, more preferably 2 mol/L or less, and further preferably 1. It is 8 mol/L or less.
  • the content of the lithium salt is within the above range, the ionic conductivity can be appropriately increased.
  • the method for measuring the content of the above-mentioned lithium salt is not particularly limited, and any known method can be used. Examples of such a method include ion chromatography and F magnetic resonance spectroscopy.
  • non-aqueous electrolyte used in the present embodiment, in addition to the various compounds listed above, malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile, and the like.
  • the lithium difluorophosphate listed here corresponds to a lithium salt, but from the viewpoint of the degree of ionization with respect to the non-aqueous solvent used in the non-aqueous electrolytic solution, it should not be treated as an electrolyte and should be positioned as an additive.
  • various additives such as cyclohexylbenzene, t-butylbenzene, t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, a partial hydrogenated product of terphenyl, diphenyl ether, and dibenzofuran can be used as the overcharge preventing agent. It can be blended within a range that does not significantly impair it. These compounds may be used in appropriate combination.
  • an isocyanate compound and (B) an FS bond-containing lithium are particularly preferable as other additives that have a particularly high addition effect and synergistically exhibit the effects.
  • examples thereof include salts and (C) silane compounds. Similar to the carbonate having an unsaturated bond, it is considered that these react with an intermediate in the reduction process of the compound (1) and are taken in as a film component to further improve the properties of the film.
  • Isocyanate compound The type of isocyanate compound is not particularly limited as long as it is a compound having an isocyanate group in the molecule. Specific examples include monoisocyanate compounds such as methyl isocyanate and ethyl isocyanate, monoisocyanate compounds having a carbon-carbon unsaturated bond such as vinyl isocyanate and allyl isocyanate, hexamethylene diisocyanate, and 1,3-bis(isocyanatomethyl)cyclohexane.
  • monoisocyanate compounds such as methyl isocyanate and ethyl isocyanate
  • monoisocyanate compounds having a carbon-carbon unsaturated bond such as vinyl isocyanate and allyl isocyanate
  • hexamethylene diisocyanate hexamethylene diisocyanate
  • 1,3-bis(isocyanatomethyl)cyclohexane 1,3-bis(isocyanatomethyl)cyclohexane.
  • diisocyanato sulfone, sulfonyl isocyanate compounds such as (ortho-, meta-, para-)toluenesulfonyl isocyanate, and the like.
  • the isocyanate compound may be an adduct body obtained by adding a diisocyanate monomer to a polyhydric alcohol, a trimer isocyanurate body, or a biuret body.
  • diisocyanate compounds such as hexamethylene diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane, allyl isocyanate, diisocyanato sulfone, (ortho-, meta-, para-)toluenesulfonyl isocyanate, and particularly preferred are Hexamethylene diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane.
  • the lithium salt having an FS bond is not particularly limited as long as it is a lithium salt having an FS bond in the molecule, and any lithium salt may be used as long as the effects of the present invention are not significantly impaired. it can.
  • Fluorosulfonic acid lithium salt LiFSO 3
  • Fluorosulfonylimide lithium salts such as lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 ) and LiN(F S O 2 )(CF 3 SO 2 ); Fluorosulfonylmethide lithium salts such as LiC(FSO 2 ) 3 ; Examples thereof include fluorosulfonylborate lithiums such as LiBF 3 (FSO 3 ), LiB(FSO 2 ) 4 and the like, but are not particularly limited thereto.
  • the (B) salt having an FS bond may be used alone or in combination of two or more. Among these, LiFSO 3 and LiN(FSO 2 ) 2 are preferable, and LiFSO 3 is particularly preferable.
  • Silane compound The type of the silane compound is not particularly limited as long as it is a compound having a silicon atom in the molecule.
  • a monosilane compound having a carbon-carbon unsaturated bond such as a vinyl group, an alkenylene group or an alkynylene group such as trimethylvinylsilane or trimethylallylsilane; tetramethyl-1,3-divinyldisiloxane, tetramethyl-1,3- A siloxane compound having a carbon-carbon unsaturated bond such as a vinyl group, an alkenylene group or an alkynylene group such as diallyldisiloxane; a disilane compound such as hexamethyldisilane or hexaethyldisilane; More preferably, alkenylalkylsilane compounds such as trimethylvinylsilane and trimethylallylsilane; unsubstituted disilane compounds such as hexamethyldisilane and hexaethyldisilane; Particularly preferred are trimethylvinylsilane and hex
  • the composition of the non-aqueous electrolyte solution means the composition at the time of manufacturing the non-aqueous electrolyte solution, at the time of injecting the non-aqueous electrolyte solution into the battery, or at any time when the battery is shipped as a battery. That is, the non-aqueous electrolyte solution may be mixed so that the ratio of each constituent component has a predetermined composition when the non-aqueous electrolyte solution is prepared. In addition, after the non-aqueous electrolytic solution is prepared, the composition can be confirmed by subjecting the non-aqueous electrolytic solution itself to analysis. Further, the non-aqueous electrolyte solution may be recovered from the completed non-aqueous electrolyte secondary battery and used for analysis.
  • a method of collecting the non-aqueous electrolyte solution a method of collecting the electrolyte solution by opening a part or all of the battery container or forming a hole in the battery container can be mentioned.
  • the opened battery container may be centrifuged to collect the electrolytic solution, or an extraction solvent (for example, acetonitrile dehydrated to a water content of 10 ppm or less is preferable) is placed in the opened battery container or extracted into a battery element.
  • the solvent may be contacted to extract the electrolytic solution.
  • the non-aqueous electrolyte solution recovered by such a method can be used for analysis.
  • the recovered non-aqueous electrolyte may be diluted for use in the analysis in order to obtain suitable conditions for the analysis.
  • the analysis method of the non-aqueous electrolyte solution include analysis by nuclear magnetic resonance (hereinafter sometimes abbreviated as NMR), liquid chromatography such as gas chromatography or ion chromatography, and the like.
  • NMR nuclear magnetic resonance
  • liquid chromatography such as gas chromatography or ion chromatography
  • the analysis method by NMR will be described below.
  • NMR nuclear magnetic resonance
  • a non-aqueous electrolyte solution is dissolved in a heavy solvent dehydrated to 10 ppm or less, put in an NMR tube, and NMR measurement is performed.
  • a double tube may be used as the NMR tube, and the non-aqueous electrolytic solution may be placed in one side and the heavy solvent may be placed in the other side to perform NMR measurement.
  • the heavy solvent examples include heavy acetonitrile and heavy dimethyl sulfoxide.
  • a specified amount of the standard substance can be dissolved in a heavy solvent, and the concentrations of the constituents can be calculated from the spectral ratios.
  • the concentration of one or more of the components that make up the non-aqueous electrolyte solution is obtained in advance by another analysis method such as gas chromatography, and the concentration is calculated from the spectral ratio between the component of known concentration and the other components. You can also do it.
  • the nuclear magnetic resonance analyzer used preferably has a magnetic field of 400 MHz or more. Examples of the nuclides to be measured include 1 H, 31 P and 19 F. These analysis methods may be used alone or in combination of two or more.
  • Negative electrode> The negative electrode used in the present embodiment contains the active material (A) containing SiOx (0.5 ⁇ x ⁇ 1.6), and the ratio of the active material (A) to the whole active material is 9.0 mass% or less. It is a thing. Further, it is preferable that the active material further contains an active material (B) containing a carbon material as a main component.
  • the negative electrode used in this embodiment contains an active material (A) containing SiOx (0.5 ⁇ x ⁇ 1.6).
  • X in SiOx is more preferably 0.7 or more and 1.3 or less, and particularly preferably 0.8 or more and 1.2 or less. When x is in the above range, it becomes a highly active amorphous SiOx in which alkali ions such as Li ions easily enter and leave.
  • X in SiOx in the negative electrode active material is, for example, quantitative analysis of Si by an inductively coupled plasma emission spectrometry or molybdenum blue absorptiometry of an aqueous solution in which alkali melting or diluted hydrofluoric acid is dissolved, and an oxygen nitrogen hydrogen analyzer or It can be determined by quantitative analysis of O with an oxygen-nitrogen analyzer. Further, it is preferable that SiOx contains Si crystallites.
  • the crystallites are usually zero-valent Si atoms.
  • the SiOx may be composite type SiOx particles having a carbon layer made of amorphous carbon on at least a part of the surface.
  • “having a carbon layer made of amorphous carbon on at least a part of the surface” means not only a form in which the carbon layer covers part or all of the surface of the silicon oxide particles in a layered manner, but It also includes a form in which it is attached or attached to a part or all of the surface.
  • the carbon layer may be provided so as to cover the entire surface, or a part thereof may be covered or attached/adhered.
  • SiOx may be doped with an element other than Si and O.
  • SiOx doped with elements other than Si and O is expected to improve the initial charge/discharge efficiency and cycle characteristics of the non-aqueous electrolyte secondary battery due to the stabilization of the chemical structure inside the particles.
  • the element to be doped can be selected from any element as long as it is an element other than Group 18 of the periodic table. However, since SiOx doped with an element other than Si and O is more stable, the element of the periodic table Elements of up to 4 periods are preferred. Specifically, it can be selected from elements such as alkali metals, alkaline earth metals, Al, Ga, Ge, N, P, As, and Se up to the fourth period of the periodic table.
  • the doped element is preferably an alkali metal or alkaline earth metal up to the 4th period of the periodic table, and Mg, Ca and Li are more preferable, and Li is even more preferable. These may be used alone or in combination of two or more.
  • the ratio of the active material (A) to the whole negative electrode active material is 9.0 mass% or less. More specifically, it is preferably 3.0% by mass or more and 8.0% by mass or less. When the ratio of the active material (A) is in the above range, the synergistic effect is more likely to be exhibited in combination with the non-aqueous electrolyte solution used in the present embodiment.
  • the negative electrode used in this embodiment preferably contains an active material (B) containing a carbon material as a main component.
  • the term “mainly composed of carbon material” means that the proportion of the carbon material in the active material (B) is 50% by mass or more.
  • the active material (B) include graphite, amorphous carbon, and carbonaceous materials having a low degree of graphitization. Examples of graphite include natural graphite and artificial graphite. Alternatively, a carbonaceous material such as an amorphous carbon or a graphitized material may be used. Examples of the amorphous carbon include particles obtained by firing bulk mesophase and particles obtained by subjecting a carbon precursor to infusibilization treatment and firing. Examples of the carbonaceous material particles having a low degree of graphitization include those obtained by firing an organic material at a temperature of usually less than 2500°C. These may be used alone or in any combination of two or more.
  • the content of the active material (B) is preferably 90.0 mass% or more and 99.9 mass% or less based on the total amount of the active material (A) and the active material (B).
  • the content of the active material (B) is in the above range, the synergistic effect is more likely to be exhibited in combination with the non-aqueous electrolyte solution used in the present embodiment.
  • the ratio of each constituent component may be preset when the raw material slurry for the negative electrode is prepared.
  • the composition may be confirmed by subjecting the electrode itself to analysis after producing the negative electrode.
  • the negative electrode may be taken out from the completed battery when the electrode itself is subjected to analysis. Specifically, after fully discharging the battery, disassemble the battery in an inert atmosphere, take out the negative electrode, and wash the electrode with a sufficiently dehydrated electrolyte solvent (preferably dimethyl carbonate dehydrated to 10 ppm or less). ,dry.
  • a sufficiently dehydrated electrolyte solvent preferably dimethyl carbonate dehydrated to 10 ppm or less.
  • Examples of the positive electrode material used as the active material of the positive electrode of the non-aqueous secondary battery according to the present embodiment include, for example, a lithium cobalt composite oxide represented by LiCoO 2 and a lithium nickel composite oxide represented by LiNiO 2.
  • LiCoO 2 and LiNiO 2 lithium cobalt composite oxide represented by LiCoO 2
  • LiNiO 2 lithium nickel composite oxide represented by LiNiO 2.
  • lithium transition metal composite oxides such as lithium manganese composite oxides represented by LiMnO 2 and LiMn 2 O 4
  • transition metal oxides such as manganese dioxide
  • TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 and Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 , Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 , LiFePO 4 or the like may be used.
  • Li(Ni 0.5 Mn 0.3 Co 0.2 )O is used.
  • Li(Ni 0.5 Mn 0.2 Co 0.3 )O 2, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2, Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2, Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 and the like are particularly preferable. ..
  • Separator> A separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the non-aqueous electrolyte is usually used by impregnating this separator.
  • the material and shape of the separator there is no particular limitation on the material and shape of the separator, and any known material can be adopted as long as the effect of the present invention is not significantly impaired.
  • a resin, glass fiber, an inorganic material or the like is used, such as a porous sheet excellent in liquid retention or a non-woven fabric-like material or the like. It is preferably used.
  • polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, polyether sulfone, and glass filter
  • glass filters and polyolefins are preferable, and polyolefins are more preferable. These materials may be used alone or in any combination of two or more in any ratio.
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating property and mechanical strength may decrease. On the other hand, if the thickness is more than the above range, not only the battery performance such as rate characteristics may deteriorate, but also the energy density of the entire non-aqueous electrolyte secondary battery may decrease.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, It is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is smaller than the above range, the film resistance tends to increase and the rate characteristics tend to deteriorate. On the other hand, if it is larger than the above range, the mechanical strength of the separator tends to decrease, and the insulating property tends to decrease.
  • the average pore size of the separator is also arbitrary, but is usually 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less, and usually 0.05 ⁇ m or more.
  • the average pore diameter exceeds the above range, short circuit is likely to occur. On the other hand, if it is less than the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used. Things are used.
  • a thin film such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • a thin film one having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m is preferably used.
  • a separator formed by forming a composite porous layer containing the particles of the inorganic material on the surface layer of the positive electrode and/or the negative electrode using a resin binder can be used.
  • the porous layer may be formed by using alumina particles having a 90% particle size of less than 1 ⁇ m on both surfaces of the positive electrode and using a fluororesin as a binder.
  • the positive electrode and the negative electrode may include a conductive material in order to improve conductivity.
  • Any known conductive material can be used as the conductive material. Specific examples thereof include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite; carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may be used together 2 or more types by arbitrary combinations and ratios.
  • the conductive material is usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and usually 50 parts by mass or less, based on 100 parts by mass of the positive electrode material or the negative electrode material, preferably Is 30 parts by mass or less, more preferably 15 parts by mass or less. If the content is less than the above range, the conductivity may be insufficient. If it exceeds the above range, the battery capacity may decrease.
  • the positive electrode and the negative electrode described above may contain a binder in order to improve the binding property.
  • the binder is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
  • any material can be used as long as it can be dissolved or dispersed in the liquid medium used for manufacturing the electrode, and specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethylmethacrylate, aromatic polyamide, cellulose and nitro.
  • Resin-based polymers such as cellulose; rubber-like polymers such as SBR (styrene/butadiene rubber), NBR (acrylonitrile/butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, ethylene/propylene rubber; styrene/butadiene/styrene blocks Such as copolymers or hydrogenated products thereof, EPDM (ethylene/propylene/diene terpolymer), styrene/ethylene/butadiene/ethylene copolymers, styrene/isoprene/styrene block copolymers or hydrogenated products thereof
  • Thermoplastic elastomeric polymer soft resin polymer such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymer, propylene/ ⁇ -olefin copolymer; polyvinylidene fluoride (P
  • the proportion of the binder is usually 0.1 parts by mass or more, preferably 1 part by mass or more, more preferably 3 parts by mass or more, and usually 50 parts by mass with respect to 100 parts by mass of the positive electrode material or the negative electrode material. It is below, preferably 30 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 8 parts by mass or less.
  • the proportion of the binder is within the above range, the binding property of the electrode can be sufficiently maintained, the mechanical strength of the electrode can be maintained, and it is preferable in terms of cycle characteristics, battery capacity and conductivity.
  • Liquid medium As the liquid medium for forming the slurry, if it is a solvent capable of dissolving or dispersing the active material, the conductive material, the binder, and the thickener used as necessary, it is particularly suitable for the type. There is no limitation, and either an aqueous solvent or an organic solvent may be used.
  • aqueous medium examples include water, a mixed medium of alcohol and water, and the like.
  • organic medium examples include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone and cyclohexanone.
  • Esters such as methyl acetate and methyl acrylate; Amines such as diethylenetriamine and N,N-dimethylaminopropylamine; Ethers such as diethyl ether and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethylformamide , Amides such as dimethylacetamide; aprotic polar solvents such as hexamethylphosphamide, dimethylsulfoxide, and the like. In addition, these may be used individually by 1 type and may be used together by 2 or more types in arbitrary combinations and ratios.
  • a thickener When an aqueous medium is used as the liquid medium for forming the slurry, it is preferable to make it into a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). Thickeners are commonly used to adjust the viscosity of slurries.
  • SBR styrene-butadiene rubber
  • the thickener is not limited unless the effects of the present invention are significantly limited, but specifically, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof. Etc. These may be used alone or in any combination of two or more at any ratio.
  • a thickener When a thickener is further used, it is usually 0.1 part by mass or more, preferably 0.5 part by mass or more, more preferably 0.6 part by mass or more, relative to 100 parts by mass of the positive electrode material or the negative electrode material. Further, it is usually 5 parts by mass or less, preferably 3 parts by mass or less, more preferably 2 parts by mass or less. If it is less than the above range, applicability may be significantly reduced, and if it is more than the above range, the ratio of the active material in the active material layer is reduced, which causes a problem that the capacity of the battery is reduced and resistance between the active materials is increased. There is a case.
  • the material of the current collector is not particularly limited, and any known material can be used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, tantalum, and copper; carbonaceous materials such as carbon cloth and carbon paper. Among these, metal materials, especially aluminum are preferable.
  • Examples of the shape of the current collector include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal in the case of a metal material, and a carbon plate in the case of a carbonaceous material, Examples thereof include carbon thin films and carbon cylinders. Of these, metal thin films are preferred. The thin film may be appropriately formed in a mesh shape.
  • the thickness of the current collector is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the thickness of the thin film is within the above range, the strength required as a current collector is maintained, and it is preferable from the viewpoint of handleability.
  • the electrode group has a laminated structure including the positive electrode plate and the negative electrode plate with the separator interposed therebetween, and has a structure in which the positive electrode plate and the negative electrode plate are spirally wound with the separator interposed therebetween. Either may be used.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, 80% or less. preferable. When the electrode group occupancy rate is below the above range, the battery capacity becomes small.
  • the void space is small, the internal pressure rises because the member expands or the vapor pressure of the liquid component of the electrolyte increases due to the high temperature of the battery, and the repeated charge and discharge performance as a battery In some cases, various characteristics such as high temperature storage may be deteriorated, and further, a gas release valve that releases the internal pressure to the outside may operate.
  • the current collecting structure is not particularly limited, but in order to more effectively realize the improvement of the discharge characteristics by the non-aqueous electrolyte solution used in the present embodiment, the structure in which the resistance of the wiring part or the bonding part is reduced is adopted. Preferably. When the internal resistance is reduced in this way, the effect of using the non-aqueous electrolyte solution used in the present embodiment is particularly well exhibited.
  • the electrode group has the above-mentioned laminated structure
  • a structure formed by bundling the metal core portions of each electrode layer and welding them to the terminal is preferably used. Since the internal resistance increases when the area of one electrode increases, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. In the case where the electrode group has the above-mentioned wound structure, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode and bundling them in the terminal.
  • the non-aqueous electrolyte secondary battery of the present embodiment is usually configured by housing the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an outer casing.
  • an outer casing There is no limitation on the outer package, and any known package can be used as long as the effects of the present invention are not significantly impaired.
  • the material of the outer package is not particularly limited as long as it is a stable substance with respect to the non-aqueous electrolyte solution used in the present embodiment.
  • nickel-plated iron nickel-plated steel sheet
  • stainless steel aluminum or its alloys
  • metals such as nickel, titanium, magnesium alloys, or a laminated film of resin and aluminum foil ( Laminate film) or the like is used.
  • a metal of aluminum or aluminum alloy, or a laminated film is preferably used.
  • the outer case using the laminate film examples include those having a sealed structure by heat-sealing resin layers.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a resin layer is heat-sealed via a collector terminal to form a hermetically sealed structure, a metal and a resin are bonded, so a resin having a polar group or a modification having a polar group introduced as an intervening resin. Resin is preferably used.
  • the shape of the exterior body is also arbitrary, and may be, for example, any of a cylinder type, a square type, a laminate type, a coin type, a large size, and the like. Therefore, the shape of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited, and may be any of a cylindrical type, a prismatic type, a laminated type, a coin type, a large size, and the like.
  • the obtained slurry was applied to a copper foil having a thickness of 10 ⁇ m, dried, and rolled with a press to obtain an active material layer having a width of 32 mm, a length of 42 mm, and an uncoated width of 5 mm and a length of 9 mm. It was cut into a shape having a portion to obtain a negative electrode.
  • a negative electrode active material a negative electrode was prepared such that the content of SiOx was 15.0 mass% with respect to the total amount of graphite and SiOx.
  • a negative electrode active material a negative electrode was prepared such that the Si content was 5.0 mass% with respect to the total amount of graphite and Si nanoparticles (purity 98% or more, manufactured by ALDRICH).
  • Examples 1 to 9 and Comparative Examples 1 to 14 [Preparation of electrolyte]
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • An electrolytic solution was prepared by dissolving and used as a basic electrolytic solution. The following compounds were added to this basic electrolytic solution so that the mass% shown in Table 1 was obtained to prepare an electrolytic solution.
  • the active material containing Si atoms used for the negative electrode of Comparative Example 13 does not correspond to the active material (A), but the content of the active material in the active material is shown in the column of the active material (A).
  • the positive electrode, the negative electrode, and the polypropylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to produce a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both sides of aluminum (thickness 40 ⁇ m) were coated with a resin layer while projecting the terminals of the positive electrode and the negative electrode, and then the above-mentioned electrolytic solution was injected into the bag and the vacuum was applied.
  • the sheet-like battery of Example 1 which was sealed and was in a fully charged state at 4.2 V was produced.
  • the batteries manufactured in Examples 1 to 9 are superior to Comparative Examples 1 to 6, 8, 9, and 11 to 13 in suppressing the swelling of the batteries.
  • the batteries manufactured in Examples 1 to 9 have a higher maintenance ratio and a higher output than those of Comparative Examples 6, 7, 8, and 13, that is, excellent cycle characteristics and output characteristics.
  • the batteries manufactured in Examples 1 to 9 have improved output as compared with Comparative Example 10.
  • Examples 1 to 5 and Comparative Examples 1 and 2 when the non-aqueous electrolyte containing the compound (1) in an amount smaller than the specific range was used, the battery swelling could not be suppressed, and the specific range was also suppressed.
  • Example 2 when a non-aqueous electrolyte solution containing more than a specific range is used, the battery swells and the output decreases. Specifically, in Example 2, as compared with Comparative Example 3, battery swelling could be suppressed to 60% while maintaining the balance of cycle characteristics and output characteristics. Further, in Example 2, the output after cycling was 2.1 times larger than in Comparative Example 4, and the battery swelling could be suppressed to about 68%. From the above, it is understood that by combining the compound (1) and the carbonate having an unsaturated bond in an amount within a specific range, a battery having a balanced maintenance rate and output can be obtained while suppressing battery swelling.
  • Example 3 As is clear from the comparison between Example 3 and Comparative Example 7, the negative electrode of the negative electrode active material (A) was used even when the non-aqueous electrolyte containing the compound (1) and the carbonate having an unsaturated bond was used. It can be seen that the above effect is exhibited only when the content in the range is within a specific range. Further, comparing Example 3 with Comparative Example 13, Example 3 has a cycle capacity retention ratio 3.5 times higher than Comparative Example 13, output after cycle 5.5 times higher, and battery swelling of about 26%. Met.
  • the electrolytic solution in which the compound (1) and the carbonate having an unsaturated bond are used in combination is combined with the negative electrode containing the active material (A) to form a non-aqueous secondary battery, whereby the negative electrode containing Si as the active material. It was found that it is possible to realize a non-aqueous secondary battery which is remarkably excellent in all of the suppression of battery swelling, cycle characteristics, and output characteristics, as compared with the non-aqueous secondary battery including. Further, as is clear from the comparison between Example 6 and Comparative Examples 8 and 9, the compound (1) has the same effect as long as it is a compound having a phosphate ester structure represented by the formula (1). I understand.
  • the non-aqueous electrolyte secondary battery of the present invention has excellent balance of output characteristics and battery swelling while maintaining cycle characteristics. Therefore, the non-aqueous secondary battery of the present invention can be used for various known applications. Specific examples include, for example, laptop computers, pen input computers, mobile computers, e-book players, mobile phones, mobile faxes, mobile copiers, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini disks.
  • Walkie-talkie electronic organizer, calculator, memory card, portable tape recorder, radio, backup power supply, motor, automobile, motorcycle, motorbike, bicycle, lighting equipment, toys, game equipment, clock, electric tool, strobe, camera, home Backup power supply, office backup power supply, load leveling power supply, natural energy storage power supply, lithium ion capacitor, etc.

Abstract

サイクル特性、出力特性及び電池膨れのバランスに優れる非水系電解液二次電池を提供する。非水系電解液、負極及び正極を含み、該負極がSi原子を含む非水系電解液二次電池であって、該非水系電解液が、非水溶媒、式(1)で表される化合物(1)及び不飽和結合を有するカーボネートを含有し、かつ非水系電解液全体に対する化合物(1)の含有量が0.07質量%以上15.0質量%以下であり、非水系電解液全体に対する不飽和結合を有するカーボネートの含有量が0.2質量%以上8.0質量%以下であり、かつ該負極において活物質全体に対するSiOx(0.5≦x≦1.6)を含む活物質(A)の割合が9.0質量%以下である。 上記式中、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。

Description

非水系電解液二次電池
 本発明は、非水系電解液二次電池に関する。より具体的には、本発明は、サイクル特性を維持しながら、出力特性及び電池膨れのバランスに優れた非水系電解液二次電池に関する。
 携帯電話、ノートパソコン等の電源から自動車用等の駆動用車載電源や定置用大型電源等の広範な用途において、リチウム二次電池等の非水系電解液二次電池が実用化されている。それに伴い、非水系電解液二次電池に対しては、電池特性、例えばサイクル特性、入出力特性、保存特性、連続充電特性、安全性等の諸特性を高い水準で達成することが求められている。また、近年においては、車載用電池において航続距離の拡大に向けた高容量化への要求がますます高くなっている。
 高容量化を達成するため、負極活物質として合金系活物質、特にSi原子を含む活物質の使用が検討されている。これまでに、高容量が期待されるSi原子を含む活物質を負極として用いた非水系電解液二次電池のサイクル特性を改善するために、非水系電解液の添加剤としてリン酸エステル化合物を用いることが提案されている。例えば、特許文献1には、非水系電解液にリン酸トリス(2,2,2-トリフルオロエチル)を含有させることにより、サイクル特性を向上させる技術が開示されている。特許文献2は、非水系電解液中に(亜)リン酸トリス(2,2,2-トリフルオロエチル)を含有し、負極は黒鉛を用いた技術を開示する。
WO2016/063902 特開2011-49152号公報
 本発明者等の検証によれば、上記特許文献1の技術では、サイクル特性の向上が不十分であるという問題点が見出された。このように、Si原子を含む活物質を負極として用いた非水系電解液二次電池は、一般的にサイクル特性が問題となるが、本発明者等が検討したところ、サイクル特性を維持しながら、さらに出力特性や電池膨れを改善することが、より困難かつ重要な課題であることを見出した。
 一方、上記特許文献2では、負極としてSi原子を含む活物質を使用しうることは記載されているものの、具体的な評価や検証はなされておらず、それゆえにSi原子を含む活物質を使った場合に重要となる、サイクル特性を維持しながら、さらに電池膨れを改善することについては課題として認識されておらず具体的な検討もなされていない。
 すなわち、本発明の課題は負極としてSi原子を含む非水系二次電池において、サイクル特性を維持しながら、出力特性や電池膨れを改善したものを提供することにある。
 本発明者は、上記の問題を解決すべく鋭意検討を重ねた結果、Si原子を含む活物質を含む負極を用いる非水系電解液二次電池であって、非水系電解液にリン酸エステル化合物と不飽和結合を有するカーボネートをそれぞれ特定量含有し、かつ負極がSiOxを含む活物質を含み、その含有量を特定量以下とすることで、上記問題を解決し得ることを見出した。即ち、本発明は以下の態様を提供する。
[1]非水系電解液、負極及び正極を含み、該負極がSi原子を含む非水系電解液二次電池であって、該非水系電解液が、非水溶媒、下記式(1)で表される化合物(1)及び不飽和結合を有するカーボネートを含有し、かつ非水系電解液全体に対する化合物(1)の含有量が0.07質量%以上15.0質量%以下であり、非水系電解液全体に対する不飽和結合を有するカーボネートの含有量が0.2質量%以上8.0質量%以下であり、かつ該負極において活物質全体に対するSiOx(0.5≦x≦1.6)を含む活物質(A)の割合が9.0質量%以下である非水系電解液二次電池。
Figure JPOXMLDOC01-appb-C000002
(上記式(1)中、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。)
[3]前記式(1)中、R1~R3の少なくとも一つが、トリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基である、[1]又は[2]に記載の非水系電解液二次電池。
[4]前記化合物(1)が、リン酸トリス(2,2,2-トリフルオロエチル)、亜リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)及び亜リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)からなる群より選ばれる少なくとも一種である、[1]乃至[3]のいずれか一つに記載の非水系電解液二次電池。
[5]前記不飽和結合を有するカーボネートが、ビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートからなる群より選ばれる少なくとも1種である、[1]乃至[4]のいずれか一つに記載の非水系電解液二次電池。
[6]前記非水系電解液が、ジイソシアネート化合物、F-S結合を有するリチウム塩及びシラン化合物からなる群より選ばれる少なくとも1種の化合物をさらに含む、[1]乃至[5]のいずれか一つに記載の非水系電解液二次電池。
[7]前記負極が、活物質として炭素材を主成分とする活物質(B)を含み、かつ該活物質(B)の含有量が前記活物質(A)と該活物質(B)との合計量に対して90.0質量%以上99.9質量%以下である、[1]乃至[6]のいずれか一つに記載の非水系電解液二次電池。
 本発明によれば、SiOxを含む活物質を含む負極を用いた非水系電解液二次電池であって、サイクル特性を維持しながら、出力特性及び電池膨れのバランスに優れた非水系電解液二次電池を提供することができる。
 以下、本発明について詳細に説明する。以下の説明は、本発明の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
[非水系電解液二次電池]
 本実施形態の非水系電解液二次電池は、非水系電解液、負極及び正極を含み、該負極がSi原子を含む非水系電解液二次電池であって、該非水系電解液が、非水溶媒、下記式(1)で表される化合物(1)及び不飽和結合を有するカーボネートを含有し、かつ非水系電解液全体に対する化合物(1)の含有量が0.07質量%以上15.0質量%以下であり、非水系電解液全体に対する不飽和結合を有するカーボネートの含有量が0.2質量%以上8.0質量%以下であり、かつ該負極において活物質全体に対するSiOxを含む活物質(A)の割合が9.0質量%以下のものである。
Figure JPOXMLDOC01-appb-C000003
(上記式(1)中、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。)
 なお、当然ながら、下記式は上記式(1)と同じ化合物を示す。
Figure JPOXMLDOC01-appb-C000004
 本実施形態の非水系電解液二次電池は、SiOxを含む活物質を含む負極を用いながらも、サイクル特性を維持しながら、出力特性及び電池膨れのバランスに優れるという効果を奏する。本発明がこのような効果を奏する理由は定かではないが、次の理由によるものと推定される。本実施形態に用いる非水系電解液に含まれる式(1)で表される化合物は、負極に含まれるSiOxと特異的な反応を起こし、SiOx表面に化合物(1)が結合すると考えられる。(一般的に有機リン酸エステルは酸化物表面と反応することが知られているが、負極活物質SiOxに対しても化合物(1)は表面と特異的な反応を起こすと考えられる。)その後、電位の低下とともに化合物(1)に含まれるハロゲン原子を起点として還元分解反応が生成し、その還元過程での中間体が不飽和結合を有するカーボネートとさらに反応することで、SiOx表面に高密着で不動態性の高い被膜を形成すると考えられる。そのとき、化合物(1)と不飽和結合を有するカーボネートがお互いに過不足なく反応することで初めて、SiOx表面に良好な被膜が適切な量形成されると考えられるため、適切な濃度範囲で化合物(1)と不飽和結合を有するカーボネートを非水系電解液に含有させる必要がある。SiOx表面に形成された被膜は、活物質の体積変化による、活物質と電解液との反応を抑制すると推定される。通常、非水系電解液二次電池では、充放電により負極が体積変化し、その際に電解液が還元分解されるが、この副反応が、容量維持率の低下、充放電後の出力低下及び電池膨れ等の劣化の一因であった。特に、負極としてSiOx原子を含む活物質を用いた場合、この体積変化が大きく、副反応による前期劣化が著しく進行するが、本実施形態に用いる非水系電解液により、活物質上に高密着な被膜が形成されることで、電解液の副反応が抑制され、前記劣化を抑制するものと推定される。また、SiOxを含む活物質が特定量以下であることで、前記被膜が活物質の表面上に十分に形成でき、効果が発現するものと推定される。
<1.非水系電解液>
 本実施形態に用いる非水系電解液は、非水溶媒、下記式(1)で表される化合物(1)及び不飽和結合を有するカーボネートを含有し、その含有量がそれぞれ非水系電解液全量に対して0.07質量%以上15.0質量%以下であるものである。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)中、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。)
<1-1.化合物(1)>
 本実施形態に用いる非水系電解液は、化合物(1)を含有する。前記式(1)において、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。ここで、ハロゲン原子としては、フッ素、塩素、ヨウ素、臭素が挙げられ、これらの中でもフッ素が好ましい。
 特に、前記式(1)において、のR1~R3が、それぞれ独立に水素原子、ハロゲン原子を有する炭素数1~5の炭化水素基であることが好ましく、フッ素を有する炭素数1~5の炭化水素基であることがより好ましい。SiOxとの反応部位であるP原子周囲の立体障害が小さく、また還元反応により、良好な被膜成分と考えられるフッ化リチウムを形成する効果があるからである。より具体的には、R1~R3の少なくとも1つが、トリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基であることが好ましくR1~R3は全てトリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基であることがより好ましい。化合物(1)としては、リン酸トリス(2,2,2-トリフルオロエチル)、亜リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)及び亜リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)からなる群より選ばれる少なくとも1種であることが特に好ましい。
 化合物(1)の非水系電解液中の含有量は、0.07質量%以上15.0質量%以下である。化合物(1)の非水系電解液中の含有量は、0.1質量%以上であることが好ましく、0.4質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましく、1.1質量%以上であることがことさらに好ましく、1.5質量%以上であることが特に好ましく、2.0質量%以上であることが特に好ましく、一方、12.0質量%以下であることが好ましく、10.0質量%以下であることがより好ましく、7.0質量%以下であることがさらに好ましく、5.0質量%以下であることがことさらに好ましく、4.0質量%以下であることが特に好ましく、3.5質量%以下であることが最も好ましい。化合物(1)の含有量が、上記下限値以上であると、電池膨れが抑制される傾向にあり、上記上限値以下であると電池特性のバランスが良好になる。
<1-2.不飽和結合を有するカーボネート>
 本実施形態に用いる非水系電解液は、不飽和結合を有するカーボネートを含有する。より具体的には、ビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートからなる群より選ばれる少なくとも1種であることが好ましい。
 不飽和結合を有するカーボネートの非水系電解液中の含有量は、0.2質量%以上8.0質量%以下である。また、0.3質量%以上であることがより好ましく、一方、5.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましく、0.5質量%以下であることがさらに好ましい。この化合物の濃度が上記範囲内であると、化合物(1)と組み合わせて用いる不飽和結合を有するカーボネートによる相乗効果がさらに発現し易くなる。
<1-3.非水溶媒>
 本実施形態に用いる非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、後術する電解質を溶解する非水溶媒を含有する。ここで用いる非水溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、好ましくは、飽和環状カーボネート、鎖状カーボネート、鎖状カルボン酸エステル、環状カルボン酸エステル、エーテル系化合物、及びスルホン系化合物から選ばれる少なくとも1つが挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
<1-3-1.飽和環状カーボネート>
 飽和環状カーボネートとしては、炭素数2~4のアルキレン基を有するものが挙げられる。具体的には、炭素数2~4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
 飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量の下限は、非水溶媒100体積%中、通常3体積%以上、好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の入出力特性を更に向上させたり、サイクル特性や保存特性といった耐久性が更に向上させたりできるために好ましい。
<1-3-2.鎖状カーボネート>
 鎖状カーボネートとしては、炭素数3~7のものが好ましい。具体的には、炭素数3~7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、n-ブチルメチルカーボネート、イソブチルメチルカーボネート、t-ブチルメチルカーボネート、エチル-n-プロピルカーボネート、n-ブチルエチルカーボネート、イソブチルエチルカーボネート、t-ブチルエチルカーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが好ましく、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが特に好ましい。
 また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある。)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
 鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 鎖状カーボネートの含有量は特に限定されないが、非水溶媒100体積%中、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上である。また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の入出力特性や充放電レート特性を良好な範囲としやすくなる。また、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の入出力特性や充放電レート特性を良好な範囲としやすくなる。
<1-3-3.鎖状カルボン酸エステル>
 鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、プロピオン酸-n-ブチル、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。これらの中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上、及びサイクルや保存といった耐久試験時の電池膨れの抑制の観点から好ましい。
<1-3-4.環状カルボン酸エステル>
 環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。これらの中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<1-3-5.エーテル系化合物>
 エーテル系化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
 炭素数3~10の鎖状エーテルとしては、ジエチルエーテル、ジ(2-フルオロエチル)エーテル、ジ(2,2-ジフルオロエチル)エーテル、ジ(2,2,2-トリフルオロエチル)エーテル、エチル(2-フルオロエチル)エーテル、エチル(2,2,2-トリフルオロエチル)エーテル、エチル(1,1,2,2-テトラフルオロエチル)エーテル、(2-フルオロエチル)(2,2,2-トリフルオロエチル)エーテル、(2-フルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、(2,2,2-トリフルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、エチル-n-プロピルエーテル、エチル(3-フルオロ-n-プロピル)エーテル、エチル(3,3,3-トリフルオロ-n-プロピル)エーテル、エチル(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、エチル(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、2-フルオロエチル-n-プロピルエーテル、(2-フルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2-フルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、2,2,2-トリフルオロエチル-n-プロピルエーテル、(2,2,2-トリフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、1,1,2,2-テトラフルオロエチル-n-プロピルエーテル、(1,1,2,2-テトラフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-プロピルエーテル、(n-プロピル)(3-フルオロ-n-プロピル)エーテル、(n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3-フルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3,3,3-トリフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,3,3-テトラフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2-フルオロエトキシ)メタン、メトキシ(2,2,2-トリフルオロエトキシ)メタンメトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2-フルオロエトキシ)メタン、エトキシ(2,2,2-トリフルオロエトキシ)メタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(2-フルオロエトキシ)メタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)メタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタンジ(2,2,2-トリフルオロエトキシ)メタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(1,1,2,2-テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2-フルオロエトキシ)エタン、メトキシ(2,2,2-トリフルオロエトキシ)エタン、メトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2-フルオロエトキシ)エタン、エトキシ(2,2,2-トリフルオロエトキシ)エタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2-フルオロエトキシ)エタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)エタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2,2,2-トリフルオロエトキシ)エタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(1,1,2,2-テトラフルオロエトキシ)エタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。これらの中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、リチウムイオン解離性を向上させる点で好ましい。特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
<1-3-6.スルホン系化合物>
 スルホン系化合物としては、炭素数3~6の環状スルホン、及び炭素数2~6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
 環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。これらの中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
 スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある。)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
 これらの中でも、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,2-ジフルオロスルホラン、2,3-ジフルオロスルホラン、2,4-ジフルオロスルホラン、2,5-ジフルオロスルホラン、3,4-ジフルオロスルホラン、2-フルオロ-3-メチルスルホラン、2-フルオロ-2-メチルスルホラン、3-フルオロ-3-メチルスルホラン、3-フルオロ-2-メチルスルホラン、4-フルオロ-3-メチルスルホラン、4-フルオロ-2-メチルスルホラン、5-フルオロ-3-メチルスルホラン、5-フルオロ-2-メチルスルホラン、2-フルオロメチルスルホラン、3-フルオロメチルスルホラン、2-ジフルオロメチルスルホラン、3-ジフルオロメチルスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン、2-フルオロ-3-(トリフルオロメチル)スルホラン、3-フルオロ-3-(トリフルオロメチル)スルホラン、4-フルオロ-3-(トリフルオロメチル)スルホラン、5-フルオロ-3-(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。
 また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、n-プロピルエチルスルホン、ジ-n-プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n-ブチルメチルスルホン、n-ブチルエチルスルホン、t-ブチルメチルスルホン、t-ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル-n-プロピルスルホン、ジフルオロメチル-n-プロピルスルホン、トリフルオロメチル-n-プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-プロピルスルホン、トリフルオロメチル-n-ブチルスルホン、トリフルオロメチル-t-ブチルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル-n-プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、ペンタフルオロエチル-n-ブチルスルホン、ペンタフルオロエチル-t-ブチルスルホン等が挙げられる。
 これらの中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、イソプロピルメチルスルホン、n-ブチルメチルスルホン、t-ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル-n-プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、トリフルオロメチル-n-ブチルスルホン、トリフルオロメチル-t-ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
<1-4.電解質>
 本実施形態に用いる非水系電解液は通常、電解質が含まれる。特に、本実施形態が提供する非水系電解液二次電池がリチウムイオン二次電池である場合には、通常リチウム塩が含まれる。
 本実施形態に用いる非水系電解液に用いることができるリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiTaF6、LiCF3SO3、LiC49SO3、Li(CF3SO22N、Li(C25SO22N、Li(CF3)SO23C、LiBF3(C25)、LiB(C242、LiB(C654、LiPF3(C253等が挙げられる。これらは1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。なお、本明細書においては、F-S結合を有するリチウム塩は、後述の(B)F-S結合有するリチウム塩に分類する。
 本実施形態に用いる非水系電解液の最終的な組成中におけるリチウム塩等の電解質の濃度は、本発明の効果を著しく損なわない限り任意であるが、好ましくは0.5mol/L以上であり、より好ましくは0.6mol/L以上であり、更に好ましくは0.7mol/L以上であり、一方、好ましくは3mol/L以下であり、より好ましくは2mol/L以下であり、更に好ましくは1.8mol/L以下である。リチウム塩の含有量が上記範囲内であることによりイオン電導度を適切に高めることができる。
 なお、以上に挙げたリチウム塩の含有量を測定する方法としては特に制限はなく、公知の方法を任意に用いることができる。このような方法としては例えば、イオンクロマトグラフィー、F磁気共鳴分光法等が挙げられる。
<1-5.その他の添加剤>
 本実施形態に用いる非水系電解液は、以上に挙げた各種化合物の他に、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を有する化合物;アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、安息香酸無水物、2-メチル安息香酸無水物、4-メチル安息香酸無水物、4-tert-ブチル安息香酸無水物、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物、無水コハク酸、無水マレイン酸等のカルボン酸無水物化合物;1,3-プロパンスルトン等のスルホン酸エステル化合物;ジフルオロリン酸リチウム等のリン酸塩;等が添加されていてもよい。ただし、ここで挙げたジフルオロリン酸リチウムはリチウム塩に該当するものであるが、非水系電解液に使用される非水溶媒に対する電離度の観点から電解質として扱わず、添加剤と位置付けるものとする。また過充電防止剤として、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、ジフェニルエーテル、ジベンゾフラン等の各種添加剤を本発明の効果を著しく損なわない範囲で配合することができる。これらの化合物は適宜組み合わせて用いてもよい。
 本実施形態に用いる非水系電解液において、添加効果が特に高く、効果が相乗的に発揮される、特に好ましいその他の添加剤として、(A)イソシアネート化合物、(B)F-S結合を有するリチウム塩、(C)シラン化合物が挙げられる。これらは不飽和結合を有するカーボネートと同様、化合物(1)の還元過程での中間体と反応し、被膜成分として取り込まれることで、被膜の特性をさらに良好なものにすると考えられる。
<1-5-1.(A)イソシアネート化合物>
 イソシアネート化合物としては、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。具体例としては、メチルイソシアネート、エチルイソシアネート等のモノイソシアネート化合物、ビニルイソシアネート、アリルイソシアネート等の炭素‐炭素不飽和結合を有するモノイソシアネート化合物、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等のジイソシアネート化合物、ジイソシアナトスルホン、(オルト‐、メタ‐、パラ‐)トルエンスルホニルイソシアネート等のスルホニルイソシアネート化合物などが挙げられる。またイソシアネート化合物としては、ジイソシアネートモノマーを多価アルコールに付加したアダクト体、三量体のイソシアヌレート体,ビウレット体でもよい。好ましくは、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等のジイソシアネート化合物、アリルイソシアネート、ジイソシアナトスルホン、(オルト‐、メタ‐、パラ‐)トルエンスルホニルイソシアネートであり、特に好ましくは、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサンである。
<1-5-2.(B)F-S結合を有するリチウム塩>
 (B)F-S結合を有するリチウム塩としては、分子内にF-S結合を有するリチウム塩であれば特に制限は無く、本発明の効果を著しく損なわない限り、任意のものを用いることができる。例えば、
 フルオロスルホン酸リチウム塩(LiFSO3);
 リチウムビス(フルオロスルホニル)イミド(LiN(FSO22)、LiN(FS2)(CF3SO2)等のフルオロスルホニルイミドリチウム塩類;
 LiC(FSO23等のフルオロスルホニルメチドリチウム塩類;
 LiBF3(FSO3)、LiB(FSO24等のフルオロスルホニルボレートリチウム類;等が挙げられるが、これらに特に限定されない。(B)F-S結合を有する塩は、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの中でも、LiFSO3とLiN(FSO22が好ましく、特にLiFSO3が好ましい。
<1-5-3.(C)シラン化合物>
 シラン化合物としては、分子内にケイ素原子を有している化合物であれば特にその種類は限定されない。具体例としては、
メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、テトラメチルシラン、テトラエチルシラン、ジ-t-ブチルシラン、ジ-t-ブチルメチルシラン、ベンジルトリメチルシラン、トリメチルビニルシラン、トリメチルアリルシラン、ジアリルジメチルシラン、プロパルギルトリメチルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトラ-t-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン等の有機モノシラン化合物;
ヘキサメチルジシラン、ヘキサエチルジシラン、テトラメチルジフェニルジシラン、テトラフェニルジメチルジシラン、ジフルオロテトラメチルジシラン、ジクロロテトラメチルジシラン、トリクロロトリメチルジシラン、テトラクロロジメチルジシラン、ジメトキシテトラメチルジシラン、ヘキサクロロジシラン、テトラメトキシジメチルジシラン、テトラフルオロジメチルジシラン等のジシラン化合物;
ヘキサメチルジシロキサン、ヘキサエチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラメチル-1,3-ジビニルジシロキサン、テトラメチル-1,3-ジアリルジシロキサン等の有機シロキサン化合物;
などが挙げられる。
 好ましくは、トリメチルビニルシラン、トリメチルアリルシラン等の、ビニル基、アルケニレン基、アルキニレン基等の炭素-炭素不飽和結合を有するモノシラン化合物;テトラメチル-1,3-ジビニルジシロキサン、テトラメチル-1,3-ジアリルジシロキサン等の、ビニル基、アルケニレン基、アルキニレン基等の炭素-炭素不飽和結合を有するシロキサン化合物;ヘキサメチルジシラン、ヘキサエチルジシラン等のジシラン化合物;であり、
より好ましくは、トリメチルビニルシラン、トリメチルアリルシラン等のアルケニルアルキルシラン化合物;ヘキサメチルジシラン、ヘキサエチルジシラン等の無置換のジシラン化合物;であり、
特に好ましくは、トリメチルビニルシラン、ヘキサメチルジシランである。
 本明細書において、非水系電解液の組成とは、非水系電解液製造時、非水系電解液の電池への注液時点又は電池として出荷された何れかの時点での組成を意味する。
 すなわち、非水系電解液は、非水系電解液を調製する際に各構成成分の比率が予め既定した組成となるように混合すればよい。また、非水系電解液を調製した後で、非水系電解液そのものを分析に供して組成を確認することができる。また、完成した非水系電解液二次電池から非水系電解液を回収して、分析に供してもよい。非水系電解液の回収方法としては、電池容器の一部又は全部を開封し、或いは電池容器に孔を設けることにより、電解液を採取する方法が挙げられる。開封した電池容器を遠心分離して電解液を回収してもよいし、抽出溶媒(例えば、水分量が10ppm以下まで脱水したアセトニトリル等が好ましい)を開封した電池容器に入れて又は電池素子に抽出溶媒を接触させて電解液を抽出してもよい。このような方法にて回収した非水系電解液を分析に供することができる。また、回収した非水系電解液は分析に適した条件とするために希釈して分析に供してもよい。
 非水系電解液の分析方法としては、具体的には核磁気共鳴(以下、NMRと省略することがある)、ガスクロマトグラフィーやイオンクロマトグラフィー等の液体クロマトグラフィー等による分析が挙げられる。以下、NMRによる分析方法を説明する。不活性雰囲気下で、非水系電解液を10ppm以下まで脱水した重溶媒中に溶解させ、NMR管に入れてNMR測定を行う。また、NMR管として二重管を用い、一方に非水系電解液を入れ、もう一方に重溶媒を入れて、NMR測定を行ってもよい。重溶媒としては、重アセトニトリルや重ジメチルスルホキシドなどが挙げられる。非水系電解液の構成成分の濃度を決定する場合は、重溶媒中に規定量の標準物質を溶解させて、スペクトルの比率から各構成成分の濃度を算出することができる。また、予め非水系電解液を構成する成分の一種以上の濃度を、ガスクロマトグラフィーのような別の分析手法で求めておき、濃度既知の成分とそれ以外の成分とのスペクトル比から濃度を算出することもできる。用いる核磁気共鳴分析装置は、400MHz以上の磁場を有するものが好ましい。測定核種としては1H、31P、19F等が挙げられる。
 これらの分析手法は、一種類を単独で用いてもよく、二種類以上を併用して用いてもよい。
<2.負極>
 本実施形態に用いる負極は、SiOx(0.5≦x≦1.6)を含む活物質(A)を含み、活物質全体に対する活物質(A)の割合が9.0質量%以下であるものである。また、活物質としてさらに、炭素材を主成分とする活物質(B)を含むことが好ましい。
<2-1.活物質(A)>
 本実施形態に用いる負極は、SiOx(0.5≦x≦1.6)を含む活物質(A)を含む。
 SiOxにおけるxは、より好ましくは0.7以上1.3以下であり、特に好ましくは0.8以上1.2以下である。xが上記範囲であると、Liイオン等のアルカリイオンの出入りのしやすい高活性な非晶質のSiOxとなる。負極活物質中のSiOxにおけるxは、例えば、アルカリ溶融や希フッ化水素酸で溶解した水溶液の誘導結合プラズマ発光分析法またはモリブデン青吸光光度法によるSiの定量分析、並びに酸素窒素水素分析装置または酸素窒素分析装置によるOの定量分析により求めることができる。
 また、SiOxはSiの微結晶を含むことが好ましい。なお、この微結晶は通常、ゼロ価のSi原子である。なお、SiOxは、表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型のSiOx粒子であってもよい。ここで、「表面の少なくとも一部に非晶質炭素からなる炭素層を備えた」とは、炭素層が酸化珪素粒子の表面の一部又は全部を層状に覆う形態のみならず、炭素層が表面の一部又は全部に付着・添着する形態をも包含する。炭素層は、表面の全部を被覆するように備えていてもよく、一部を被覆あるいは付着・添着してもよい。さらに、SiOxにSi、O以外の元素がドープされていてもよい。Si、O以外の元素がドープされたSiOxは、粒子内部の化学構造が安定化することにより、非水系電解液二次電池の初期充放電効率、サイクル特性の向上が見込まれる。ドープされる元素は通常、周期表第18族以外の元素であれば任意の元素から選ぶことができるが、Si、O以外の元素がドープされたSiOxがより安定であるためには周期表第4周期までの元素が好ましい。具体的には、周期表第4周期までのアルカリ金属、アルカリ土類金属、Al、Ga、Ge、N、P、As、Se等の元素から選ぶことができる。Si、O以外の元素がドープされたSiOxのリチウムイオン受け入れ性を向上させるためには、ドープされる元素は周期表第4周期までのアルカリ金属、アルカリ土類金属であることが好ましく、Mg、Ca、Liがより好ましく、Liが更に好ましい。これらは1種のみでも用いることができ、2種以上を組み合わせて用いることもできる。
 負極活物質全体に対する活物質(A)の割合は、9.0質量%以下である。より具体的には3.0質量%以上8.0質量%以下であることが好ましい。活物質(A)の割合が上記範囲のとき、本実施形態に用いる非水系電解液との組み合わせにおいて、相乗効果がさらに発現し易くなる。
<2-2.活物質(B)>
 本実施形態に用いる負極は、炭素材を主成分とする活物質(B)を含むことが好ましい。炭素材を主成分とするとは、活物質(B)に占める炭素材の割合が50質量%以上である状態を意味する。活物質(B)としては、黒鉛、非晶質炭素、黒鉛化度の小さい炭素質物が挙げられる。黒鉛の種類としては、天然黒鉛、人造黒鉛等が挙げられる。また、これらを炭素質物、例えば非晶質炭素や黒鉛化物で被覆したものを用いてもよい。非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素前駆体を不融化処理し、焼成した粒子が挙げられる。黒鉛化度の小さい炭素質物粒子としては、有機物を通常2500℃未満の温度で焼成したものが挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
 活物質(B)の含有量は、活物質(A)と活物質(B)との合計量に対して90.0質量%以上99.9質量%以下であることが好ましい。活物質(B)の含有量が上記範囲のとき、本実施形態に用いる非水系電解液との組み合わせにおいて、相乗効果がさらに発現し易くなる。
 負極活物質組成の確認方法としては、負極の原料スラリーを作製する際に各構成成分の比率を予め既定すればよい。また、負極を作製した後で、電極そのものを分析に供して組成を確認してもよい。また、負極を作製した後で、電極そのものを分析に供する際に、完成した電池から負極を取り出してもよい。具体的には電池を十分に放電させたうえで、不活性雰囲気下で電池を解体して負極を取り出し、十分脱水した電解液溶媒(10ppm以下まで脱水したジメチルカーボネート等が好ましい)で電極を洗浄、乾燥する。
 負極活物質中のSiOx含有量の分析方法として、アルカリ溶融や希フッ化水素酸で溶解した水溶液の誘導結合プラズマ発光分析法またはモリブデン青吸光光度法によるSi原子の定量分析、並びに酸素窒素水素分析装置または酸素窒素分析装置によるO原子の定量分析が挙げられる。負極活物質に炭素材が含まれる場合は、C原子の定量として炭素硫黄分析装置または有機元素分析装置での分析が挙げられる。
<3.正極>
 本実施形態に係る非水系二次電池の正極の活物質として用いられる正極材料としては、例えば、基本組成がLiCoO2で表されるリチウムコバルト複合酸化物、LiNiO2で表されるリチウムニッケル複合酸化物、LiMnO2及びLiMn24で表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物等を用いればよい。さらにはTiS2、FeS2、Nb34、Mo34、CoS2、V25、CrO3、V33、FeO2、GeO2及びLi(Ni1/3Mn1/3Co1/3)O2、Li(Ni1/3Mn1/3Co1/3)O2、LiFePO4等を用いればよく、容量密度の観点から、Li(Ni0.5Mn0.3Co0.2)O2、Li(Ni0.5Mn0.2Co0.3)O2、Li(Ni0.6Mn0.2Co0.2)O2、Li(Ni0.8Mn0.1Co0.1)O2、Li(Ni0.8Co0.15Al0.05)O2等が特に好ましい。
<4.セパレータ>
 正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、非水系電解液は、通常はこのセパレータに含浸させて用いる。
 セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本実施形態に用いる非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
 樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。これらの中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がより好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がより好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
 さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がより好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がより好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
 また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
 一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
 形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<5.導電材>
 上述の正極及び負極は、導電性の向上のために、導電材を含むことがある。導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 導電材は、正極材若しくは負極材の100質量部に対し、通常0.01質量部以上、好ましくは0.1質量部以上、より好ましくは1質量部以上、また、通常50質量部以下、好ましくは30質量部以下、より好ましくは15質量部以下含有するように用いられる。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
<6.結着剤>
 上述の正極及び負極は、結着性の向上のために、結着剤を含むことがある。結着剤は、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
 塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 結着剤の割合は、正極材若しくは負極材の100質量部に対し、通常0.1質量部以上であり、1質量部以上が好ましく、3質量部以上がより好ましく、また、通常50質量部以下であり、30質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下がさらに好ましい。結着剤の割合が、上記範囲内であると電極の結着性を十分保持でき電極の機械的強度が保たれ、サイクル特性、電池容量及び導電性の点から好ましい。
<7.液体媒体>
 スラリーを形成するための液体媒体としては、活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 水系媒体の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
<8.増粘剤>
 スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレン・ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
 増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 さらに増粘剤を使用する場合には、正極材若しくは負極材の100質量部に対し、通常0.1質量部以上、好ましくは0.5質量部以上、より好ましくは0.6質量部以上、また、通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下が望ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する場合がある。
<9.集電体>
 集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル、銅等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。これらの中でも金属材料、特にアルミニウムが好ましい。
 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
 集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上がより好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下がより好ましい。薄膜が、上記範囲内であると集電体として必要な強度が保たれ、また取り扱い性の点からも好ましい。
<10.電池設計>
[電極群]
 電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する。)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
 集電構造は特に限定されるものではないが、本実施形態に用いる非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本実施形態に用いる非水系電解液を使用した効果は特に良好に発揮される。
 電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[保護素子]
 前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[外装体]
 本実施形態の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
 外装体の材質は本実施形態に用いる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、通常は、例えばニッケルメッキを施した鉄(ニッケルめっき鋼板)、ステンレス、アルミニウム又はその合金、ニッケル、チタン、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)等が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
 前記金属類を用いる外装体では、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
 また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。従って、本実施形態の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
[負極の作製]
(実施例1~9、比較例1~5、8~13)
 負極活物質として、黒鉛とSiOx(x=1、純度99.90%以上、大阪チタニウムテクノロジーズ社製)の混合物を用いた。黒鉛とSiOxの合計量に対するSiOxの含有量が5.0質量%となるように混合した。この混合物94質量部に、増粘剤及びバインダーとして、カルボキシメチルセルロースナトリウムが3質量部となるように水性ディスパージョンを加え、さらにカーボンブラックが3質量部となるように水性ディスパージョンを加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅32mm、長さ42mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
(比較例6,7)
 負極活物質として、黒鉛とSiOxの合計量に対するSiOxの含有量が15.0質量%となるように負極を作製した。
(比較例14)
 負極活物質として、黒鉛とSiナノ粒子(純度98%以上、ALDRICH社製)の合計量に対するSiの含有量が5.0質量%となるように負極を作製した。
[正極の作製]
 正極活物質としてLi(Ni1/3Mn1/3Co1/3)O2(LNMC)85質量部と、導電材としてのカーボンブラック10質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量部とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
(実施例1~9、比較例1~14)
[電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)に乾燥したLiPF6を1mol/Lの割合となるように溶解して電解液を調製し、基本電解液とした。この基本電解液に表1に記載の質量%となるように以下に示す化合物を加えて電解液を調製した。表1中、比較例13の負極に用いたSi原子を含む活物質は活物質(A)には該当しないが、該活物質の活物質中含有量は活物質(A)の欄に示す。
<化合物>
 実施例及び比較例に用いた化合物は以下の通りである。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[リチウム二次電池の製造]
 上記の正極、負極、及びポリプロピレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記電解液を袋内に注入し、真空封止を行い、4.2Vで満充電状態となる実施例1のシート状電池を作製した。
[サイクル特性の評価]
 充放電サイクルを経ていない新たな電池に対して、25℃で電圧範囲4.2V~2.5V、電流値1/6C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。以下同様。)にて1回充放電を行った後、4.1Vまで充電し、60℃で12時間加熱処理を行い、さらに、25℃で電圧範囲4.2V~2.5V、電流値1/6Cにて1回充放電させた。その後、45℃で電圧範囲4.2V~2.5V、電流値0.1Cにて1回充放電させ、電池を安定化させた。電池の安定化後、45℃で電圧範囲4.2V~2.5V、電流値1Cでの充放電を繰り返し、[(99サイクル目の放電容量)/(1サイクル目の放電容量)]×100からサイクル容量維持率(%)を求めた。その結果を表1に示す。
[出力特性(サイクル後抵抗特性)の評価]
 99サイクル充放電後の電池を、25℃にて、1/6Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において各々0.5C、1.0C、1.5C、2.0C、2.5Cで放電させ、その2秒時の電圧を測定した。電流-電圧直線の傾きから抵抗値(Ω)を求め、さらに3000mVとなる時の電流値(A)を算出することで、3000mVでの出力(W)を求めた。
[電池膨れ(サイクル中体積変化)の評価]
 電池をエタノールに沈ませた状態で質量を測定し、実質量との差から浮力を求め、エタノールの密度で割ることで、電池の体積を求めた。この操作を、充放電試験開始前と99サイクル充放電後に行い、99サイクル充放電後体積と充放電試験前体積との差分{(99サイクル試験後体積)-(充放電試験前体積)}からサイクル中の電池膨れ(μL)を求めた。その結果を表1に示す。


Figure JPOXMLDOC01-appb-T000015
 上記の表1から明らかなように、実施例1~9で製造した電池は、比較例1~6、8、9、11~13に対して電池の膨れの抑制に優れていることが分かる。また、実施例1~実施例9で製造した電池は、比較例6、7、8、13に対して維持率が高く、出力が大きい、すなわち、サイクル特性及び出力特性に優れていることが分かる。また、実施例1~実施例9で製造した電池は、比較例10に対して出力が改善していることが分かる。実施例1~5と比較例1~2から分かるように、化合物(1)を特定の範囲より少ない量含有する非水系電解液を用いた場合は電池膨れを抑制できず、また、特定の範囲より多く含有する非水系電解液を用いた場合は維持率と出力が低下するだけでなく、電池膨れも抑制できないことが分かる。具体的には、実施例1~5は電池膨れを比較例1の約41%~約52%に抑制できた。また、実施例1~5のサイクル後出力は、比較例2に対し2.0~2.2倍大きく、電池膨れは約45%~約57%に抑制できた。一方、実施例2と比較例3~4から分かるように、不飽和結合を有するカーボネートを特定の範囲より少ない量含有する非水系電解液を用いた場合は電池膨れの増大と維持率及び出力の低下を招き、特定の範囲より多く含有する非水系電解液を用いた場合は電池膨れの増大と出力の低下を招くことが分かる。具体的には、実施例2は比較例3に比較して、サイクル特性及び出力特性のバランスを維持しつつ、電池膨れを60%に抑制できた。また、実施例2は比較例4に比較して、サイクル後出力は2.1倍大きく、電池膨れは約68%に抑制できた。以上のことから、特定の範囲の量で化合物(1)と不飽和結合を有するカーボネートを組み合わせることで、電池膨れを抑制しつつ、維持率と出力でバランスのとれた電池となることが分かる。
 また、実施例3と比較例7との比較から明らかなように、化合物(1)及び不飽和結合を有するカーボネートを含有する非水系電解液を用いた場合でも、負極活物質(A)の負極中の含有量が特定の範囲内のときのみ上記効果を奏することが分かる。
 また、実施例3と比較例13とを比較すると、実施例3は比較例13より、サイクル容量維持率は3.5倍高く、サイクル後出力が5.5倍大きく、電池膨れは約26%であった。この結果から、化合物(1)及び不飽和結合を有するカーボネートを併用する電解液は、活物質(A)を含む負極と組み合わせて非水系二次電池とすることで、Siを活物質として含む負極とを備える非水系二次電池よりも、電池膨れの抑制、サイクル特性、出力特性全ての点において、顕著に優れる非水系二次電池を実現できることがわかった。
 また、実施例6と、比較例8、9との比較から明らかなように、化合物(1)は式(1)で表されるリン酸エステル構造を有する化合物であれば同様の効果があることが分かる。すなわち、Si原子を含む負極を用いる非水系電解液二次電池において、不飽和結合を有するカーボネート及び化合物(1)の両方を特定の範囲内の量で含むことにより、電池膨れを顕著に抑制し、かつサイクル特性及び出力特性のバランスに優れる非水系電解液二次電池を実現できることがわかる。
 一方で、本発明の化合物(1)に該当しないリン酸エステルを用いた比較例10では、維持率及び出力において劣る結果となった。
 さらに、実施例7~9から明らかなように、追加でその他の特定の添加剤を加えることでより大きな効果を発揮することができ、電池膨れの更なる改善や出力向上が可能となる。
 なお、以上の表1に示した各実施例・比較例におけるサイクル試験期間はモデル的に比較的短期間として行なっているが、有意な差が確認されている。実際の非水系電解液二次電池の使用は数年に及ぶ場合もあるため、これら結果の差は長期間の使用を想定した場合、更に顕著な差になるものと理解することができる。
 本出願は、2018年12月6日出願の日本特許出願(特願2018-229156)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の非水系電解液二次電池は、サイクル特性を維持しながら、出力特性及び電池膨れのバランスに優れる。このため、本発明の非水系二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、家庭用バックアップ電源、事業所用バックアップ電源、負荷平準化用電源、自然エネルギー貯蔵電源、リチウムイオンキャパシタ等が挙げられる。

Claims (7)

  1.  非水系電解液、負極及び正極を含み、該負極がSi原子を含む非水系電解液二次電池であって、該非水系電解液が、非水溶媒、下記式(1)で表される化合物(1)及び不飽和結合を有するカーボネートを含有し、かつ非水系電解液全体に対する化合物(1)の含有量が0.07質量%以上15.0質量%以下であり、非水系電解液全体に対する不飽和結合を有するカーボネートの含有量が0.2質量%以上8.0質量%以下であり、かつ該負極において活物質全体に対するSiOx(0.5≦x≦1.6)を含む活物質(A)の割合が9.0質量%以下である非水系電解液二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、R1~R3はそれぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~10の炭化水素基であり、R1~R3の少なくとも1つは、ハロゲン原子を有する炭素数1~10のアルキル基であり、nは0又は1である。)
  2.  前記式(1)中、R1~R3が、それぞれ独立に水素原子、ハロゲン原子を有していてもよい炭素数1~5の炭化水素基である、請求項1に記載の非水系電解液二次電池。
  3.  前記式(1)中、R1~R3の少なくとも1つが、トリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基である、請求項1又は2に記載の非水系電解液二次電池。
  4.  前記化合物(1)が、リン酸トリス(2,2,2-トリフルオロエチル)、亜リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)及び亜リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)からなる群より選ばれる少なくとも1種である、請求項1乃至3のいずれか一項に記載の非水系電解液二次電池。
  5.  前記不飽和結合を有するカーボネートが、ビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートからなる群より選ばれる少なくとも1種である、請求項1乃至4のいずれか一項に記載の非水系電解液二次電池。
  6.  前記非水系電解液が、ジイソシアネート化合物、F-S結合を有するリチウム塩及びシラン化合物からなる群より選ばれる少なくとも1種の化合物をさらに含む、
    請求項1乃至5のいずれか一項に記載の非水系電解液二次電池。
  7.  前記負極が、活物質として炭素材を主成分とする活物質(B)を含み、かつ該活物質(B)の含有量が前記活物質(A)と該活物質(B)との合計量に対して90.0質量%以上99.9質量%以下である、請求項1乃至6のいずれか一項に記載の非水系電解液二次電池。
PCT/JP2019/047753 2018-12-06 2019-12-06 非水系電解液二次電池 WO2020116601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217012513A KR20210058970A (ko) 2018-12-06 2019-12-06 비수계 전해액 이차 전지
EP19891743.7A EP3893292A4 (en) 2018-12-06 2019-12-06 SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE SOLUTION
CN201980080100.0A CN113169299A (zh) 2018-12-06 2019-12-06 非水电解质二次电池
JP2020560036A JPWO2020116601A1 (ja) 2018-12-06 2019-12-06 非水系電解液二次電池
US17/302,141 US20210249691A1 (en) 2018-12-06 2021-04-26 Nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229156 2018-12-06
JP2018229156 2018-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/302,141 Continuation US20210249691A1 (en) 2018-12-06 2021-04-26 Nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
WO2020116601A1 true WO2020116601A1 (ja) 2020-06-11

Family

ID=70973900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047753 WO2020116601A1 (ja) 2018-12-06 2019-12-06 非水系電解液二次電池

Country Status (6)

Country Link
US (1) US20210249691A1 (ja)
EP (1) EP3893292A4 (ja)
JP (1) JPWO2020116601A1 (ja)
KR (1) KR20210058970A (ja)
CN (1) CN113169299A (ja)
WO (1) WO2020116601A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049152A (ja) 2009-07-30 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011233245A (ja) * 2010-04-23 2011-11-17 Hitachi Maxell Energy Ltd リチウム二次電池
WO2013129428A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 リチウム二次電池
WO2013133361A1 (ja) * 2012-03-07 2013-09-12 日立マクセル株式会社 リチウム二次電池パック、並びにそれを用いた電子機器、充電システムおよび充電方法
WO2014157591A1 (ja) * 2013-03-27 2014-10-02 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP2015109235A (ja) * 2013-12-05 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池
WO2016063902A1 (ja) 2014-10-24 2016-04-28 日本電気株式会社 二次電池
JP2018022915A (ja) 2013-08-05 2018-02-08 東京エレクトロン株式会社 現像方法、現像装置及び記憶媒体
JP2018174074A (ja) * 2017-03-31 2018-11-08 パナソニック株式会社 積層型非水電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672561B1 (en) * 2011-01-31 2019-04-17 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
TW201312827A (zh) * 2011-09-13 2013-03-16 Hitachi Maxell Energy Ltd 鋰二次電池組、使用其之電子機器、充電系統及充電方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049152A (ja) 2009-07-30 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011233245A (ja) * 2010-04-23 2011-11-17 Hitachi Maxell Energy Ltd リチウム二次電池
WO2013129428A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 リチウム二次電池
WO2013133361A1 (ja) * 2012-03-07 2013-09-12 日立マクセル株式会社 リチウム二次電池パック、並びにそれを用いた電子機器、充電システムおよび充電方法
WO2014157591A1 (ja) * 2013-03-27 2014-10-02 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP2018022915A (ja) 2013-08-05 2018-02-08 東京エレクトロン株式会社 現像方法、現像装置及び記憶媒体
JP2015109235A (ja) * 2013-12-05 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池
WO2016063902A1 (ja) 2014-10-24 2016-04-28 日本電気株式会社 二次電池
JP2018174074A (ja) * 2017-03-31 2018-11-08 パナソニック株式会社 積層型非水電解質二次電池

Also Published As

Publication number Publication date
CN113169299A (zh) 2021-07-23
EP3893292A4 (en) 2022-02-23
US20210249691A1 (en) 2021-08-12
JPWO2020116601A1 (ja) 2021-10-21
KR20210058970A (ko) 2021-05-24
EP3893292A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
EP2675010B1 (en) Non-aqueous electrolyte solution for secondary battery, and non-aqueous electrolyte secondary battery using same
JP5962041B2 (ja) 非水系電解液二次電池及び非水系電解液
EP2571090B9 (en) Nonaqueous-electrolyte secondary battery
CN111129498A (zh) 电化学装置及包含其的电子装置
JP5514394B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6627904B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6507677B2 (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
WO2013100081A1 (ja) 非水系電解液及び非水系電解液二次電池
WO2011099585A1 (ja) 非水系電解液及び非水系電解液二次電池
EP2571089A1 (en) Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery
EP3252861B1 (en) Non-aqueous electrolyte solution, and non-aqueous-electrolyte secondary cell using same
JP2007180015A (ja) リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2007149654A (ja) 二次電池用非水系電解液及びそれを用いた二次電池
JP5834771B2 (ja) 非水系電解液、それを用いた電池
JP7299131B2 (ja) 非水系電解液及び非水系電解液電池
JP2007180016A (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP7157621B2 (ja) 非水系電解液及び非水系電解液電池
JP7345376B2 (ja) 非水系電解液二次電池
WO2020116601A1 (ja) 非水系電解液二次電池
WO2021070717A1 (ja) 非水系電解液及び非水系電解液二次電池
JP7157622B2 (ja) 非水系電解液及び非水系電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560036

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217012513

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891743

Country of ref document: EP

Effective date: 20210706