WO2020116491A1 - 吸着用焼結体及びその製造方法並びに吸着装置 - Google Patents
吸着用焼結体及びその製造方法並びに吸着装置 Download PDFInfo
- Publication number
- WO2020116491A1 WO2020116491A1 PCT/JP2019/047346 JP2019047346W WO2020116491A1 WO 2020116491 A1 WO2020116491 A1 WO 2020116491A1 JP 2019047346 W JP2019047346 W JP 2019047346W WO 2020116491 A1 WO2020116491 A1 WO 2020116491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorbent
- adsorption
- sintered body
- powder
- activated carbon
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28026—Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/38—Removing components of undefined structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
- B01D53/70—Organic halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/72—Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/82—Solid phase processes with stationary reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
- B01J20/106—Perlite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/12—Naturally occurring clays or bleaching earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/14—Diatomaceous earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/165—Natural alumino-silicates, e.g. zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28052—Several layers of identical or different sorbents stacked in a housing, e.g. in a column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3035—Compressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3042—Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
- A61L9/014—Deodorant compositions containing sorbent material, e.g. activated carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/202—Polymeric adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/25—Coated, impregnated or composite adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/304—Linear dimensions, e.g. particle shape, diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/308—Pore size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/306—Organic sulfur compounds, e.g. mercaptans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/90—Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/93—Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4541—Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/508—Sulfur oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
- B01D53/565—Nitrogen oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/46—Materials comprising a mixture of inorganic and organic materials
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
Definitions
- the present invention relates to an adsorbed sintered body, particularly an adsorbed sintered body containing a powder adsorbent for adsorbing a substance to be treated in a fluid, a method for producing the same, and an adsorbing apparatus.
- Adsorbents such as activated carbon, activated clay and zeolite are used for air purification, dioxin removal, flue gas desulfurization and denitration, odor removal, factory waste gas and liquid treatment, advanced water treatment, chemical purification, food and beverage decolorization. , Water purifiers for home use, air purifiers, refrigerator deodorants, gas masks, etc. Used for various adsorption purposes for industrial, household and medical purposes.
- Patent Document 1 discloses an activated carbon cartridge for gas purification in which granular activated carbon having a particle size of 2.4 to 4.7 mm (2400 to 4700 ⁇ m) is filled between an inner cylinder and an outer cylinder.
- granular activated carbon refers to activated carbon having a large particle size
- finely powdered activated carbon having a small particle size is referred to as “powder” activated carbon.
- particle size indication of 150 ⁇ m or more is defined as “granular” activated carbon
- particle size indication of less than 150 ⁇ m is defined as “powder” activated carbon.
- the large particle size adsorbent has a smaller specific surface area (outer surface area per unit mass) than the fine powder adsorbent, in order to obtain the same adsorption performance as when using the powder adsorbent, it is necessary to use the granular adsorbent. It is necessary to increase the amount of material, and in an adsorption device or the like, when a granular adsorbent is filled in a cartridge or the like and used as a filter or the like, the cartridge or the adsorption device becomes large.
- the filling volume tends to vary from container to container as compared with the powder adsorbent, and a constant amount is produced in the manufacture of products such as filter cartridges.
- external force such as vibration or pressure during transportation or use may crush or break the granular adsorbent in the container, which may cause a problem such as an increase in pressure loss.
- a powder adsorbent such as powdered activated carbon has a larger specific surface area and higher adsorption performance than a granular adsorbent, but even if it is filled in a container such as a cartridge and used as a filter, etc.
- the voids are significantly reduced, making it difficult for the fluid to pass through, resulting in high pressure loss (high differential pressure), which is not suitable for practical use. Therefore, the powder adsorbent is not suitable for a filter filled in a container such as a cartridge, and has been conventionally used exclusively for a batch type (batch type) adsorption process.
- Patent Document 2 discloses an aggregate formed by adsorbing an adsorbent with a thermoplastic resin as a binder and bonding and/or adhering the adsorbent to each other through the binder. Disclosed are adsorptive molded articles based on the above and filters to which the same are applied. However, such an aggregate deteriorates the adsorption performance because most of the surface of the adsorbent is covered with the thermoplastic resin.
- a powder adsorbent having a small particle size tends to be covered with a thermoplastic resin on most of its surface, and it is difficult to form the aggregate into a desired size due to a decrease in pressure loss.
- granular activated carbon having a large particle size is actually used.
- Patent Document 3 discloses that high-performance particles such as activated carbon particles are impregnated or adsorbed with a foaming agent. Disclosed is a molded article which is mixed with a matrix resin, and the mixture is foamed and solidified in a liquid or molten state of the matrix resin, and the high-functional particles are present inside the pores generated by the foaming.
- the molded product 10 when such a so-called foamed plastic is used as the matrix of the adsorbent, the molded product is generally flexible and poor in mechanical strength, and particularly easily deformed under a high pressure and a high flow rate. Not suitable for continuous adsorption devices that adsorb substances. Specifically, for example, as shown in FIG. 14( a) and FIG. 15( a ), the molded product 10 at the time of using high pressure or high flow rate is made of foamed plastic 12 as compared with the molded product 10 before use. Therefore, the entire volume is easily collapsed by the compressive force 16 of FIG. 14( b ), and the pores 13 tend to be smaller than before use as shown in FIG. 15( b ), so that the density of the activated carbon particles 11 is high. The pressure loss increases and the flow velocity decreases significantly.
- the adsorbent is impregnated with a foaming agent to form pores in the matrix resin, it is not easy to form appropriate pores unless the adsorbent is sufficiently impregnated with the foaming agent. Further, when the content of the adsorbent is increased for the purpose of improving the adsorption performance, the number of pores also tends to increase and the mechanical strength tends to decrease, so that it is difficult to improve the absorption efficiency.
- the open-cell structure which is considered to be preferable in the obtained molded product is a so-called sponge-like structure and further lowers in mechanical strength, so that it is used by filling it in a container such as a cartridge as described above, a fluid (7 There is a problem that it is not suitable for the use of continuous treatment for adsorbing the substance to be treated in ().
- an object of the present invention is to provide an adsorptive material which has excellent adsorption capacity and can achieve low pressure loss, a method for producing the same, and an adsorption device.
- the present inventors have found that in a resin structure in which voids are formed in a three-dimensional network, the powder adsorbent is accommodated in the voids so that the powder adsorbent can move freely. It has been found that a specific adsorption sintered body, which is fixed to the surface of the body and/or at least a part of which is embedded inside the resin structure, has an excellent adsorption capacity and at the same time can achieve a low pressure loss. Has been completed.
- the present invention includes the following contents.
- the void (3) is provided with a resin structure (2) formed in a three-dimensional mesh shape,
- the powder adsorbent (1a, 1b) adheres to the free adsorbent (1a) movably contained in the void (3) between the resin structures (2) and the surface (2a) of the resin structure (2).
- a fixed adsorbent (1b) at least a part of which is embedded inside the resin structure (2)
- the powder adsorbent (1a, 1b) is at least one selected from powdered activated carbon, powdered activated clay and zeolite, and is a sintered body for adsorption.
- the resin raw material of the resin structure (2) is at least one thermoplastic resin selected from polypropylene (PP), polyethylene (PE), polyvinylidene fluoride (PVDF) and ethylene vinyl acetate (EVA) copolymer.
- PP polypropylene
- PE polyethylene
- PVDF polyvinylidene fluoride
- EVA ethylene vinyl acetate copolymer
- the plurality of free adsorbents (1a) are movably accommodated in at least a part of the voids (3), and the plurality of adjacent free adsorbents (1a) are not fixed to each other and at least a part of The adsorbing sintered body according to any one of [1] to [5], wherein a channel (3a) for the fluid (7) is formed between the free adsorbent (1a) in the void (3).
- [7] The adsorbing sintered body according to any one of [1] to [6], wherein the powder adsorbent (1a, 1b) is powder activated carbon having a pointed portion.
- a step of forming a adsorbent mixture by mixing a powder adsorbent, which is at least one selected from powdered activated carbon, powdered activated clay and zeolite, with a thermoplastic resin, A step of heating the adsorbent mixture at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the powder adsorbent raw material; A resin structure in which a plurality of thermoplastic resins are fused and cooled and solidified to form voids (3) in a three-dimensional mesh shape, and free adsorbent (1a) is movably accommodated in the voids (3).
- a powder adsorbent which is at least one selected from powdered activated carbon, powdered activated clay and zeolite
- thermoplastic resin is at least one selected from polypropylene (PP), polyethylene (PE), polyvinylidene fluoride (PVDF) and ethylene vinyl acetate (EVA) copolymers, [10] to [12]. ] The manufacturing method in any one of these. [14] The production method according to any one of [10] to [13], wherein the thermoplastic resin has a particle size of 10 to 200 ⁇ m.
- an adsorptive material that is excellent in adsorption capacity and can achieve low pressure loss, a manufacturing method thereof, and an adsorption device.
- Sectional drawing which shows the sintered compact for adsorption of this invention.
- Enlarged image of the surface showing the raw material powdered activated carbon Enlarged image of the surface showing the raw material powdered activated carbon
- Enlarged image of the surface showing the raw material powdered activated carbon Enlarged image of surface showing powdered activated clay as raw material
- Enlarged image of the surface showing the raw material zeolite Enlarged cross-section image showing only the resin structure of the sintered body for adsorption
- Surface image showing a sintered body for adsorption of the present invention manufactured from powdered activated carbon Enlarged surface image showing a sintered body for adsorption of the present invention manufactured from powdered activated carbon
- Enlarged surface image showing a sintered body for adsorption of the present invention manufactured from powdered activated carbon Enlarged surface image showing a sintered body for adsorption of the present invention manufactured from powdered activated carbon
- Schematic diagram showing the permeation adsorption test device A graph showing the results of a liquid permeation adsorption test using coconut shell activated carbon.
- the adsorbed sintered body of the present invention comprises a powder adsorbent (1a, 1b) and a resin structure (2) having voids (3) formed in a three-dimensional mesh.
- Resin structure (2) in the present invention powder, granules, by heating the particles of the thermoplastic resin pellets or the like, the contact portion of the plurality of thermoplastic resin is melted to form a joint, It can be formed by fusing together thermoplastic resins.
- the resin structure obtained in this manner has a structure in which concave voids sandwiched by convex portions derived from the shape of the thermoplastic resin are formed in a three-dimensional mesh shape.
- the powder adsorbent (1a, 1b) adheres to the free adsorbent (1a) movably contained in the void (3) between the resin structures (2) and the surface (2a) of the resin structure (2). And/or a fixed adsorbent (1b) at least a part of which is embedded inside the resin structure (2).
- the powder adsorbent (1a, 1b) is composed of at least one selected from powder activated carbon, powder activated clay and zeolite.
- the adsorbed sintered body of the present invention is particularly useful for adsorbing a substance to be treated in the fluid (7).
- the fluid (7) is passed through the adsorbing sintered body (20)
- the entire surface of the free adsorbent (1a) that is not fixed and bonded to the resin structure (2) comes into direct contact with the fluid (7).
- an action of capturing and adsorbing the substance to be treated in the fluid (7) can be generated.
- the adsorption sintered body (20) of the present invention is compared with the adsorbent material of the type in which the entire surface or a part of the surface is covered with a matrix resin, or the adsorbent material of the type in which the adsorbent exists only in the voids.
- a larger adsorption area can be secured, the adsorption efficiency can be remarkably increased, and the adsorption performance can be improved.
- the free adsorbent (1a) can move freely. By restricting the movement of the free adsorbent to some extent, the agglomeration of the free adsorbent is suppressed.
- the adsorbed substance captured by the free adsorbent (1a) can be removed from the flowing free adsorbent (1a) if the conditions are selected, and the adsorbing sintered body (20) can be reused. That is, in order to remove the adsorbed substance, for example, a method can be selected in which the structure of the adsorbing sintered body (20) is heated within a range that can be maintained, and a good solvent for the adsorbed substance is added for extraction. Further, it is also possible to select a method of changing the liquid properties such as pH and salt concentration in the liquid phase by depressurization and in the liquid phase by accelerating the removal. Furthermore, it is also possible to use a combination of a plurality of these parallelizable methods.
- a metal such as silver, copper, or nickel, a metal oxide thereof, or a non-volatile acid or base agent is preliminarily powder-adsorbed. It can be supported on the material. Further, these can be directly supported on the adsorbing sintered body.
- the adsorption device of the present invention loads a single or a plurality of layers (20a, 20b) of the adsorption sintered body (20) into a container.
- the adsorption device (30) has excellent strength characteristics due to the rigid resin structure (2) and can maintain a certain shape and void (3) during transportation and use. ..
- the respective layers (20a, 20b) are not mixed.
- the method for producing an adsorbent sintered body of the present invention is a step of forming an adsorbent mixture by mixing at least one powder adsorbent raw material selected from powdered activated carbon, powdered activated clay and zeolite with a thermoplastic resin.
- Embodiments of the adsorption sintered body and the manufacturing method thereof according to the present invention will be described below in more detail with reference to FIGS. 1 to 13.
- the adsorbing sintered body (20) has a powder adsorbent (powder adsorbent) (1a, 1b) for adsorbing the substance to be treated in the fluid (7) and voids (cavities) (3) formed into a three-dimensional mesh.
- the formed resin structure (2) The substance to be treated is any component or substance contained in gas or liquid and capable of being adsorbed by the powder adsorbent (1a, 1b), for example, pigment component, odor component, harmful substance, pollutant substance, heavy metal, valuable metal, toxicity. Including components, radioactive components, water, oil, etc.
- the powder adsorbent (1a, 1b) in the present invention is at least one selected from powdered activated carbon, powdered activated clay and zeolite.
- the adsorbent sintered body (20), other adsorbent substances, such as acid clay, alumina, silica, silica gel, silica-alumina, permiculite, barlite, kaolin, diatomaceous earth. , Sepiolite, etc. may be included.
- a granular adsorbent such as granular activated carbon (adsorbent having an average diameter of 150 ⁇ m or more) within the range where the adsorbing capacity does not significantly decrease. May be included.
- Activated carbon used in the powder adsorbent (1a, 1b) for example, coconut shell, walnut shell, apricot shell, fruit shell, rice husk, soybean, coffee, nuts, pistachio, charcoal, large sawdust, sawdust, bark, ash, wood Formed by activating raw materials selected from materials, peat, grass peat, lignite, brown coal, bituminous coal, anthracite, tar, pitch, coke, coal, petroleum, waste tires, waste plastics, synthetic resins, fibers, construction waste materials, and sewage sludge. Adsorption performance is imparted by the numerous internal micropores.
- activation method for example, gas activation with water vapor, carbon dioxide, air and the like, and chemical activation with zinc chloride, phosphoric acid, sulfuric acid, calcium chloride, potassium dichromate, potassium permanganate, sodium hydroxide and the like are applied. it can.
- the average diameter of the powder adsorbent in the present invention is not particularly limited as long as the effects of the present invention can be achieved, but it is preferably less than 150 ⁇ m. That is, in the present specification, an adsorbent having an average diameter of less than 150 ⁇ m is preferably defined as a powder adsorbent. In addition, a “powder” adsorbent according to JIS K1474 and having a particle size display of less than 150 ⁇ m is also included in the powder adsorbent in the present invention. The "average diameter" in this specification is measured by the laser diffraction scattering method based on the Mie scattering theory.
- the average diameter of the adsorbent being less than 150 ⁇ m is a concept including adsorbents having any median diameter of less than 150 ⁇ m. That is, the value of the average diameter merely represents the intermediate value of the distribution range, and for example, the average diameter of the adsorbent being less than 150 ⁇ m does not mean that the adsorbent having a diameter of 150 ⁇ m or more is not included at all.
- the average diameter of the powder adsorbent is more preferably 1 ⁇ m or more and less than 150 ⁇ m, further preferably 5 ⁇ m or more and less than 150 ⁇ m, and particularly preferably 15 ⁇ m or more and 100 ⁇ m or less.
- the average diameter of the powder adsorbent (1a, 1b) contained in the adsorbent sintered body (20) set the average diameter of the powder adsorbent used during the production of the adsorbent sintered body (20) within the above numerical range. It can be adjusted. That is, the average diameter of the powder adsorbent used in the production can be the average diameter of the powder adsorbent (1a, 1b) contained in the adsorption sintered body (20).
- the average diameter of the powder adsorbent (1a, 1b) is too small, a large amount of fine powder adsorbent (1a, 1b) is mixed with the resin raw material of the resin structure (2) during production, and the resin structure (2) Strength may decrease. Further, the fine free adsorbent (1a) may be easily separated from the adsorption sintered body (20) together with the fluid (7) through the gap (4) between the resin structures (2). Further, the pressure loss may easily increase. If the average diameter is too large (for example, 150 ⁇ m or more), the adsorption area of the adsorbent tends to be small and the adsorption performance tends to decrease. Further, a sufficient amount of the free adsorbent (1a) cannot be accommodated in the void (3), which tends to make the construction of the adsorbing sintered body (20) difficult.
- FIG. 2a to 2e are electron micrograph images showing the raw materials of the powder adsorbents (1a, 1b) constituting the adsorption sintered body (20).
- FIG. 2a is a surface enlarged image of powdered activated carbon in which charcoal of coconut shell is activated by steam
- FIG. 2b is activated sawdust by a chemical (phosphoric acid)
- FIG. 2c is activated sawdust by a chemical (zinc chloride). (400 times) is shown.
- the powdered activated carbon is generally a lump, rod-shaped, or elongated plate-shaped raw material having a portion having a pointed portion
- the powder adsorbent (1a, 1b) has a tip with the tip of the resin structure (2) during floating ( It is locked in 2a) and the gap (4) to prevent the adsorption sintered body (20) from flowing out. Therefore, the powder adsorbent (1a, 1b) hardly moves between the plurality of voids (3).
- FIG. 2d is an enlarged image of each surface showing powdered activated clay as the raw material for the powder adsorbent (400 times) and FIG. 2e showing zeolite (2000 times).
- the adsorbing sintered body (20) preferably contains the powder adsorbent (1a, 1b) in an amount of 25 to 65 mass %, more preferably 30 to 60 mass %. If the content of the powder adsorbent (1a, 1b) is too low, the adsorption performance of the adsorption sintered body (20) tends to decrease. On the other hand, if the content of the powder adsorbent (1a, 1b) is too high, the adsorbability is high, but the resin ratio is small and the strength of the whole adsorbing sintered body (20) tends to decrease.
- the content of the powder adsorbent (1a, 1b) contained in the adsorbent sintered body (20) is used in the production of the adsorbent sintered body (20), in the adsorbent mixture before sintering.
- thermoplastic resin is used as the resin raw material of the resin structure (2).
- Preferred is at least one thermoplastic resin selected from polypropylene (PP), polyethylene (PE), polyvinylidene fluoride (PVDF), ethylene vinyl acetate (EVA) copolymer.
- the thermoplastic resin as the resin raw material of the resin structure (2) is used in the form of particulate solid, and may be in any form such as powder, granules and pellets.
- the particle size of the thermoplastic resin particles is preferably 10 to 200 ⁇ m. By setting the particle size of the thermoplastic resin within the above range, it becomes easy to form the voids (3) in a substantially uniform size without variation.
- a plasticizer such as adipic acid ester, a stabilizer such as an epoxy compound, an antioxidant such as a phenol compound, etc. may be added and used.
- the particle size of the thermoplastic resin in this specification is measured by an image analysis method taken by a CCD camera. Specifically, an image analysis type particle size distribution measurement device (VD-3000 manufactured by Jusco International, PITA-04 manufactured by Seishin Enterprise, etc.) was used to take an image of 1400-15,000 particles of thermoplastic resin randomly dispersed. The individual particle diameter D of each particle is calculated from the image obtained in this way, and the distribution of D is created, and then the median diameter is taken as the particle diameter of the thermoplastic resin. The individual particle size D can be calculated by the arithmetic mean (D1+D2)/2 of both, where the maximum width of the particles in the image is the maximum diameter D1 and the minimum width is the minimum diameter D2.
- FIG. 3 is an electron microscope showing an adsorption sintered body that does not include the powder adsorbent (1a, 1b), showing a state of a cross section cut by a cutter to form a resin structure by sintering only a resin raw material. It is an enlarged cross-sectional image (500 times).
- the white part in Fig. 3 shows the resin structure (2) having a continuous tuft-like and three-dimensional mesh structure without corners, and the black part inside thereof is the space where the free adsorbent (1a) is movably arranged. It shows (3).
- the powder adsorbents (1a, 1b) of the adsorbing sintered body (20) shown in FIG. 1 are free adsorbents (free adsorbents) housed in the voids (3) between the resin structures (2) in a floating manner.
- the floating means that the powder adsorbent is not fixed to the resin structure (2) or the plurality of powder adsorbents are not fixed to each other, but is moved, shaken, vibrated, rotated, expanded, contracted, or floated. It means that every movement is possible.
- the powder adsorbent (1a, 1b) of the adsorbing sintered body (20) shown in FIG. 1 further includes a fixed adsorbent (1b) carried by the resin structure (2).
- the fixed adsorbent (1b) is fixed to the surface (2a) of the resin structure (2), or at least a part thereof is embedded inside the resin structure (2). That is, the fixed adsorbent (1b) is the first fixed adsorbent (1b1) fixed to the surface (2a) of the resin structure (2), and a part (partial surface) inside the resin structure (2).
- a third fixed adsorbent (1b3) may be present.
- the first and second fixed adsorbents (1b1, 1b2) whose surfaces are exposed in the voids (3) contribute to the improvement of adsorption capacity and are fixed to the resin structure (2). Even if it has a small diameter, it will not flow out.
- the third fixed adsorbent (1b3) Since the third fixed adsorbent (1b3) is contained in the resin structure (2), it has a low adsorption capacity, but the powder adsorbent (1a, 1b) having a smaller diameter is added to the resin structure (2). Since it tends to be taken in, the fixed adsorbent (1b3) is also composed of a relatively small-diameter powder adsorbent, and blockages caused by a large amount of the small-diameter powder adsorbent (1a, 1b) remaining in the voids (3). It is possible to prevent and suppress an increase in pressure loss.
- the average diameter of the free adsorbent is usually larger than that of the powder adsorbent.
- the average diameter of the free adsorbent (1a) is preferably 5 ⁇ m or more and less than 150 ⁇ m, more preferably 15 ⁇ m or more and 100 ⁇ m or less.
- the average diameter of the fixed adsorbent (1b) is estimated to be about 1 to 50 ⁇ m.
- FIG. 2a powdered activated carbon obtained by activating coconut shell carbide with water vapor as a powder adsorbent raw material
- activated carbon obtained by activating sawdust with a chemical (phosphoric acid)
- Fig. 2c powder of activated carbon obtained by activating sawdust with a chemical (zinc chloride), respectively
- FIG. 2c powder of activated carbon obtained by activating sawdust with a chemical (zinc chloride), respectively
- An adsorption sintered body (20) comprising a free adsorbent (1a) of powdered activated carbon and a fixed adsorbent (1b) of powdered activated carbon fixed to the resin structure (2) can be confirmed.
- the black void (3) inside the resin skeleton constitutes a three-dimensional space in which the free adsorbent (1a) can freely move.
- Part of the fixed adsorbent (1b) is fixed to the surface (2a) of the resin structure (2), and part of the fixed adsorbent (1b) is fitted into the concave portion (2b) of the surface (2a). Can be retained in (2).
- the fixed adsorbent (1b) is provided in the resin structure (2), so that the adsorption area and the saturated adsorption capacity are increased to achieve high adsorption performance. Can be maintained.
- the resin structure (2) does not have an adsorbing ability unless a special functional substance is added, the fixed adsorbent (1b) should be carried on the surface (2a) or the inside of the resin structure (2). Thereby, the adsorption performance of the entire adsorption sintered body (20) can be significantly improved. Further, in the present invention, the fixed adsorbent (1b) does not flow out from the gap (4) between the resin structures (2).
- one or more free adsorbents (1a) are movably accommodated in the void (3).
- a plurality of adjacent free adsorbents (1a) do not stick to each other and at least some of the voids (3) are released.
- a channel (3a) (FIGS. 1 and 6) for the fluid (7) is formed between the adsorbents (1a) to enable adsorption of the entire surface of the free adsorbent (1a). Even if the free adsorbent (1a) once comes into contact with another free adsorbent (1a) or the resin structure (2), the flow path (3a) can be separated again by the flow of the fluid (7). ..
- FIGS. 4d and 4e show the surface of an adsorption sintered body (20) of the present invention produced by using activated clay (FIG. 2d) and zeolite (FIG. 2e) as powder adsorbent raw materials, taken by an electron microscope. An enlarged image (1500 times) is shown.
- a gray resin structure (2) having a smooth rounded surface (2a) with a black void (3) formed in a three-dimensional mesh shape, and a resin structure (2)
- a large diameter powdered activated clay and zeolite as a free adsorbent (1a) placed inside, and a smaller diameter powdered activated clay and zeolite as a fixed adsorbent (1b) fixed to the resin structure (2) With a large diameter powdered activated clay and zeolite as a free adsorbent (1a) placed inside, and a smaller diameter powdered activated clay and zeolite as a fixed adsorbent (1b) fixed to the resin structure (2), The sintered body for adsorption (20) provided with can be confirmed.
- a single-layer or plural-layer adsorbing sintered body (20) is loaded into a container as shown by reference numeral (81) in FIG. 10, for example. It is formed.
- the adsorption device of the present invention the resin structure with high mechanical strength (2), the adsorbent in the container is crushed during transportation and use. It is possible to maintain a certain shape and void (3) without causing problems such as breakage and increase in pressure loss.
- FIG. 5 shows a two-layer (20a, 20b) adsorption device (30).
- each layer (20a, 20b) of the adsorbing sintered body (20) having a cylindrical shape, a prismatic shape or a shape having an internal cavity is sequentially loaded, for example, even if they are loaded or laminated in series, each layer (20a , 20b) do not mix.
- FIG. 5 shows a two-layer (20a, 20b) adsorption device (30), an adsorption device in which three or more layers are stacked can be formed.
- powdered activated carbon as a raw material forming the powder adsorbent (1a, 1b) and a thermoplastic resin as a resin raw material forming the resin structure (2) are mixed to form an adsorbent mixture.
- the adsorbent mixture may contain other optional components.
- the content of the powdered activated carbon in the adsorbent mixture is preferably 25 to 65% by mass, more preferably 30 to 60% by mass.
- the content of the thermoplastic resin in the adsorbent mixture is preferably 35 to 75% by mass, more preferably 40 to 70% by mass.
- the average diameter of the powdered activated carbon is preferably less than 150 ⁇ m, more preferably 1 ⁇ m or more and less than 150 ⁇ m, still more preferably 5 ⁇ m or more and less than 150 ⁇ m, and particularly preferably 15 ⁇ m or more and 100 ⁇ m or less.
- the particle size of the thermoplastic resin is preferably 10 to 200 ⁇ m, more preferably 30 to 80 ⁇ m.
- the powdered activated carbon hardly crushes, expands or shrinks, and can form the powder adsorbent (1a, 1b) while maintaining the initial size.
- the thermoplastic resin is preferably at least one selected from polypropylene, polyethylene, polyvinylidene fluoride and ethylene vinyl acetate copolymer. In the present invention, it is not necessary to use a foaming agent.
- the powdered activated carbon preferably has a water content of 30% by mass or less, more preferably 15% by mass or less, more preferably 8% by mass or less, and particularly preferably substantially free of water.
- thermoplastic resin At least one kind of thermoplastic resin selected from polypropylene (PP), polyethylene (PE), polyvinylidene fluoride (PVDF) and ethylene vinyl acetate (EVA) copolymer, which are preferable for use in the present invention, is used. As long as a plastic resin is used, these generally have poor water absorbency, and it is not necessary to consider the influence of the water content in the method for producing the adsorbing sintered body (20) of the present invention.
- PP polypropylene
- PE polyethylene
- PVDF polyvinylidene fluoride
- EVA ethylene vinyl acetate
- the water content of the powder adsorbent is measured as follows. When measuring 1 to 3g of the powder adsorbent (w1) and drying at 110°C for a sufficient time until the mass change rate becomes 0.05%/min or less, and measuring the mass (w2) after drying, the water content ( %) becomes 100 x (w1-w2)/w2.
- the adsorbent mixture is introduced into a heating furnace to heat the adsorbent mixture at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the powdered activated carbon, for example, 90 to 180°C.
- a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the powdered activated carbon for example, 90 to 180°C.
- the contact portions of the plurality of thermoplastic resins are melted to form a joint, and the thermoplastic resins are fused to each other to form a skeleton surrounding the void (3).
- most of the powdered activated carbon does not adhere to the thermoplastic resin.
- it is cooled and solidified to form a three-dimensional mesh-like resin structure (2) in which the free adsorbent (1a) is movably accommodated in the void (3).
- the resin structure (2) may have a three-dimensional mesh-like three-dimensional mesh structure.
- a high-strength adsorbent sintered body (20) containing the free adsorbent (1a) made of powdered activated carbon is produced.
- FIG. 4a to FIG. 4c are examples of respective embodiments of the adsorbing sintered body (20) manufactured by using the activated carbon powder as a raw material by the manufacturing method of the present invention.
- the adsorption sintered body (20) of the present invention preferably by using a powdered activated carbon and a thermoplastic resin having a low water content as the resin raw material, it is possible to suppress the expansion of voids due to the severe evaporation and foaming of water, Voids (3) of appropriate size can be formed uniformly.
- a raw material with a low water content in the heating process, heat is uniformly transferred from the outside of the heating source to the inside of the heating source without being affected by moisture, and there is no temperature difference, and the entire thermoplastic resin is melted uniformly. it can.
- the particle size of the thermoplastic resin is preferably 10 to 200 ⁇ m, more preferably 30 to 80 ⁇ m.
- the powder activated carbon is used as the raw material in the embodiment of the production method
- the adsorption sintered body (20) can be produced by the same production method as described above even if powder activated clay or zeolite is used as the raw material (FIG. 4d). And FIG. 4e).
- the fluid (7) containing the substance to be treated When the fluid (7) containing the substance to be treated is passed through an adsorption device (not shown) loaded with a single layer of the sintered body for adsorption (20), the fluid (7) will be discharged between the resin structures (2). Is introduced into the space (3) through the space (4). At this time, since the free adsorbent (1a) is not bonded to the resin structure (2) and the plurality of free adsorbents (1a) are not fixed or bonded to each other, as shown in FIG. The flowing fluid (7) floats or oscillates in the void (3), and the entire surface of the free adsorbent (1a) comes into direct contact with the fluid (7), ensuring the substance to be treated in the fluid (7). It is captured and adsorbed on. Further, the flow path (3a) formed between the free adsorbents (1a) can increase the adsorption area and secure the flow of the fluid (7) to prevent the pressure loss of the adsorbing sintered body (20
- the fluid (7) also contacts the fixed adsorbent (1b) fixed to the surface (2a) or the inside of the resin structure (2), and the substance to be treated in the fluid (7) is adsorbed and adsorbed. It
- the fluid (7) treated in the void (3) passes through the void (4) and is continuously introduced into the other voids (3). The same adsorption process is repeated in a plurality of other voids (3), and finally the resin structure (2) is discharged to the outside of the adsorption device. Since the gap (4) is small, the floating free adsorbent (1a) is held in the gap (3) between the resin structures (2) and does not flow out of the adsorption sintered body (20).
- the adsorbing sintered body (20) of the present invention can contain a powder adsorbent having an excellent adsorbing performance at a high content rate, and can adsorb a substance to be treated with high efficiency. Since the adsorption sintered body (20) of the present invention has excellent strength, the container can be downsized when used in a container such as a cartridge in applications such as a filter. The miniaturization can be achieved, and the transportability and storability can be made extremely excellent.
- the adsorption sintered body (20) of the present invention suppresses a decrease in adsorption performance due to an increase in pressure loss, and the adsorption performance can be maintained for a long period of time while maintaining a predetermined processing amount, so that the running cost can be reduced.
- the adsorbed sintered body (20) of the present invention can be integrally molded into a desired shape and size by using powdered activated carbon having excellent adsorption performance as a sintered body, and various types of continuous adsorption treatments are possible. Further, since a plurality of layers having different adsorption characteristics can be loaded in the container depending on the application, an adsorption device having multiple functions can be provided.
- the adsorption sintered body (20) of the present invention can also be used for batch type (batch type) adsorption treatment.
- the adsorbing sintered body (20) of the present invention has good handleability.
- the activated carbon of coconut shell was activated with steam to obtain 0.109 parts by mass of activated carbon powder (FIG. 2a) having an average particle diameter of about 30 ⁇ m as a powder body (69) (Comparative Example 1).
- 2.109 parts by mass of powdered activated carbon obtained by classifying 32 ⁇ m or less of powdered activated carbon (Fig. 2a) obtained by activating the charcoal of coconut shells with water vapor and having an average particle size of about 30 ⁇ m by a vibration classifier (manufactured by Fritsch Co.) (69) was obtained (Comparative Example 1′).
- 0.109 parts by mass of activated carbon powder FIG.
- Example 1 to 4 A frit (filter for preventing powder outflow) (62a) is placed in each syringe (61) having a volume of about 3 ml, and the adsorbing sintered bodies (20) of Examples 1 to 4 are loaded thereon, and further.
- the frit (62b) was arranged to form the pressure loss test apparatus (60) of FIG.
- the differential pressure between the adsorbing sintered bodies (20) when air adjusted to 0.2 L/min by the flow meter (64) is passed through the adsorbing sintered bodies (20) is a pressure gauge (Keyence AP- 53A) (63) for each of Examples 1 to 4.
- Comparative Examples 1 and 2 filled with powdered activated carbon are 50 kPa or more. Comparative Examples 1'and 2'in which powdered activated carbon of 32 ⁇ m or less was classified and removed also showed a high differential pressure value of 30 kPa or more. Comparative Examples 1 and 2 were densely packed with powdered activated carbon containing fine powder of 32 ⁇ m or less, and Comparative Examples 1′ and 2′ were also densely packed with powdered activated carbon, and the voids between the powders were small, so There was a pressure loss.
- the adsorbing sintered bodies (20) of Examples 1 and 2 according to the present invention each contained 10 kPa of the resin structure (2) in addition to the same amount of powdered activated carbon as that of the comparative example.
- the following low differential pressure values were shown.
- Comparative Examples 3 and 4 filled with the powdered activated clay and the powdered body (69) of zeolite showed high differential pressure values of 29 kPa and 97 kPa, respectively.
- fine powder was packed at a high density, and voids between the powders were small, so that the pressure loss was high.
- the adsorbing sintered bodies (20) according to the present invention of Examples 3 and 4 include the resin structure (2) in addition to the same amount of powdered activated clay and zeolite as in Comparative Examples 3 and 4. None of them showed a low differential pressure value of 10 kPa or less. Therefore, in Examples 1 to 4 of the present invention, it was confirmed that the low pressure loss treatment was realized. Further, the adsorbed sintered bodies (20) of Examples 1 to 4 were also excellent in strength.
- Granules (89) (Comparative Example 5) were obtained by mixing 0.076 parts by mass of granular activated carbon having an average diameter of about 800 ⁇ m in which charcoal of coconut shell was activated with steam and 0.177 parts by mass of polyethylene beads having a diameter of 100 ⁇ m.
- a large-diameter granular activated carbon having a particle size of about 800 ⁇ m it is not possible to form the adsorbing sintered body of the present invention in which the activated carbon is movably arranged in the voids between the resin structures, and the number of particles is extremely smaller than that of the powder.
- FIG. 11a shows the test results of Example 5 and Comparative Example 5
- FIG. 11b shows the test results of Example 6 and Comparative Example 6, with the horizontal axis indicating time [minutes]. ]
- the vertical axis represents the residual concentration of methylene blue [mg/l].
- the amount was about 500 mg/l, whereas in Example 6, the amount was decreased to 300 mg/l or less.
- FIG. 13 shows the test results of Example 5 and Comparative Examples 7 and 8, with the horizontal axis representing time [minutes] and the vertical axis representing cyclohexane concentration [ppm].
- Comparative Examples 7 and 8 cyclohexane passed through from the first 10 minutes, whereas in Example 5, cyclohexane did not pass through even after 60 minutes and adsorption was completely maintained.
- the odor of cyclohexane as the outlet gas was felt from the first 10 minutes, whereas in Example 5, no odor was felt. Therefore, it was confirmed that Example 5 of the present invention containing 30% by mass of the powder adsorbent (1a, 1b) was excellent in gas adsorption performance, particularly in deodorizing property and harmful gas removing property.
- the reason for using the powdered activated carbon of sawdust is that, in Examples 1 to 6, the strength of the sawdust is relatively weaker than that of the other raw materials, and if high sinterability and high strength can be confirmed with the powdered sawdust powder, other coconut shells This is because it can be predicted that the powdered activated carbon, the powdered activated clay, and the zeolite will naturally provide sufficient sinterability and strength.
- Example 6 30% by mass (Example 6), 40% by mass (Example 2), 50% by mass (Example 7) and 60% by mass (implementation) of the powder adsorbent (1a, 1b) were used.
- Example 8) The adsorbing sintered compacts (20) contained could be taken out from the heating furnace in a state where the shape was maintained, and the shape was not deformed even when strongly pressed, and sufficient strength could be confirmed.
- Example 9 Into a 100 ml Erlenmeyer flask, put the adsorption sintered body (20) of Example 9, add 50 ml of caffeine aqueous solution with a concentration of 100 mg/l, set it on a shaker with a rubber stopper until the adsorption reaches almost equilibrium. It was shaken at room temperature (20° C.) and 200 rpm. The liquid after shaking was collected and caffeine was separated using a high performance liquid chromatograph (Chromaster (registered trademark) manufactured by Hitachi High-Tech Science Co., Ltd.), and the caffeine residual concentration for Example 9 was determined from the absorbance at a wavelength of 280 nm. It was measured and the adsorption removal rate of caffeine was obtained.
- Chromaster registered trademark manufactured by Hitachi High-Tech Science Co., Ltd.
- Example 9 [4-3] Test Results and Discussion
- the adsorption removal rate of caffeine was equal to 97%. Therefore, it was confirmed that the adsorption performance of the powder adsorbent (1a, 1b) was maintained at a high level even in the adsorption sintered body (20). Further, the adsorbed sintered body (20) of Example 9 was also excellent in strength.
- Example 10 A 3 L odor bag made of polyester (manufactured by Omi Odo Air Service Co., Ltd.) was charged with the adsorbing sintered body (20) of Example 10 and a piece of filter paper of about 3 cm square, and 3 L of clean air was added and sealed with a rubber stopper. A 3% solution of dimethyl sulfide (hereinafter referred to as DMS) was injected into an odor bag with a microsyringe so that the internal DMS concentration was 200 mg/m 3 , soaked into a piece of filter paper, and the injection port was sealed with cellophane tape.
- DMS dimethyl sulfide
- the DMS was vaporized inside the odor bag, and allowed to stand at room temperature (20°C) until the adsorption reached almost equilibrium.
- the rubber stopper was opened and the DMS concentration in the odor bag was measured using Gas Detector Tube No. 77 manufactured by Gastec Co., Ltd. to determine the adsorption removal rate of DMS.
- Example 10 The same test as in Example 10 was conducted except that 0.055 parts by mass of the drug-supported zeolite pulverized to an average particle size of about 35 ⁇ m was used instead of the adsorption sintered body (20), and the adsorption removal rate of DMS was performed. I asked.
- the adsorbing sintered body (20) of the present invention has high strength and exhibits excellent adsorption performance such as decolorization and deodorization even in low pressure loss in liquid and gas. I was able to confirm that.
- the adsorption sintered body of the present invention a method for producing the same, and an adsorption apparatus are used for air purification, dioxin removal, flue gas desulfurization and denitration, factory waste gas and waste liquid treatment, advanced treatment of purified water, purification of chemicals, food and beverages. It can be used for various purposes such as decolorization, household water purifier, air purifier, refrigerator deodorant, gas mask, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Thermal Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Treating Waste Gases (AREA)
- Water Treatment By Sorption (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
[1]粉末吸着材(1a,1b)と、
空隙(3)が三次元網目状に形成された樹脂構造体(2)とを備え、
粉末吸着材(1a,1b)は、樹脂構造体(2)間の空隙(3)に遊動可能に収容された遊離吸着材(1a)と、樹脂構造体(2)の表面(2a)に固着され及び/又は樹脂構造体(2)の内部に少なくともその一部が埋設された固定吸着材(1b)とを含み、
粉末吸着材(1a,1b)は、粉末活性炭、粉末活性白土及びゼオライトから選ばれる少なくとも1種であることを特徴とする吸着用焼結体。
[2]粉末吸着材(1a,1b)の平均径は、150μm未満である、[1]に記載の吸着用焼結体。
[3]粉末吸着材(1a,1b)を25~65質量%含有する、[1]又は[2]に記載の吸着用焼結体。
[4]樹脂構造体(2)の樹脂原料は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)及びエチレン酢酸ビニル(EVA)共重合体から選ばれる少なくとも1種の熱可塑性樹脂である、[1]~[3]の何れかに記載の吸着用焼結体。
[5]熱可塑性樹脂の粒径は、10~200μmである、[1]~[4]の何れかに記載の吸着用焼結体。
[6]複数の遊離吸着材(1a)は、少なくとも一部の空隙(3)に遊動可能に収容され、隣接する複数の遊離吸着材(1a)は、互いに固着せずに、少なくとも一部の空隙(3)の遊離吸着材(1a)間に流体(7)の流路(3a)を形成する、[1]~[5]の何れかに記載の吸着用焼結体。
[7]粉末吸着材(1a,1b)は、尖形部分を有する粉末活性炭である、[1]~[6]の何れかに記載の吸着用焼結体。
[8]流体(7)中の被処理物質の吸着用である、[1]~[7]の何れかに記載の吸着用焼結体。
[9][1]~[8]の何れかに記載の吸着用焼結体(20)の単一又は複数の層(20a,20b)を容器に装填したことを特徴とする吸着装置。
[10]粉末活性炭、粉末活性白土及びゼオライトから選ばれる少なくとも1種である粉末吸着材と、熱可塑性樹脂とを混合して、吸着材混合物を形成する工程と、
熱可塑性樹脂の軟化点より高くかつ粉末吸着材原料の融点より低い温度で吸着材混合物を加熱する工程と、
複数の熱可塑性樹脂を融着しかつ冷却固化して、空隙(3)が三次元網目状に形成され、かつ空隙(3)に遊離吸着材(1a)が遊動可能に収容された樹脂構造体(2)を形成する工程とを含むことを特徴とする吸着用焼結体の製造方法。
[11]粉末吸着材の平均径は、150μm未満である、[10]に記載の製造方法。
[12]吸着材混合物中の粉末吸着材の含有率が25~65質量%である、[10]または[11]に記載の製造方法。
[13]熱可塑性樹脂は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)及びエチレン酢酸ビニル(EVA)共重合体のから選ばれる少なくとも1種である、[10]~[12]の何れかに記載の製造方法。
[14]熱可塑性樹脂の粒径は、10~200μmである、[10]~[13]の何れかに記載の製造方法。
最初に、粉末吸着材(1a,1b)を構成する原料として粉末活性炭(粉末吸着材原料)と、樹脂構造体(2)を構成する樹脂原料としての熱可塑性樹脂とを混合し、吸着材混合物を形成する。吸着材混合物には、必要により、その他の任意成分が含まれていてもよい。吸着材混合物中の粉末活性炭の含有率は25~65質量%が好ましく、30~60質量%がより好ましい。吸着材混合物中の熱可塑性樹脂の含有率は35~75質量%が好ましく、40~70質量%がより好ましい。粉末活性炭の平均径は150μm未満が好ましく、より好ましくは1μm以上、150μm未満であり、さらに好ましくは5μm以上、150μm未満であり、特に好ましくは15μm以上、100μm以下である。熱可塑性樹脂の粒径は10~200μmが好ましく、30~80μmがより好ましい。粉末活性炭は、破砕、膨張、収縮することが殆ど無く、当初の大きさを維持しながら粉末吸着材(1a,1b)を形成できる。粉末吸着材原料と製造後の粉末吸着材(1a,1b)との粉末径がほぼ等しいことは、例えば、等倍率(400倍)の画像を示す図2aと図4a、図2bと図4bからも見て取れる。熱可塑性樹脂は、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン及びエチレン酢酸ビニル共重合体から選ばれる少なくとも1種が好ましい。本発明において、発泡剤を使用する必要はない。粉末活性炭の含水率は、好ましくは30質量%以下、より好ましくは15質量%以下、より好ましくは8質量%以下、特に好ましくは実質的に水分を含まないものが好ましい。粉末活性炭の含水率が低いと、後述の加熱工程において、粉末活性炭付近の温度が低下せずエネルギ消費を抑え、より短時間でかつ安定的に吸着用焼結体を形成できる。なお熱可塑性樹脂については、本発明に使用するのに好ましいポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)、エチレン酢酸ビニル(EVA)共重合体から選択される少なくとも1種の熱可塑性樹脂を使用する限り、これらは一般に水の吸収性に乏しく、本発明の吸着用焼結体(20)の製造方法において含水率の影響を考慮する必要はない。
本発明の吸着用焼結体(20)は、圧力損失の上昇による吸着性能の低下が抑制され、所定処理量を保持しつつ吸着性能を長期間持続可能であるため、ランニングコストの低減を図ることができる。
本発明の吸着用焼結体(20)は、吸着性能に優れる粉末活性炭を焼結体として所望の形態及び大きさに一体成形でき、様々な形態の連続式の吸着処理が可能となる。更に、容器中に異なる吸着特性の複数の層を用途に応じて装填することもできるため、多機能を具備する吸着装置を提供できる。
また本発明の吸着用焼結体(20)は、バッチ式(回分式)の吸着処理にも使用し得る。粉末吸着材を使用したバッチ式の吸着処理では、粉末吸着材が空気中に飛散し易いため取扱い性が低く、局所排気設備の設置等により、粉塵による作業環境悪化を防ぐ対策が必要となる場合があるが、本発明の吸着用焼結体(20)は取扱い性も良好である。
以下、本発明による吸着用焼結体(20)の実施例を説明する。
本発明の吸着用焼結体(20)(実施例1~4)の圧力損失について、粉末体(69)(比較例1~4並びに比較例1’及び2’)と共に下記試験を行った。
粉末吸着材(1a,1b)の原料としてヤシ殻の炭化物を水蒸気で賦活した平均粒子径約30μmの粉末活性炭(図2a)0.109質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.164質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を40質量%含有する本発明の吸着用焼結体(20)(図4a)(実施例1)を得た。同様に、粉末吸着材(1a,1b)の原料として大鋸屑を薬品(リン酸)で賦活した平均粒子径約42μmの粉末活性炭(図2b)0.109質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.109質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を40質量%含有する本発明の吸着用焼結体(20)(図4b)(実施例2)を得た。実施例1及び2に使用した原料の粉末活性炭の含水率は何れも約7質量%であった。粉末吸着材(1a,1b)の原料として平均粒子径約11μmの粉末活性白土(図2d)0.139質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.139質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を50質量%含有する本発明の吸着用焼結体(20)(図4d)(実施例3)を得た。粉末吸着材(1a,1b)の原料として平均粒子径約35μmのゼオライト(図2e)0.139質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.139質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を50質量%含有する本発明の吸着用焼結体(20)(図4d)(実施例4)を得た。実施例3及び4に使用した原料の粉末活性白土及びゼオライトの含水率は何れも約7質量%であった。
<実施例1~4>
容積約3mlの各シリンジ(61)内にフリット(粉体流出防止用フィルタ)(62a)を配置し、その上に実施例1~4の吸着用焼結体(20)を各々装填し、更にフリット(62b)を配置して、図7の圧力損失用試験装置(60)とした。流量計(64)で0.2L/分に調整した空気を吸着用焼結体(20)に流したときの吸着用焼結体(20)間の差圧を圧力計(キーエンス社製 AP-53A)(63)により各実施例1~4について測定した。
<比較例1~4並びに比較例1’及び2’>
吸着用焼結体(20)の代わりに、比較例1~4並びに比較例1’及び2’の各粉末体(69)をシリンジ(61)に充填した以外は、前記実施例同様な試験方法で各比較例の差圧を測定した。
横軸に試験対象物名、縦軸に差圧[kPa]を示す図8の圧力損失試験結果の通り、粉末活性炭を充填した比較例1及び2は50kPa以上の高差圧値を示し、更に32μm以下の粉末活性炭を分級除去した比較例1’及び2’も30kPa以上の高差圧値を示した。比較例1及び2は、32μm以下の微細粉末を含む粉末活性炭が高密度で充填され、比較例1’及び2’も粉末活性炭が高密度で充填されて、粉末間の空隙が小さいため、高圧力損失であった。これに対し、実施例1及び2の本発明による吸着用焼結体(20)は、比較例と同量の粉末活性炭に加えて樹脂構造体(2)を含むにも関わらず、何れも10kPa以下の低差圧値を示した。粉末活性白土及びゼオライトの粉末体(69)を充填した比較例3及び4は、それぞれ29kPa及び97kPaの高差圧値を示した。比較例3及び4は、微細な粉末が高密度で充填されて、粉末間の空隙が小さいため高圧力損失であった。これに対し、実施例3及び4の本発明による吸着用焼結体(20)は、比較例3及び4と同量の粉末活性白土及びゼオライトに加え樹脂構造体(2)を含むにも関わらず、何れも10kPa以下の低差圧値を示した。よって、本発明の実施例1~4では、低圧力損失処理の実現を確認できた。また、実施例1~4の吸着用焼結体(20)は強度にも優れていた。
本発明の吸着用焼結体(20)(実施例5及び6)の通液吸着性能について、粒状活性炭を使用した粒状体(89)(比較例5及び6)と共に下記試験を行った。
粉末吸着材(1a,1b)の原料としてヤシ殻の炭化物を水蒸気で賦活した平均粒子径約30μmの粉末活性炭(図2a)0.076質量部と樹脂構造体(2)の樹脂原料としてのポリエチレン粉末0.177質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を30質量%含有する本発明による高強度の吸着用焼結体(20)(図4a)(実施例5)を得た。同様に、粉末吸着材(1a,1b)の構成原料として大鋸屑を薬品(リン酸)で賦活した平均粒子径約42μmの粉末活性炭(図2b)0.076質量部と樹脂構造体(2)の樹脂原料としてのポリエチレン粉末0.177質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を30質量%含有する本発明による高強度の吸着用焼結体(20)(図4b)(実施例6)を得た。実施例5及び6に使用する粉末活性炭の含水率は約8質量%であった。
<実施例5及び6>
通液吸着試験装置(80)により、実施例5及び6の吸着用焼結体(20)を各々装填した内径8.6mmの容器(81)に対し、容器(82)に貯めた濃度1200mg/lのメチレンブルー溶液20mlをチューブポンプ(83)により3.2ml/分で送液し循環させた(図10)。一定時間毎に0.1mlずつ循環液を採取し100倍に希釈した後、分光光度計(島津製作所製 UV-1700)で波長665nmの吸光度を測定し、実施例5及び6について循環液のメチレンブルー残留濃度を求めた。
吸着用焼結体(20)の代わりに、各容器(81)に充填した比較例5及び6の粒状体(89)を使用した以外は、前記実施例5及び6と同様な試験方法で比較例5及び6についてメチレンブルー残留濃度を求めた。
図11aは、実施例5及び比較例5の試験結果を示し、図11bは、実施例6及び比較例6の試験結果を示し、それぞれ横軸に時間[分]、縦軸にメチレンブルー残留濃度[mg/l]を表す。例えば10分後のメチレンブルー残留濃度を比較すると、図11aより、比較例5では約780mg/lであるのに対し、実施例5では約300mg/lまで減少した。また、図11bより、比較例6では約500mg/lであるのに対し、実施例6では300mg/l以下まで減少した。従って、粒径800μmの粒状活性炭のみを含む比較例5及び6に比べ、粉末吸着材(1a,1b)を30質量%含む本発明の実施例5及び6では、液体の吸着性能、特に脱色特性に優れていることを確認できた。また、実施例5及び6の吸着用焼結体(20)は強度にも優れていた。
本発明の吸着用焼結体(20)(実施例5)の通気吸着性能について、粒状活性炭を使用した粒状体(99)(比較例7及び8)と共に下記試験を行った。
実施例5の吸着用焼結体(20)は前記同様の方法により得られた。ヤシ殻の炭化物を水蒸気で賦活した平均径2000μm程度の粒状活性炭0.076質量部と直径100μmポリエチレンビーズ0.177質量部とを混合して粒状体(99)(比較例7)を得た。粒径2000μm程度の大径の粒状活性炭では、樹脂構造体間の空隙に遊動可能に活性炭を配置した本発明の吸着用焼結体を形成できず、また、粉末に比べ粒数が極めて少ないため、活性炭が存在しない空隙も多数形成されるため、可能な限り実施例5同様の条件にすべくポリエチレン粉末と同量のポリエチレンビーズを使用した。ヤシ殻の炭化物を水蒸気で賦活した平均径2000μm程度の粒状活性炭0.076質量部のみの粒状体(99)(比較例8)を得た。尚、平均径2000μmは、気相処理で多用される粒状活性炭の粒径に相当する。
<実施例5>
図12に示す通気吸着試験装置(90)により、シクロヘキサンを含浸させた供給源を内部に配置してシクロヘキサンガス濃度を約100ppmに調製したガス捕集袋(92)から、ダイヤフラムポンプ(93)によって、吸着用焼結体(20)(実施例5)を装填した内径8.6mmの容器(91)に対し、シクロヘキサンガスを0.2ml/分で供給した。吸着用焼結体(20)通過後の出口ガスを10分間で2L採取し、ガス検知管(ガステック社 102L)により10分毎のシクロヘキサン濃度を測定した。また、官能試験により出口ガスの臭気を評価した。
吸着用焼結体(20)の代わりに、容器(81)に充填した比較例7及び8の粒状体(99)をそれぞれ使用した以外は、実施例5同様な試験方法でシクロヘキサン濃度を測定し、官能試験をした。
図13は、実施例5並びに比較例7及び8の試験結果を示し、横軸に時間[分]、縦軸にシクロヘキサン濃度[ppm]を表す。比較例7及び8では最初の10分からシクロヘキサンが破過するのに対し、実施例5では60分でもシクロヘキサンが破過せず完全に吸着を持続した。また、官能試験の結果、比較例7及び8では、最初の10分から出口ガスのシクロヘキサン臭気を感じたのに対し、実施例5では臭気を全く感じなかった。従って、粉末吸着材(1a,1b)を30質量%含む本発明の実施例5では、気体の吸着性能、特に脱臭性及び有害ガス除去特性に優れていることを確認できた。
粉末吸着材(1a,1b)を含む吸着用焼結体(20)の焼結性及び強度を確認した。
[4-1]吸着用焼結体(20)製造及び試験方法
吸着用焼結体(20)が0.273gとなるように、粉末吸着材(1a,1b)の構成原料として大鋸屑を薬品(リン酸)で賦活した平均粒子径約42μmの粉末活性炭(図2b)と、樹脂構造体(2)を形成するポリエチレン粉末とを混合し約125℃で加熱焼結して、粉末吸着材(1a,1b)をそれぞれ50及び60質量%含有する吸着用焼結体(20)(実施例7及び8)を得た。大鋸屑の粉末活性炭を使用する理由は、前記実施例1~6では、他の原料に比べ大鋸屑が比較的強度が弱く、大鋸屑粉末活性炭で高焼結性及び高強度を確認できれば、他のヤシ殻粉末活性炭、粉末活性白土及びゼオライトでも当然に十分な焼結性及び強度が得られると予測できるからである。
実施例7~8について、外観目視により焼結性、及び触手により強度をそれぞれ確認した。
粉末吸着材(1a,1b)を30質量%(実施例6)、40質量%(実施例2)、50質量%(実施例7)及び60質量%(実施例8)含有する吸着用焼結体(20)は、いずれも加熱炉から形状を維持した状態で取り出すことができ、強く押圧しても形状が変形せず十分な強度を確認できた。
本発明の吸着用焼結体(20)の回分式液相吸着性能について、粉末活性白土(図2d)と共に下記試験を行った。
粉末吸着材(1a,1b)の原料として平均粒子径約11μmの粉末活性白土(図2d)0.197質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.131質量部とを混合し、約125℃で加熱焼結して、粉末吸着材(1a,1b)を60質量%含有する本発明の吸着用焼結体(20)(実施例9)を得た。使用した粉末活性白土の含水率は約7質量%であった。
<実施例9>
100ml三角フラスコに実施例9の吸着用焼結体(20)を入れ、濃度100mg/lのカフェイン水溶液50mlを加え、ゴム栓をして振とう機にセットし、吸着がほぼ平衡に達するまで常温(20℃)、200rpmで振とうした。振とう後の液を採取し、高速液体クロマトグラフ装置(日立ハイテクサイエンス社製 Chromaster(登録商標))を用いてカフェインを分離し、波長280nmの吸光度より実施例9についてのカフェイン残留濃度を測定し、カフェインの吸着除去率を求めた。
吸着用焼結体(20)の代わりに、粉末活性白土(図2d)0.197質量部を使用した以外は、前記実施例9と同様な試験方法でカフェインの吸着除去率を求めた。
実施例9、比較例9ともにカフェインの吸着除去率は97%と等しい値を示した。したがって、粉末吸着材(1a,1b)の吸着性能は吸着用焼結体(20)中にあっても高度に維持されていることを確認できた。また、実施例9の吸着用焼結体(20)は強度にも優れていた。
本発明の吸着用焼結体(20)の回分式気相吸着性能について、薬品担持ゼオライトと共に下記試験を行った。
粉末吸着材(1a,1b)の原料として、平均粒子径約35μmに粉砕した薬品担持ゼオライト0.055質量部と樹脂構造体(2)の樹脂原料としてポリエチレン粉末0.055質量部とを混合し約125℃で加熱焼結して、粉末吸着材(1a,1b)を50質量%含有する本発明による高強度の吸着用焼結体(20)(実施例10)を得た。使用した薬品担持ゼオライトの含水率は約7質量%であった。
<実施例10>
ポリエステル製3Lにおい袋(近江オドエアーサービス社製)に実施例10の吸着用焼結体(20)と約3cm四方のろ紙片を入れ、清浄空気を3L加えてゴム栓で封止した。ジメチルスルフィド(以下DMSと称する)3%溶液を、内部のDMS濃度が200mg/m3となるようにマイクロシリンジでにおい袋に注入してろ紙片にしみこませ、注入口をセロハンテープで封止した。DMSをにおい袋内部で気化させ、吸着がほぼ平衡に達するまで常温(20℃)で静置した。ゴム栓を開けてにおい袋中のDMS濃度をガステック社製ガス検知管No.77を用いて測定し、DMSの吸着除去率を求めた。
吸着用焼結体(20)の代わりに、平均粒子径約35μmに粉砕した薬品担持ゼオライト0.055質量部を使用した以外は、前記実施例10と同様な試験を行い、DMSの吸着除去率を求めた。
実施例10のDMSの吸着除去率は96%、比較例10のDMSの吸着除去率は97%とほぼ等しい値を示した。したがって、粉末吸着材(1a,1b)の吸着性能は吸着用焼結体(20)中にあっても高度に維持されていることを確認できた。また、実施例10の吸着用焼結体(20)は強度にも優れていた。
前記実施例より、本発明の吸着用焼結体(20)は、高強度であると共に、液体及び気体において低圧力損失でも脱色及び脱臭等の優れた吸着性能を示すことを確認できた。
Claims (14)
- 粉末吸着材と、
空隙が三次元網目状に形成された樹脂構造体とを備え、
粉末吸着材は、樹脂構造体間の空隙に遊動可能に収容された遊離吸着材と、樹脂構造体の表面に固着され及び/又は樹脂構造体の内部に少なくともその一部が埋設された固定吸着材とを含み、
粉末吸着材は、粉末活性炭、粉末活性白土及びゼオライトから選ばれる少なくとも1種であることを特徴とする吸着用焼結体。 - 粉末吸着材の平均径は、150μm未満である、請求項1に記載の吸着用焼結体。
- 粉末吸着材を25~65質量%含有する、請求項1又は2に記載の吸着用焼結体。
- 樹脂構造体の樹脂原料は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)及びエチレン酢酸ビニル(EVA)共重合体から選ばれる少なくとも1種の熱可塑性樹脂である、請求項1~3の何れか1項に記載の吸着用焼結体。
- 熱可塑性樹脂の粒径は、10~200μmである、請求項1~4の何れか1項に記載の吸着用焼結体。
- 複数の遊離吸着材は、少なくとも一部の空隙に遊動可能に収容され、隣接する複数の遊離吸着材は、互いに固着せずに、少なくとも一部の空隙の遊離吸着材間に流体の流路を形成する、請求項1~5の何れか1項に記載の吸着用焼結体。
- 粉末吸着材は、尖形部分を有する粉末活性炭である、請求項1~6の何れか1項に記載の吸着用焼結体。
- 流体中の被処理物質の吸着用である、請求項1~7の何れか1項に記載の吸着用焼結体。
- 請求項1~8の何れか1項に記載の吸着用焼結体の単一又は複数の層を容器に装填したことを特徴とする吸着装置。
- 粉末活性炭、粉末活性白土及びゼオライトから選ばれる少なくとも1種である粉末吸着材と、熱可塑性樹脂とを混合して、吸着材混合物を形成する工程と、
熱可塑性樹脂の軟化点より高くかつ粉末吸着材原料の融点より低い温度で吸着材混合物を加熱する工程と、
複数の熱可塑性樹脂を融着しかつ冷却固化して、空隙が三次元網目状に形成され、かつ空隙に遊離吸着材が遊動可能に収容された樹脂構造体を形成する工程とを含むことを特徴とする吸着用焼結体の製造方法。 - 粉末吸着材の平均径は、150μm未満である、請求項10に記載の製造方法。
- 吸着材混合物中の粉末吸着材の含有率が25~65質量%である、請求項10または11に記載の製造方法。
- 熱可塑性樹脂は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)及びエチレン酢酸ビニル(EVA)共重合体のから選ばれる少なくとも1種である、請求項10~12の何れか1項に記載の製造方法。
- 熱可塑性樹脂の粒径は、10~200μmである、請求項10~13の何れか1項に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020559952A JP7262485B2 (ja) | 2018-12-05 | 2019-12-04 | 吸着用焼結体及びその製造方法並びに吸着装置 |
KR1020217020901A KR20210096665A (ko) | 2018-12-05 | 2019-12-04 | 흡착용 소결체 및 이의 제조방법 및 흡착 장치 |
EP19892655.2A EP3892368A4 (en) | 2018-12-05 | 2019-12-04 | SINTERED BODY FOR ADSORPTION, MANUFACTURING METHOD THEREOF AND ADSORPTION DEVICE |
CN201980079920.8A CN113423500A (zh) | 2018-12-05 | 2019-12-04 | 吸附用烧结体及其制造方法以及吸附装置 |
US17/337,708 US20210291142A1 (en) | 2018-12-05 | 2021-06-03 | Sintered body for adsorption, production method therefor, and adsorption device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227831 | 2018-12-05 | ||
JP2018-227831 | 2018-12-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/337,708 Continuation US20210291142A1 (en) | 2018-12-05 | 2021-06-03 | Sintered body for adsorption, production method therefor, and adsorption device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116491A1 true WO2020116491A1 (ja) | 2020-06-11 |
Family
ID=70974625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/047346 WO2020116491A1 (ja) | 2018-12-05 | 2019-12-04 | 吸着用焼結体及びその製造方法並びに吸着装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210291142A1 (ja) |
EP (1) | EP3892368A4 (ja) |
JP (1) | JP7262485B2 (ja) |
KR (1) | KR20210096665A (ja) |
CN (1) | CN113423500A (ja) |
WO (1) | WO2020116491A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114837656A (zh) * | 2022-05-23 | 2022-08-02 | 河南省科学院同位素研究所有限责任公司 | 密度可控同位素载体制备方法 |
CN115300988B (zh) * | 2022-10-11 | 2023-01-17 | 深圳逗点生物技术有限公司 | 多功能滤芯及其制备方法 |
CN116764449B (zh) * | 2023-08-21 | 2023-11-17 | 西安金沃泰环保科技有限公司 | 一种用于苯系废气处理的树脂材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008500165A (ja) * | 2004-05-26 | 2008-01-10 | スリーエム イノベーティブ プロパティーズ カンパニー | 気体浸透性ポリマーフィルタおよびその作製方法 |
JP2010254841A (ja) * | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | 金属吸着性焼結多孔体およびその製造方法 |
JP2012508645A (ja) | 2008-11-14 | 2012-04-12 | ブリュッヒャー ゲーエムベーハー | 吸着性成形品及びその使用 |
JP2014104448A (ja) | 2012-11-29 | 2014-06-09 | Kurita Water Ind Ltd | 活性炭カートリッジ及びガス浄化装置 |
WO2018221502A1 (ja) * | 2017-06-02 | 2018-12-06 | 日本フイルコン株式会社 | 吸着材集合体及びその製法並びに吸着法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01301732A (ja) | 1988-05-31 | 1989-12-05 | Sumitomo Bakelite Co Ltd | 高機能性成形品及びその製造方法 |
DE10213016B4 (de) * | 2002-03-22 | 2006-08-17 | Helsa-Automotive Gmbh & Co. Kg | Mechanisch stabiler, poröser Aktivkohleformkörper, Verfahren zu dessen Herstellung und dessen Verwendung |
WO2005049198A1 (en) * | 2003-11-10 | 2005-06-02 | Nexttec Gmbh | A composite polymer-coated sorbent with a bidisperse pore size distribution for the simultaneous separation and desalting of biopolymers |
JP2007237037A (ja) * | 2006-03-07 | 2007-09-20 | Matsushita Electric Ind Co Ltd | ケミカルフィルタ |
DE112007001286T5 (de) * | 2006-05-25 | 2009-04-02 | GM Global Technology Operations, Inc., Detroit | Kohlenstoff und Kohlenstoffverbundstoffe mit hochgeordneten Poren mit Mesogrösse |
FR3038240B1 (fr) * | 2015-07-02 | 2019-08-09 | Arkema France | Article comprenant des particules zeolitiques reliees par une resine |
-
2019
- 2019-12-04 JP JP2020559952A patent/JP7262485B2/ja active Active
- 2019-12-04 WO PCT/JP2019/047346 patent/WO2020116491A1/ja unknown
- 2019-12-04 CN CN201980079920.8A patent/CN113423500A/zh active Pending
- 2019-12-04 EP EP19892655.2A patent/EP3892368A4/en not_active Withdrawn
- 2019-12-04 KR KR1020217020901A patent/KR20210096665A/ko not_active Application Discontinuation
-
2021
- 2021-06-03 US US17/337,708 patent/US20210291142A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008500165A (ja) * | 2004-05-26 | 2008-01-10 | スリーエム イノベーティブ プロパティーズ カンパニー | 気体浸透性ポリマーフィルタおよびその作製方法 |
JP2012508645A (ja) | 2008-11-14 | 2012-04-12 | ブリュッヒャー ゲーエムベーハー | 吸着性成形品及びその使用 |
JP2010254841A (ja) * | 2009-04-27 | 2010-11-11 | Nippon Filcon Co Ltd | 金属吸着性焼結多孔体およびその製造方法 |
JP2014104448A (ja) | 2012-11-29 | 2014-06-09 | Kurita Water Ind Ltd | 活性炭カートリッジ及びガス浄化装置 |
WO2018221502A1 (ja) * | 2017-06-02 | 2018-12-06 | 日本フイルコン株式会社 | 吸着材集合体及びその製法並びに吸着法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3892368A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020116491A1 (ja) | 2021-12-23 |
CN113423500A (zh) | 2021-09-21 |
JP7262485B2 (ja) | 2023-04-21 |
EP3892368A1 (en) | 2021-10-13 |
EP3892368A4 (en) | 2022-08-10 |
US20210291142A1 (en) | 2021-09-23 |
KR20210096665A (ko) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020116491A1 (ja) | 吸着用焼結体及びその製造方法並びに吸着装置 | |
CA2344860C (en) | Activated carbon filter | |
US7429326B2 (en) | Water purification apparatus and system | |
US5997829A (en) | Environment purifying material | |
US5505892A (en) | Process for the manufacture of a filter unit | |
US20130032529A1 (en) | Rare earth-containing filter block and method for making and using the same | |
JP6313549B2 (ja) | 吸着シート、当該吸着シートを得る製造方法、吸着機能の回復方法、及び吸着方法 | |
US20140060727A1 (en) | Porous composite block, filter assembly, and method of making the same | |
JPWO2004039494A1 (ja) | 複合吸着材とその製造方法、並びに浄水材及び浄水器 | |
JPWO2006082898A1 (ja) | 複合吸着材とその製造方法、並びに浄水材及び浄水器 | |
WO2012042388A2 (en) | Axial flow filter block for water purification | |
KR101391649B1 (ko) | 다층형 활성탄 필터블록, 이를 이용한 정수용 필터 및 그의 제조방법 | |
MXPA06013601A (es) | Filtro polimerico poroso para gas y metodos de fabricacion del mismo. | |
US7229552B1 (en) | Water purification apparatus and system | |
CN102294147A (zh) | 用于去除饮用水中丙烯酰胺的过滤介质及其制备方法 | |
JPH08224468A (ja) | 円筒ペレット状炭素系吸着剤 | |
WO2015109381A1 (en) | Carbon monolith and method of producing same | |
US20130277299A1 (en) | Composite blocks with void spaces | |
JPH07144976A (ja) | コーヒー豆殻を原料とした成形活性炭の製造方法 | |
JP2002263637A (ja) | 浄水ユニット | |
KR101105118B1 (ko) | 기체 투과성 중합체 필터 및 그의 제조 방법 | |
CN107042097B (zh) | 一种用于吸附卤代有机化合物的材料及其使用方法 | |
US20230173461A1 (en) | Mixtures of Binder Particles Used in Production of Immobilized Particulate Products | |
JPH1147735A (ja) | 油吸収材、油吸収材成型体及びそれらの製造方法 | |
JP3442287B2 (ja) | 酸性ガス吸着剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19892655 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559952 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217020901 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019892655 Country of ref document: EP Effective date: 20210705 |