WO2020114367A1 - 压力传感器及其制备方法 - Google Patents

压力传感器及其制备方法 Download PDF

Info

Publication number
WO2020114367A1
WO2020114367A1 PCT/CN2019/122539 CN2019122539W WO2020114367A1 WO 2020114367 A1 WO2020114367 A1 WO 2020114367A1 CN 2019122539 W CN2019122539 W CN 2019122539W WO 2020114367 A1 WO2020114367 A1 WO 2020114367A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
metal layer
substrate
sensor according
composite metal
Prior art date
Application number
PCT/CN2019/122539
Other languages
English (en)
French (fr)
Inventor
李威威
陈明
李伟民
程冠铭
冯叶
钟国华
李文杰
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020114367A1 publication Critical patent/WO2020114367A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type

Definitions

  • the invention belongs to the technical field of sensors, and particularly relates to a pressure sensor and a preparation method thereof.
  • Pressure sensors mainly include piezoresistive, inductive and capacitive types.
  • the resistance, inductance and capacitance of the main component structure of the device are changed under the action of external pressure, and then the measurement circuit is used to change these three physical quantities through a The series of processing ultimately achieves the purpose of detecting changes in external pressure.
  • pressure sensors are widely used in wearable devices and other electronic products, such as household appliances, robots, medical equipment, safety devices, environmental monitoring equipment, etc.
  • wearable devices With the increase of types of wearable devices, the emergence of health data monitoring and telemedicine industries, the requirements for pressure sensors in practical applications are becoming higher and higher.
  • Features such as high sensitivity, large measurement range, and flexibility have become future pressure sensors.
  • the development trend, among them, how to make the pressure sensor with high sensitivity and large measurement range has become a research problem in this field.
  • the object of the present invention is to provide a pressure sensor with high sensitivity and a large measurement range and a manufacturing method thereof to meet the increasing demand in the application field of pressure sensors.
  • a pressure sensor includes a first electrode plate and a second electrode plate disposed oppositely, wherein the first electrode plate includes a first substrate and an interdigitated electrode disposed on the first substrate, the fork
  • Each sub-electrode of the finger electrode includes a semiconductor layer and a first composite metal layer that are sequentially disposed on the first substrate, the surface of the semiconductor layer is formed as a rough surface, and the first composite metal layer is disposed on the On the rough surface;
  • the second electrode plate includes a second substrate with a microstructure array on one surface and a second composite metal layer overlaid on the microstructure array; wherein, the second composite metal layer is The first composite metal layers are in conflicting connection with each other.
  • the surface of the semiconductor layer is formed as a rough surface of an upright two-dimensional sheet structure.
  • the thickness of the semiconductor layer is 5 to 8 ⁇ m
  • the height of the vertical two-dimensional sheet structure is 400 to 500 nm
  • the surface roughness of the vertical two-dimensional sheet structure is 300 to 400 nm.
  • each sub-electrode has a length of 1 to 2 cm, a width of 100 to 120 ⁇ m, and a center distance between two adjacent sub-electrodes of 100 to 120 ⁇ m.
  • the height of the microstructure array is 5-10 ⁇ m, and the center-to-center distance between two adjacent microstructures is 5-10 ⁇ m.
  • the first substrate is a rigid substrate or a flexible substrate
  • the material of the second substrate is PDMS.
  • the first composite metal layer and the second composite metal layer respectively include a first metal layer and a second metal layer arranged in a stack, wherein the two second metal layers are in conflicting connection with each other.
  • the material of the first metal layer is chromium or nickel or titanium
  • the material of the second metal layer is gold or silver.
  • the thickness of the first metal layer is 5-10 nm
  • the thickness of the second metal layer is 100-150 nm.
  • the invention also provides a method for preparing the pressure sensor as described above, which includes:
  • the preparation of the first electrode plate includes: providing a first substrate, sequentially depositing a semiconductor thin film layer and a first composite metal thin film layer on the first substrate, and applying an etching process to the semiconductor thin film layer and the first A composite metal film layer is etched to form an interdigitated electrode;
  • the preparation of the second electrode plate includes: applying an etching process or an inverted mold process to form a second substrate having a microstructure array on one surface, and depositing a second compound on the surface of the microstructure array of the second substrate Metal layer
  • the second electrode plate is stacked on the first electrode plate to obtain the pressure sensor.
  • the pressure sensor provided by the embodiment of the present invention has the characteristics of high sensitivity, large measurement range and low energy consumption, and can meet the increasing demand in the application field of the pressure sensor; in addition, the pressure sensor has a simple structure and its preparation The process is low in difficulty and easy for large-scale production.
  • FIG. 1 is a schematic structural diagram of a pressure sensor according to an embodiment of the present invention.
  • Figure 2 is an enlarged schematic view of part A in Figure 1;
  • Figure 3 is an enlarged schematic view of part B in Figure 1;
  • FIG. 5 is a plan view of an interdigitated electrode in an embodiment of the present invention.
  • FIG. 6a to FIG. 6f are exemplary diagrams of device structures obtained corresponding to various process steps in the method for manufacturing a pressure sensor according to an embodiment of the present invention.
  • FIG. 8 is a test curve diagram of a pressure bean measured by a pressure sensor in an embodiment of the present invention.
  • FIG. 11 is a graph of the response of the current to the voltage of the pressure sensor in the embodiment of the present invention under a given pressure load.
  • the pressure sensor includes a first electrode plate 10 and a second electrode plate 20.
  • the first electrode plate 10 and the second electrode plate 20 are opposite to each other. Settings.
  • the first electrode plate 10 includes a first substrate 11 and an interdigitated electrode 12 disposed on the first substrate 11, each sub-electrode of the interdigitated electrode 12 12a includes a semiconductor layer 13 and a first composite metal layer 14 disposed on the first substrate 11 in sequence, the surface of the semiconductor layer 13 is formed as a rough surface, and the first composite metal layer 14 is disposed on the rough On the surface.
  • the second electrode plate 20 includes a second substrate 21 having an array of microstructures 21a on one surface and a second composite metal layer 22 overlaid on the array of microstructures 21a. Wherein, the second composite metal layer 22 and the first composite metal layer 14 are in conflicting connection with each other.
  • the first substrate 11 can be selected as a rigid substrate or a flexible substrate: specifically, the rigid substrate can use a metal material with poor conductivity, and can also use simple materials such as glass, ceramics, quartz, etc.; flexible lining
  • the bottom can use organic polymers, such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PI (polyimide), etc.
  • the material of the second substrate 21 can be selected as PDMS (polydimethylsiloxane).
  • the material of the semiconductor layer 13 in the interdigitated electrode 12 is tin diselenide.
  • the surface of the semiconductor layer 13 is formed as an upright two-dimensional sheet The rough surface of the structure.
  • the thickness of the semiconductor layer is 5 to 8 ⁇ m
  • the height of the vertical two-dimensional sheet structure is 400 to 500 nm
  • the surface roughness of the vertical two-dimensional sheet structure is 300 to 400 nm.
  • each sub-electrode 12a of the interdigitated electrode 12 has a length L1 of 1-2 cm, a width D1 of 100-120 ⁇ m, and a center-to-center distance between two adjacent sub-electrodes 12a H1 is 100 to 120 ⁇ m.
  • the height H2 of the array of microstructures 21a in the second substrate 21 is 5-10 ⁇ m, and the spacing H3 between two adjacent microstructures 21a is 5-10 ⁇ m.
  • the microstructure 21a on the second substrate 21 is a truncated cone-shaped structure, the radius of the upper surface is 3 to 5 ⁇ m, and the radius of the lower surface is 5 to 8 ⁇ m.
  • the first composite metal layer 14 and the second composite metal layer 22 respectively include first metal layers 14a, 22a and second Metal layers 14b, 22b, wherein the two second metal layers 14b, 22b are in contact with each other, the material selection of the first metal layers 14a, 22a is chromium (Cr), and the material selection of the second metal layers 14b, 22b For gold (Au).
  • the material of the first metal layers 14a and 22a may also be nickel (Ni) or titanium (Ti), and the material of the second metal layers 14b and 22b may also be silver ( Ag).
  • the thickness of the first metal layers 14a and 22a is 5-10 nm, and the thickness of the second metal layers 14b and 22b is 100-150 nm.
  • the first electrode plate 10 is provided with the semiconductor layer 13 and the basic resistance of the semiconductor material is large.
  • the pressure sensor provided by the embodiment of the invention has the advantage of low energy consumption;
  • the surface of the semiconductor layer 13 is formed as a rough surface (in the preferred solution, it is formed as an upright two-dimensional sheet-like rough surface), combining
  • the microstructure provided in the two-electrode plate 20 when detecting the applied pressure, the contact change of the electrode is the changing process from point contact to surface contact, so that the pressure sensor has the characteristics of high sensitivity and large measurement range , Can meet the growing demand in the application field of pressure sensors.
  • This embodiment also provides a method for manufacturing the pressure sensor as described above.
  • the method for manufacturing the pressure sensor includes:
  • Step 1 Preparation of the first electrode plate 10. This step specifically includes:
  • a first substrate 11 is provided, and a semiconductor thin film layer 13a is deposited on the first substrate 11.
  • the material of the semiconductor thin film layer 13a is tin diselenide, and the semiconductor thin film layer 13a is prepared by a molecular beam epitaxial growth process.
  • a high-purity selenium material source and a high-purity tin material source are separately added to the molecular beam epitaxy equipment (MBE), and the selenium material source and the tin material source are respectively heated by the molecular beam epitaxy equipment, and the selenium
  • the material source and the tin material source are sprayed onto the first substrate 11 in the form of molecular beams or atomic beams, respectively, to form a tin diselenide semiconductor thin film layer 13a whose surface is an upright two-dimensional sheet structure, see FIG. 4 SEM picture.
  • the first composite metal thin film layer 140 includes a first metal thin film layer 141 and a second metal thin film layer 142.
  • the material of the first metal thin film layer 141 is chromium, and the material of the second metal thin film layer 142 is gold.
  • an electron beam evaporation process may be used to vapor-deposit the chromium metal layer 141 on the semiconductor thin film layer 13a, and the vapor deposition process conditions may be set as follows: vacuum degree is 5 ⁇ 10 ⁇ 3 Pa, and coating speed The coating time is 100s, and a total of 5nm is evaporated. The actual required coating thickness can be obtained by adjusting the coating time and coating speed. Then, a gold metal layer 142 is vapor-deposited on the chromium metal layer 141 by a thermal evaporation process.
  • the process conditions of the vapor deposition can be set as follows: the degree of vacuum is 5 ⁇ 10 -3 Pa, and the coating speed The coating time is 500s and the total evaporation is 100nm. Among them, the actual required coating thickness can be obtained by adjusting the coating time and coating speed.
  • an etching process is used to etch the semiconductor thin film layer 13a and the first composite metal thin film layer 140 to form the interdigital electrode 12.
  • the interdigitated electrode 12 is prepared by laser etching equipment. Specifically, first design the interdigital electrode pattern on the laser etching device, and then use the laser etching device to etch the semiconductor thin film layer 13a and the first composite metal thin film layer 140 according to the interdigital electrode pattern.
  • the process parameters can be set as follows: laser power is 70%, marking frequency is 30,000 Hz, and scanning speed is 250 mm/s. After the etching is completed, the remaining debris from the etching is blown off with nitrogen, and finally the interdigital electrode 12 is prepared on the first substrate 11 to form the first electrode plate 10.
  • each sub-electrode 12a of the interdigitated electrode 12 includes a semiconductor layer 13, a first metal layer 14a, and a second metal layer 14b that are sequentially disposed on the first substrate 11.
  • the semiconductor layer 13 is formed by etching the semiconductor thin film layer 13a
  • the first metal layer 14a is formed by etching the first metal thin film layer 141
  • the second metal layer 14b is formed by etching the second metal thin film layer 142.
  • Step 2 Preparation of the second electrode plate 20. This step specifically includes:
  • an etching process or an inverted mold process is used to prepare a second substrate 21 having an array of microstructures 21a on one surface.
  • the material of the second substrate 21 is selected to be PDMS, and it is prepared and formed by an inverted mold process.
  • the PDMS precursor and the curing agent are mixed and stirred to obtain a mixed liquid; the mixed liquid is placed in a vacuum chamber to remove air bubbles in the mixed liquid; the above mixed liquid is spin-coated on the template with a spin coater and then placed in a heating Heating on the stage to obtain a cured layer; peeling the cured layer from the surface of the template to obtain a microstructure array.
  • the stirring time can be selected as 15min; the placement time in the vacuum chamber can be selected as 15min; the spin coating rate can be selected as 800r/min and the time can be selected as 10s; the heating temperature can be selected as 80°C and heated The time can be selected for 2h; the above-mentioned cooled solidified layer is placed in a mixed solution of hydrogen peroxide and ammonia for about 20 minutes to dissolve the template and separate the solidified layer. The cured layer was taken out, cleaned with deionized water and dried at room temperature, and a second substrate 21 with a microstructure array was obtained.
  • the template is a template provided with a hole array, and by designing the shape, size, depth and hole spacing of the holes, a microstructure array of a corresponding shape can be obtained.
  • the second composite metal layer 22 includes a stacked first metal layer 22a and a second metal layer 22b.
  • the preparation process of the first metal layer 22a and the second metal layer 22b in this step can be performed with reference to the aforementioned step S12 to prepare and obtain the second electrode plate 20.
  • Step 3 referring to FIG. 6f, the second electrode plate 20 is stacked on the first electrode plate 10, wherein the second composite metal layer 22 and the first composite metal layer 14 are in conflicting connection with each other, as shown in FIG. 1 Pressure sensor shown.
  • FIG. 8 is a detection experiment of the pressure sensor measuring a bean (about 0.8 Pa), and the lowest measurement threshold of the device is verified, in which the working voltage is 1V. 7 and 8, the working range of the pressure sensor is 0.8Pa-38kPa, which has a large measurement range.
  • FIG. 9 is a graph of the cycle stability test curve of the pressure sensor, specifically a current response curve under 1000 cycles obtained by continuously releasing a certain pressure (25 Pa) periodically and time, wherein the working voltage is 1V. It can be shown from the figure that the sensor device has good cycle stability.
  • FIG. 10 is a graph of the cycle stability test curve of the pressure sensor under different pressure loads (40 Pa, 160 Pa, 4 kPa, and 12 kPa, respectively), in which the operating voltage is 1V. . Specifically, the curve of the relative change of current over time under multiple cycles obtained after a certain period of pressure is continuously and rapidly released. From the figure, it can be shown that the sensor device has good cycle stability.
  • FIG. 11 is a graph of the response of the pressure sensor to current under a given pressure load (30 Pa, 35 Pa, 55 Pa, 170 Pa, 600 Pa, and 1200 Pa, respectively). It can be known from the figure that for different given pressure loads, the current can change linearly in response to the change of the operating voltage. Therefore, the sensor device also has good working stability under different operating voltages. Further, as can be seen from FIG. 11, when the pressure sensor is under pressure, the working power is at the maximum mw level, and the energy consumption is small. The working power of the pressure sensor provided by the embodiment of the present invention is pw level when there is no pressure. Therefore, the pressure sensor provided by the embodiment of the present invention has the advantage of low energy consumption.
  • the pressure sensor provided in the above embodiment has the characteristics of high sensitivity, large measurement range and low energy consumption, and can meet the increasing demand in the application field of the pressure sensor; in addition, the structure of the pressure sensor It is simple, its preparation process is difficult, and it is easy to mass produce.

Abstract

一种压力传感器及其制备方法,其中压力传感器包括相对设置的第一电极板(10)和第二电极板(20),第一电极板(10)包括第一衬底(11)以及设置在第一衬底(11)上的叉指电极(12),叉指电极(12)的每一子电极(12a)包括依次设置于第一衬底(11)上的半导体层(13)和第一复合金属层(14),半导体层(13)的表面形成粗糙表面,第一复合金属层(14)设置在粗糙表面上;第二电极板(20)包括一侧表面具有微结构阵列(21a)的第二衬底(21)和覆设于微结构阵列(21a)上的第二复合金属层(22);其中,第二复合金属层(22)与第一复合金属层(14)相互抵触连接。该压力传感器具有高灵敏度、大的测量范围和能耗低的特性,能够满足在压力传感器的应用领域中日益增长的需求;另外,该压力传感器的结构简单、制备工艺难度低,易于大规模生产。

Description

压力传感器及其制备方法 技术领域
本发明属于传感器技术领域,尤其涉及一种压力传感器及其制备方法。
背景技术
压力传感器主要包括压阻式、电感式以及电容式三大类,分别通过器件主要组成结构的电阻、电感以及电容在外部压力作用下产生变化,再利用测量电路将这三种物理量的变化经过一系列处理最终达到探测外部压力变化的目的。
目前,压力传感器被广泛应用于可穿戴设备和其他电子产品中,如家用电器、机器人、医疗设备、安全装置、环境监测设备等。随着可穿戴设备种类的增多、健康数据监测及远程医疗等行业的出现,在实际应用中对压力传感器的要求越来越高,高灵敏度、大的测量范围、柔性等特点已经成为未来压力传感器发展的趋势,其中,如何使得压力传感器同时具备高灵敏度和大的测量范围成为该领域研究的难题。
发明内容
有鉴于此,本发明的目的在于提供一种具有高灵敏度和大的测量范围的压力传感器及其制造方法,以满足在压力传感器的应用领域中日益增长的需求。
为实现上述发明目的,本发明采用了如下技术方案:
一种压力传感器,包括相对设置的第一电极板和第二电极板,其中,所述第一电极板包括第一衬底以及设置在所述第一衬底上的叉指电极,所述叉指电极的每一子电极包括依次设置于所述第一衬底上的半导体层和第一复合金属层,所述半导体层的表面形成为粗糙表面,所述第一复合金属层设置在所述粗糙表面上;所述第二电极板包括一侧表面具有微结构阵列的第二衬底和覆设于所述微结构阵列上的第二复合金属层;其中,所述第二复合金属层与所述第一复合金属层相互抵触连接。
具体地,所述半导体层的表面形成为直立式二维片状结构的粗糙表面。
具体地,所述半导体层的厚度为5~8μm,所述直立式二维片状结构的高度为400~500nm,所述直立式二维片状结构的表面粗糙度为300~400nm。
具体地,所述叉指电极中,每一子电极的长度为1~2cm,宽度为100~120μm,相邻两个子电极的中心间距为100~120μm。
具体地,所述微结构阵列的高度为5~10μm,相邻两个微结构的中心间距为5~10μm。
具体地,所述第一衬底为刚性衬底或柔性衬底,所述第二衬底的材料为PDMS。
具体地,所述第一复合金属层和所述第二复合金属层分别包括叠层设置的第一金属层和第二金属层,其中两个第二金属层相互抵触连接。
具体地,所述第一金属层的材料为铬或镍或钛,所述第二金属层的材料为金或银。
具体地,所述第一金属层的厚度为5~10nm,所述第二金属层的厚度为100~150nm。
本发明还提供了一种如上所述的压力传感器的制备方法,其包括:
第一电极板的制备,包括:提供第一衬底,在所述第一衬底上依次沉积半导体薄膜层和第一复合金属薄膜层,应用刻蚀工艺将所述半导体薄膜层和所述第一复合金属薄膜层刻蚀形成叉指电极;
第二电极板的制备,包括:应用刻蚀工艺或倒模工艺制备形成一侧表面具有微结构阵列的第二衬底,在所述第二衬底的微结构阵列的表面上沉积第二复合金属层;
将所述第二电极板叠层设置在所述第一电极板上,获得所述压力传感器。
本发明实施例提供的压力传感器,其具有高灵敏度、大的测量范围和能耗低的特性,能够满足在压力传感器的应用领域中日益增长的需求;另外,该压力传感器的结构简单、其制备工艺难度低,易于大规模生产。
附图说明
图1是本发明实施例的压力传感器的结构示意图;
图2是如图1中A部分的放大示意图;
图3是如图1中B部分的放大示意图;
图4是本发明实施例中的半导体层的SEM图;
图5是本发明实施例中的叉指电极的俯视图;
图6a至图6f是本发明实施例的压力传感器的制备方法中,各个工艺步骤对应获得的器件结构的示例性图示;
图7是本发明实施例中的压力传感器的电性测试曲线图;
图8本发明实施例中的压力传感器测量一颗豆子的测试曲线图;
图9是本发明实施例中的压力传感器的循环稳定性测试曲线图;
图10是本发明实施例中的压力传感器在不同压力负载下的循环稳定性测试曲线图;
图11是本发明实施例中的压力传感器在给定的压力负载下,电流对电压的响应曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
本实施例首先提供了一种压力传感器,如图1所示,所述压力传感器包括第一电极板10和第二电极板20,所述第一电极板10和所述第二电极板20相对设置。
其中,参阅图1至图3,所述第一电极板10包括第一衬底11以及设置在所述第一衬底11上的叉指电极12,所述叉指电极12的每一子电极12a包括依次设置于所述第一衬底11上的半导体层13和第一复合金属层14,所述半导体层13的表面形成为粗糙表面,所述第一复合金属层14设置在所述粗糙表面上。所述第二电极板20包括一侧表面具有微结构21a阵列的第二衬底21和覆设于所述微结构21a阵列上的第二复合金属层22。其中,所述第二复合金属层22与所 述第一复合金属层14相互抵触连接。
其中,所述第一衬底11可以选择为刚性衬底或柔性衬底:具体地,刚性衬底可采用导电性差的金属材质,还可以用玻璃、陶瓷、石英等简单易的材料;柔性衬底可采用有机聚合物,如PET(聚对苯二甲酸乙二醇酯)、PEN(聚萘二甲酸乙二醇酯)、PI(聚酰亚胺)等。所述第二衬底21的材料可以选择为PDMS(聚二甲聚硅氧烷)。
在本实施例中,所述叉指电极12中的半导体层13的材料选择为二硒化锡,如图4所示的SEM图,所述半导体层13的表面形成为直立式二维片状结构的粗糙表面。具体地,所述半导体层的厚度为5~8μm,所述直立式二维片状结构的高度为400~500nm,所述直立式二维片状结构的表面粗糙度为300~400nm。
在本实施例中,参阅图2和图5,所述叉指电极12中的每一子电极12a的长度L1为1~2cm,宽度D1为100~120μm,相邻两个子电极12a的中心间距H1为100~120μm。
在本实施例中,参阅图3,所述第二衬底21中的微结构21a阵列的高度H2为5~10μm,相邻两个微结构21a的间距H3为5~10μm。更进一步地,本实施例中第二衬底21上的微结构21a呈圆台状结构,其上表面的半径为3~5μm,下表面的半径为5~8μm。
在本实施例中,参阅图2和图3并结合图1,所述第一复合金属层14和所述第二复合金属层22分别包括叠层设置的第一金属层14a、22a和第二金属层14b、22b,其中两个第二金属层14b、22b相互抵触连接,所述第一金属层14a、22a的材料选择为铬(Cr),所述第二金属层14b、22b的材料选择为金(Au)。在另外的一些实施例中,所述第一金属层14a、22a的材料也可以选择为镍(Ni)或钛(Ti),所述第二金属层14b、22b的材料也可以选择为银(Ag)。
进一步地,本实施例中,所述第一金属层14a、22a的厚度为5~10nm,所述第二金属层14b、22b的厚度为100~150nm。
以上实施例提供的压力传感器,首先,第一电极板10中设置有半导体层13半导体材料的基础电阻很大,在器件不工作时(未施加压力时的工作状态),耗能小,因此本发明实施例提供的压力传感器具有能耗低的优点;其次,所述半导体层13的表面形成为粗糙表面(优选的方案中是形成为直立式二维片状那么结构的粗糙表面),结合第二电极板20中设置的微结构,在对施加的压力进行 检测时,电极的接触变化是从点接触到面接触的变化过程,因此使得所述压力传感器具有高灵敏度和大的测量范围的特性,能够满足在压力传感器的应用领域中日益增长的需求。
本实施例还提供了如上所述的压力传感器的制备方法,参阅图6a至图6f并结合图1,所述压力传感器的制备方法包括:
步骤一、第一电极板10的制备。该步骤具体包括:
S11、参阅图6a,提供第一衬底11,在所述第一衬底11上沉积半导体薄膜层13a。
本实施例中,所述半导体薄膜层13a的材料选择为二硒化锡,采用分子束外延生长工艺制备所述半导体薄膜层13a。具体地,在分子束外延设备(MBE)中分别加入高纯度硒材料源和高纯度锡材料源,通过所述分子束外延设备分别加热所述硒材料源和锡材料源,并将所述硒材料源和锡材料源分别以分子束或原子束的形式喷射至所述第一衬底11上,形成表面是直立式二维片状结构的二硒化锡半导体薄膜层13a,参见图4的SEM图。
S12、参阅图6b,在所述半导体薄膜层13a上沉积第一复合金属薄膜层140。
本实施例中,所述第一复合金属薄膜层140包括第一金属薄膜层141和第二金属薄膜层142。其中,所述第一金属薄膜层141的材料选择为铬,所述第二金属薄膜层142的材料选择为金。
具体地,首先可以采用电子束蒸发工艺在所述半导体薄膜层13a上蒸镀铬金属层141,蒸镀的工艺条件可以设置为:真空度是5×10 -3Pa,镀膜速度
Figure PCTCN2019122539-appb-000001
镀膜时间100s,共蒸镀5nm,其中可以通过调节镀膜时间和镀膜速度来获取实际所需的镀膜厚度。然后采用热蒸发工艺在所述铬金属层141上蒸镀金金属层142,蒸镀的工艺条件可以设置为:真空度是5×10 -3Pa,镀膜速度
Figure PCTCN2019122539-appb-000002
镀膜时间500s,共蒸镀100nm,其中可以通过调节镀膜时间和镀膜速度来获取实际所需的镀膜厚度。
S13、参阅图6c,应用刻蚀工艺将所述半导体薄膜层13a和所述第一复合金属薄膜层140刻蚀形成叉指电极12。
本实施例中,应用激光刻蚀设备刻蚀制备所述叉指电极12。具体地,首先在激光刻蚀设备上设计叉指电极图形,然后使用激光刻蚀设备按照叉指电极图 形刻蚀所述半导体薄膜层13a和所述第一复合金属薄膜层140,激光刻蚀的工艺参数可以设置为:激光功率为70%,打标频率为30000Hz,扫描速度为250mm/s。刻蚀完成后以氮气吹除刻蚀残留的碎屑,最终在第一衬底11上制备获得叉指电极12,形成所述第一电极板10。
其中,如图6c所示,所述叉指电极12的每一子电极12a包括依次设置于所述第一衬底11上的半导体层13、第一金属层14a和第二金属层14b。其中半导体层13是由所述半导体薄膜层13a刻蚀形成,第一金属层14a是由第一金属薄膜层141刻蚀形成,第二金属层14b是由第二金属薄膜层142刻蚀形成。
步骤二、第二电极板20的制备。该步骤具体包括:
S21、参阅图6d,应用刻蚀工艺或倒模工艺制备形成一侧表面具有微结构21a阵列的第二衬底21。
本实施例中,所述第二衬底21的材料选择为PDMS,并且是通过倒模工艺制备形成。
具体地,将PDMS前驱物与固化剂混合搅拌,获得混合液;将混合液放在真空腔中,除去混合液中的气泡;将上述的混合液用旋涂仪旋涂在模板上,然后置于加热台上加热,获得固化层;将固化层从模板的表面剥离,获得微结构阵列。更具体地,上述搅拌时间可以选择为15min;上述在真空腔放置时间可以选择为15min;上述旋涂速率可以选择为800r/min,时间可以选择为10s;上述加热温度可以选择为80℃,加热时间可以选择2h;将上述冷却后的固化层放到双氧水与氨水的混合溶液中超声20min左右,将模板溶解,分离出固化层。将固化层取出用去离子水超声清洗干净并于室温下干燥,获得具有微结构阵列的第二衬底21。
其中,所述模板是设置有孔洞阵列的模板,并且通过设计孔洞的形状、大小、深度以及孔间距,可以获得相应形状的微结构阵列。
S22、参阅图6e,在所述第二衬底21的微结构21a阵列的表面上沉积第二复合金属层22。
本实施例中,第二复合金属层22包括叠层设置的第一金属层22a和第二金属层22b。其中,该步骤中第一金属层22a和第二金属层22b的制备工艺过程可以参照前述的步骤S12进行,制备获得所述第二电极板20。
步骤三、参阅图6f,将所述第二电极板20叠层设置在所述第一电极板10上,其中,第二复合金属层22与第一复合金属层14相互抵触连接,获得如图1所示的压力传感器。
图7至图11是以上实施例提供的压力传感器的一些测试特性图。
图7是所述压力传感器的电性测试曲线图,具体是压强与电流变化相对值的相关曲线图。具体地,给定大小为1V的恒压在压力传感器件的两端,通过控制施加压力的大小,最终测量出电流相对变化值对于压强的变化曲线,由该曲线斜率可得到该压力传感器件在低压量程内(0~4kPa)的灵敏度S 21=433.22kPa -1,具有很高的灵敏度;在较大压力的量程内(4~38kPa)的灵敏度8 22=2.91kPa -1kPa -1,也是具有较高的灵敏度。
图8是所述压力传感器测量一颗豆子(约0.8Pa)的检测实验,检验了器件最低测量阈值,其中工作电压为1V。结合图7和图8,所述压力传感器的工作量程为0.8Pa-38kPa,其具有很大的测量范围。
图9是所述压力传感器的循环稳定性测试曲线图,具体是持续周期性给定一定压力(25Pa)后迅速释放得到的1000次循环下电流对时间的响应曲线,其中工作电压为1V。从图中可以表明该传感器件具有很好的循环稳定性。
图10是所述压力传感器在不同压力负载(分别是40Pa、160Pa、4k Pa和12k Pa)下的循环稳定性测试曲线图,其中工作电压为1V。。具体是持续周期性给定一定压力后迅速释放得到的多次循环下电流相对变化值对时间响应曲线,从图中可以表明该传感器件具有很好的循环稳定性。
图11是所述压力传感器在给定的压力负载(分别是30Pa、35Pa、55Pa、170Pa、600Pa和1200Pa)下,电流对电压的响应曲线图。从图中可以获知,对于不同的给定的压力负载,电流能够呈线性地响应于工作电压的变化而变化,因此,该传感器件在不同的工作电压下也具有良好的工作稳定性。进一步地,从图11可以看出,所述压力传感器在有压力时工作功率最大mw级别,耗能小。本发明实施例提供的压力传感器在无压力时工作功率为pw级别,因此,本发明实施例提供的压力传感器具有能耗低的优点。
综上所述,如上实施例提供的压力传感器,其具有高灵敏度、大的测量范围和能耗低的特性,能够满足在压力传感器的应用领域中日益增长的需求;另外,该压力传感器的结构简单、其制备工艺难度低,易于大规模生产。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (18)

  1. 一种压力传感器,包括相对设置的第一电极板和第二电极板,其中,所述第一电极板包括第一衬底以及设置在所述第一衬底上的叉指电极,所述叉指电极的每一子电极包括依次设置于所述第一衬底上的半导体层和第一复合金属层,所述半导体层的表面形成为粗糙表面,所述第一复合金属层设置在所述粗糙表面上;所述第二电极板包括一侧表面具有微结构阵列的第二衬底和覆设于所述微结构阵列上的第二复合金属层;其中,所述第二复合金属层与所述第一复合金属层相互抵触连接。
  2. 根据权利要求1所述的压力传感器,其中,所述半导体层的表面形成为直立式二维片状结构的粗糙表面。
  3. 根据权利要求2所述的压力传感器,其中,所述半导体层的厚度为5~8μm,所述直立式二维片状结构的高度为400~500nm,所述直立式二维片状结构的表面粗糙度为300~400nm。
  4. 根据权利要求1所述的压力传感器,其中,所述叉指电极中,每一子电极的长度为1~2cm,宽度为100~120μm,相邻两个子电极的中心间距为100~120μm。
  5. 根据权利要求1所述的压力传感器,其中,所述微结构阵列的高度为5~10μm,相邻两个微结构的中心间距为5~10μm。
  6. 根据权利要求1所述的压力传感器,其中,所述第一衬底为刚性衬底或柔性衬底,所述第二衬底的材料为PDMS。
  7. 根据权利要求1所述的压力传感器,其中,所述第一复合金属层和所述第二复合金属层分别包括叠层设置的第一金属层和第二金属层,其中两个第二金属层相互抵触连接。
  8. 根据权利要求7所述的压力传感器,其中,所述第一金属层的材料为铬或镍或钛,所述第二金属层的材料为金或银。
  9. 根据权利要求7所述的压力传感器,其中,所述第一金属层的厚度为5~10nm,所述第二金属层的厚度为100~150nm。
  10. 一种压力传感器的制备方法,其中,包括:
    第一电极板的制备,包括:提供第一衬底,在所述第一衬底上依次沉积半导体薄膜层和第一复合金属薄膜层,应用刻蚀工艺将所述半导体薄膜层和所述第一复合金属薄膜层刻蚀形成叉指电极;
    第二电极板的制备,包括:应用刻蚀工艺或倒模工艺制备形成一侧表面具有微结构阵列的第二衬底,在所述第二衬底的微结构阵列的表面上沉积第二复合金属层;
    将所述第二电极板叠层设置在所述第一电极板上,获得所述压力传感器。
  11. 根据权利要求10所述的压力传感器的制备方法,其中,所述半导体层的表面形成为直立式二维片状结构的粗糙表面。
  12. 根据权利要求11所述的压力传感器的制备方法,其中,所述半导体层的厚度为5~8μm,所述直立式二维片状结构的高度为400~500nm,所述直立式二维片状结构的表面粗糙度为300~400nm。
  13. 根据权利要求10所述的压力传感器的制备方法,其中,所述叉指电极中,每一子电极的长度为1~2cm,宽度为100~120μm,相邻两个子电极的中心间距为100~120μm。
  14. 根据权利要求10所述的压力传感器的制备方法,其中,所述微结构阵列的高度为5~10μm,相邻两个微结构的中心间距为5~10μm。
  15. 根据权利要求10所述的压力传感器的制备方法,其中,所述第一衬底为刚性衬底或柔性衬底,所述第二衬底的材料为PDMS。
  16. 根据权利要求10所述的压力传感器的制备方法,其中,所述第一复合金属层和所述第二复合金属层分别包括叠层设置的第一金属层和第二金属层,其中两个第二金属层相互抵触连接。
  17. 根据权利要求16所述的压力传感器的制备方法,其中,所述第一金属层的材料为铬或镍或钛,所述第二金属层的材料为金或银。
  18. 根据权利要求16所述的压力传感器的制备方法,其中,所述第一金属层的厚度为5~10nm,所述第二金属层的厚度为100~150nm。
PCT/CN2019/122539 2018-12-03 2019-12-03 压力传感器及其制备方法 WO2020114367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811465344.4 2018-12-03
CN201811465344.4A CN109540354B (zh) 2018-12-03 2018-12-03 压力传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2020114367A1 true WO2020114367A1 (zh) 2020-06-11

Family

ID=65852642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122539 WO2020114367A1 (zh) 2018-12-03 2019-12-03 压力传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN109540354B (zh)
WO (1) WO2020114367A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540354B (zh) * 2018-12-03 2020-10-23 深圳先进技术研究院 压力传感器及其制备方法
CN110118624A (zh) * 2019-04-29 2019-08-13 深圳先进技术研究院 一种压力传感器及其制备方法
CN111060238A (zh) * 2019-12-26 2020-04-24 浙江清华柔性电子技术研究院 电阻式柔性压力传感器及其制备方法
CN111024279B (zh) * 2019-12-30 2022-03-18 浙江清华柔性电子技术研究院 压力传感器单元及压力传感器
CN113465795B (zh) * 2021-07-01 2023-12-29 西北工业大学 一种柔性压力传感结构及柔性压力传感器
CN114235234A (zh) * 2021-12-20 2022-03-25 哈尔滨工业大学 用于柔性充气展开结构测量的柔性压力传感器制备方法
CN114705334B (zh) * 2022-04-08 2023-06-30 福州大学 一种线性压阻式触觉传感器及其制备方法
CN115165174B (zh) * 2022-08-26 2024-01-30 南京高华科技股份有限公司 一种mems压阻式压力传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429006A (en) * 1992-04-16 1995-07-04 Enix Corporation Semiconductor matrix type sensor for very small surface pressure distribution
CN104951171A (zh) * 2014-03-31 2015-09-30 松下知识产权经营株式会社 压敏元件及其制造方法、以及具备压敏元件的触摸面板及其制造方法
CN205691269U (zh) * 2016-06-27 2016-11-16 华北理工大学 用于接触压力测量的高柔弹性电子皮肤
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN107907251A (zh) * 2017-10-27 2018-04-13 深圳先进技术研究院 压力传感器及其制备方法
CN108444619A (zh) * 2017-10-30 2018-08-24 上海幂方电子科技有限公司 一种压力传感器及其制备方法
CN108871629A (zh) * 2018-07-20 2018-11-23 浙江大学 一种柔性电阻式压力传感器阵列及其制备方法
CN109540354A (zh) * 2018-12-03 2019-03-29 深圳先进技术研究院 压力传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429006A (en) * 1992-04-16 1995-07-04 Enix Corporation Semiconductor matrix type sensor for very small surface pressure distribution
CN104951171A (zh) * 2014-03-31 2015-09-30 松下知识产权经营株式会社 压敏元件及其制造方法、以及具备压敏元件的触摸面板及其制造方法
CN205691269U (zh) * 2016-06-27 2016-11-16 华北理工大学 用于接触压力测量的高柔弹性电子皮肤
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN107907251A (zh) * 2017-10-27 2018-04-13 深圳先进技术研究院 压力传感器及其制备方法
CN108444619A (zh) * 2017-10-30 2018-08-24 上海幂方电子科技有限公司 一种压力传感器及其制备方法
CN108871629A (zh) * 2018-07-20 2018-11-23 浙江大学 一种柔性电阻式压力传感器阵列及其制备方法
CN109540354A (zh) * 2018-12-03 2019-03-29 深圳先进技术研究院 压力传感器及其制备方法

Also Published As

Publication number Publication date
CN109540354A (zh) 2019-03-29
CN109540354B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2020114367A1 (zh) 压力传感器及其制备方法
WO2020114366A1 (zh) 压力传感器及其制备方法
CN106908176B (zh) 具有微结构化的多相介电层电容式压力传感器及其制法
CN107907251B (zh) 压力传感器及其制备方法
WO2017211095A1 (zh) 电容型压力传感器及其制备方法
CN105036059B (zh) 一种电容式mems传感器的加工方法及传感器结构
KR101094165B1 (ko) 압저항 방식의 터치 패널, 그 제조방법, 이를 포함하는 디스플레이 장치, 터치 패드 및 압력센서
CN109186817A (zh) 一种电容式柔性压力传感器及其制造方法
CN208765878U (zh) 一种电容式柔性压力传感器
CN108195491B (zh) 柔性压力传感器及其制备方法
KR20120111607A (ko) 압전 효과를 이용한 그래핀 터치 센서
CN104523231A (zh) 柔性压力传感件、传感器及其制造方法
CN113091811A (zh) 一种柔性温压一体化传感器及其制备方法和应用
CN109029801A (zh) 一种金属纳米线复合膜压力传感器及其制备方法
CN109817393A (zh) 一种制备网格结构透明导电膜的方法
CN110487168A (zh) 单向弯曲敏感传感器及其制备方法
CN106098927B (zh) 一种三明治式柔性电容式压力传感器及其制备方法
Yi et al. An inkjet-printed strain sensor with a carbon-silverpolyimide topology
CN214327855U (zh) 一种掩膜板
KR101276560B1 (ko) 강유전체 폴리머 나노도트 소자 및 그 제조를 위한 디웨팅 프로세스
WO2022252317A1 (zh) 一种湿敏电容及其制作方法、湿度测量设备
CN110470703B (zh) 一种基于“拱形”结构的电容式湿度传感器及其制备方法和应用
KR101356730B1 (ko) 압저항 방식의 터치 패널 및 그 제조방법
CN107119288B (zh) 掩膜板及其制作方法
KR101234181B1 (ko) 그라핀 소자를 이용한 압력 센싱 방법 및 이에 사용되는 그라핀 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19893942

Country of ref document: EP

Kind code of ref document: A1