WO2020115980A1 - Film-forming apparatus and film-forming method - Google Patents

Film-forming apparatus and film-forming method Download PDF

Info

Publication number
WO2020115980A1
WO2020115980A1 PCT/JP2019/035460 JP2019035460W WO2020115980A1 WO 2020115980 A1 WO2020115980 A1 WO 2020115980A1 JP 2019035460 W JP2019035460 W JP 2019035460W WO 2020115980 A1 WO2020115980 A1 WO 2020115980A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
chamber
forming apparatus
top plate
gas
Prior art date
Application number
PCT/JP2019/035460
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 矢島
文生 中村
裕子 加藤
喜信 植
祥吾 小倉
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020207035141A priority Critical patent/KR102469600B1/en
Priority to CN201980043051.3A priority patent/CN112424389A/en
Priority to JP2020559732A priority patent/JP7117396B2/en
Publication of WO2020115980A1 publication Critical patent/WO2020115980A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a film forming apparatus and a film forming method for forming a resin layer made of an energy ray curable resin.
  • an energy ray curable resin such as an ultraviolet curable resin to form a resin layer on a substrate
  • the following two steps are typically performed. That is, a step of supporting a substrate by a cooling stage and supplying a source gas containing the resin onto the substrate supported by the cooling stage, and irradiating light such as ultraviolet rays onto the substrate to form a cured resin layer on the substrate. And the step of forming.
  • a plurality of such steps are not performed in separate vacuum chambers, but a step of supplying a source gas onto the substrate and a step of forming a resin layer cured on the substrate by ultraviolet rays or the like are performed.
  • a film forming apparatus that performs the operation in one vacuum chamber (for example, see Patent Document 1).
  • a window for transmitting ultraviolet rays is provided on the top plate of the chamber, and the film forming chamber is irradiated with ultraviolet rays through the window, so that the film is deposited on the substrate on the stage.
  • a cured product layer of the ultraviolet curable resin is formed.
  • the amount of resin that adheres to the top plate increases, so the amount of ultraviolet light that passes through the window decreases, and it is possible to irradiate the substrate on the stage with a sufficient amount of ultraviolet light. become unable. Therefore, the work of opening the chamber to the atmosphere and cleaning or replacing the top plate becomes frequent, and it is difficult to improve productivity.
  • an object of the present invention is to provide a film forming apparatus and a film forming method capable of improving productivity.
  • a film forming apparatus includes a chamber, a stage, a light source unit, a gas supply unit, and a cleaning unit.
  • the chamber has a chamber main body having a film forming chamber, and a top plate having a window portion and attached to the chamber main body.
  • the stage is disposed in the film forming chamber and has a support surface that supports the substrate.
  • the light source unit is installed on the top plate and has an irradiation source for irradiating the supporting surface with energy rays through the window.
  • the gas supply unit supplies a raw material gas containing an energy ray curable resin that is cured by receiving the energy ray irradiation to the film forming chamber.
  • the cleaning unit is connected to the chamber and introduces a cleaning gas for removing the energy ray-curable resin adhering to the top plate into the film forming chamber.
  • the film forming apparatus includes the cleaning unit that removes the energy ray curable resin adhering to the top plate, it is possible to clean the top plate without opening the chamber to the atmosphere, which improves productivity. It is possible to improve.
  • the cleaning unit may include a plasma generator that generates oxygen plasma as the cleaning gas.
  • the gas supply unit is formed between the top plate and the shower plate, and the raw material gas is introduced between the shower plate and the shower plate that is arranged to face the top plate and is made of a material that transmits the energy rays. And a space part.
  • the cleaning unit introduces the cleaning gas into the space. As a result, not only the top plate but also the shower plate can be cleaned.
  • the cleaning unit may include a plasma generator that generates oxygen plasma as the cleaning gas.
  • the plasma generator may be provided at a plurality of places around the gas supply unit.
  • the stage may have a cooling source capable of cooling the support surface.
  • the top plate may further include a frame portion that supports the window portion, and a heating source that heats the frame portion.
  • the irradiation source may be an ultraviolet lamp.
  • a film forming method includes depositing an energy ray curable resin on the substrate by supplying a source gas from the gas supply unit onto the substrate supported by the support surface.
  • a cured product layer of the energy ray curable resin is formed by irradiating the energy ray from the irradiation source through the window.
  • the energy ray-curable resin attached to the top plate is removed with a cleaning gas.
  • FIG. 3 is a schematic plan view of a gas supply unit showing an arrangement example of a plasma generator in the film forming apparatus. It is a schematic sectional drawing which shows the film-forming apparatus which concerns on other embodiment of this invention.
  • FIG. 1 is a schematic sectional view showing a film forming apparatus 100 according to an embodiment of the present invention.
  • the X-axis direction and the Y-axis direction indicate the horizontal directions orthogonal to each other
  • the Z-axis direction indicates the direction orthogonal to the X-axis direction and the Y-axis direction.
  • the film forming apparatus 100 is configured as a film forming apparatus for forming a layer made of an ultraviolet ray curable resin which is an energy ray curable resin on a substrate.
  • the film forming apparatus 100 is an apparatus for supplying a source gas containing an ultraviolet curable resin onto the substrate W and then irradiating the substrate W with ultraviolet rays to form an ultraviolet curable resin layer.
  • the film forming apparatus 100 includes a chamber 10.
  • the chamber 10 has a chamber main body 11 and a top plate 12 that hermetically closes the opening 11 a of the chamber main body 11.
  • the film forming apparatus 100 further includes a stage 15, a light source unit 20, a gas supply unit 30, and a cleaning unit 40.
  • the chamber main body 11 is a metal rectangular parallelepiped vacuum container having an open top, and has a film forming chamber 13 inside.
  • the film forming chamber 13 is configured to be able to evacuate or maintain a predetermined reduced pressure atmosphere via a vacuum evacuation system 19 connected to the bottom of the chamber body 11.
  • the top plate 12 has a window portion 121 that transmits ultraviolet rays UV and a frame portion 122 that supports the window portion 121.
  • the window 121 is made of an ultraviolet-transparent material such as quartz glass, and the frame 122 is made of a metal material such as an aluminum alloy.
  • the number of windows 121 is not particularly limited, and may be two or more, or may be singular.
  • stage 15 The stage 15 is arranged in the film forming chamber 13.
  • the stage 15 has a stage body 151 having a support surface 151 a that supports the substrate W.
  • the stage 15 has a cooling source 153 capable of cooling the support surface 151a to a predetermined temperature or lower.
  • the cooling source 153 is composed of, for example, a cooling jacket in which a cooling medium such as cooling water contained in the stage body 151 circulates.
  • the cooling temperature of the support surface 151a by the cooling source 153 is set to an appropriate temperature sufficient for condensing the ultraviolet curable resin in the raw material gas described later.
  • the substrate W cooled to the predetermined temperature or lower may be transported to the film forming chamber 13.
  • the substrate W is a glass substrate, but may be a semiconductor substrate.
  • the shape and size of the substrate are not particularly limited, and may be rectangular or circular. Elements may be formed in advance on the film formation surface of the substrate W.
  • the resin layer formed on the substrate W functions as a protective film for the element.
  • the light source unit 20 has a cover 21 and an irradiation source 22.
  • the cover 21 is disposed on the top plate 12 and has a light source chamber 23 that houses an irradiation source 22.
  • the light source chamber 23 has, for example, an air atmosphere.
  • the irradiation source 22 is a light source that irradiates the support surface 151a of the stage 15 with ultraviolet rays UV as energy rays through the window 121 of the top plate 12, and is typically composed of an ultraviolet lamp.
  • the irradiation source 22 may be a light source module in which a plurality of LEDs (Light Emitting Diodes) that emit ultraviolet UV are arranged in a matrix.
  • the gas supply unit 30 supplies a raw material gas containing a resin (ultraviolet curable resin) which is cured by being irradiated with ultraviolet rays UV to the film forming chamber 13.
  • the gas supply unit 30 can be configured arbitrarily, and has a shower plate 31 and a space 32 in this embodiment.
  • the shower plate 31 has a rectangular plate shape and has a plurality of gas supply holes 311 in the plane.
  • the plurality of gas supply holes 311 penetrate the shower plate 31 in the thickness direction and allow the space 32 and the film forming chamber 13 to communicate with each other.
  • the shower plate 31 is made of an ultraviolet-transparent material such as quartz glass.
  • the shower plate 31 is fixed to the inner wall surface of the chamber body 11 via an appropriate fixing member.
  • the space 32 is formed between the top plate 12 and the shower plate 31.
  • the raw material gas is introduced into the space portion 32 through the raw material gas generation portion 101.
  • the ultraviolet curable resin material for example, an acrylic resin can be used. It is also possible to add a polymerization initiator or the like to the above resin and use it.
  • the raw material gas containing such a resin is generated by the raw material gas generation unit 101 installed outside the chamber 10.
  • the raw material gas generation unit 101 introduces the raw material gas containing the resin into the space 32 of the gas supply unit 30 via the pipe 130.
  • the raw material gas generation unit 101 includes a resin material supply line 110, a vaporizer 120, and a pipe 130.
  • the resin material supply line 110 has a tank 111 filled with a liquid resin material, and a pipe 112 that conveys the resin material from the tank 111 to the vaporizer 120.
  • a carrier gas made of an inert gas such as nitrogen is used to convey the resin material from the tank 111 to the vaporizer 120.
  • a valve V1, a liquid flow rate controller (not shown), or the like can be attached to the pipe 112.
  • the raw material gas generated in the vaporizer 120 is supplied to the space 32 of the gas supply unit 30 via the pipe 130.
  • a valve V2 is attached to the pipe 130, and the flow of gas into the space 32 can be adjusted. Further, it is possible to control the flow rate of the gas flowing into the space 32 by attaching a flow rate controller (not shown).
  • the gas supply unit 30 further includes a first heating source 341 that heats the frame portion 122 of the top plate 12 and a second heating source 342 that heats the shower plate 31.
  • the first heating source 341 is composed of a hot water passage built in the frame portion 122 of the top plate 12.
  • the second heating source 342 is composed of a heater fixed to the surface of the shower plate 31.
  • the second heating source 342 may be attached to the surface of the shower plate 31 facing the film forming chamber 13 as illustrated, or may be attached to the surface of the shower plate 31 facing the space 32.
  • the first heating source 341 and the second heating source 342 are for preventing the resin material contained in the raw material gas introduced into the space 32 from adhering to the inner wall of the space 32.
  • the gas supply unit 30 can be heated to an appropriate temperature equal to or higher than the vaporization temperature of the material.
  • a cartridge heater or a hot water passage may be provided as the third heating source 343 in the upper portion (opening 11a) of the chamber 10 close to the gas supply unit 30.
  • the gas supply unit 30 is maintained at the vaporization temperature of the resin material in the raw material gas or higher by the first heating source 341, the second heating source 342, and the third heating source 343.
  • a window 121 of the top plate 12 or the like which has a relatively low heat transfer efficiency, may not be heated to a sufficient temperature, and the resin component may be condensed and attached.
  • the film formation time the number of processed substrates
  • the region where the resin adheres to the inner surface of the space 32 and the thickness thereof increase, so that the amount of ultraviolet light that passes through the gas supply unit 30 decreases and the stage 15
  • the upper substrate W cannot be irradiated with a sufficient amount of ultraviolet rays. Therefore, in this embodiment, a cleaning unit 40 is provided for removing the resin component in the raw material gas adhering to the top plate 12, the shower plate 31, the opening 11a of the chamber body 11, and the like.
  • the cleaning unit 40 is connected to the chamber 10 and introduces a cleaning gas into the space 32.
  • the cleaning unit 40 includes a plasma generator 41 that generates oxygen plasma as a cleaning gas.
  • the plasma generator 41 is not particularly limited as long as it is a device capable of generating oxygen plasma, such as an ICP plasma device, an ECR plasma device, and a helicon wave plasma generator.
  • a gas for generating oxygen plasma for example, oxygen or a mixed gas of oxygen and argon is used.
  • the generated oxygen plasma oxygen radicals
  • a valve V3 is attached to the pipe 42, and the valve V3 is closed during the film formation to prevent the raw material gas from entering the plasma generator 41.
  • a plurality of plasma generators 41 are installed, but a single plasma generator 41 may be installed.
  • the plasma generators 41 are provided at a plurality of places around the gas supply unit 30.
  • the number of plasma generators 41 to be installed and the place of installation are not particularly limited, and can be set arbitrarily according to the size and shape of the space 32.
  • FIG. 2 is a schematic plan view of the gas supply unit 30 showing an arrangement example of the plasma generator 41.
  • the plasma generator 41 includes a pair of first plasma generators 411 arranged along one side of the gas supply unit 30, and a pair of first plasma generators 411 arranged on the other two sides adjacent to the one side. 2 plasma generators 412.
  • the first plasma generators 411 are arranged adjacent to each other to irradiate almost the entire region of the space 32 with oxygen plasma.
  • the second plasma generators 412 are arranged so as to be offset from each other, so that the oxygen plasma is irradiated to the regions inside the space 32 located on the upstream side and the downstream side of the oxygen plasma from the first plasma generator 41. To do.
  • the oxygen plasma emitted from each of the plasma generators 41 has a high rectilinearity, a sufficient amount of oxygen plasma can be introduced into all the regions of the space 32.
  • the device configuration can be simplified as compared with the case where oxygen plasma is directly generated inside the space 32. Further, by providing a plurality of plasma generators 41, it is possible to supply a sufficient amount of oxygen plasma to the space 32.
  • the film forming apparatus 100 further includes a control unit 50.
  • the control unit 50 is typically composed of a computer and controls each unit of the film forming apparatus 100.
  • the film forming step includes a step of supplying a raw material gas containing an ultraviolet curable resin and a step of curing the ultraviolet resin layer.
  • the film forming chamber 13 is regulated to a predetermined degree of vacuum by the vacuum evacuation system 19, and the substrate W is placed on the support surface 151a cooled to a predetermined temperature or lower.
  • the gas supply unit 30 is heated to a temperature equal to or higher than the vaporization temperature of the ultraviolet curable resin by the first to third heating sources 341 to 343.
  • the raw material gas containing the ultraviolet curable resin generated in the raw material gas generation unit 101 is introduced into the gas supply unit 30 via the pipe 130.
  • the source gas introduced into the gas supply unit 30 diffuses in the space 32 and is supplied to the entire surface of the substrate W on the stage 15 via the plurality of gas supply holes 311 of the shower plate 31.
  • the ultraviolet curable resin in the source gas supplied to the surface of the substrate W is condensed and deposited on the surface of the substrate W cooled to a temperature equal to or lower than its condensation temperature.
  • the supply of the raw material gas is stopped, and the ultraviolet rays UV are irradiated from the irradiation source 22 of the light source unit 20 toward the supporting surface 151a of the stage 15. Since the gas supply unit 30 is made of a material that transmits ultraviolet light, a sufficient amount of ultraviolet light UV is applied to the substrate W on the support surface 151 a via the gas supply unit 30. Thereby, a cured product layer of the ultraviolet curable resin is formed on the substrate W.
  • the substrate W is unloaded from the film forming chamber 13, and a new undeposited substrate W is loaded into the film forming chamber. Then, the above-mentioned steps are similarly performed. Accordingly, the ultraviolet curable resin layer having a predetermined thickness can be formed on the substrate W with one film forming apparatus.
  • the resin component in the source gas is gradually deposited in the space 32 of the gas supply unit 30, and the ultraviolet rays of the window 121 of the top plate 12 and the shower plate 31 are irradiated. It may reduce the transmittance. Therefore, in the present embodiment, the cleaning process of the space 32 using the cleaning unit 40 is performed.
  • the cleaning process is performed with the supply of the source gas stopped.
  • Oxygen plasma oxygen radicals generated in each plasma generator 41 (411, 412) is introduced into the space 32 of the gas supply unit 30 via the pipe 42.
  • the carbon of the ultraviolet curable resin attached to the inner surfaces of the space 32 (the top plate 12, the shower plate 31, and the opening 11a of the chamber body 11) is combined with oxygen radicals to be vaporized as CO 2 and decomposed.
  • the decomposed ultraviolet curable resin is exhausted by the vacuum exhaust system 19 through the film forming chamber 13.
  • the ultraviolet curable resin deposited in the space 32 is removed, or the amount of the ultraviolet curable resin deposited in the space 32 is reduced.
  • the resin is effectively prevented from being deposited on a portion such as the window 121 of the top plate 12 which is not directly heated by the heating source, a stable amount of transmitted ultraviolet light can be maintained for a long time. As a result, the number of substrates to be formed is increased, so that a film forming apparatus with excellent productivity can be provided.
  • the ceiling plate 12, the shower plate 31, and the cleaning unit capable of removing the ultraviolet curable resin adhering to the opening 11a of the chamber body 11 are provided, so that the gas can be used for a long time. It is possible to secure a sufficient amount of ultraviolet light that passes through the supply unit 30, which can improve productivity.
  • the cleaning process of the top plate 12 and the like can be performed while the vacuum state of the film forming chamber 13 is supported, the film forming process can be performed without exposing the film forming chamber 13 to the atmosphere.
  • the cleaning process can be performed between the above.
  • the work of removing the easily vulnerable parts such as the resin is performed by the ashing process using the plasma of the cleaning gas, the resin can be removed without damaging the surface to which the resin is attached.
  • the gas supply unit 30 is composed of the shower plate 31, but the present invention is not limited to this.
  • a plurality of gas supply pipes 33 arranged between the top plate 12 and the stage 15 may be adopted as the gas supply unit 30′.
  • the gas supply pipes 33 extend in the Y-axis direction and are arranged at equal intervals in the X-axis direction.
  • a plurality of gas supply holes for discharging the source gas toward the substrate W on the stage 15 are provided on the peripheral surface of the gas supply pipe 33.
  • the plasma generator 41 introduces oxygen plasma as a cleaning gas between the top plate 12 and the gas supply pipe 33.
  • the resin attached to the top plate 12 and the gas supply pipe 33 can be removed.
  • the plasma generator capable of introducing oxygen plasma into the space 32 of the gas supply unit 30 is used as the cleaning unit, but the present invention is not limited to this, and oxygen plasma is directly generated inside the space 32.
  • a plasma source capable of being activated may be provided as a cleaning unit.
  • oxygen plasma was adopted as the cleaning gas, but the type of cleaning gas can be set as appropriate depending on the type of energy ray curing resin.
  • the energy ray is an ultraviolet ray
  • the energy ray is an ultraviolet ray
  • the irradiation source may be an oscillator or the like.
  • an electron beam as the energy beam and an electron beam source as the irradiation source.
  • the film forming apparatus according to the above embodiment is also possible to use as a part of an in-line type or cluster type film forming apparatus having a plurality of chambers.
  • a device By using such a device, it becomes easier to manufacture an element having a plurality of layers such as a light emitting element. Further, with such a device, cost reduction, space saving, and further improvement in productivity can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This film-forming apparatus according to one embodiment comprises: a chamber; a stage; a light source unit; a gas supply unit; and a cleaning unit. The chamber includes a chamber body having a film-forming chamber, and a top plate that has a window section and that is attached to the chamber body. The stage includes a support surface that is disposed in the film-forming chamber and that supports a substrate. The light source unit includes an irradiation source that is installed at the top plate and that irradiates an energy beam onto the support surface via the window section. The gas supply unit supplies, to the film-forming chamber, a raw material gas containing an energy beam-curable resin that is cured by being irradiated with the energy beam. The cleaning unit is connected to the chamber and introduces, to the film-forming chamber, a cleaning gas that removes the energy beam-curable resin that has adhered to the top plate and to the chamber.

Description

成膜装置および成膜方法Film forming apparatus and film forming method
 本発明は、エネルギ線硬化樹脂からなる樹脂層を形成する成膜装置および成膜方法に関する。 The present invention relates to a film forming apparatus and a film forming method for forming a resin layer made of an energy ray curable resin.
 紫外線硬化樹脂等のエネルギ線硬化樹脂を硬化して樹脂層を基板上に形成する際、典型的には、以下の2工程が行われる。すなわち、冷却ステージによって基板を支持し、当該樹脂を含む原料ガスを冷却ステージに支持された基板上に供給する工程と、基板上に紫外線等の光を照射し、基板上に硬化した樹脂層を形成する工程とである。 When curing an energy ray curable resin such as an ultraviolet curable resin to form a resin layer on a substrate, the following two steps are typically performed. That is, a step of supporting a substrate by a cooling stage and supplying a source gas containing the resin onto the substrate supported by the cooling stage, and irradiating light such as ultraviolet rays onto the substrate to form a cured resin layer on the substrate. And the step of forming.
 特に最近では、このような複数の工程をそれぞれ別の真空チャンバで行うことはせず、基板上に原料ガス供給する工程と、紫外線等によって基板上に硬化した樹脂層を形成する工程とを1つの真空チャンバ内で行う成膜装置が提供されている(例えば、特許文献1参照)。 In particular, recently, a plurality of such steps are not performed in separate vacuum chambers, but a step of supplying a source gas onto the substrate and a step of forming a resin layer cured on the substrate by ultraviolet rays or the like are performed. There is provided a film forming apparatus that performs the operation in one vacuum chamber (for example, see Patent Document 1).
特開2013-064187号公報JP, 2013-064187, A
 この種の成膜装置においては、チャンバの天板に紫外線を透過する窓部が設けられており、当該窓部を介して成膜室へ紫外線を照射することで、ステージ上の基板に堆積した紫外線硬化樹脂の硬化物層が形成される。一方、成膜処理の繰り返しに伴い、天板に付着する樹脂の量が増すことで、窓部を透過する紫外線の光量が低下し、ステージ上の基板に十分な量の紫外線を照射することができなくなる。このため、チャンバを大気に開放して天板を洗浄し、あるいは交換する作業が頻繁化し、生産性の向上を図ることが困難であった。 In this type of film forming apparatus, a window for transmitting ultraviolet rays is provided on the top plate of the chamber, and the film forming chamber is irradiated with ultraviolet rays through the window, so that the film is deposited on the substrate on the stage. A cured product layer of the ultraviolet curable resin is formed. On the other hand, as the film deposition process is repeated, the amount of resin that adheres to the top plate increases, so the amount of ultraviolet light that passes through the window decreases, and it is possible to irradiate the substrate on the stage with a sufficient amount of ultraviolet light. become unable. Therefore, the work of opening the chamber to the atmosphere and cleaning or replacing the top plate becomes frequent, and it is difficult to improve productivity.
 以上のような事情に鑑み、本発明の目的は、生産性の向上を図ることができる成膜装置および成膜方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a film forming apparatus and a film forming method capable of improving productivity.
 上記目的を達成するため、本発明の一形態に係る成膜装置は、チャンバと、ステージと、光源ユニットと、ガス供給部と、クリーニングユニットとを具備する。
 前記チャンバは、成膜室を有するチャンバ本体と、窓部を有し前記チャンバ本体に取り付けられた天板とを有する。
 前記ステージは、前記成膜室に配置され、基板を支持する支持面を有する。
 前記光源ユニットは、前記天板に設置され、前記窓部を介してエネルギ線を前記支持面に照射する照射源を有する。
 前記ガス供給部は、前記エネルギ線の照射を受けて硬化するエネルギ線硬化樹脂を含む原料ガスを前記成膜室に供給する。
 前記クリーニングユニットは、前記チャンバに接続され、前記天板に付着した前記エネルギ線硬化樹脂を除去するクリーニングガスを前記成膜室へ導入する。
In order to achieve the above object, a film forming apparatus according to one embodiment of the present invention includes a chamber, a stage, a light source unit, a gas supply unit, and a cleaning unit.
The chamber has a chamber main body having a film forming chamber, and a top plate having a window portion and attached to the chamber main body.
The stage is disposed in the film forming chamber and has a support surface that supports the substrate.
The light source unit is installed on the top plate and has an irradiation source for irradiating the supporting surface with energy rays through the window.
The gas supply unit supplies a raw material gas containing an energy ray curable resin that is cured by receiving the energy ray irradiation to the film forming chamber.
The cleaning unit is connected to the chamber and introduces a cleaning gas for removing the energy ray-curable resin adhering to the top plate into the film forming chamber.
 上記成膜装置は、天板に付着したエネルギ線硬化樹脂を除去するクリーニングユニットを備えているため、チャンバを大気に開放することなく天板のクリーニングを行うことが可能となり、これにより生産性の向上を図ることができる。 Since the film forming apparatus includes the cleaning unit that removes the energy ray curable resin adhering to the top plate, it is possible to clean the top plate without opening the chamber to the atmosphere, which improves productivity. It is possible to improve.
 前記クリーニングユニットは、前記クリーニングガスとして酸素プラズマを発生させるプラズマ発生器を含んでもよい。 The cleaning unit may include a plasma generator that generates oxygen plasma as the cleaning gas.
 前記ガス供給部は、前記天板に対向して配置され前記エネルギ線を透過させる材料で構成されたシャワープレートと、前記天板と前記シャワープレートとの間に形成され前記原料ガスが導入される空間部とを有してもよい。この場合、前記クリーニングユニットは、前記クリーニングガスを前記空間部へ導入する。これにより、天板だけでなく、シャワープレートのクリーニングも行うことができる。 The gas supply unit is formed between the top plate and the shower plate, and the raw material gas is introduced between the shower plate and the shower plate that is arranged to face the top plate and is made of a material that transmits the energy rays. And a space part. In this case, the cleaning unit introduces the cleaning gas into the space. As a result, not only the top plate but also the shower plate can be cleaned.
 前記クリーニングユニットは、前記クリーニングガスとして酸素プラズマを発生させるプラズマ発生器を含んでもよい。 The cleaning unit may include a plasma generator that generates oxygen plasma as the cleaning gas.
 前記プラズマ発生器は、前記ガス供給部の周囲の複数個所に設けられてもよい。 The plasma generator may be provided at a plurality of places around the gas supply unit.
 前記ステージは、前記支持面を冷却可能な冷却源を有してもよい。 The stage may have a cooling source capable of cooling the support surface.
 前記天板は、前記窓部を支持する枠部と、前記枠部を加熱する加熱源をさらに有してもよい。 The top plate may further include a frame portion that supports the window portion, and a heating source that heats the frame portion.
 前記照射源は、紫外線ランプであってもよい。 The irradiation source may be an ultraviolet lamp.
 本発明の一形態に係る成膜方法は、前記ガス供給部から前記支持面に支持された基板上に原料ガスを供給することで、前記基板上にエネルギ線硬化樹脂を堆積させることを含む。
 前記照射源から前記窓部を介してエネルギ線を照射することで、前記エネルギ線硬化樹脂の硬化物層が形成される。
 前記天板に付着したエネルギ線硬化樹脂がクリーニングガスで除去される。
A film forming method according to an aspect of the present invention includes depositing an energy ray curable resin on the substrate by supplying a source gas from the gas supply unit onto the substrate supported by the support surface.
A cured product layer of the energy ray curable resin is formed by irradiating the energy ray from the irradiation source through the window.
The energy ray-curable resin attached to the top plate is removed with a cleaning gas.
 以上述べたように、本発明によれば、生産性の向上を図ることができる。 As described above, according to the present invention, productivity can be improved.
本発明の一実施形態に係る成膜装置を示す概略断面図である。It is a schematic sectional drawing which shows the film-forming apparatus which concerns on one Embodiment of this invention. 上記成膜装置におけるプラズマ発生器の配置例を示すガス供給部の概略平面図である。FIG. 3 is a schematic plan view of a gas supply unit showing an arrangement example of a plasma generator in the film forming apparatus. 本発明の他の実施形態に係る成膜装置を示す概略断面図である。It is a schematic sectional drawing which shows the film-forming apparatus which concerns on other embodiment of this invention.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る成膜装置100を示す概略断面図である。図においてX軸方向及びY軸方向は互いに直交する水平方向を示し、Z軸方向はX軸方向及びY軸方向に直交する方向を示している。 FIG. 1 is a schematic sectional view showing a film forming apparatus 100 according to an embodiment of the present invention. In the figure, the X-axis direction and the Y-axis direction indicate the horizontal directions orthogonal to each other, and the Z-axis direction indicates the direction orthogonal to the X-axis direction and the Y-axis direction.
 成膜装置100は、基板上に、エネルギ線硬化樹脂である紫外線硬化樹脂からなる層を形成するための成膜装置として構成されている。成膜装置100は、紫外線硬化樹脂を含む原料ガスを基板W上に供給した後、基板W上に紫外線を照射して紫外線硬化樹脂層を形成するための装置である。 The film forming apparatus 100 is configured as a film forming apparatus for forming a layer made of an ultraviolet ray curable resin which is an energy ray curable resin on a substrate. The film forming apparatus 100 is an apparatus for supplying a source gas containing an ultraviolet curable resin onto the substrate W and then irradiating the substrate W with ultraviolet rays to form an ultraviolet curable resin layer.
[成膜装置]
 成膜装置100は、チャンバ10を備える。チャンバ10は、チャンバ本体11と、チャンバ本体11の開口部11aを気密に閉塞する天板12とを有する。
 成膜装置100は、ステージ15と、光源ユニット20と、ガス供給部30と、クリーニングユニット40とをさらに備える。
[Film forming equipment]
The film forming apparatus 100 includes a chamber 10. The chamber 10 has a chamber main body 11 and a top plate 12 that hermetically closes the opening 11 a of the chamber main body 11.
The film forming apparatus 100 further includes a stage 15, a light source unit 20, a gas supply unit 30, and a cleaning unit 40.
(チャンバ)
 チャンバ本体11は、上部が開口する金属製の直方体形状の真空容器であり、内部に成膜室13を有する。成膜室13は、チャンバ本体11の底部に接続された真空排気系19を介して所定の減圧雰囲気に排気または維持することが可能に構成される。
(Chamber)
The chamber main body 11 is a metal rectangular parallelepiped vacuum container having an open top, and has a film forming chamber 13 inside. The film forming chamber 13 is configured to be able to evacuate or maintain a predetermined reduced pressure atmosphere via a vacuum evacuation system 19 connected to the bottom of the chamber body 11.
 天板12は、紫外線UVを透過させる窓部121と、窓部121を支持する枠部122とを有する。窓部121は、石英ガラス等の紫外線透過性材料で構成され、枠部122はアルミニウム合金等の金属材料で構成される。窓部121の数は特に限定されず、2つ以上であってもよいし、単数であってもよい。 The top plate 12 has a window portion 121 that transmits ultraviolet rays UV and a frame portion 122 that supports the window portion 121. The window 121 is made of an ultraviolet-transparent material such as quartz glass, and the frame 122 is made of a metal material such as an aluminum alloy. The number of windows 121 is not particularly limited, and may be two or more, or may be singular.
(ステージ)
 ステージ15は、成膜室13に配置される。ステージ15は、基板Wを支持する支持面151aを有するステージ本体151を有する。
(stage)
The stage 15 is arranged in the film forming chamber 13. The stage 15 has a stage body 151 having a support surface 151 a that supports the substrate W.
 ステージ15は、支持面151aを所定温度以下に冷却することが可能な冷却源153を有する。冷却源153は、例えば、ステージ本体151に内蔵された冷却水等の冷却媒体が循環する冷却ジャケットで構成される。冷却源153による支持面151aの冷却温度は、後述する原料ガス中の紫外線硬化樹脂を凝縮させるのに十分な適宜の温度に設定される。なお、上記所定温度以下に冷却された基板Wが成膜室13に搬送されるように構成されてもよい。 The stage 15 has a cooling source 153 capable of cooling the support surface 151a to a predetermined temperature or lower. The cooling source 153 is composed of, for example, a cooling jacket in which a cooling medium such as cooling water contained in the stage body 151 circulates. The cooling temperature of the support surface 151a by the cooling source 153 is set to an appropriate temperature sufficient for condensing the ultraviolet curable resin in the raw material gas described later. The substrate W cooled to the predetermined temperature or lower may be transported to the film forming chamber 13.
 基板Wは、ガラス基板であるが、半導体基板であってもよい。基板の形状や大きさは特に限定されず、矩形でもよいし円形でもよい。基板Wの成膜面には、あらかじめ素子が形成されていてもよい。この場合、基板Wに成膜される樹脂層は、上記素子の保護膜として機能する。 The substrate W is a glass substrate, but may be a semiconductor substrate. The shape and size of the substrate are not particularly limited, and may be rectangular or circular. Elements may be formed in advance on the film formation surface of the substrate W. In this case, the resin layer formed on the substrate W functions as a protective film for the element.
(光源ユニット)
 光源ユニット20は、カバー21と、照射源22とを有する。カバー21は、天板12の上に配置され、照射源22を収容する光源室23を有する。光源室23は、例えば、大気雰囲気である。照射源22は、ステージ15の支持面151aに向けて、天板12の窓部121を介してエネルギ線としての紫外線UVを照射する光源であり、典型的には、紫外線ランプで構成される。これに限られず、照射源22には、紫外線UVを発光する複数のLED(Light Emitting Diode)がマトリクス状に配列された光源モジュールが採用されてもよい。
(Light source unit)
The light source unit 20 has a cover 21 and an irradiation source 22. The cover 21 is disposed on the top plate 12 and has a light source chamber 23 that houses an irradiation source 22. The light source chamber 23 has, for example, an air atmosphere. The irradiation source 22 is a light source that irradiates the support surface 151a of the stage 15 with ultraviolet rays UV as energy rays through the window 121 of the top plate 12, and is typically composed of an ultraviolet lamp. However, the irradiation source 22 may be a light source module in which a plurality of LEDs (Light Emitting Diodes) that emit ultraviolet UV are arranged in a matrix.
(ガス供給部)
 ガス供給部30は、紫外線UVの照射を受けて硬化する樹脂(紫外線硬化樹脂)を含む原料ガスを成膜室13へ供給する。ガス供給部30は任意に構成可能であり、本実施形態ではシャワープレート31と、空間部32とを有する。
(Gas supply unit)
The gas supply unit 30 supplies a raw material gas containing a resin (ultraviolet curable resin) which is cured by being irradiated with ultraviolet rays UV to the film forming chamber 13. The gas supply unit 30 can be configured arbitrarily, and has a shower plate 31 and a space 32 in this embodiment.
 シャワープレート31は、矩形の板形状を有し、面内に複数のガス供給孔311を有する。複数のガス供給孔311は、シャワープレート31を厚み方向に貫通し、空間部32と成膜室13とを相互に連通させる。シャワープレート31は、石英ガラス等の紫外線透過性材料で構成される。シャワープレート31は、適宜の固定部材を介してチャンバ本体11の内壁面に固定される。 The shower plate 31 has a rectangular plate shape and has a plurality of gas supply holes 311 in the plane. The plurality of gas supply holes 311 penetrate the shower plate 31 in the thickness direction and allow the space 32 and the film forming chamber 13 to communicate with each other. The shower plate 31 is made of an ultraviolet-transparent material such as quartz glass. The shower plate 31 is fixed to the inner wall surface of the chamber body 11 via an appropriate fixing member.
 空間部32は、天板12とシャワープレート31との間に形成される。空間部32には、原料ガス生成部101を介して上記原料ガスが導入される。 The space 32 is formed between the top plate 12 and the shower plate 31. The raw material gas is introduced into the space portion 32 through the raw material gas generation portion 101.
 紫外線硬化樹脂材料としては、例えば、アクリル系樹脂を用いることができる。また、上記樹脂には重合開始剤等を添加して用いることも可能である。このような樹脂を含む原料ガスは、チャンバ10の外部に設置される原料ガス生成部101によって生成される。原料ガス生成部101は配管130を介して、ガス供給部30の空間部32へ上記樹脂を含む原料ガスを導入する。 As the ultraviolet curable resin material, for example, an acrylic resin can be used. It is also possible to add a polymerization initiator or the like to the above resin and use it. The raw material gas containing such a resin is generated by the raw material gas generation unit 101 installed outside the chamber 10. The raw material gas generation unit 101 introduces the raw material gas containing the resin into the space 32 of the gas supply unit 30 via the pipe 130.
 原料ガス生成部101は、樹脂材料供給ライン110と、気化器120と、配管130とを有する。 The raw material gas generation unit 101 includes a resin material supply line 110, a vaporizer 120, and a pipe 130.
 樹脂材料供給ライン110は、液状の樹脂材料が充填されたタンク111と、タンク111から樹脂材料を気化器120へ搬送する配管112とを有する。タンク111から気化器120への樹脂材料の搬送には、例えば窒素などの不活性ガスからなるキャリアガスが用いられる。また、配管112には、バルブV1や、図示しない液体流量制御器等を取り付けることも可能である。 The resin material supply line 110 has a tank 111 filled with a liquid resin material, and a pipe 112 that conveys the resin material from the tank 111 to the vaporizer 120. A carrier gas made of an inert gas such as nitrogen is used to convey the resin material from the tank 111 to the vaporizer 120. Further, a valve V1, a liquid flow rate controller (not shown), or the like can be attached to the pipe 112.
 気化器120で生成された原料ガスは、配管130を介してガス供給部30の空間部32へ供給される。配管130にはバルブV2が取り付けられており、空間部32へのガスの流入が調節可能である。さらに図示しない流量制御器を取り付けることによって、空間部32へ流入するガスの流量を制御することも可能である。 The raw material gas generated in the vaporizer 120 is supplied to the space 32 of the gas supply unit 30 via the pipe 130. A valve V2 is attached to the pipe 130, and the flow of gas into the space 32 can be adjusted. Further, it is possible to control the flow rate of the gas flowing into the space 32 by attaching a flow rate controller (not shown).
 ガス供給部30はさらに、天板12の枠部122を加熱する第1の加熱源341と、シャワープレート31を加熱する第2の加熱源342とを有する。 The gas supply unit 30 further includes a first heating source 341 that heats the frame portion 122 of the top plate 12 and a second heating source 342 that heats the shower plate 31.
 第1の加熱源341は、天板12の枠部122に内蔵された温水通路で構成される。第2の加熱源342は、シャワープレート31の表面に固定されたヒータで構成される。第2の加熱源342は、図示するようにシャワープレート31の成膜室13に対向する面に取り付けられてもよいし、空間部32に対向する面に取り付けられてもよい。 The first heating source 341 is composed of a hot water passage built in the frame portion 122 of the top plate 12. The second heating source 342 is composed of a heater fixed to the surface of the shower plate 31. The second heating source 342 may be attached to the surface of the shower plate 31 facing the film forming chamber 13 as illustrated, or may be attached to the surface of the shower plate 31 facing the space 32.
 第1の加熱源341および第2の加熱源342は、空間部32に導入された原料ガスに含まれる樹脂材料が空間部32の内壁に付着するのを防止するためのものであり、当該樹脂材料の気化温度以上の適宜の温度にガス供給部30を加熱することが可能に構成される。なお、ガス供給部30に近接するチャンバ10の上部(開口部11a)にも、第3の加熱源343として例えばカートリッジヒータや温水通路が設けられてもよい。 The first heating source 341 and the second heating source 342 are for preventing the resin material contained in the raw material gas introduced into the space 32 from adhering to the inner wall of the space 32. The gas supply unit 30 can be heated to an appropriate temperature equal to or higher than the vaporization temperature of the material. Note that, for example, a cartridge heater or a hot water passage may be provided as the third heating source 343 in the upper portion (opening 11a) of the chamber 10 close to the gas supply unit 30.
 上述のようにガス供給部30は、第1の加熱源341、第2の加熱源342および第3の加熱源343により、原料ガス中の樹脂材料の気化温度以上に維持される。ところが、例えば天板12の窓部121など、伝熱効率が比較的低い領域は十分な温度に加熱されず、樹脂成分が凝縮、付着することがある。そして、成膜時間(基板の処理枚数)の増大に従い、空間部32の内面に樹脂が付着する領域やその厚みが増すことで、ガス供給部30を透過する紫外線の光量が低下し、ステージ15上の基板Wに十分な量の紫外線を照射することができない場合がある。
 そこで本実施形態では、天板12、シャワープレート31、チャンバ本体11の開口部11a等に付着した原料ガス中の樹脂成分を除去するためのクリーニングユニット40を備える。
As described above, the gas supply unit 30 is maintained at the vaporization temperature of the resin material in the raw material gas or higher by the first heating source 341, the second heating source 342, and the third heating source 343. However, for example, a window 121 of the top plate 12 or the like, which has a relatively low heat transfer efficiency, may not be heated to a sufficient temperature, and the resin component may be condensed and attached. Then, as the film formation time (the number of processed substrates) increases, the region where the resin adheres to the inner surface of the space 32 and the thickness thereof increase, so that the amount of ultraviolet light that passes through the gas supply unit 30 decreases and the stage 15 In some cases, the upper substrate W cannot be irradiated with a sufficient amount of ultraviolet rays.
Therefore, in this embodiment, a cleaning unit 40 is provided for removing the resin component in the raw material gas adhering to the top plate 12, the shower plate 31, the opening 11a of the chamber body 11, and the like.
(クリーニングユニット)
 クリーニングユニット40は、チャンバ10に接続され、空間部32にクリーニングガスを導入する。本実施形態においてクリーニングユニット40は、クリーニングガスとして酸素プラズマを発生させるプラズマ発生器41を含む。
(Cleaning unit)
The cleaning unit 40 is connected to the chamber 10 and introduces a cleaning gas into the space 32. In the present embodiment, the cleaning unit 40 includes a plasma generator 41 that generates oxygen plasma as a cleaning gas.
 プラズマ発生器41は、ICPプラズマ装置、ECRプラズマ装置、ヘリコン波プラズマ発生装置など、酸素プラズマを生成することが可能な装置であれば特に限定されない。酸素プラズマの生成ガスには、例えば、酸素あるいは酸素とアルゴンの混合ガスが用いられる。生成された酸素プラズマ(酸素ラジカル)は、配管42を介してガス供給部30の空間部32に導入され、天板12、シャワープレート31、チャンバ本体11の開口部11a等に付着した樹脂を分解(灰化)、除去する。配管42にはバルブV3が取り付けられており、成膜中はバルブV3が閉じられることで、プラズマ発生器41内への原料ガスの侵入が阻止される。 The plasma generator 41 is not particularly limited as long as it is a device capable of generating oxygen plasma, such as an ICP plasma device, an ECR plasma device, and a helicon wave plasma generator. As a gas for generating oxygen plasma, for example, oxygen or a mixed gas of oxygen and argon is used. The generated oxygen plasma (oxygen radicals) is introduced into the space 32 of the gas supply unit 30 through the pipe 42, and decomposes the resin adhered to the top plate 12, the shower plate 31, the opening 11a of the chamber body 11, and the like. (Ashing), remove. A valve V3 is attached to the pipe 42, and the valve V3 is closed during the film formation to prevent the raw material gas from entering the plasma generator 41.
 プラズマ発生器41は複数設置されるが、単数であってもよい。本実施形態においてプラズマ発生器41は、ガス供給部30の周囲の複数個所に設けられる。プラズマ発生器41の設置数や設置場所は特に限定されず、空間部32の大きさや形状に応じて、任意に設定することが可能である。 A plurality of plasma generators 41 are installed, but a single plasma generator 41 may be installed. In this embodiment, the plasma generators 41 are provided at a plurality of places around the gas supply unit 30. The number of plasma generators 41 to be installed and the place of installation are not particularly limited, and can be set arbitrarily according to the size and shape of the space 32.
 図2は、プラズマ発生器41の配置例を示すガス供給部30の概略平面図である。同図に示すように、プラズマ発生器41は、ガス供給部30の一辺に沿って配置される一対の第1プラズマ発生器411と、当該一辺に隣接する他の2辺にそれぞれ配置される第2プラズマ発生器412とを含む。第1プラズマ発生器411は、互いに隣接して配置されることで空間部32のほぼ全領域に向けて酸素プラズマを照射する。一方、第2プラズマ発生器412は、互いにオフセットして配置されることで、第1プラズマ発生器41からの酸素プラズマの上流側および下流側に位置する空間部32内の領域に酸素プラズマを照射する。これにより、各々のプラズマ発生器41から照射される酸素プラズマの直進性が高い場合であっても、空間部32のすべての領域に十分な量の酸素プラズマを導入することができる。 FIG. 2 is a schematic plan view of the gas supply unit 30 showing an arrangement example of the plasma generator 41. As shown in the figure, the plasma generator 41 includes a pair of first plasma generators 411 arranged along one side of the gas supply unit 30, and a pair of first plasma generators 411 arranged on the other two sides adjacent to the one side. 2 plasma generators 412. The first plasma generators 411 are arranged adjacent to each other to irradiate almost the entire region of the space 32 with oxygen plasma. On the other hand, the second plasma generators 412 are arranged so as to be offset from each other, so that the oxygen plasma is irradiated to the regions inside the space 32 located on the upstream side and the downstream side of the oxygen plasma from the first plasma generator 41. To do. As a result, even if the oxygen plasma emitted from each of the plasma generators 41 has a high rectilinearity, a sufficient amount of oxygen plasma can be introduced into all the regions of the space 32.
 プラズマ発生器41がガス供給部30の外部に配置されることで、空間部32の内部で酸素プラズマを直接発生させる場合と比較して、装置構成の簡素化を図ることができる。また、プラズマ発生器41を複数備えることで、空間部32へ十分な量の酸素プラズマを供給することができる。 By arranging the plasma generator 41 outside the gas supply unit 30, the device configuration can be simplified as compared with the case where oxygen plasma is directly generated inside the space 32. Further, by providing a plurality of plasma generators 41, it is possible to supply a sufficient amount of oxygen plasma to the space 32.
 成膜装置100は、制御部50をさらに備える。制御部50は、典型的には、コンピュータで構成され、成膜装置100の各部を制御する。 The film forming apparatus 100 further includes a control unit 50. The control unit 50 is typically composed of a computer and controls each unit of the film forming apparatus 100.
[成膜方法]
 続いて、以上のように構成される本実施形態の成膜装置100を用いた成膜方法について説明する。
[Film forming method]
Next, a film forming method using the film forming apparatus 100 of the present embodiment configured as above will be described.
 (成膜工程)
 成膜工程では、紫外線硬化樹脂を含む原料ガスの供給工程と、紫外線樹脂層の硬化工程とを有する。
(Film forming process)
The film forming step includes a step of supplying a raw material gas containing an ultraviolet curable resin and a step of curing the ultraviolet resin layer.
 成膜工程では、成膜室13は、真空排気系19によって所定の真空度に調圧されており、基板Wは、所定温度以下に冷却された支持面151aに配置されている。ガス供給部30は、第1~第3の加熱源341~343によって紫外線硬化樹脂の気化温度以上の温度に加熱されている。 In the film forming process, the film forming chamber 13 is regulated to a predetermined degree of vacuum by the vacuum evacuation system 19, and the substrate W is placed on the support surface 151a cooled to a predetermined temperature or lower. The gas supply unit 30 is heated to a temperature equal to or higher than the vaporization temperature of the ultraviolet curable resin by the first to third heating sources 341 to 343.
 原料ガスの供給工程では、原料ガス生成部101で生成された紫外線硬化樹脂を含む原料ガスが、配管130を介してガス供給部30へ導入される。ガス供給部30に導入された原料ガスは、空間部32において拡散し、シャワープレート31の複数のガス供給孔311を介してステージ15上の基板Wの全面に供給される。基板Wの表面に供給された原料ガス中の紫外線硬化樹脂は、その凝縮温度以下の温度に冷却された基板Wの表面で凝縮し、堆積する。 In the raw material gas supply step, the raw material gas containing the ultraviolet curable resin generated in the raw material gas generation unit 101 is introduced into the gas supply unit 30 via the pipe 130. The source gas introduced into the gas supply unit 30 diffuses in the space 32 and is supplied to the entire surface of the substrate W on the stage 15 via the plurality of gas supply holes 311 of the shower plate 31. The ultraviolet curable resin in the source gas supplied to the surface of the substrate W is condensed and deposited on the surface of the substrate W cooled to a temperature equal to or lower than its condensation temperature.
 紫外線硬化樹脂の硬化工程では、原料ガスの供給が停止し、光源ユニット20の照射源22からステージ15の支持面151aに向けて紫外線UVが照射される。ガス供給部30は紫外線を透過させる材料で構成されているため、ガス供給部30を介して支持面151a上の基板Wに十分な量の紫外線UVが照射される。これにより、基板W上に紫外線硬化樹脂の硬化物層が形成される。 In the curing process of the ultraviolet curable resin, the supply of the raw material gas is stopped, and the ultraviolet rays UV are irradiated from the irradiation source 22 of the light source unit 20 toward the supporting surface 151a of the stage 15. Since the gas supply unit 30 is made of a material that transmits ultraviolet light, a sufficient amount of ultraviolet light UV is applied to the substrate W on the support surface 151 a via the gas supply unit 30. Thereby, a cured product layer of the ultraviolet curable resin is formed on the substrate W.
 硬化工程の完了後、基板Wは成膜室13から搬出され、新たに未成膜の基板Wが成膜室に搬入される。そして上述の各工程が同様に実施される。これにより、一台の成膜装置で、基板W上に所定厚みの紫外線硬化樹脂層を形成することができる。 After the curing process is completed, the substrate W is unloaded from the film forming chamber 13, and a new undeposited substrate W is loaded into the film forming chamber. Then, the above-mentioned steps are similarly performed. Accordingly, the ultraviolet curable resin layer having a predetermined thickness can be formed on the substrate W with one film forming apparatus.
 以上のような成膜処理を繰り返し実施することにより、ガス供給部30の空間部32には、原料ガス中の樹脂成分が徐々に堆積し、天板12の窓部121やシャワープレート31の紫外線透過率を低下させる場合がある。そこで本実施形態では、クリーニングユニット40を用いた空間部32のクリーニング処理が実施される。 By repeatedly performing the film forming process as described above, the resin component in the source gas is gradually deposited in the space 32 of the gas supply unit 30, and the ultraviolet rays of the window 121 of the top plate 12 and the shower plate 31 are irradiated. It may reduce the transmittance. Therefore, in the present embodiment, the cleaning process of the space 32 using the cleaning unit 40 is performed.
 (クリーニング工程)
 クリーニング工程は、原料ガスの供給が停止した状態で実施される。各プラズマ発生器41(411,412)において発生した酸素プラズマ(酸素ラジカル)は、配管42を介してガス供給部30の空間部32へ導入される。空間部32の内面(天板12、シャワープレート31、チャンバ本体11の開口部11a)に付着した紫外線硬化樹脂の炭素は、酸素ラジカルと結合してCOとして気化し、分解される。分解した紫外線硬化樹脂は、成膜室13を介して真空排気系19により排気される。
(Cleaning process)
The cleaning process is performed with the supply of the source gas stopped. Oxygen plasma (oxygen radicals) generated in each plasma generator 41 (411, 412) is introduced into the space 32 of the gas supply unit 30 via the pipe 42. The carbon of the ultraviolet curable resin attached to the inner surfaces of the space 32 (the top plate 12, the shower plate 31, and the opening 11a of the chamber body 11) is combined with oxygen radicals to be vaporized as CO 2 and decomposed. The decomposed ultraviolet curable resin is exhausted by the vacuum exhaust system 19 through the film forming chamber 13.
 このようなクリーニング処理が定期的に実施されることで、空間部32に堆積した紫外線硬化樹脂が除去され、あるいは、空間部32に堆積する紫外線硬化樹脂の量が低下する。特に、天板12の窓部121など加熱源により直接加熱されない部位における樹脂の堆積が効果的に抑えられるため、長時間にわたり安定した紫外線の透過量が維持される。これにより、成膜すべき基板の処理枚数が増加するため、生産性に優れた成膜装置を提供することができる。 By regularly performing such a cleaning process, the ultraviolet curable resin deposited in the space 32 is removed, or the amount of the ultraviolet curable resin deposited in the space 32 is reduced. In particular, since the resin is effectively prevented from being deposited on a portion such as the window 121 of the top plate 12 which is not directly heated by the heating source, a stable amount of transmitted ultraviolet light can be maintained for a long time. As a result, the number of substrates to be formed is increased, so that a film forming apparatus with excellent productivity can be provided.
 以上のように本実施形態によれば、天板12、シャワープレート31、チャンバ本体11の開口部11aに付着した紫外線硬化樹脂を除去することが可能なクリーニングユニットを備えているため、長期にわたりガス供給部30を透過する紫外線の光量を十分に確保することが可能となり、これにより生産性の向上を図ることができる。 As described above, according to this embodiment, the ceiling plate 12, the shower plate 31, and the cleaning unit capable of removing the ultraviolet curable resin adhering to the opening 11a of the chamber body 11 are provided, so that the gas can be used for a long time. It is possible to secure a sufficient amount of ultraviolet light that passes through the supply unit 30, which can improve productivity.
 また本実施形態によれば、成膜室13の真空状態を支持した状態で天板12などのクリーニング処理を実施することができるため、成膜室13を大気に開放することなく、成膜処理の合間で上記クリーニング処理を実施することができる。さらに、樹脂など、傷付けやすい部品の除去作業をクリーニングガスのプラズマを利用したアッシング処理で行うため、樹脂の付着面を傷付けることなく樹脂を除去することができる。 Further, according to the present embodiment, since the cleaning process of the top plate 12 and the like can be performed while the vacuum state of the film forming chamber 13 is supported, the film forming process can be performed without exposing the film forming chamber 13 to the atmosphere. The cleaning process can be performed between the above. Further, since the work of removing the easily vulnerable parts such as the resin is performed by the ashing process using the plasma of the cleaning gas, the resin can be removed without damaging the surface to which the resin is attached.
[他の実施形態]
 以上の実施形態では、ガス供給部30をシャワープレート31で構成したが、これに限られない。例えば図3に示すように、ガス供給部30'として、天板12とステージ15との間に配置された複数のガス供給配管33が採用されてもよい。
[Other Embodiments]
In the above embodiment, the gas supply unit 30 is composed of the shower plate 31, but the present invention is not limited to this. For example, as shown in FIG. 3, a plurality of gas supply pipes 33 arranged between the top plate 12 and the stage 15 may be adopted as the gas supply unit 30′.
 ガス供給配管33は、Y軸方向に延在し、X軸方向に等間隔で配列される。ガス供給配管33の周面部には、ステージ15上の基板Wに向けて原料ガスを吐出する複数のガス供給孔が設けられる。このような構成によっても、基板Wの表面全域に均一に原料ガスを供給し、さらには紫外線UVを照射することができる。 The gas supply pipes 33 extend in the Y-axis direction and are arranged at equal intervals in the X-axis direction. A plurality of gas supply holes for discharging the source gas toward the substrate W on the stage 15 are provided on the peripheral surface of the gas supply pipe 33. With such a configuration as well, the source gas can be uniformly supplied to the entire surface of the substrate W, and further the ultraviolet rays UV can be irradiated.
 この場合、プラズマ発生器41は、天板12とガス供給配管33との間にクリーニングガスとしての酸素プラズマを導入する。これにより、天板12、ガス供給配管33に付着した樹脂を除去することができる。 In this case, the plasma generator 41 introduces oxygen plasma as a cleaning gas between the top plate 12 and the gas supply pipe 33. As a result, the resin attached to the top plate 12 and the gas supply pipe 33 can be removed.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made.
 例えば以上の実施形態では、クリーニングユニットとして、ガス供給部30の空間部32へ酸素プラズマを導入可能なプラズマ発生器を用いたが、これに限られず、空間部32の内部で酸素プラズマを直接発生させることが可能なプラズマ源がクリーニングユニットとして備えられてもよい。 For example, in the above embodiments, the plasma generator capable of introducing oxygen plasma into the space 32 of the gas supply unit 30 is used as the cleaning unit, but the present invention is not limited to this, and oxygen plasma is directly generated inside the space 32. A plasma source capable of being activated may be provided as a cleaning unit.
 また、クリーニングガスとして酸素プラズマが採用されたが、クリーニングガスの種類はエネルギ線硬化樹脂の種類によって適宜設定可能である。 Also, oxygen plasma was adopted as the cleaning gas, but the type of cleaning gas can be set as appropriate depending on the type of energy ray curing resin.
 また以上の実施形態では、エネルギ線が紫外線の例を示したが、これに限られない。例えば13MHz、27MHz程度の高周波電源から発生される電磁波を用いることも可能である。この場合、照射源は発振器等とすることができる。また、エネルギ線を電子ビームとし、照射源を電子ビーム源とすることも可能である。 Moreover, in the above embodiment, an example in which the energy ray is an ultraviolet ray is shown, but it is not limited to this. For example, it is possible to use an electromagnetic wave generated from a high frequency power source of about 13 MHz and 27 MHz. In this case, the irradiation source may be an oscillator or the like. It is also possible to use an electron beam as the energy beam and an electron beam source as the irradiation source.
 さらに、以上の実施形態に係る成膜装置を、例えば複数のチャンバを有するインライン式あるいはクラスタ式の成膜装置の一部として用いることも可能である。このような装置を用いることで、発光素子のような複数の層を有する素子等を作製することがより容易になる。また、このような装置によって、低コスト化、省スペース化及びさらなる生産性の向上を実現することができる。 Furthermore, it is also possible to use the film forming apparatus according to the above embodiment as a part of an in-line type or cluster type film forming apparatus having a plurality of chambers. By using such a device, it becomes easier to manufacture an element having a plurality of layers such as a light emitting element. Further, with such a device, cost reduction, space saving, and further improvement in productivity can be realized.
 10…チャンバ
 11…チャンバ本体
 12…天板
 13…成膜室
 15…ステージ
 20…光源ユニット
 22…照射源
 30,30'…ガス供給部
 31…シャワープレート
 32…空間部
 40…クリーニングユニット
 41,411,412…プラズマ発生器
 100…成膜装置
 151a…支持面
 121…窓部
 122…枠部
 311…ガス供給孔
 341…第1の加熱源
DESCRIPTION OF SYMBOLS 10... Chamber 11... Chamber body 12... Top plate 13... Film-forming chamber 15... Stage 20... Light source unit 22... Irradiation source 30, 30'... Gas supply part 31... Shower plate 32... Space part 40... Cleaning unit 41, 411 , 412... Plasma generator 100... Film forming apparatus 151a... Support surface 121... Window 122... Frame part 311... Gas supply hole 341... First heating source

Claims (8)

  1.  成膜室を有するチャンバ本体と、窓部を有し前記チャンバ本体に取り付けられた天板とを有するチャンバと、
     前記成膜室に配置され、基板を支持する支持面を有するステージと、
     前記天板に設置され、前記窓部を介してエネルギ線を前記支持面に照射する照射源を有する光源ユニットと、
     前記エネルギ線の照射を受けて硬化するエネルギ線硬化樹脂を含む原料ガスを前記成膜室に供給するガス供給部と、
     前記チャンバに接続され、前記天板に付着した前記エネルギ線硬化樹脂を除去するクリーニングガスを前記成膜室へ導入するクリーニングユニットと
     を具備する成膜装置。
    A chamber having a chamber main body having a film forming chamber, and a top plate having a window and attached to the chamber main body;
    A stage disposed in the film forming chamber and having a supporting surface for supporting the substrate;
    A light source unit that is installed on the top plate and has an irradiation source that irradiates the supporting surface with energy rays through the window portion;
    A gas supply unit that supplies a raw material gas containing an energy ray curable resin that is cured by receiving the energy ray irradiation to the film forming chamber;
    A film forming apparatus comprising a cleaning unit connected to the chamber and introducing a cleaning gas for removing the energy ray-curable resin adhering to the top plate into the film forming chamber.
  2.  請求項1に記載の成膜装置であって、
     前記ガス供給部は、前記天板に対向して配置され前記エネルギ線を透過させる材料で構成されたシャワープレートと、前記天板と前記シャワープレートとの間に形成され前記原料ガスが導入される空間部とを有し、
     前記クリーニングユニットは、前記クリーニングガスを前記空間部へ導入する
     成膜装置。
    The film forming apparatus according to claim 1, wherein
    The gas supply unit is formed between the top plate and the shower plate, and the shower plate is disposed between the top plate and the shower plate, and the shower plate is arranged to face the top plate and is made of a material that transmits the energy rays. Has a space part,
    The film forming apparatus, wherein the cleaning unit introduces the cleaning gas into the space.
  3.  請求項1又は2に記載の成膜装置であって、
     前記クリーニングユニットは、前記クリーニングガスとして酸素プラズマを発生させるプラズマ発生器を含む
     成膜装置。
    The film forming apparatus according to claim 1 or 2, wherein
    The film forming apparatus, wherein the cleaning unit includes a plasma generator that generates oxygen plasma as the cleaning gas.
  4.  請求項1~3のいずれか1つに記載の成膜装置であって、
     前記プラズマ発生器は、前記チャンバの周囲の複数個所に設けられる
     成膜装置。
    The film forming apparatus according to any one of claims 1 to 3,
    The plasma generator is provided in a plurality of places around the chamber.
  5.  請求項1~4のいずれか1つに記載の成膜装置であって、
     前記ステージは、前記支持面を冷却可能な冷却源を有する
     成膜装置。
    The film forming apparatus according to any one of claims 1 to 4,
    The film forming apparatus, wherein the stage has a cooling source capable of cooling the supporting surface.
  6.  請求項1~5のいずれか1つに記載の成膜装置であって、
     前記天板は、前記窓部を支持する枠部と、前記枠部を加熱する加熱源をさらに有する
     成膜装置。
    The film forming apparatus according to any one of claims 1 to 5,
    The film forming apparatus, wherein the top plate further includes a frame portion that supports the window portion, and a heating source that heats the frame portion.
  7.  請求項1~6のいずれか1つに記載の成膜装置であって、
     前記照射源は、紫外線ランプである
     成膜装置。
    The film forming apparatus according to any one of claims 1 to 6,
    The irradiation source is an ultraviolet lamp.
  8.  請求項1~7のいずれか1つに記載の成膜装置を用いた成膜方法であって、
     前記ガス供給部から前記支持面に支持された基板上に原料ガスを供給することで、前記基板上にエネルギ線硬化樹脂を堆積させ、
     前記照射源から前記窓部を介してエネルギ線を照射することで、前記エネルギ線硬化樹脂の硬化物層を形成し、
     前記天板に付着したエネルギ線硬化樹脂をクリーニングガスで除去する
     成膜方法。
    A film forming method using the film forming apparatus according to claim 1.
    By supplying a source gas from the gas supply unit onto the substrate supported by the support surface, the energy ray curable resin is deposited on the substrate,
    By irradiating an energy ray from the irradiation source through the window portion, a cured product layer of the energy ray curable resin is formed,
    A film forming method of removing the energy ray curable resin adhering to the top plate with a cleaning gas.
PCT/JP2019/035460 2018-12-03 2019-09-10 Film-forming apparatus and film-forming method WO2020115980A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207035141A KR102469600B1 (en) 2018-12-03 2019-09-10 Film formation device and film formation method
CN201980043051.3A CN112424389A (en) 2018-12-03 2019-09-10 Film forming apparatus and film forming method
JP2020559732A JP7117396B2 (en) 2018-12-03 2019-09-10 Film forming apparatus and film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-226772 2018-12-03
JP2018226772 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020115980A1 true WO2020115980A1 (en) 2020-06-11

Family

ID=70975029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035460 WO2020115980A1 (en) 2018-12-03 2019-09-10 Film-forming apparatus and film-forming method

Country Status (5)

Country Link
JP (1) JP7117396B2 (en)
KR (1) KR102469600B1 (en)
CN (1) CN112424389A (en)
TW (1) TWI784203B (en)
WO (1) WO2020115980A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240081536A (en) * 2022-11-30 2024-06-10 주식회사 비아트론 Apparatus for Pre-cleaning of Semiconductor Substrate and Method for Pre-cleaning of Semiconductor Substrate using the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088483A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Vapor deposition apparatus and method for operating the same
JP2012162806A (en) * 2001-12-12 2012-08-30 Semiconductor Energy Lab Co Ltd Cleaning method
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281891C (en) * 2003-11-12 2006-10-25 中国科学院力学研究所 Method for cracking organic debris reinforced by plasma and plasma furnace
JP4035568B2 (en) * 2004-11-29 2008-01-23 株式会社エーイーティー Atmospheric pressure large area plasma generator
US7789965B2 (en) * 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
JP5501807B2 (en) * 2009-03-31 2014-05-28 東京エレクトロン株式会社 Processing equipment
WO2014116304A2 (en) * 2012-08-23 2014-07-31 Applied Materials, Inc. Method and hardware for cleaning uv chambers
CN203179834U (en) * 2013-02-05 2013-09-04 珠海宝丰堂电子科技有限公司 Plasma processing device
CN103747607A (en) * 2013-12-24 2014-04-23 苏州市奥普斯等离子体科技有限公司 Far zone plasma spray gun device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162806A (en) * 2001-12-12 2012-08-30 Semiconductor Energy Lab Co Ltd Cleaning method
JP2008088483A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Vapor deposition apparatus and method for operating the same
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Also Published As

Publication number Publication date
KR102469600B1 (en) 2022-11-22
TWI784203B (en) 2022-11-21
JP7117396B2 (en) 2022-08-12
JPWO2020115980A1 (en) 2021-09-02
KR20210006957A (en) 2021-01-19
CN112424389A (en) 2021-02-26
TW202035754A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102648956B1 (en) Method for cleaning components of plasma processing apparatus
JP5981115B2 (en) Deposition equipment
KR20120080544A (en) Focus ring and substrate processing apparatus having same
WO2005109483A1 (en) Substrate for electronic device and method for processing same
US11495456B2 (en) Ozone for selective hydrophilic surface treatment
WO2020115980A1 (en) Film-forming apparatus and film-forming method
JP6959454B2 (en) Film deposition equipment
US20070228527A1 (en) Substrate for electronic device and method for processing same
JP3267306B2 (en) Method for manufacturing semiconductor device
JP2020147787A (en) Film deposition device
JP7093850B2 (en) Film forming equipment and film forming method
JP2008159802A (en) Plasma doping method and device
JP2016145391A (en) Vaporization apparatus, and film deposition apparatus
JP2016219656A (en) Optical processing apparatus and optical processing method
JP2008218877A (en) Substrate treatment device and method of manufacturing semiconductor device
JP2010056197A (en) Substrate processing apparatus
JP2017017070A (en) Light processing device and light processing method
JPS60253212A (en) Vapor growth device
JP2022152246A (en) Wafer processing device
JP3010065B2 (en) Optical excitation process equipment
JPS6118125A (en) Thin film forming apparatus
JPS6156280A (en) Film forming method
WO2016125433A1 (en) Optical processing device and optical processing method
JPS60236215A (en) Laser cvd method
JPH0598447A (en) Photo assisted cvd device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559732

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207035141

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893143

Country of ref document: EP

Kind code of ref document: A1