WO2017211095A1 - 电容型压力传感器及其制备方法 - Google Patents

电容型压力传感器及其制备方法 Download PDF

Info

Publication number
WO2017211095A1
WO2017211095A1 PCT/CN2017/074260 CN2017074260W WO2017211095A1 WO 2017211095 A1 WO2017211095 A1 WO 2017211095A1 CN 2017074260 W CN2017074260 W CN 2017074260W WO 2017211095 A1 WO2017211095 A1 WO 2017211095A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
substrate
pressure sensor
dielectric layer
capacitive
Prior art date
Application number
PCT/CN2017/074260
Other languages
English (en)
French (fr)
Inventor
帅行天
朱朋莉
胡友根
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2017211095A1 publication Critical patent/WO2017211095A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Definitions

  • the invention belongs to the field of pressure sensors, and in particular to a capacitive pressure sensor and a preparation method thereof.
  • capacitive pressure sensors have been widely used in our daily life and industrial production as a sensor capable of sensing changes in external pressure in real time.
  • Capacitive pressure sensors have shown great potential in flexible displays, electronic skin, wearable monitoring devices, implantable medical rehabilitation monitoring, and biomimetic robots.
  • a common preparation method of a flexible capacitive pressure sensor is to assemble a flexible polymer substrate and a conductive material into a sensor device. Since the dielectric layer in the capacitive response type flexible pressure sensor is a key part of sensing performance, and the conventional flexible dielectric layer material is mostly a flat polymer film, the sensitivity of the capacitive pressure sensor is generally not high. The application of capacitively responsive flexible pressure sensors is severely limited.
  • the present invention provides a high sensitivity capacitive pressure sensor.
  • the present invention provides a capacitive pressure sensor including: a first substrate and a second substrate; a first electrode layer disposed on the first substrate and a second electrode disposed on the second substrate a second electrode layer, the first electrode layer and the second electrode layer being located between the first substrate and the second substrate; disposed between the first electrode layer and the second electrode layer a dielectric layer; the dielectric layer includes a plurality of protrusions disposed between the first electrode layer and the second electrode layer.
  • the protrusion includes an extension connecting the first electrode layer, and a tip extending from the extension toward the second electrode layer; the tip is parallel to the first
  • the cross-sectional area in the direction of the electrode layer is smaller than the cross-sectional area of the extension in a direction parallel to the first electrode layer.
  • the extensions are connected to each other.
  • the protrusion has an arch shape.
  • the plurality of protrusions are sequentially arranged in a direction parallel to the first electrode layer.
  • each of the protrusions has an elongated shape.
  • a gap is provided between adjacent protrusions.
  • the first electrode layer is parallel to the second electrode layer.
  • the first substrate is parallel to the second substrate.
  • the invention also provides a preparation method of a capacitance type pressure sensor, which is used for preparing the above-mentioned capacitance type pressure sensor, and the preparation method comprises:
  • the dielectric layer of the capacitive pressure sensor of the present invention includes a plurality of protrusions, and the dielectric layer is more susceptible to deformation under unit pressure to change the distance between the first electrode layer and the second electrode layer to make the capacitance type pressure sensor
  • the capacitance change under unit pressure is larger, which greatly improves the sensitivity of the capacitive pressure sensor and effectively reduces the response time.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a capacitive pressure sensor of the present invention
  • Figure 2 is a perspective view of the dielectric layer of Figure 1;
  • Figure 3 is a graph showing the response of a preferred embodiment of the capacitive pressure sensor of the present invention to continuous pressure
  • FIG. 4 is a flow chart showing a preferred embodiment of a method of manufacturing a capacitive pressure sensor of the present invention.
  • ⁇ r is used to indicate the dielectric constant of the dielectric layer
  • A is used to indicate the effective facing area of the two electrode plates
  • d is used to indicate the distance between the two plates.
  • a capacitive pressure sensor includes: a first substrate 11 and a second substrate 12; a first electrode layer disposed on the first substrate 11 and a second electrode layer 14 on the second substrate 12, the first electrode layer 13 and the second electrode layer 14 being located between the first substrate 11 and the second substrate 12; the dielectric layer 17 A plurality of protrusions 15 disposed between the first electrode layer 13 and the second electrode layer 14 are included. A gap 16 is provided between the projections 15, and the gap 16 is filled with gas.
  • the gas may be ordinary air or other inert gas. However, the invention is not limited thereto.
  • the implementation of the present invention provides a dielectric layer 17 including a plurality of protrusions 15 having a thicker end at one end, so that the deformation of the dielectric layer 17 is more pronounced during the pressing of the pressure sensor, so that the first electrode layer 13 and the first The amount of capacitance generated between the two electrode layers 14 is larger, thereby achieving the purpose of greatly increasing the sensitivity of the capacitive pressure sensor.
  • the protrusion 15 includes an extension 152 connecting the first electrode layer 13 and a tip 151 extending from the extension 152 toward the second electrode layer 14, the tips 151 being parallel
  • the cross-sectional area in the direction of the first electrode layer 13 is smaller than the cross-sectional area of the extension portion 152 in a direction parallel to the first electrode layer 13.
  • the cross-sectional area of the protrusion 15 in a direction parallel to the first electrode layer 13 gradually decreases from the direction in which the first electrode layer 13 faces the second electrode layer 14.
  • each convex body has an arch shape
  • each protrusion 15 has an elongated shape
  • each protrusion 15 is parallel to the first electrode layer 13 and perpendicular
  • the first direction extends in a second direction to form a continuous wave structure.
  • the invention is not limited thereto.
  • each of the protrusions 15 in the direction perpendicular to the first electrode layer 13 may be 1 to 50 ⁇ m and the height may be 0.5 to 25 ⁇ m.
  • the protrusion 15 has a width of 2 to 10 ⁇ m in a cross section perpendicular to the direction of the first electrode layer 13 and a depth of 1 to 8 ⁇ m, and a better technical effect can be obtained.
  • Reasonably setting the length, width, and height ratio of each of the protrusions 15 makes the deformation of the dielectric layer 17 more conspicuous during the compression of the capacitive pressure sensor by the unit pressure.
  • the projections 15 have a width of 2.5 microns and a height of 1.5 microns.
  • the plurality of protrusions 15 may also be arranged in a dot matrix, each of the protrusions 15 being arranged independently of each other, and the bottom portions 153 of each of the protrusions 15 are not connected to each other.
  • the projections 15 may have a pyramid shape (including a cone, a pyramid, etc.) or an arch shape (including a hemisphere, a truncated cone, etc.), and the shape of the projection 15 of the present invention is not limited thereto.
  • the plurality of protrusions 15 of the dielectric layer 17 are arranged in an array, and the protrusions 15 may be elongated arch-shaped protrusions 15.
  • the first electrode layer 13 is parallel to the second electrode layer 14.
  • the first electrode layer 13 includes metal nanowires laid on the first substrate 11, and the second electrode layer 14 includes metal nanowires laid on the second substrate 12.
  • the metal nanowires may be silver nanowires, copper nanowires, nickel nanometers Line, platinum nanowires, etc.
  • the metal nanowires used may have a diameter of 10 to 100 nm and a length of 10 to 50 ⁇ m.
  • the metal nanowires used have a diameter of 20 to 80 nanometers and a length of 20 to 40 micrometers, and a better technical effect can be obtained.
  • the metal nanowires in this embodiment are specifically silver nanowires, and the silver nanowires preferably have a diameter of 60 nm and a length of preferably 20-25 ⁇ m.
  • the first substrate 11 is parallel to the second substrate 12.
  • the first substrate 11 and the second substrate 12 are formed of polydimethylsiloxane (hereinafter abbreviated as PDMS, hereinafter collectively referred to as PDMS for short).
  • PDMS polydimethylsiloxane
  • the first substrate 11 and the second substrate 12 have a thickness of 100 to 500 ⁇ m.
  • the first substrate 11 and the second substrate 12 of the present embodiment have a thickness of 200 ⁇ m.
  • the capacitive response type flexible pressure sensor provided by the embodiment of the invention can be attached to the clothes and the skin for detecting physical signs such as pulse, blood pressure and respiratory frequency, and can also be used for detecting the movement state of the human body.
  • C 0 is the capacitance value of the capacitive pressure sensor without load
  • C is the capacitance value of the capacitance type pressure sensor during the test.
  • the capacitive pressure sensor of the embodiment of the present invention has high response sensitivity and an ultra-low pressure detection limit.
  • the pressure detection limit is the minimum pressure value that the sensor can detect. It can be seen from Fig. 3 that the sensitivity of the pressure sensor can reach 7.1 ⁇ 0.5kPa -1 under the condition of small pressure (less than 700Pa), and the sensitivity of the pressure sensor is also under the condition of large pressure (700 ⁇ 2500Pa). It can reach 4.4 ⁇ 0.3kPa -1 , and the response curve shows a good linear relationship in the two response intervals.
  • the minimum detection limit of the pressure sensor is less than 50Pa. Further low-pressure performance tests show that the minimum detection limit of the pressure sensor can reach 6Pa.
  • an embodiment of the present invention further provides a method for preparing a capacitance type pressure sensor, the capacitance type pressure sensor
  • the preparation method specifically includes the following steps:
  • a first substrate 11 and a second substrate 12 are formed. Specifically, a mixture of PDMS and a curing agent having a mass ratio of 10:1 is spin-coated on a clean glass and cured at 70 ° C for 20 min. A flat PDMS film, that is, a first substrate 11 and a second substrate 12, is obtained.
  • the thickness of the PDMS film was controlled to 200 ⁇ m by adjusting the spin coating rate and time.
  • the thickness of the PDMS film of the present invention is not limited thereto, and the thickness of the first substrate 11 and the second substrate 12 may be 100 to 500 ⁇ m.
  • a first electrode layer 13 is disposed on the first substrate 11, and a second electrode layer 13 is disposed on the second substrate 12.
  • an ethanol dispersion of silver nanowires is poured on the first substrate 11, and after drying the ethanol, a copper foil is attached as a lead electrode with silver paste at the edges to form a first electrode layer 13 on the first substrate 11.
  • an ethanol dispersion of silver nanowires is poured on the second substrate 12, and after drying the ethanol, a copper foil is pasted as a lead electrode with silver paste at the edges to form a second electrode layer 14 on the second substrate 12.
  • the silver nanowires used in this example have a diameter of 60 nm and a length of 20 to 25 microns.
  • a dielectric layer 17 comprising a plurality of bumps 15 is formed. Specifically, a plurality of templates of the bumps 15 having a groove width of 2.5 ⁇ m and a depth of 1.5 ⁇ m are first etched on the surface of the silicon wafer by photolithography. A mixture of PDMS and a curing agent for forming the protrusions 15 in a mass ratio of 10:1 is then cast on the template to form a dielectric layer 17 including a plurality of protrusions 15.
  • the present invention is not limited thereto, and the protrusion 15 may have a width of 1 to 50 ⁇ m and a height of 0.5 to 25 ⁇ m.
  • the dielectric layer 17 is disposed on the first electrode layer.
  • the first substrate 11 formed with the first electrode layer 13 is inverted on a template on which a mixture of PDMS and a curing agent is poured, cured at 70 ° C for 20 minutes, and then the protrusion 15 formed by curing the PDMS and the curing agent is formed.
  • the template is peeled off to obtain a first substrate 11 to which a dielectric layer 17 including a plurality of bumps 15 and a first electrode layer 13 are attached.
  • step 250 a combination of the first substrate 11, the first electrode layer 13, and the dielectric layer 17 is placed on the second electrode layer 14, such that the dielectric layer 17 is located in the The first electrode layer 13 is between the second electrode layer 14.
  • the invention greatly improves the sensitivity of the capacitive pressure sensor, effectively shortens the response time of the sensor, and the sensor structure is simple and stable, easy to assemble and package as a whole, and is suitable for large-scale industrial production.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种电容型压力传感器及其制备方法。该电容型压力传感器包括:第一基底(11)和第二基底(12);设于第一基底(11)上的第一电极层(13)和设于第二基底(12)上的第二电极层(14),第一电极层(13)和第二电极层(14)位于第一基底(11)和第二基底(12)之间;设于第一电极层(13)和第二电极层(14)之间的介电层(17);介电层(17)包括多个凸起(15)。该制备方法包括:形成第一基底(11)和第二基底(12);在第一基底(11)上布设第一电极层(13),在第二基底(12)上布设第二电极层(14);形成包括多个凸起(15)的介电层(17);将介电层(17)布设于第一电极层(13)上;将第一基底(11)、第一电极层(13)及介电层(17)的组合放置于第二电极层(14)上使介电层(17)位于第一电极层(13)与第二电极层(14)之间。该电容型压力传感器的灵敏度得到大幅提高,有效缩短了传感器的响应时间。

Description

电容型压力传感器及其制备方法 技术领域
本发明属于压力传感器领域,具体地讲,涉及一种电容型压力传感器及其制备方法。
背景技术
近年来,随着柔性电子学的发展,电容型压力传感器作为一种能够实时感测到外界压力变化的传感器已经广泛应用于我们的日常生活和工业生产中。电容型压力传感器在柔性显示、电子皮肤、可穿戴式监测设备、植入式医疗康复监测以及仿生机器人等领域表现出了极大的应用潜力。目前柔性电容型压力传感器的常见制备方法是将柔性聚合物基底与导电材料组装成传感器件。由于电容响应型柔性压力传感器中的介电层是实现传感性能的关键部位,且传统的柔性介电层材料大多为平板状的聚合物薄膜,这使得电容型压力传感器的灵敏度普遍不高,严重限制了电容响应型柔性压力传感器的应用。
因此,现有技术还有待于改进和发展。
发明内容
为了解决上述现有技术中存在的问题,本发明提供了一种高灵敏度的电容型压力传感器。
本发明提供了一种电容型压力传感器,所述电容型压力传感器包括:第一基底和第二基底;设于所述第一基底上的第一电极层和设于所述第二基底上的第二电极层,所述第一电极层和所述第二电极层位于所述第一基底和所述第二基底之间;设于所述第一电极层和所述第二电极层之间的介电层;所述介电层包括多个设于所述第一电极层和所述第二电极层之间的凸起。
可选的,所述凸起包括连接所述第一电极层的延伸部、以及自所述延伸部延伸而朝向所述第二电极层的尖部;所述尖部在平行于所述第一电极层方向上的横截面积小于所述延伸部在平行于所述第一电极层方向上的横截面积。
可选的,所述延伸部相互连接。
可选的,所述凸起呈拱形状。
可选的,所述多个凸起在平行于所述第一电极层的方向上依次排列。
可选的,每一凸起呈长条形。
可选的,相邻的凸起之间设有空隙。
可选的,所述第一电极层平行所述第二电极层。
可选的,所述第一基板平行所述第二基板。
本发明还提供了一种电容型压力传感器的制备方法,用于制备上述的电容型压力传感器,所述制备方法包括:
形成第一基底和第二基底;
在所述第一基底上布设第一电极层,在所述第二基底上布设第二电极层;
形成包括多个凸起的介电层;
将所述介电层布设于所述第一电极层上;
将所述第一基底、所述第一电极层及所述介电层的组合放置于所述第二电极层上,使所述介电层位于所述第一电极层与所述第二电极层之间。
本发明的有益效果:
本发明的电容型压力传感器的介电层包括多个凸起,在单位压力下,介电层更加容易发生形变而改变第一电极层与第二电极层之间的距离以使电容型压力传感器在单位压力下的电容变化量更大,从而大幅度提高了电容型压力传感器的灵敏度,有效缩短了响应时间。
附图说明
图1是本发明的电容型压力传感器的较佳实施方式的结构示意图;
图2是图1中介电层的立体图;
图3是本发明的电容型压力传感器的较佳实施方式对连续压力响应的曲线图;
图4是本发明的电容型压力传感器的制备方法的较佳实施方式的流程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。相同的标号在整个说明书和附图中可用来表示相同的元件。
在附图中,为了清楚起见,夸大了层和区域的厚度。相同的标号在整个说明书和附图中可用来表示相同的元件。
根据电容型压力传感器的信号响应机理:电容
Figure PCTCN2017074260-appb-000001
其中,εr用于表示介电层的介电常数,A用于表示两电极板的有效正对面积,d用于表示两极板间的距离。当电容型压力传感器受到压力的作用时,至少一个变量会发生改变,从而导致传感器电容发生变化,进而通过检测电容的变化来反映压力的大小。
参照图1和图2,本发明的实施例提供的电容型压力传感器包括:第一基底11和第二基底12;设于所述第一基底11上的第一电极层和设于所述第二基底12的上的第二电极层14,所述第一电极层13和所述第二电极层14位于所述第一基底11和所述第二基底12之间;所述介电层17包括多个设于所述第一电极层13和所述第二电极层14之间的凸起15。凸起15之间设有间隙16,间隙16里填充有气体。所述气体可以为普通的空气,也可以为其它的惰性气体。但本发明并不限制于此。
为了使电容型压力传感器在单位压力下的电容变化量更大,本发明的实施 例提供了包括多个一端较尖一端较粗的凸起15的介电层17,以使压力传感器在按压的过程中,介电层17的形变更加明显,以使第一电极层13和第二电极层14之间产生的电容变化量更大,从而达到大幅度提高电容型压力传感器的灵敏度的目的。具体地,所述凸起15包括连接所述第一电极层13延伸部152、以及自所述延伸部152延伸而朝向所述第二电极层14的尖部151,所述尖部151在平行于所述第一电极层13方向上的横截面积小于所述延伸部152在平行于所述第一电极层13方向上的横截面积。优选地,所述凸起15在平行于所述第一电极层13的方向上的横截面积自所述第一电极层13朝向所述第二电极层14的方向逐渐减小。
所述延伸部152相互连接。所述多个凸起15在平行于所述第一电极层13的第一方向上依次排列。为了使压力传感器在受压的过程中受力更加均匀,每一凸体呈拱形状,且每一凸起15呈长条形,每一凸起15沿平行所述第一电极层13且垂直所述第一方向的第二方向上延伸,以形成连续的波浪式结构。但本发明并不限制于此。
每个凸起15在垂直于所述第一电极层13方向上的横截面的宽度可以为1~50微米,高度可以为0.5~25微米。优选地,所述凸起15在垂直于所述第一电极层13方向上的横截面的宽度为2~10微米,深度为1~8微米时,可以获得更好的技术效果。合理地设置每个凸起15的长宽高比例,可以使电容型压力传感器在受到单位压力按压的过程中,介电层17的形变更加明显。在本实施例中,所述凸起15的宽度为2.5微米,高度为1.5微米。
作为本发明的另一实施例,多个凸起15也可以呈点阵式排布,每个凸起15相互独立排布,每个凸起15的底部153互不相连。另外,所述凸起15可以呈锥体状(包括圆锥和棱锥体等),也可以呈拱形状(包括半球体、圆台状等),本发明的凸起15的形状并不限制于此。
作为本发明的又一实施例,介电层17的多个凸起15呈阵列式排布,所述凸起15可以为长条的拱形状的凸起15。
所述第一电极层13平行所述第二电极层14。所述第一电极层13包括铺设于所述第一基底11上的金属纳米线,所述第二电极层14包括铺设于所述第二基底12上的金属纳米线。所述金属纳米线可为银纳米线、铜纳米线、镍纳米 线、铂纳米线等。采用的金属纳米线的直径可以为10~100纳米,长度10~50微米。优选地,采用的金属纳米线的直径为20~80纳米,长度20~40微米时,可以获得更好的技术效果。本实施例中的金属纳米线具体为银纳米线,所述银纳米线的直径优选为60纳米,长度优选为20~25微米。
为了获得成本较低、柔韧性更好、与人体有更好的相容是性的第一基底和第二基底,所述第一基板11平行所述第二基板12。所述第一基底11和第二基底12由聚二甲基硅氧烷(英文简称为PDMS,下文统一使用简称PDMS)形成。所述第一基底11和第二基底12的厚度为100~500微米。优选地,本实施例的第一基底11和第二基底12的厚度为200微米。
本发明的实施例提供的电容响应型柔性压力传感器可以贴附在衣物及皮肤上,用于脉搏、血压、呼吸频率等生理体征检测,也可以用于人体运动状况检测。
参照图3,其中,C0是电容型压力传感器无负载时的电容值,C是测试时电容型压力传感器的电容值。
由图3可知,本发明的实施例的电容型压力传感器具有很高的响应灵敏度和超低的压力检出限。其中,灵敏度是指单位压力下响应信号的相对变化量,灵敏度的计算公式为:S=(C-C0)/C0/压力。压力检出限是指传感器所能检测到的最小压力值。由图3可以看出,在较小的压力(小于700Pa)条件下,压力传感器的灵敏度可达到7.1±0.5kPa-1,在较大的压力(700~2500Pa)条件下,压力传感器的灵敏度也能达到4.4±0.3kPa-1,并且在两段响应区间内,响应曲线都呈现了很好的线性关系。另外,从图3的全量程范围内的性能测试可以看到,压力传感器的最低检出限低于50Pa,进一步的低压性能测试表明,压力传感器的最低检出限可以达到6Pa。
为了获得制备工艺简单,适用于大规模工业化生产的电容型压力传感器,参照图1和图4,本发明的实施例还提供了一种电容型压力传感器的制备方法,所述电容型压力传感器的制备方法具体包括以下步骤:
在步骤210中,形成第一基底11和第二基底12。具体地,先在洁净的玻璃上旋涂质量比为10:1的PDMS和固化剂的混合物,在70℃下固化20min 得到平整的PDMS膜,也就是第一基底11和第二基底12。通过调整旋涂速率和时间将PDMS膜的厚度控制为200微米。但本发明的PDMS膜的厚度并不限制于此,所述第一基底11和第二基底12的厚度可以为100~500微米。
在步骤220中,在所述第一基底11上布设第一电极层13,在所述第二基底上12布设第二电极层13。具体地,在第一基底11浇筑银纳米线的乙醇分散液,烘干乙醇后,在边缘用银胶粘贴铜箔作为引出电极,以在第一基底11上形成第一电极层13。同样地,在第二基底12浇筑银纳米线的乙醇分散液,烘干乙醇后,在边缘用银胶粘贴铜箔作为引出电极,以在第二基底12上形成第二电极层14。本实施例所用银纳米线的直径为60纳米,长度20~25微米。
在步骤230中,形成包括多个凸起15的介电层17。具体地,先通过光蚀刻法在硅片表面刻蚀出多个沟槽宽度为2.5微米、深度为1.5微米的凸起15的模板。然后在所述模板上浇筑用于形成所述凸起15的质量比为10:1的PDMS和固化剂的混合物以形成包括多个凸起15的介电层17。但本发明并不限制于此,所述凸起15的宽度可以为1~50微米,高度可以为0.5~25微米。
在步骤240中,将所述介电层17布设于所述第一电极层上。具体地,将形成有第一电极层13的第一基底11倒扣在浇筑有PDMS和固化剂混合物的模板上,在70℃下固化20min,然后将PDMS和固化剂固化后形成的凸起15与模板剥离,得到贴附有包括多个凸起15的介电层17和第一电极层13的第一基底11。
在步骤250中,将所述第一基底11、所述第一电极层13及所述介电层17的组合放置于所述第二电极层14上,使所述介电层17位于所述第一电极层13与所述第二电极层14之间。
综上所述,本发明大幅度提高了电容型压力传感器的灵敏度,有效缩短了传感器的响应时间,并且该传感器结构简单稳定,容易组装及整体封装,适用于大规模工业化生产。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含” 或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (10)

  1. 一种电容型压力传感器,其特征在于,所述电容型压力传感器包括:
    第一基底和第二基底;
    设于所述第一基底上的第一电极层和设于所述第二基底上的第二电极层,所述第一电极层和所述第二电极层位于所述第一基底和所述第二基底之间;
    设于所述第一电极层和所述第二电极层之间的介电层;所述介电层包括多个设于所述第一电极层和所述第二电极层之间的凸起。
  2. 根据权利要求1所述的电容型压力传感器,其特征在于,所述凸起包括连接所述第一电极层的延伸部、以及自所述延伸部延伸而朝向所述第二电极层的尖部;所述尖部在平行于所述第一电极层方向上的横截面积小于所述延伸部在平行于所述第一电极层方向上的横截面积。
  3. 根据权利要求2所述的电容型压力传感器,其特征在于,所述延伸部相互连接。
  4. 根据权利要求3所述的电容型压力传感器,其特征在于,所述凸起呈拱形状。
  5. 根据权利要求1或4任一项所述的电容型压力传感器,其特征在于,所述多个凸起在平行于所述第一电极层的方向上依次排列。
  6. 根据权利要求1或4任一项所述的电容型压力传感器,其特征在于,每一凸起呈长条形。
  7. 根据权利要求1所述的电容型压力传感器,其特征在于,相邻的凸起之间设有空隙。
  8. 根据权利要求1所述的电容型压力传感器,其特征在于,所述第一电极层平行所述第二电极层。
  9. 根据权利要求1所述的电容型压力传感器,其特征在于,所述第一基 板平行所述第二基板。
  10. 一种电容型压力传感器的制备方法,用于制备权利要求1至9任一项所述的压力传感器,其特征在于,包括:
    形成第一基底和第二基底;
    在所述第一基底上布设第一电极层,在所述第二基底上布设第二电极层;
    形成包括多个凸起的介电层;
    将所述介电层布设于所述第一电极层上;
    将所述第一基底、所述第一电极层及所述介电层的组合放置于所述第二电极层上,使所述介电层位于所述第一电极层与所述第二电极层之间。
PCT/CN2017/074260 2016-06-06 2017-02-21 电容型压力传感器及其制备方法 WO2017211095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610394645.7 2016-06-06
CN201610394645.7A CN106092384A (zh) 2016-06-06 2016-06-06 电容型压力传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2017211095A1 true WO2017211095A1 (zh) 2017-12-14

Family

ID=57448608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074260 WO2017211095A1 (zh) 2016-06-06 2017-02-21 电容型压力传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN106092384A (zh)
WO (1) WO2017211095A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552381A (zh) * 2020-04-23 2020-08-18 中国科学院半导体研究所 电容式压力传感器及其制备方法和钢琴手套

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092384A (zh) * 2016-06-06 2016-11-09 中国科学院深圳先进技术研究院 电容型压力传感器及其制备方法
CN106959175B (zh) * 2017-03-21 2019-07-19 合肥工业大学 一种基于金字塔结构的全柔性电容式滑触觉传感器
CN107373820A (zh) * 2017-08-18 2017-11-24 北京纳米能源与系统研究所 内置呼吸传感系统的纳米纤维口罩
US11725992B2 (en) 2018-01-05 2023-08-15 Sony Corporation Sensor, inputting device, and electronic apparatus
CN108444620B (zh) * 2018-02-08 2020-11-03 浙江大学 一种同层式的多级阵列压力传感器
CN110836738A (zh) * 2019-10-21 2020-02-25 苏州工业职业技术学院 一种柔性压力传感器及其制备方法
CN112179529B (zh) * 2020-09-03 2021-07-27 电子科技大学 一种基于弹性微珠的电容型压力传感器及其制备方法
CN112556895B (zh) * 2020-11-27 2022-02-08 合肥艾创微电子科技有限公司 柔性压力传感器、制备方法及传感系统、柔性电子皮肤
CN112577643B (zh) * 2020-12-11 2022-08-05 武汉大学 一种实现三轴测力的大量程电容式柔性传感器
CN112798153B (zh) * 2020-12-25 2022-12-23 苏州大学 柔性电容压力传感器及其制备方法
CN113074840B (zh) * 2021-03-30 2023-03-24 西交利物浦大学 一种主动式压力传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030079548A1 (en) * 2001-10-26 2003-05-01 Potter Michael D. Electrostatic pressure transducer and a method thereof
CN104535227A (zh) * 2014-12-22 2015-04-22 浙江大学 压入式介电高弹体压力传感器
CN104729769A (zh) * 2015-03-30 2015-06-24 南京林业大学 基于电活性聚合物的分布式柔性压力传感器
CN104949777A (zh) * 2014-03-26 2015-09-30 丰田自动车株式会社 压力传感器
CN105865667A (zh) * 2016-05-19 2016-08-17 北京印刷学院 基于微结构化介电层的电容式柔性压力传感器及其制备方法
CN106092384A (zh) * 2016-06-06 2016-11-09 中国科学院深圳先进技术研究院 电容型压力传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030079548A1 (en) * 2001-10-26 2003-05-01 Potter Michael D. Electrostatic pressure transducer and a method thereof
CN104949777A (zh) * 2014-03-26 2015-09-30 丰田自动车株式会社 压力传感器
CN104535227A (zh) * 2014-12-22 2015-04-22 浙江大学 压入式介电高弹体压力传感器
CN104729769A (zh) * 2015-03-30 2015-06-24 南京林业大学 基于电活性聚合物的分布式柔性压力传感器
CN105865667A (zh) * 2016-05-19 2016-08-17 北京印刷学院 基于微结构化介电层的电容式柔性压力传感器及其制备方法
CN106092384A (zh) * 2016-06-06 2016-11-09 中国科学院深圳先进技术研究院 电容型压力传感器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552381A (zh) * 2020-04-23 2020-08-18 中国科学院半导体研究所 电容式压力传感器及其制备方法和钢琴手套

Also Published As

Publication number Publication date
CN106092384A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017211095A1 (zh) 电容型压力传感器及其制备方法
Li et al. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range
Chen et al. Touchpoint-tailored ultrasensitive piezoresistive pressure sensors with a broad dynamic response range and low detection limit
Park et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins
Park et al. Microtopography‐guided conductive patterns of liquid‐driven graphene nanoplatelet networks for stretchable and skin‐conformal sensor array
CN108318161B (zh) 可穿戴压力传感器及其制造方法
CN109115376A (zh) 一种电容式柔性压力传感器及其制备方法
Kim et al. Piezoresistive graphene/P (VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor
WO2020114366A1 (zh) 压力传感器及其制备方法
Zhang et al. A highly sensitive and cost‐effective flexible pressure sensor with micropillar arrays fabricated by novel metal‐assisted chemical etching for wearable electronics
WO2020114367A1 (zh) 压力传感器及其制备方法
Zou et al. Highly sensitive flexible pressure sensor based on ionic dielectric layer with hierarchical ridge microstructure
US20200400514A1 (en) Graphene/Polymer Heterostructure-Based Flexible and Biocompatible Pressure/Strain Sensor
CN109770866B (zh) 一种高灵敏度电子皮肤的制备方法
CN104523231A (zh) 柔性压力传感件、传感器及其制造方法
KR101691910B1 (ko) 스트레인 센서 및 그 제조 방법
Chen et al. Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes
TW202016521A (zh) 觸覺感測器及其製備方法
Lee et al. A highly sensitive bending sensor based on controlled crack formation integrated with an energy harvesting pyramid layer
CN107934908A (zh) 合成纳米材料及其制备方法
Ma et al. Highly sensitive tactile sensing array realized using a novel fabrication process with membrane filters
CN106092385A (zh) 电容型压力传感器及其制备方法
Yang et al. Electrospun ionic nanofiber membrane-based fast and highly sensitive capacitive pressure sensor
Yu et al. Capacitive stretchable strain sensor with low hysteresis based on wavy-shape interdigitated metal electrodes
CN110487168B (zh) 单向弯曲敏感传感器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17809536

Country of ref document: EP

Kind code of ref document: A1