WO2020114927A1 - Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators - Google Patents

Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators Download PDF

Info

Publication number
WO2020114927A1
WO2020114927A1 PCT/EP2019/083213 EP2019083213W WO2020114927A1 WO 2020114927 A1 WO2020114927 A1 WO 2020114927A1 EP 2019083213 W EP2019083213 W EP 2019083213W WO 2020114927 A1 WO2020114927 A1 WO 2020114927A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carboxylic acid
hydroxy compound
compound
decarboxylation
Prior art date
Application number
PCT/EP2019/083213
Other languages
English (en)
French (fr)
Inventor
Niklas Meine
Erik SLUYTS
Jan HEIJL
Original Assignee
Covestro Deutschland Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland Ag filed Critical Covestro Deutschland Ag
Priority to KR1020217016849A priority Critical patent/KR20210100617A/ko
Priority to CN201980080847.6A priority patent/CN113382978A/zh
Priority to EP19809496.3A priority patent/EP3891118A1/de
Priority to US17/295,240 priority patent/US11420918B2/en
Priority to JP2021531429A priority patent/JP2022513699A/ja
Publication of WO2020114927A1 publication Critical patent/WO2020114927A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • C07C65/05Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
    • C07C65/10Salicylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation

Definitions

  • the present invention relates to a method for producing a special Hy droxy compound by decarboxylation of a special carboxylic acid compound or
  • Phenols with different substitution patterns on aromatics are the starting compounds for different monomers and thus also for the resulting polymers.
  • the production of such phenols from renewable raw materials is a great challenge.
  • One possibility for the production of bio-based phenols is the direct fermentation of sugars, such as described in WO 2014/076113 A1.
  • phenol is toxic to the microorganism described there and also the removal from the aqueous fermentation broth is expensive.
  • Hydroxybenzoic acids such as 4-hydroxybenzoic acid, 2-hydroxybenzoic acid and 3-hydroxybenzoic acid can also be produced fermentatively from sugars. Since they are generally less toxic to the microorganisms used, higher yields can normally be achieved compared to phenol.
  • Hydroxybenzoic acids can be crystallized and separated from the fermentation broth. A subsequent decarboxylation of 4-hydroxybenzoic acid to phenol has also already been described.
  • JP 2016-23136 A describes the reaction using a heterogeneous catalyst in water as a solvent.
  • A.S. Eisitsyn / Applied Catalysis A: General 332; 2007 (166-170) describes decarboxylation in diphenyl ether using a copper catalyst.
  • L.J. Goossen et al. describe in ChemCatChem 2010, 2, 430-442 the decarboxylation using a silver or copper catalyst in NMP as a solvent. Also in Dalton Transactions (24), 4683-4688; In 2009, decarboxylation in toluene by electron-rich palladium complexes is described.
  • the present invention was therefore based on the object of providing a process for the preparation of special hydroxy compounds of the formula (I) by decarboxylation of a carboxylic acid compound of the formula (II) or a corresponding salt of this carboxylic acid compound of the formula (II), which has at least one disadvantage of the state of the art Technology improved.
  • the present invention was based on the object of providing a process which provides the hydroxy compound of the formula (I) with high economy.
  • the method should in particular avoid the step of separating the catalyst, since such an additional step is often undesirable.
  • Carboxylic acid compound of formula (II) also takes place without the use of a catalyst. In particular, this reaction also takes place in economically worthwhile orders of magnitude.
  • the reaction of the decarboxylation without the use of a catalyst enables this reaction to be carried out at previously unused locations in existing processes.
  • the process according to the invention enables the decarboxylation to be carried out in already existing distillation columns which are used for working up hydroxy compounds of the formula (I) by means of distillation.
  • Carboxylic acid compound of formula (II) to the bottom of these distillation columns can be removed from the hydroxy compound of formula (I) as a distillate essentially without further energy expenditure and also without additional equipment.
  • this distillate contains the hydroxy compound of formula (I), which was originally supposed to be worked up.
  • it also contains hydroxy compounds of the formula (I) which have newly formed in the column by decarboxylation. This results in a significantly increased amount of purified distillate compared to the previous use of the distillation column, which can be used further.
  • R represents a linear or branched alkyl group having 1 to 6 carbon atoms, n is 1 or 2 and m is 0, 1, 2 or 3, by decarboxylation of a carboxylic acid compound of the formula (II) or a corresponding salt of this carboxylic acid compound of the formula (II)
  • R, n and m have the meanings given above, characterized in that the decarboxylation is carried out in the absence of a catalyst.
  • the decarboxylation reaction is carried out without a catalyst.
  • a catalyst is known to the person skilled in the art. In particular, he understands by a catalyst a substance that lowers the activation energy of a reaction and thus increases the reaction rate without being consumed in the reaction itself. According to the invention, the presence of such a catalyst, which catalyzes the reaction of the decarboxylation, is excluded.
  • catalyst according to the invention preferably comprises both homogeneous catalysts and heterogeneous catalysts.
  • the method according to the invention particularly preferably also does not comprise any step of actively adding a catalyst.
  • a catalyst is present during the decarboxylation reaction, which is selected from the group consisting of AI2O3, H3PO4 supported on AI2O3, RC1 X supported on AI2O3, Cu / Al / Ga-MOFs, R-Al-MOFs, palladium supported on activated carbon, platinum supported on activated carbon, zeolites, such as ZSM-5, HZSM-5, I 'e;(>, supported on MCM-41 (Mobil Composition of Matter No.
  • the process according to the invention is preferably characterized in that the decarboxylation is carried out in the presence of at least one solvent.
  • solvent is known to the person skilled in the art.
  • a solvent causes the starting materials and products of the decarboxylation reaction to be present in dissolved form under the reaction conditions.
  • Preferred means “dissolve” and “in solution” if, when filtering a liquid in which a substance is dissolved, no solid can be separated using common filter methods. It is particularly preferred that the decarboxylation reaction takes place in the liquid phase.
  • the method according to the invention preferably comprises a step of actively adding at least one solvent before the start of the decarboxylation reaction. In this case, the at least one solvent can be added to the starting materials or the starting materials can be added to the at least one solvent.
  • the solvent is preferably an organic solvent with a boiling point which is higher than the boiling point of the hydroxy compound of the formula (I).
  • organic solvent with a boiling point which is higher than the boiling point of the hydroxy compound of the formula (I).
  • bisphenol A or alkylphenols are suitable here.
  • the at least one solvent is very particularly preferably selected from a hydroxy compound of the formula (I). This solvent further preferably corresponds to the compound of formula (I) prepared.
  • the invention is characterized in that at least one hydroxy compound of the formula (I) is present in a stoichiometric excess to the carboxylic acid compound of the formula (II) during the entire reaction of the decarboxylation, the decarboxylation being carried out at a temperature which is above the Melting temperature of both the hydroxy compound of formula (I) formed and the at least one hydroxy compound of formula (I) used in a stoichiometric excess.
  • the carboxylic acid compound of the formula (II) or the salt of the carboxylic acid compound of the formula (II) is present in addition to at least one hydroxy compound Formula (I). This also applies before the decarboxylation reaction begins.
  • the at least one hydroxy compound of formula (I) is in a stoichiometric excess. This means that the carboxylic acid compound of the formula (II) or the salt of the carboxylic acid compound of the formula (II) is in a molar deficit to the at least one hydroxy compound of the formula (I).
  • the hydroxy compound of the formula (I) is then additionally formed as the target product.
  • the case is preferably excluded in which the hydroxy compound of the formula (I) forms as the target product in situ and then at some point a molar deficit of the carboxylic acid compound of the formula (II) or the salt of the carboxylic acid compound of the formula (II) is formed, since at least one hydroxy compound of the formula (I) must additionally be present from the start of the decarboxylation.
  • the carboxylic acid compound of the formula (II) or the salt of the carboxylic acid compound of the formula (II) is thus preferably soluble in the at least one hydroxy compound of the formula (I) which is present in the stoichiometric excess of the carboxylic acid compound of the formula (II) in the entire reaction of the decarboxylation is.
  • the process according to the invention in this embodiment is preferably carried out at a temperature which is above the melting temperature of both the hydroxy compound of the formula (I) formed and the at least one hydroxy compound of the formula (I) used in a stoichiometric excess.
  • the method according to the invention is therefore preferably carried out in solution.
  • the at least one hydroxy compound of the formula (I), which is present in the stoichiometric excess of the carboxylic acid compound of the formula (II) in the entire decarboxylation reaction, serves as the solvent.
  • the process according to the invention can be a batch, semi-batch or continuous process.
  • the process according to the invention is preferably used to prepare a hydroxy compound of the formula (I) shown above, in which R represents a tert-butyl, propyl or methyl group, n is 1 or 2, preferably 1 and m is 0, 1, 2 or 3 is.
  • the process according to the invention is particularly preferably used to prepare 4-propylphenol, ortho-, para- or metha-methylphenol (cresols), 2,4-dimethylphenol, 2,5-dimethylphenol, 4-tert-butylphenol or phenol.
  • the process according to the invention is very particularly preferably characterized in that the hydroxy compound of the formula (I) is phenol.
  • the at least one hydroxy compound of the formula (I), which is present in a stoichiometric excess to the carboxylic acid compound of the formula (II) in the entire decarboxylation reaction, if present, is a hydroxy compound of the formula (I ) in which R represents a tert-butyl, propyl or methyl group, n is 1 or 2, preferably 1 and m is 0, 1, 2 or 3.
  • This at least one hydroxy compound of the formula (I) which is present in a stoichiometric excess to the carboxylic acid compound of the formula (II) in the entire reaction of the decarboxylation, 4-propylphenol, ortho-, para- or metha-methylphenol (cresols), 2 is particularly preferred , 4-dimethylphenol, 2,5-dimethylphenol, 4-tert-butylphenol or phenol. It is very particularly preferably phenol.
  • the hydroxy compound of the formula (I) prepared by the process according to the invention corresponds to the hydroxy compound of the formula (I) which is present in the stoichiometric excess of the carboxylic acid compound of the formula (II) in the entire reaction of the decarboxylation.
  • the carboxylic acid compound of the formula (II) or the salt of the carboxylic acid compound of the formula (II) are sometimes also summarized as a carboxylic acid compound of the formula (II).
  • the free acid and / or the salt are always meant, unless stated otherwise.
  • mixtures of different carboxylic acid compounds of the formula (II) or different salts of the carboxylic acid compounds of the formula (II) or also mixtures of at least one carboxylic acid compound of the formula (II) with at least one salt of the carboxylic acid compound of the formula (II) can be used.
  • the cation of the salt of the carboxylic acid compound of the formula (II) is selected from the group consisting of alkali metal cations, alkaline earth metal cations, ammonium, phosphonium, cations of manganese, iron, cobalt, nickel, copper, zinc, molybdenum, Cadmium and any mixtures thereof.
  • the cation of the salt of the carboxylic acid compound of the formula (II) is particularly preferably selected from the group consisting of alkali metal cations, alkaline earth metal cations and mixtures thereof.
  • the carboxylic acid compound of the formula (II) or the corresponding salt of the carboxylic acid compound of the formula (II) is selected from the group consisting of 2-hydroxybenzoic acid, 4-hydroxybenzoic acid and the corresponding salts. It is very particularly preferably 4-hydroxybenzoic acid or the corresponding salt.
  • the carboxylic acid compound of the formula (II) or the corresponding salt of the carboxylic acid compound of the formula (II) has been obtained by fermentation or from sugars, lignocellulose, lignocellulose-containing materials, furans and / or lignin .
  • the carboxylic acid compound of the formula (II) or the corresponding salt of the carboxylic acid compound of the formula (II) is thus preferably bio-based.
  • bio-based means that the chemical compound in question is accessible, obtainable and / or preferably such a renewable and / or renewable raw material at the time of registration by a renewable and / or renewable raw material.
  • a renewable and / or renewable raw material is preferably a raw material that is regenerated by natural processes at a rate that is comparable to its rate of degradation (see CEN / TS 16295: 2012).
  • the expression serves in particular to differentiate it from raw materials from fossil raw materials, also referred to according to the invention as petrobased. Whether a raw material is bio-based or petro-based can be determined by measuring carbon isotopes in the raw material, since the relative amounts of the carbon isotope C14 are lower in fossil raw materials. This can be done, for example, in accordance with ASTM D6866-18 (2016) or ISO16620-1 to -5 (2015) or DIN SPEC 91236 2011-07.
  • the term “petro-based” is preferably used for those compounds which have a C14 isotope content of less than 0.3 ⁇ 10 12 , particularly preferably 0.2 ⁇ 10 12 and very particularly preferably 0.1 ⁇ 10 12 .
  • a bio-based hydroxy compound of the formula (I) is obtained by using a bio-based carboxylic acid compound of the formula (II) or a corresponding salt of the carboxylic acid compound of the formula (II).
  • This in turn can be used for the production of further bio-based compounds, for example diaryl carbonates, bisphenols or polycarbonates, as a result of which bio-based polymers are ultimately accessible and are produced in an efficient and cost-effective way.
  • the process according to the invention is preferably carried out at a pressure between 1 mbar and 1000 mbar, preferably between 5 mbar and 600 mbar, particularly preferably between 10 mbar and 200 mbar. It is also preferred that the process according to the invention is carried out at a temperature between 180 ° C. and 400 ° C., preferably between 180 ° C. and 270 ° C. and particularly preferably between 185 ° C. and 250 ° C.
  • the reaction of decarboxylation at a reaction temperature of 180 ° C. and 400 ° C., preferably between 180 ° C. and 270 ° C. and particularly preferably between 185 ° C. and 250 ° C. and a pressure of 1 mbar and 1000 mbar is particularly preferred between 5 mbar and 600 mbar, particularly preferably between 10 mbar and 200 mbar.
  • the process according to the invention is characterized in that it is carried out in a distillation column.
  • This offers the advantage that the hydroxy compound of the formula (I) can preferably be removed as a distillate.
  • the bottom of the distillation column according to the embodiment described above can additionally contain a hydroxy compound of the formula (I) which is present in a stoichiometric excess to the carboxylic acid compound of the formula (II) in the entire reaction of the decarboxylation.
  • a carboxylic acid compound of the formula (II) or the corresponding salt of the carboxylic acid compound of the formula (II) is then added to the bottom of the distillation column.
  • this compound can be added to the bottom of the distillation column by means of feed.
  • the decarboxylation reaction is now started during the distillation. It has been found according to the invention that the conditions which are present in such a distillation column (temperature and pressure) are sufficient to initiate a decarboxylation reaction. The presence of a catalyst is not necessary for this.
  • the inventive method is preferably further characterized in that the already formed hydroxy compound of the formula (I) is additionally supplied in contaminated form to the distillation column and is separated from the impurity in all configurations and preferences in addition to carrying out the method according to the invention in the distillation column.
  • a hydroxy compound of the formula (I) in the sump which is present in a stoichiometric excess to the carboxylic acid compound of the formula (II) in the entire decarboxylation reaction.
  • This hydroxy compound of formula (I) which functions as a solvent, may contain impurities. These are preferably impurities which arise in the synthesis of bisphenols and / or the polymerization of polycarbonates by means of phase interface processes and / or melting processes.
  • the observation that the decarboxylation reaction can also be carried out without a catalyst enables adaptation of already existing plants, such as distillation columns.
  • a carboxylic acid compound of formula (II) or the corresponding salt of the carboxylic acid compound of formula (II) can simply be added to this.
  • This integration is possible in existing systems without much effort.
  • the energy required for the distillation can also be used to initiate the decarboxylation reaction.
  • the method according to the invention thus enables particularly economical and environmentally friendly process control.
  • the distillate be fed to a process for producing a bisphenol, a diaryl carbonate or a polycarbonate.
  • Processes for the preparation of diaryl carbonates or bisphenols are known to the person skilled in the art.
  • Diaryl carbonates can be prepared, for example, by the reaction of the hydroxy compound of the formula (I) with phosgene in a known manner.
  • Bisphenols can be obtained by reacting the hydroxy compound of formula (I) with a ketone in a known manner.
  • Methods for the production of polycarbonates using the hydroxy compound of the formula (I) are also known to the person skilled in the art.
  • the hydroxy compound of formula (I) can be used as a chain terminator in a phase interface process for the production of polycarbonate in a known manner.
  • the other reaction partners such as the ketones
  • the other reaction partners can also be bio-based or petro-based, preferably bio-based. This allows products with different proportions of bio-based carbon to be obtained in a targeted manner.
  • bio-based there are currently different labels for when a product can be described as “bio-based” (see, among other things, the certification program “bio-based products according to ASTM D6866-18 (2016) or ISO16620-1 to -5 (2015) or DIN SPEC 91236 2011 - 07 from TÜVRhe offshore®). These different labels require a certain percentage of bio-based carbon in the product. The method according to the invention makes it possible to simply adjust the proportion of bio-based carbon.
  • a method for producing a bisphenol comprising the steps: (i) reaction of at least one hydroxy compound of the formula (I) with at least one ketone to give a mixture comprising at least one bisphenol and at least one unreacted hydroxy compound of the formula (I),
  • Preferred bisphenols which can be prepared by the process according to the invention are those of the formula (2a)
  • HO-Z-OH (2a) in which Z is an aromatic radical having 6 to 30 C atoms, which can contain one or more aromatic nuclei, can be substituted and contain aliphatic or cyclo aliphatic radicals or alkylaryls or heteroatoms as bridge members can.
  • Z in formula (2a) preferably represents a radical of formula (3)
  • Ci to Cis alkyl in the R 6 and R 7 independently of one another for H, Ci to Cis alkyl, Ci to Cis alkoxy, halogen such as CI or Br or for each optionally substituted aryl or aralkyl, preferably for H or Ci to Ci2 alkyl , particularly preferably H or Ci- bis (V alkyl and very particularly preferably H or methyl, and X represents a single bond, -SO2-, -CO-, -O-, -S-, Ci- to Ce-alkylene, C2- to Cs-alkylidene or C 5 - to C ö -cycloalkylidene, which can be substituted by Ci- to (VAlkyl, preferably methyl or ethyl, furthermore for C ⁇ - to Ci2-arylene, which optionally contain further hetero atoms aromatic rings may be condensed.
  • X is preferably a single bond, Ci to (V alkylene, C 2 to Cs alkylidene, Cs to (V cycloalkylidene, -O-, -SO-, -CO-, -S-, -SO 2 - or a radical of the formula (3a)
  • bisphenols examples include dihydroxybenzenes, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) aryls, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) ketones, bis - (hydroxyphenyl) sulfide, bis (hydroxyphenyl) sulfone, bis
  • Preferred bisphenols are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) -l-phenylpropane,
  • 1,1-bis (4-hydroxyphenyl) phenylethane 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,3-bis- [ 2- (4-hydroxyphenyl) -2-propyl] benzene (bisphenol M), 2,2-bis (3-methyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) - methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl) -4-hydroxyphenyl) -2-methylbutane, 1,3-bis- [2- (3,5-dimethyl-4-hydroxyphenyl) -2-propyl] benzene and 1,1-bis- (4-hydroxyphenyl) - 3,3,5-trimethylcyclohexane (bisphenol TMC).
  • Particularly preferred bisphenols are 4,4'-dihydroxydiphenyl, l, l-bis (4-hydroxyphenyl) phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3.5 -dimethyl-4-hydroxyphenyl) propane,
  • the samples were dissolved in acetonitrile and analyzed by HPLC (phenol and 4-hydroxybenzoic acid were determined using a mixture of 85% by volume H2O + 200m1 H3PO4 and 15% by volume acetonitrile as the mobile phase at a flow of 1 ml / min a ZORBAX SB-C18 column (with a SpectraSYSTEM pump and a UV detector 210 nm UV 6000 LP) measured using HPLC).
  • HPLC phenol and 4-hydroxybenzoic acid were determined using a mixture of 85% by volume H2O + 200m1 H3PO4 and 15% by volume acetonitrile as the mobile phase at a flow of 1 ml / min a ZORBAX SB-C18 column (with a SpectraSYSTEM pump and a UV detector 210 nm UV 6000 LP) measured using HPLC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer speziellen Hydroxyverbindung durch Decarboxylierung einer speziellen Carbonsäureverbindung oder eines Salzes dieser Carbonsäureverbindung in Abwesenheit eines Katalysators und ein Verfahren zur Herstellung eines Bisphenols.

Description

Verfahren zur Herstellung einer Hvdroxyverbindung durch Decarboxylierung in
Abwesenheit eines Katalysators
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer speziellen Hy droxy Verbindung durch Decarboxylierung einer speziellen Carbonsäureverbindung oder eines
Salzes dieser Carbonsäureverbindung in Abwesenheit eines Katalysators und ein Verfahren zur Herstellung eines Bisphenols.
Phenole mit unterschiedlichen Substitutionsmustern am Aromaten stellen die Ausgangsverbindungen für unterschiedliche Monomere und damit auch für die daraus resultierenden Polymere dar. Die Herstellung solcher Phenole aus nachwachsenden Rohstoffen stellt eine große Herausforderung dar. Eine Möglichkeit zur Herstellung biobasierten Phenols bietet die direkte Fermentation von Zuckern, wie beispielsweise in der WO 2014/076113 Al beschrieben. Phenol ist jedoch für den dort beschriebenen Mikroorganismus toxisch und auch die Abtrennung aus der wässrigen Fermentationsbrühe ist aufwendig. Hydroxybenzoesäuren wie beispielsweise 4- Hydroxybenzoesäure, 2-Hydroxybenzoesäure und 3-Hydroxybenzoesäure können ebenfalls fermentativ aus Zuckern hergestellt werden. Da sie für die eingesetzten Mikroorganismen in der Regel weniger toxisch sind, können im Vergleich zu Phenol normalerweise höhere Ausbeuten erzielt werden. Hydroxybenzoesäuren können kristallisiert und aus der Fermentationsbrühe abgetrennt werden. Eine anschließende Decarboxylierung von 4-Hydroxybenzoesäure zu Phenol wurde auch bereits beschrieben. Die JP 2016-23136 A beschreibt die Reaktion unter Verwendung eines heterogenen Katalysators in Wasser als Eösungsmittel. In A.S. Eisitsyn / Applied Catalysis A: General 332 ; 2007 (166-170) wird die Decarboxylierung in Diphenylether unter Verwendung eines Kupferkatalysators beschrieben. L. J. Gooßen et al. beschreiben in ChemCatChem 2010, 2, 430-442 die Decarboxylierung mittels Silber- oder Kupferkatalysator in NMP als Lösungsmittel. Auch in Dalton Transactions (24), 4683-4688; 2009 wird die Decarboxylierung in Toluol durch elektronenreiche Palladiumkomplexe beschrieben.
Die beschriebenen Methoden verwenden jedoch alle einen homogenen oder auch heterogenen Katalysator. Die Verwendung eines Katalysators führt immer dazu, dass dieser nach Ablauf der Reaktion der Decarboxylierung vom gewünschten Produkt getrennt werden muss. Zwar ist die Abtrennung eines heterogenen Katalysators bereits einfacher als die eines homogenen Katalysators.
Dennoch kommt es in beiden Fällen auch immer wieder zur Katalysatorvergiftung, so dass ein Katalysator nach gegebener Zeit immer wieder teilweise erneuert, regeneriert oder komplett ersetzt werden muss. Dies führt zu zusätzlichen Kosten des Verfahrens, welche jedoch durch die Herabsetzung der Aktivierungsenergie der Reaktion durch den Katalysator meist in Kauf genommen werden. Dennoch weisen die beschriebenen Reaktionen Verbesserungspotential in Bezug auf die Reaktionsbedingungen und insbesondere ihre Wirtschaftlichkeit auf.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von speziellen Hydroxyverbindungen der Formel (I) mittels Decarboxylierung einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser Carbonsäureverbindung der Formel (II) bereitzustellen, welches mindestens einen Nachteil des Stands der Technik verbessert. Insbesondere lag der vorliegenden Erfindung die Aufgabe zu Grunde, ein Verfahren bereitzustellen, welches die Hydroxyverbindung der Formel (I) in hoher Wirtschaftlichkeit liefert. Dabei sollte das Verfahren insbesondere den Schritt der Abtrennung des Katalysators vermeiden, da ein solcher zusätzlicher Schritt häufig unerwünscht ist.
Mindestens eine, bevorzugt alle der oben genannten Aufgaben wurden durch die vorliegende Erfindung gelöst. Überraschend wurde gefunden, dass die Decarboxylierung einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser
Carbonsäureverbindung der Formel (II) auch ohne die Verwendung eines Katalysators stattfindet. Insbesondere findet diese Reaktion auch in wirtschaftlich lohnenswerten Größenordnungen statt. Dabei ermöglicht die Reaktion der Decarboxylierung ohne den Einsatz eines Katalysators die Durchführung dieser Reaktion an bisher nicht dafür genutzten Stellen bereits bestehender Verfahren. Beispielsweise ermöglicht das erfindungsgemäße Verfahren die Durchführung der Decarboxylierung in bereits bestehenden Destillationskolonnen, die zur Aufarbeitung von Hydroxyverbindungen der Formel (I) mittels Destillation genutzt werden. Durch die Zugabe einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser
Carbonsäureverbindung der Formel (II) zum Sumpf dieser Destillationskolonnen kann im Wesentlichen ohne weiteren Energieaufwand und auch ohne weiteren apparativen Aufwand, die Hydroxyverbindung der Formel (I) als Destillat entnommen werden. Dieses Destillat enthält zum einen die Hydroxyverbindung der Formel (I), welche ursprünglich aufgearbeitet werden sollte. Zum anderen enthält es aber auch Hydroxyverbindungen der Formel (I), welche in der Kolonne durch Decarboxylierung neu entstanden sind. Damit erhält man eine im Vergleich zur vorherigen Nutzung der Destillationskolonne deutlich erhöhte Menge an aufgereinigtem Destillat, welches weiter verwendet werden kann.
Erfindungsgemäß wird daher ein Verfahren zur Herstellung einer Hydroxyverbindung der Formel (I) bereitgestellt
Figure imgf000004_0001
in der
R für eine lineare oder verzweigte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen steht, n 1 oder 2 ist und m 0, 1, 2 oder 3 ist, durch Decarboxylierung einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser Carbonsäureverbindung der Formel (II)
Figure imgf000004_0002
in der R, n und m die oben genannten Bedeutungen haben, dadurch gekennzeichnet, dass die Decarboxylierung in Abwesenheit eines Katalysators durchgeführt wird.
Gemäß der vorliegenden Erfindung wird die Reaktion der Decarboxylierung ohne einen Katalysator durchgeführt. Die Definition eines „Katalysators“ ist dem Fachmann bekannt. Insbesondere versteht er unter einem Katalysator einen Stoff, der die Aktivierungsenergie einer Reaktion senkt und somit die Reaktionsgeschwindigkeit erhöht, ohne selbst bei der Reaktion verbraucht zu werden. Erfindungsgemäß wird die Anwesenheit eines solchen Katalysators, der die Reaktion der Decarboxylierung katalysiert, ausgeschlossen. Bevorzugt umfasst der erfindungsgemäße Begriff des Katalysators sowohl homogene Katalysatoren als auch heterogene Katalysatoren. Besonders bevorzugt umfasst das erfindungsgemäße Verfahren auch insbesondere keinen Schritt der aktiven Zugabe eines Katalysators. Besonders bevorzugt ist es erfindungsgemäß ausgeschlossen, dass bei der Reaktion der Decarboxylierung ein Katalysator anwesend ist, der ausgewählt wird aus der Gruppe, bestehend aus AI2O3, H3PO4 geträgert auf AI2O3, RC1X geträgert auf AI2O3, Cu/Al/Ga-MOFs, R-Al-MOFs, Palladium geträgert auf Aktivkohle, Platin geträgert auf Aktivkohle, Zeolithe, wie beispielsweise ZSM-5, HZSM-5, I 'e;(>, geträgert auf MCM-41 (Mobil Composition of Matter No. 41), Fe203 geträgert auf Al-MCM-41, Pt geträgert auf SAPO-34 (Silicoaluminophosphat), R geträgert auf SAPO-11, Pt Hydrotalcite, Pt geträgert auf S1O2, einer Brönsted-Base und beliebigen Mischungen davon.
Bevorzugt ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass die Decarboxylierung in Anwesenheit mindestens eines Lösungsmittels durchgeführt wird. Der Begriff „Lösungsmittel“ ist dem Fachmann bekannt. Insbesondere führt ein Lösungsmittel dazu, dass die Edukte und Produkte der Reaktion der Decarboxylierung unter den Reaktionsbedingungen in gelöster Form vorliegen. Bevorzugt bedeutet„lösen“ und„in Lösung“, wenn bei Filtration einer Flüssigkeit, in der eine Substanz gelöst ist, mit gängigen Filtermethoden kein Feststoff abgetrennt werden kann. Dabei ist es insbesondere bevorzugt, dass die Reaktion der Decarboxylierung in flüssiger Phase stattfindet. Vorzugsweise umfasst das erfindungsgemäße Verfahren einen Schritt der aktiven Zugabe mindestens eines Lösungsmittels vor Beginn der Reaktion der Decarboxylierung. In diesem Fall kann das mindestens eine Lösungsmittel zu den Edukten oder die Edukte zu dem mindestens einem Lösungsmittel zugegeben werden.
Bevorzugt handelt es sich bei dem Lösungsmittel um ein organisches Lösungsmittel mit einem Siedepunkt, welcher höher hegt als der Siedepunkt der Hydroxy Verbindung der Formel (I). Beispielswiese kommen hier Bisphenol A oder Alkylphenole in Frage.
Ganz besonders bevorzugt ist das mindestens eine Lösungsmittel ausgewählt aus einer Hydroxyverbindung der Formel (I). Dabei entspricht dieses Lösungsmittel weiterhin bevorzugt der hergestellten Verbindung der Formel (I).
In einer bevorzugten Ausführungsform ist das erfindungsgemäße dadurch gekennzeichnet, dass während der gesamten Reaktion der Decarboxylierung mindestens eine Hydroxyverbindung der Formel (I) im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) vorhanden ist, wobei die Decarboxylierung bei einer Temperatur durchgeführt wird, die über der Schmelztemperatur sowohl der gebildeten Hydroxyverbindung der Formel (I) als auch der im stöchiometrischen Überschuss verwendeten, mindestens einen Hydroxyverbindung der Formel (I), liegt.
Damit hegt in dieser Ausführungsform die Carbonsäureverbindung der Formel (II) oder das Salz der Carbonsäureverbindung der Formel (II) neben mindestens einer Hydroxyverbindung der Formel (I) vor. Dies gilt auch vor Beginn der Reaktion der Decarboxylierung. Die mindestens eine Hydroxyverbindung der Formel (I) liegt in einem stöchiometrischen Überschuss vor. Dies bedeutet, dass die Carbonsäureverbindung der Formel (II) oder das Salz der Carbonsäureverbindung der Formel (II) in einem molaren Unterschuss zur mindestens einer Hydroxyverbindung der Formel (I) vorliegt. Während der Decarboxylierung wird dann zusätzlich die Hydroxyverbindung der Formel (I) als Zielprodukt gebildet. Diese kann gleich oder verschieden, bevorzugt gleich zur mindestens einen Hydroxyverbindung zur Formel (I) sein. Erfindungsgemäß ist somit bevorzugt der Fall ausgeschlossen, bei dem die Hydroxyverbindung der Formel (I) sich als Zielprodukt in situ bildet und sich dann gegebenenfalls irgendwann ein molarer Unterschuss der Carbonsäureverbindung der Formel (II) oder des Salzes der Carbonsäureverbindung der Formel (II) bildet, da von Anfang der Decarboxylierung an zusätzlich mindestens eine Hydroxyverbindung der Formel (I) vorhanden sein muss. Erfindungsgemäß ist es bevorzugt, dass die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) in der mindestens einen Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, gelöst wird, bevor die Reaktion der Decarboxylierung durchgeführt wird. Damit ist die Carbonsäureverbindung der Formel (II) oder das Salz der Carbonsäureverbindung der Formel (II) bevorzugt löslich in der mindestens einen Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist.
Das erfindungsgemäße Verfahren in dieser Ausführungsform wird bevorzugt bei einer Temperatur durchgeführt, die über der Schmelztemperatur sowohl der gebildeten Hydroxyverbindung der Formel (I) als auch der im stöchiometrischen Überschuss verwendeten, mindestens einen Hydroxyverbindung der Formel (I), liegt. Damit wird das erfindungsgemäße Verfahren bevorzugt in Fösung durchgeführt. Die mindestens eine Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, dient dabei als Fösungsmittel.
Beim erfindungsgemäßen Verfahren kann es sich um ein batch, semi-batch oder kontinuierliches Verfahren handeln.
Bevorzugt dient das erfindungsgemäße Verfahren zur Herstellung einer Hydroxyverbindung der oben gezeigten Formel (I), in der R für eine tert-Butyl-, Propyl- oder Methylgruppe steht, n 1 oder 2, bevorzugt 1 ist und m 0, 1, 2 oder 3 ist. Besonders bevorzugt dient das erfindungsgemäße Verfahren der Herstellung von 4-Propylphenol, ortho-, para- oder metha-Methylphenol (Cresole), 2,4-Dimethylphenol, 2,5-Dimethylphenol, 4-tert-Butyl-phenol oder Phenol. Ganz besonders bevorzugt ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass die Hydroxy Verbindung der Formel (I) Phenol ist.
Ebenso ist es bevorzugt, dass die mindestens eine Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, - falls sie vorhanden ist - eine Hydroxyverbindung der oben gezeigten Formel (I) ist, in der R für eine tert-Butyl-, Propyl- oder Methylgruppe steht, n 1 oder 2, bevorzugt 1 ist und m 0, 1, 2 oder 3 ist. Besonders bevorzugt ist diese mindestens eine Hydroxyverbindung der Formel (I) welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, 4-Propylphenol, ortho-, para- oder metha- Methylphenol (Cresole), 2,4- Dimethylphenol, 2,5-Dimethylphenol, 4-tert-Butyl-phenol oder Phenol. Ganz besonders bevorzugt ist sie Phenol.
Dabei ist es bevorzugt, dass die nach dem erfindungsgemäßen Verfahren hergestellte Hydroxyverbindung der Formel (I) der Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, entspricht.
Erfindungsgemäß werden die Carbonsäureverbindung der Formel (II) oder das Salz der Carbonsäureverbindung der Formel (II) gelegentlich auch als Carbonsäure Verbindung der Formel (II) zusammengefasst. Gemeint sind aber immer die freie Säure und/oder das Salz, soweit nicht anders angegeben. Erfindungsgemäß können auch Mischungen unterschiedlicher Carbonsäureverbindungen der Formel (II) oder unterschiedlicher Salze der Carbonsäureverbindungen der Formel (II) oder auch Mischungen mindestens einer Carbonsäureverbindung der Formel (II) mit mindestens einem Salz der Carbonsäureverbindung der Formel (II) eingesetzt werden.
Im erfindungsgemäßen Verfahren ist es bevorzugt, dass das Kation des Salzes der Carbonsäureverbindung der Formel (II) ausgewählt wird aus der Gruppe bestehend aus Alkalimetallkationen, Erdalkalimetallkationen, Ammonium, Phosphonium, Kationen von Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Molybdän, Cadmium und beliebigen Mischungen davon. Besonders bevorzugt ist das Kation des Salzes der Carbonsäureverbindung der Formel (II) ausgewählt aus der Gruppe bestehend aus Alkalimetallkationen, Erdalkalimetallkationen und Mischungen davon. Des Weiteren ist es erfindungsgemäß bevorzugt, dass die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) ausgewählt wird aus der Gruppe, bestehend aus 2-Hydroxybenzoesäure, 4-Hydroxybenzoesäure und den entsprechenden Salzen. Ganz besonders bevorzugt handelt es sich um 4-Hydroxybenzoesäure oder das entsprechende Salz.
In einem Aspekt der Erfindung ist es des Weiteren bevorzugt, dass die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) durch Fermentation oder aus Zuckern, Lignocellulose, lignocellulose-haltigen Materialien, Furanen und/oder Lignin erhalten wurde. Damit ist die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) bevorzugt biobasiert. Im Sinne der vorliegenden Erfindung wird unter dem Ausdruck„biobasiert“ verstanden, dass die betreffende chemische Verbindung zum Anmeldezeitpunkt durch einen erneuerbaren und/oder nachwachsenden Rohstoff zugänglich, erhältlich und/oder bevorzugt ein solcher erneuerbarer und/oder nachwachsender Rohstoff ist. Unter einem erneuerbaren und/oder nachwachsenden Rohstoff wird bevorzugt ein Rohstoff verstanden, welcher durch natürliche Prozesse mit einer Geschwindigkeit regeneriert wird, die mit ihrer Abbaurate vergleichbar ist (Siehe CEN/TS 16295:2012). Der Ausdruck dient insbesondere der Abgrenzung zu Rohstoffen aus fossilen Rohstoffen, erfindungsgemäß auch als petrobasiert bezeichnet. Ob ein Rohstoff biobasiert ist oder petrobasiert, kann durch die Messung von Kohlenstoffisotopen in dem Rohstoff festgestellt werden, da die relativen Mengen des Kohlenstoffisotops C14 geringer sind in fossilen Rohstoffen. Dies kann beispielsweise gemäß der ASTM D6866-18 (2018) oder der ISO16620-1 bis -5 (2015) oder der DIN SPEC 91236 2011-07 erfolgen.
Erfindungsgemäß wird der Begriff „petrobasiert“ bevorzugt für solche Verbindungen verwendet, welche einen C14 Isotopengehalt von unter 0,3 x 10 12, besonders bevorzugt von 0,2 x 10 12 und ganz besonders bevorzugt von 0,1 x 10 12 aufweist.
Dem Fachmann ist bekannt, wie er Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) durch Fermentation oder aus Zuckern, Lignocellulose, lignocellulose-haltigen Materialien, Furanen und/oder Lignin erhalten kann.
Dies ist beispielsweise in der WO 2015174446, WO 2015156271, US20040143867, Appl. Environ Microbiol 84 2018 :e02587-17, WO2016114668, Biomass and Bioenergy 93:209-216 October 2016, Biotechnol Bioeng. 2016 Jul; 113(7): 1493-503, ACS Catal., 2016, 6 (9), pp 6141-6145 oder Biotechnol. Bioeng., 113: 1493-1503, Appl Microbiol Biotechnol. 2018 0ct;102(20):8685-8705, Microbiology. 1994 Apr;140 ( Pt 4):897-904, Journal of Biotechnology 132 (2007) 49-56, W02000018942, US 6030819, EP2698435, Bioprocess Biosyst Eng (2017) 40: 1283, US2996540, US9206449, Nature 2014, 515, 249-252, Biomass and Bioenergy 93 (2016) 209-216, 3 Biotech. 2015 Oct; 5(5): 647-651, Appl Environ Microbiol. 2018 Mar 15; 84(6): e02587-17, US3360553A beschrieben.
In diesem Aspekt der Erfindung ist es besonders vorteilhaft, dass durch den Einsatz einer biobasierten Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes der Carbonsäureverbindung der Formel (II) eine biobasierte Hydroxyverbindung der Formel (I) erhalten wird. Diese wiederum kann zur Herstellung von weiteren biobasierten Verbindungen, beispielsweise Diarylcarbonaten, Bisphenolen oder Polycarbonaten genutzt werden wodurch letztendlich biobasierte Polymere zugänglich und auf einem effizienten und kostengünstigen Weg hergestellt werden.
Das erfindungsgemäße Verfahren wird bevorzugt bei einem Druck zwischen 1 mbar und 1000 mbar, bevorzugt zwischen 5 mbar und 600 mbar, besonders bevorzugt zwischen 10 mbar und 200 mbar durchgeführt. Ebenso ist es bevorzugt, dass das erfindungsgemäße Verfahren bei einer Temperatur zwischen 180 °C und 400 °C, bevorzugt zwischen 180 °C und 270 °C und besonders bevorzugt zwischen 185 °C und 250 °C durchgeführt wird. Besonders bevorzugt wird die Reaktion der Decarboxylierung bei einer Reaktionstemperatur von 180 °C und 400 °C, bevorzugt zwischen 180 °C und 270 °C und besonders bevorzugt zwischen 185 °C und 250 °C und einem Druck von 1 mbar und 1000 mbar, bevorzugt zwischen 5 mbar und 600 mbar, besonders bevorzugt zwischen 10 mbar und 200 mbar durchgeführt.
Auch wenn dem Fachmann weitere mögliche Ausgestaltungen des Verfahrens möglich sind, ist es bevorzugt, wenn das erfindungsgemäße Verfahren dadurch gekennzeichnet ist, dass es in einer Destillationskolonne durchgeführt wird. Dies bietet den Vorteil, dass die Hydroxyverbindung der Formel (I) bevorzugt als Destillat entnommen werden kann. Dabei kann der Sumpf der Destillationskolonne gemäß der oben beschrieben Ausführungsform zusätzlich eine Hydroxyverbindung der Formel (I) enthalten, welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist.
Dem Sumpf der Destillationskolonne wird dann eine Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) hinzugefügt. Dies kann der Fachmann ohne großen apparativen Aufbau realisieren. Beispielsweise kann diese Verbindung mittels Zulauf zum Sumpf der Destillationskolonne gegeben werden. Die Reaktion der Decarboxylierung wird nun während der Destillation gestartet. Es wurde erfindungsgemäß herausgefunden, dass die Bedingungen, welche in einer solchen Destillationskolonne vorliegen (Temperatur und Druck) ausreichend sind, um eine Reaktion der Decarboxylierung zu initiieren. Dazu ist die Anwesenheit eines Katalysators nicht erforderlich.
Bevorzugt ist das erfindungsgemäße des Weiteren dadurch gekennzeichnet, dass der Destillationskolonne zusätzlich die bereits gebildete Hydroxyverbindung der Formel (I) in verunreinigter Form zugeführt wird und in der Destillationskolonne zusätzlich zur Durchführung des erfindungsgemäßen Verfahrens in sämtlichen Ausgestaltungen und Bevorzugungen von der Verunreinigung getrennt wird. In diesem Fall hegt eine Hydroxyverbindung der Formel (I) im Sumpf vor, welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist. Diese Hydroxyverbindung der Formel (I), welche als Fösungsmittel fungiert, kann Verunreinigungen enthalten. Dabei handelt es sich bevorzugt um Verunreinigungen, welche bei der der Synthese von Bisphenolen und/oder der Polymerisation von Polycarbonaten mittels Phasengrenzflächenverfahren und/oder Schmelzverfahren anfallen. Diese Verfahren erzeugen Nebenströme mit einer verunreinigten Hydroxyverbindung der Formel (I). Diese Verunreinigungen hegen somit ebenfalls im Sumpf der Destillationskolonne vor. Eine katalytische Wirkung dieser Verunreinigungen bei der Decarboxylierung einer Carbonsäureverbindung der Formel (II) oder des entsprechenden Salzes der Carbonsäureverbindung der Formel (II) ist derzeit nicht bekannt, so dass diese Verunreinigungen nicht als Katalysator im Sinne der vorliegenden Erfindung verstanden werden. Wird nun die Destillation durchgeführt, so wird zum einen die bereits gebildete Hydroxyverbindung der Formel (I) destilliert und kann als Destillat entnommen werden. Zum anderen wird durch das erfindungsgemäße Verfahren gleichzeitig eine Hydroxyverbindung der Formel (I) gebildet und gleichzeitig mit destilliert. Insgesamt kann somit als Destillat eine Mischung der Hydroxy Verbindungen der Formel (I) entnommen werden, welche sowohl die bereits vor Zugabe zum Sumpf gebildete Verbindung als auch die in der Destillationskolonne gebildete Verbindung umfasst. Bevorzugt trennt die Destillation diese Mischung auch von den
Verunreinigungen, welche zuvor in der bereits gebildeten Hydroxyverbindung der Formel (I) vorhanden waren. Es ist für den Fachmann offensichtlich, dass es hier besonders bevorzugt ist, dass die Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, der Hydroxyverbindung der Formel (I), welche durch Decarboxylierung gebildet wird, entspricht.
Somit ermöglicht die Beobachtung, dass die Reaktion der Decarboxylierung auch ohne Katalysator durchgeführt werden kann, eine Anpassung bereits bestehender Anlagen, wie beispielsweise Destillationskolonnen. Erfordert ein bestehender Prozess die Aufreinigung einer Hydroxyverbindung der Formel (I), beispielsweise mittels Destillationskolonne, so kann dieser einfach eine Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) hinzugefügt werden. Diese Integration ist in bereits bestehenden Anlagen ohne großen Aufwand möglich. Die Energie, die für die Destillation benötigt wird, kann gleichzeitig dafür genutzt werden, um die Reaktion der Decarboxylierung zu initiieren. Damit ermöglicht das erfindungsgemäße Verfahren eine besonders wirtschaftliche und umweltfreundliche Prozessführung. Selbst wenn die Ausbeuten der Decarboxylierung ohne die Verwendung eines Katalysators geringer sein sollte als mit (dies hängt aber auch von den Reaktionsbedinungen ab), kann das Verfahren durch die Integration und Energiemitnutzung immer noch deutliche wirtschaftliche Vorteile mit sich bringen. Gleichzeitig wird das Destillat durch die Bildung einer neuen Hydroxyverbindung der Formel (I) verdünnt und gegebenenfalls dadurch aufgewertet. Es kann so weiteren Reaktionen zu- bzw. wieder zurückgeführt werden.
Es ist bevorzugt, dass das Destillat einem Verfahren zur Herstellung eines Bisphenols, eines Diarylcarbonats oder eines Polycarbonats zugeführt wird. Verfahren zur Herstellung von Diarylcarbonaten oder Bisphenolen sind dem Fachmann bekannt. Diarylcarbonate können beispielsweise durch die Reaktion der Hydroxyverbindung der Formel (I) mit Phosgen auf bekannte Art und Weise hergestellt werden. Bisphenole können durch Reaktion der Hydroxyverbindung der Formel (I) mit einem Keton auf bekannte Art und Weise erhalten werden. Auch sind dem Fachmann Verfahren zur Herstellung von Polycarbonaten unter Verwendung der Hydroxyverbindung der Formel (I) bekannt. Beispielsweise kann die Hydroxyverbindung der Formel (I) als Kettenabbrecher in einem Phasengrenzflächenverfahren zur Herstellung von Polycarbonat auf bekannte Art und Weise eingesetzt werden.
Bei diesen Verfahren können die weiteren Reaktionspartner, wie beispielsweise die Ketone, ebenfalls biobasiert oder petrobasiert, bevorzugt biobasiert sein. Dadurch können Produkte mit unterschiedlichen Anteilen an biobasiertem Kohlenstoff gezielt erhalten werden.
Derzeit existieren unterschiedliche Kennzeichnungen, ab wann ein Produkt als „Biobasiert“ bezeichnet werden darf (siehe unter anderem das Zertifizierungsprogramm„biobasierte Produkte nach ASTM D6866-18 (2018) oder der ISO16620-1 bis -5 (2015) oder der DIN SPEC 91236 2011- 07 vom TÜVRheinland®). Diese unterschiedlichen Kennzeichnungen setzen eine bestimmte Prozentzahl an biobasiertem Kohlenstoff im Produkt voraus. Das erfindungsgemäße Verfahren ermöglicht es, den Anteil an biobasiertem Kohlenstoff einfach einzustellen.
In einem weiteren Aspekt der Erfindung wird ein Verfahren zur Herstellung eines Bisphenols bereitgestellt, umfassend die Schritte: (i) Reaktion mindestens einer Hydroxyverbindung der Formel (I) mit mindestens einem Keton zu einem Gemisch enthaltend mindestens ein Bisphenol und mindestens eine nicht reagierte Hydroxyverbindung der Formel (I),
(ii) Abtrennung der nicht reagierten Hydroxyverbindung der Formel (I) von dem mindestens einen Bisphenol aus dem Gemisch des Verfahrensschritts (i), um einen Strom, enthaltend die nicht reagierte Hydroxyverbindung der Formel (I), und einen Strom, enthaltend das mindestens eine Bisphenol, zu erhalten,
(iii) Destillation des Stroms, enthaltend die nicht reagierte Hydroxyverbindung der Formel (I), unter Zugabe mindestens einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser Carbonsäureverbindung der Formel (II) in den Destillationssumpf, um ein Destillat zu erzeugen, welches die mindestens eine Hydroxyverbindung der Formel (I) umfasst, und
(iv) Zuführung des Destillats des in Verfahrensschritts (iii), umfassend mindestens eine Hydroxyverbindung der Formel (I) zu Verfahrensschritt (i).
Dabei ist es besonders bevorzugt, dass in Verfahrensschritt (iii) kein Katalysator anwesend ist.
Bevorzugte Bisphenole, die mit dem erfindungsgemäßen Verfahren hergestellt werden können, sind solche der Formel (2a)
HO-Z-OH (2a), in welcher Z ein aromatischer Rest mit 6 bis 30 C- Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische oder cyclo aliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann.
Bevorzugt steht Z in Formel (2a) für einen Rest der Formel (3)
Figure imgf000012_0001
in der R6 und R7unabhängig voneinander für H, Ci- bis Cis-Alkyl-, Ci- bis Cis-Alkoxy, Halogen wie CI oder Br oder für jeweils gegebenenfalls substituiertes Aryl- oder Aralkyl, bevorzugt für H oder Ci- bis Ci2-Alkyl, besonders bevorzugt für H oder Ci- bis ( VAlkyl und ganz besonders bevorzugt für H oder Methyl stehen, und X für eine Einfachbindung, -SO2-, -CO-, -O-, -S-, Ci- bis Ce-Alkylen, C2- bis Cs-Alkyliden oder C5- bis Cö-Cycloalkyliden, welches mit Ci- bis (VAlkyl, vorzugsweise Methyl oder Ethyl, substituiert sein kann, ferner für CÖ- bis Ci2-Arylen, welches gegebenenfalls mit weiteren Hetero atome enthaltenden aromatischen Ringen kondensiert sein kann, steht.
Bevorzugt steht X für eine Einfachbindung, Ci- bis (VAlkylen, C2- bis Cs-Alkyliden, Cs- bis ( V Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2- oder für einen Rest der Formel (3a)
Figure imgf000013_0001
Beispiele für Bisphenole sind: Dihydroxybenzole, Dihydroxydiphenyle, Bis-(hydroxyphenyl)- alkane, Bis-(hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-aryle, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-sulfone, Bis-
(hydroxyphenyl)-sulfoxide, l,l’-Bis-(hydroxyphenyl)-diisopropylbenzole sowie deren kernalkylierte und kernhalogenierte Verbindungen.
Bevorzugte Bisphenole sind 4,4’-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-l -phenylpropan,
1.1-Bis-(4-hydroxyphenyl)-phenylethan, 2,2-Bis-(4-hydroxyphenyl)propan, 2,4-Bis-(4-hydroxy- phenyl)-2-methylbutan, l,3-Bis-[2-(4-hydroxyphenyl)-2-propyl]benzol (Bisphenol M), 2,2-Bis-(3- methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5- dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5- dimethyl-4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]- benzol und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan (Bisphenol TMC). Besonders bevorzugte Bisphenole sind 4,4’-Dihydroxydiphenyl, l,l-Bis-(4-hydroxyphenyl)- phenyl-ethan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)-propan,
1.1-Bis-(4-hydroxyphenyl)-cyclohexan und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan (Bisphenol TMC). In diesem Verfahren gelten auch sämtliche oben genannten Bevorzugungen und Kombinationen von Bevorzugungen. Auch dieses Verfahren zeichnet sich aus den oben genannten Gründen durch eine hohe Wirtschaftlichkeit und Umweltfreundlichkeit aus.
Beispiele
Chemikalien:
4-Hydroxybenzoesäure (4-HBA): Reinheit > 99 %, Sigma- Aldrich Chemie GmbH Phenol: Reinheit > 96 %, Sigma- Aldrich Chemie GmbH Allgemeine Versuchsvorschrift:
150 g Phenol und 150g 4-Hydroxybenzoesäure wurden in einem 500-mL-Dreihalskolben mit Rückflusskühler vorgelegt und unter Stickstoff und Rühren auf 180 °C erwärmt. Bei 160 °C lag eine farblose Lösung vor und die Bildung von Gasbläschen war zu beobachten. Die Lösung wurde für 7 Stunden bei 180 °C erwärmt und in regelmäßigen Abständen Proben entnommen (Siehe Tabelle 1). Die Proben wurden in Acetonitril gelöst und mittels HPLC analysiert (Phenol und 4- Hydroxybenzoesäure wurden unter Verwendung einer Mischung aus 85 Vol.-% H2O + 200m1 H3PO4 und 15 Vol.-% Acetonitril als mobile Phase bei einem Fluss von 1 ml/min auf einer ZORBAX SB-C18 Säule (mit einer SpectraSYSTEM Pumpe und einem UV Detektor 210 nm UV 6000 LP) mittels HPLC vermessen).
Tabelle 1 :
Figure imgf000015_0001
Es ist zu beobachten, dass unter den gewählten Reaktionsbedingungen auch ohne Katalysator 4- Hydroxybenzosäure zu Phenol umgesetzt wird.

Claims

Patentansprüche :
1. Verfahren zur Herstellung einer Hydroxy Verbindung der Formel (I)
Figure imgf000016_0001
R für eine lineare oder verzweigte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen steht, n 1 oder 2 ist und m 0, 1, 2 oder 3 ist, durch Decarboxylierung einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser Carbonsäureverbindung der Formel (II)
Figure imgf000016_0002
,1 in der R, n und m die oben genannten Bedeutungen haben, dadurch gekennzeichnet, dass die Decarboxylierung in Abwesenheit eines Katalysators durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Decarboxylierung in
Anwesenheit mindestens eines Lösungsmittels durchgeführt wird.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass während der gesamten Reaktion der Decarboxylierung mindestens eine Hydroxyverbindung der Formel (I) im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) vorhanden ist, wobei die Decarboxylierung bei einer Temperatur durchgeführt wird, die über der Schmelztemperatur sowohl der gebildeten Hydroxyverbindung der Formel (I) als auch der im stöchiometrischen Überschuss verwendeten, mindestens einen Hydroxyverbindung der Formel (I), liegt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Kation des Salzes der Carbonsäureverbindung der Formel (II) ausgewählt wird aus der Gruppe bestehend aus Alkalimetallkationen, Erdalkalimetallkationen, Ammonium, Phosphonium, Kationen von Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Molybdän, Cadmium und beliebigen Mischungen davon.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) durch Fermentation oder aus Zuckern, Fignocellulose, lignocellulose-haltigen Materialien, Furanen und/oder Fignin erhalten wurde.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die hergestellte
Hydroxyverbindung der Formel (I) der Hydroxyverbindung der Formel (I), welche im stöchiometrischen Überschuss zur Carbonsäureverbindung der Formel (II) bei der gesamten Reaktion der Decarboxylierung vorhanden ist, entspricht.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Hydroxyverbindung der Formel (I) Phenol ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Carbonsäureverbindung der Formel (II) oder das entsprechende Salz der Carbonsäureverbindung der Formel (II) ausgewählt wird aus der Gruppe, bestehend aus 1- Hydroxybenzoesäure, 4-Hydroxybenzoesäure und den entsprechenden Salzen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die
Reaktionstemperatur bei der Decarboxylierung im Bereich von 180 °C und 400 °C und einem Druck von 1 mbar und 1000 mbar durchgeführt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren nach einem der Ansprüche 1 bis 9 in einer Destillationskolonne durchgeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Destillationskolonne die
Hydroxyverbindung der Formel (I) als Destillat entnommen wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Destillationskolonne zusätzlich die bereits gebildete Hydroxyverbindung der Formel (I) in verunreinigter Form zugeführt wird und in der Destillationskolonne zusätzlich zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 von der Verunreinigung getrennt wird.
13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das Destillat einem Verfahren zur Herstellung eines Bisphenols, eines Diarylcarbonats oder eines Polycarbonats zugeführt wird.
14. Verfahren zur Herstellung eines Bisphenols, umfassend die Schritte:
(i) Reaktion mindestens einer Hydroxyverbindung der Formel (I) mit mindestens einem Keton zu einem Gemisch enthaltend mindestens ein Bisphenol und mindestens eine nicht reagierte Hydroxyverbindung der Formel (I),
(ii) Abtrennung der nicht reagierten Hydroxyverbindung der Formel (I) von dem mindestens einen Bisphenol aus dem Gemisch des Verfahrensschritts (i), um einen Strom, enthaltend die nicht reagierte Hydroxyverbindung der Formel (I), und einen Strom, enthaltend das mindestens eine Bisphenol, zu erhalten,
(iii) Destillation des Stroms, enthaltend die nicht reagierte Hydroxyverbindung der Formel (I), unter Zugabe mindestens einer Carbonsäureverbindung der Formel (II) oder eines entsprechenden Salzes dieser Carbonsäureverbindung der Formel (II) in den Destillationssumpf, um ein Destillat zu erzeugen, welches die mindestens eine Hydroxyverbindung der Formel (I) umfasst, und
(iv) Zuführung des Destillats des in Verfahrensschritts (iii), umfassend mindestens eine Hydroxyverbindung der Formel (I) zu Verfahrensschritt (i).
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass in Verfahrensschritt (iii) kein Katalysator anwesend ist.
PCT/EP2019/083213 2018-12-07 2019-12-02 Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators WO2020114927A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217016849A KR20210100617A (ko) 2018-12-07 2019-12-02 촉매의 부재 하에 탈카르복실화에 의해 히드록시 화합물을 제조하는 방법
CN201980080847.6A CN113382978A (zh) 2018-12-07 2019-12-02 在不存在催化剂的情况下通过脱羧制备羟基化合物的方法
EP19809496.3A EP3891118A1 (de) 2018-12-07 2019-12-02 Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators
US17/295,240 US11420918B2 (en) 2018-12-07 2019-12-02 Method for producing a hydroxy compound by decarboxylation in the absence of a catalyst
JP2021531429A JP2022513699A (ja) 2018-12-07 2019-12-02 触媒の不存在下での脱カルボキシル化によりヒドロキシ化合物を製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18211030 2018-12-07
EP18211030.4 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020114927A1 true WO2020114927A1 (de) 2020-06-11

Family

ID=64661170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/083213 WO2020114927A1 (de) 2018-12-07 2019-12-02 Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators

Country Status (6)

Country Link
US (1) US11420918B2 (de)
EP (1) EP3891118A1 (de)
JP (1) JP2022513699A (de)
KR (1) KR20210100617A (de)
CN (1) CN113382978A (de)
WO (1) WO2020114927A1 (de)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996540A (en) 1956-07-30 1961-08-15 Sulphite Products Corp Preparation of para-hydroxybenzoic acid
US3360553A (en) 1962-07-19 1967-12-26 Asahi Chemical Ind Process for producing hydroxybenzoic acid
DE2248525A1 (de) * 1971-10-12 1973-04-19 Int Flavors & Fragrances Inc Verfahren zur decarboxylierung von ortho- oder para-hydroxyarylcarbonsaeuren
US6030819A (en) 1998-09-28 2000-02-29 General Electric Company Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid
WO2000018942A1 (en) 1998-09-25 2000-04-06 General Electric Company Method for increasing total production of 4-hydroxybenzoic acid by biofermentation using an anion exchange resin
EP1277723A1 (de) * 2001-07-18 2003-01-22 Bayer Ag Verfahren zur Herstellung von Bisphenolen
US20040143867A1 (en) 2000-06-02 2004-07-22 Knut Meyer High level production of p-hydroxybenzoic acid in green plants
EP2698435A1 (de) 2012-08-14 2014-02-19 Samsung Electronics Co., Ltd Verfahren zum biologischen Erzeugen von P-Hydroxybenzoesäure
WO2014070742A1 (en) * 2012-10-29 2014-05-08 Sabic Innovative Plastics Ip B.V. Recovery of materials from a mother liquor residue obtained during bisphenol a synthesis
WO2014076113A1 (en) 2012-11-13 2014-05-22 Bayer Technology Services Gmbh Method for producing phenol from renewable resources by fermentation
WO2015156271A1 (ja) 2014-04-08 2015-10-15 グリーンフェノール開発株式会社 コリネ型細菌形質転換体及びそれを用いる4-ヒドロキシ安息香酸又はその塩の製造方法
WO2015174446A1 (ja) 2014-05-14 2015-11-19 グリーンフェノール開発株式会社 高活性変異型酵素を高発現させたコリネ型細菌形質転換体、及びそれを用いる4-ヒドロキシ安息香酸又はその塩の製造方法
JP2016023136A (ja) 2014-07-16 2016-02-08 宇部興産株式会社 ヒドロキシベンゼン化合物の製造方法
WO2016114668A1 (en) 2015-01-16 2016-07-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method to prepare phenolics from biomass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818434A (en) * 1957-04-24 1959-08-19 Monsanto Chemicals The decarboxylation of aromatic hydroxy acids
WO2013035103A1 (en) * 2011-09-05 2013-03-14 Davuluri Ramamohanrao Phenol c-alkylation process
EP2586767A1 (de) * 2011-10-25 2013-05-01 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten und Polycarbonaten

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996540A (en) 1956-07-30 1961-08-15 Sulphite Products Corp Preparation of para-hydroxybenzoic acid
US3360553A (en) 1962-07-19 1967-12-26 Asahi Chemical Ind Process for producing hydroxybenzoic acid
DE2248525A1 (de) * 1971-10-12 1973-04-19 Int Flavors & Fragrances Inc Verfahren zur decarboxylierung von ortho- oder para-hydroxyarylcarbonsaeuren
WO2000018942A1 (en) 1998-09-25 2000-04-06 General Electric Company Method for increasing total production of 4-hydroxybenzoic acid by biofermentation using an anion exchange resin
US6030819A (en) 1998-09-28 2000-02-29 General Electric Company Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid
US20040143867A1 (en) 2000-06-02 2004-07-22 Knut Meyer High level production of p-hydroxybenzoic acid in green plants
EP1277723A1 (de) * 2001-07-18 2003-01-22 Bayer Ag Verfahren zur Herstellung von Bisphenolen
EP2698435A1 (de) 2012-08-14 2014-02-19 Samsung Electronics Co., Ltd Verfahren zum biologischen Erzeugen von P-Hydroxybenzoesäure
US9206449B2 (en) 2012-08-14 2015-12-08 Samsung Electronics Co., Ltd. Process of biologically producing a p-hydroxybenzoic acid
WO2014070742A1 (en) * 2012-10-29 2014-05-08 Sabic Innovative Plastics Ip B.V. Recovery of materials from a mother liquor residue obtained during bisphenol a synthesis
WO2014076113A1 (en) 2012-11-13 2014-05-22 Bayer Technology Services Gmbh Method for producing phenol from renewable resources by fermentation
WO2015156271A1 (ja) 2014-04-08 2015-10-15 グリーンフェノール開発株式会社 コリネ型細菌形質転換体及びそれを用いる4-ヒドロキシ安息香酸又はその塩の製造方法
WO2015174446A1 (ja) 2014-05-14 2015-11-19 グリーンフェノール開発株式会社 高活性変異型酵素を高発現させたコリネ型細菌形質転換体、及びそれを用いる4-ヒドロキシ安息香酸又はその塩の製造方法
JP2016023136A (ja) 2014-07-16 2016-02-08 宇部興産株式会社 ヒドロキシベンゼン化合物の製造方法
WO2016114668A1 (en) 2015-01-16 2016-07-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method to prepare phenolics from biomass

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
A.S. LISITSYN, APPLIED CATALYSIS A: GENERAL, vol. 332, 2007, pages 166 - 170
ACS CATAL., vol. 6, no. 9, 2016, pages 6141 - 6145
APPL ENVIRON MICROBIOL, vol. 84, no. 6, 15 March 2018 (2018-03-15), pages e02587 - 17
APPL MICROBIOL BIOTECHNOL., vol. 102, no. 20, October 2018 (2018-10-01), pages 8685 - 8705
APPL. ENVIRON MICROBIOL, vol. 84, 2018, pages e02587 - 17
BIOMASS AND BIOENERGY, vol. 93, 2016, pages 209 - 216
BIOMASS AND BIOENERGY, vol. 93, October 2016 (2016-10-01), pages 209 - 216
BIOPROCESS BIOSYST ENG, vol. 40, 2017, pages 1283
BIOTECH., vol. 5, no. 5, October 2015 (2015-10-01), pages 647 - 651
BIOTECHNOL BIOENG, vol. 113, no. 7, July 2016 (2016-07-01), pages 1493 - 503
BIOTECHNOL. BIOENG., vol. 113, pages 1493 - 1503
DALTON TRANSACTIONS, vol. 24, 2009, pages 4683 - 4688
JOURNAL OF BIOTECHNOLOGY, vol. 132, 2007, pages 49 - 56
L. J. GOOSSEN ET AL., CHEMCATCHEM, vol. 2, 2010, pages 430 - 442
MICROBIOLOGY, vol. 140, April 1994 (1994-04-01), pages 897 - 904
NATURE, vol. 515, 2014, pages 249 - 252

Also Published As

Publication number Publication date
US11420918B2 (en) 2022-08-23
JP2022513699A (ja) 2022-02-09
EP3891118A1 (de) 2021-10-13
US20210395177A1 (en) 2021-12-23
KR20210100617A (ko) 2021-08-17
CN113382978A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
EP2321294B1 (de) Verfahren zur herstellung eines gemisches von lactid-derivaten
EP0654461A1 (de) Verfahren zur Herstellung von Diarylcarbonaten
DE2514742C3 (de) Verfahren zur Herstellung von zweiwertigen Phenolderivaten
DE2355690C2 (de) Verfahren zur Herstellung von Phenol oder substituierten Phenolen
EP0026318A1 (de) Verfahren zur Herstellung reiner 4,4'-Dihydroxydiphenylalkane bzw. -cycloalkane
DE10146689C2 (de) Verfahren zur Herstellung von Sorbinsäure aus Sorbinsäurepolyester
DE2344926C3 (de) Verfahren zur Herstellung von 3-Halogen- bzw. 3,5-Dihalogen-phenolen
WO2020114927A1 (de) Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in abwesenheit eines katalysators
DE112011103786T5 (de) Bis(Trifluormethansulfonyl)ethyl tragende Verbindung und Säurekatalysator und Verfahren zum Herstellen derselben
EP0025519A1 (de) Verfahren zur Herstellung von 2-Alkyl- bzw. 2-Arylthiomethylphenol
EP3891116B1 (de) Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung
DE2411826A1 (de) Verfahren zur herstellung von merkaptophenolen
DE102009002514A1 (de) Verfahren zur Herstellung von substituierten 1,4-Chinonmethiden
EP3891117B1 (de) Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in anwesenheit einer brönsted-base
EP4056267A1 (de) Verfahren und katalysator zur herstellung von phenolbausteinen aus lignin
DE10135012A1 (de) Verfahren zur Herstellung von Bisphenolen
DE1246750B (de) Verfahren zur Gewinnung von reinem 2, 6-Xylenol
DE2461129A1 (de) Verbessertes verfahren zur herstellung von carbamatverbindungen
EP2374785A1 (de) Reinigung von Tris-hydroxyaryl-Verbindungen
DE69910224T2 (de) Phosphinligandaktivierte herstellung von tetraaryloxyalkane und diarylcarbonate
DE2854492C2 (de) Verfahren zur Herstellung von (Phenoxy- bzw. Benzyl)-phenoxypropionsäuren und ihren Alkalisalzen
DE1015444B (de) Verfahren zur Herstellung von Phenolen
DE1237132B (de) Verfahren zur Herstellung von sulfhydryl-gruppenhaltigen gegebenenfalls veraethertenaromatischen Hydroxyverbindungen
EP0004543A2 (de) Verfahren zur Herstellung von niedermolekularen Polyhydroxylverbindungen und ihre Verwendung zur Herstellung von Polyurethankunststoffen
DE3844443A1 (de) Chlorformiate aromatischer ketone und verfahren zu deren herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19809496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019809496

Country of ref document: EP

Effective date: 20210707