WO2020114235A1 - 一种pt坐标与gps坐标的转换方法及球机 - Google Patents

一种pt坐标与gps坐标的转换方法及球机 Download PDF

Info

Publication number
WO2020114235A1
WO2020114235A1 PCT/CN2019/119269 CN2019119269W WO2020114235A1 WO 2020114235 A1 WO2020114235 A1 WO 2020114235A1 CN 2019119269 W CN2019119269 W CN 2019119269W WO 2020114235 A1 WO2020114235 A1 WO 2020114235A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome camera
distance
monitoring target
coordinates
coordinate
Prior art date
Application number
PCT/CN2019/119269
Other languages
English (en)
French (fr)
Inventor
姚伟江
夏路
吴可龙
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2020114235A1 publication Critical patent/WO2020114235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/08Projecting images onto non-planar surfaces, e.g. geodetic screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details

Definitions

  • This application relates to the field of security technology, in particular to a method for converting PT coordinates and GPS coordinates and a dome camera.
  • the conversion scheme generally includes: calculating the mapping relationship between the camera coordinate system and the GPS coordinate system according to the coordinates of the same set of calibration points in the camera coordinate system and the GPS coordinates; then, according to the mapping relationship, the camera coordinates can be converted into GPS Coordinates, or convert GPS coordinates to camera coordinates.
  • the embodiment of the present application provides a method for converting PT coordinates and GPS coordinates and a dome camera, so as to perform coordinate conversion for the dome camera.
  • An embodiment of the present application provides a method for converting PT coordinates to GPS coordinates, including:
  • the GPS coordinates of the monitoring target are calculated based on the latitude and longitude of the dome camera and the distances in the longitude and latitude directions.
  • the acquiring the PT coordinates when the dome camera shoots the monitoring target as the first P coordinates and the first T coordinates includes:
  • the PT coordinates when the dome camera is facing the monitoring target as the first P coordinate and the first T coordinate.
  • the determining the horizontal angle between the monitoring target and the specified direction based on the first P coordinate includes:
  • the difference between the first P coordinate and the second P coordinate is calculated as the horizontal angle between the monitoring target and the specified direction.
  • calculating the horizontal distance between the monitoring target and the dome camera based on the first T coordinate and the height of the dome camera includes:
  • the specified direction is true north
  • calculating the meridian distance and the latitude direction distance between the monitoring target and the dome camera through a trigonometric function includes:
  • an embodiment of the present application provides a method for converting PT coordinates to GPS coordinates, including:
  • the specified direction is true north
  • the calculation of the horizontal angle between the monitoring target and the specified direction by a trigonometric function according to the distance of the longitude direction and the distance of the latitude direction includes:
  • calculating the T coordinate of the dome camera according to the horizontal distance and the height of the dome camera includes:
  • the T coordinate of the ball machine is solved by the tangent of the T coordinate of the ball machine.
  • the method further includes:
  • the horizontal error is reduced by adjusting the electronic compass of the dome camera.
  • the method further includes:
  • the vertical error is reduced by adjusting the height value of the dome camera.
  • An embodiment of the present application provides a dome camera, including an image collector, a processor, and a memory;
  • Image collector used to collect images, and use the collected images as images to be processed
  • Memory used to store computer programs
  • the processor is used to implement any one of the conversion methods between PT coordinates and GPS coordinates when executing the program stored in the memory.
  • the PT coordinates of the dome camera when shooting the monitoring target are obtained; based on the P coordinate, the horizontal angle between the monitoring target and the specified direction is determined; based on the coordinates and the height of the dome camera, the level of the monitoring target and the dome camera is calculated Distance; according to the horizontal angle and the horizontal distance, the triangulation function is used to calculate the meridian distance and the latitude direction distance between the monitoring target and the dome camera; based on the latitude and longitude of the dome camera and the longitude and latitude direction distances, the GPS coordinates of the monitoring target are calculated. It can be seen that this solution realizes the conversion of the PT coordinates of the ball machine into GPS coordinates and the coordinate conversion for the ball machine.
  • FIG. 1 is a schematic flowchart of a first conversion method of PT coordinates and GPS coordinates provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of vertical direction conversion in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of horizontal direction conversion in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a second conversion method of PT coordinates and GPS coordinates provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a dome camera provided by an embodiment of the present application.
  • the embodiments of the present application provide a method for converting PT coordinates and GPS coordinates and a dome camera.
  • the method can be applied to the dome camera or other electronic devices connected to the dome camera, such as , Mobile phones, computers, etc., no specific restrictions.
  • the first method for converting PT coordinates to GPS coordinates provided in the embodiments of the present application is described in detail below.
  • the method for converting PT coordinates to GPS coordinates is also a method for converting PT coordinates to GPS coordinates.
  • FIG. 1 is a schematic flowchart of a first conversion method of PT coordinates and GPS coordinates provided by an embodiment of the present application, including:
  • S101 Obtain the PT coordinates when the dome camera shoots the monitoring target, as the first P coordinates and the first T coordinates.
  • the dome camera coordinate system is usually a PTZ (Pan/Tilt/Zoom, pan/tilt/zoom movement, lens zoom, zoom control) coordinate system.
  • the monitoring target in the embodiment shown in FIG. 1 is a target that needs to determine GPS coordinates, that is, it is necessary to convert the PT coordinates when the dome camera shoots the monitoring target into the GPS coordinates of the monitoring target.
  • the P coordinate when the dome camera shoots the monitoring target is called the first P coordinate
  • the T coordinate when the dome camera shoots the monitoring target is called the first T coordinate.
  • the PT coordinates of the dome camera when shooting the monitoring target can be directly read as the first P coordinate and the first T coordinate.
  • the image coordinates of the monitoring target in the image captured by the dome camera can be obtained; according to the image coordinates and the angle of view when the dome camera captures the monitoring target, it is determined that the dome camera is directly facing
  • the PT coordinates when monitoring the target are used as the first P coordinates and the first T coordinates.
  • the PT coordinates are converted into PT coordinates when the dome camera is directly facing the monitoring target, as first P coordinates and first T coordinates.
  • the GPS coordinates of the monitoring target obtained are more accurate.
  • the first P coordinate and the first T coordinate obtained by applying this embodiment are PT coordinates when the dome camera is directly facing the monitoring target. Therefore, with this embodiment, more accurate GPS coordinates can be obtained.
  • the first P coordinate and the first T coordinate can be converted using the following formula:
  • Pan_tar Pan_cur+arctan((2*X/L 1 -1)*tan( ⁇ 1 /2));
  • Tilt_tar Tilt_cur+arctan((2*Y/L 2 -1)*tan( ⁇ 2 /2));
  • Pan_tar represents the first P coordinate
  • Tilt_tar represents the first T coordinate
  • Pan_cur represents the horizontal angle of the current ball machine in the PT coordinate system, that is, the P coordinate read above
  • Tilt_cur represents the current ball machine in the PT coordinate system
  • the vertical direction angle in, that is, the T coordinate read above, (Pan_cur, Tilt_cur) is the coordinate of the current image center position
  • L 1 represents the total number of pixels in the horizontal direction of the image
  • L 2 represents the total number of pixels in the horizontal direction of the image
  • ⁇ 1 represents the horizontal angle of view corresponding to the current image
  • ⁇ 2 represents the vertical angle of view corresponding to the current image
  • the XY coordinate system uses the upper left corner of the image as the origin and pixels as the unit.
  • S102 Determine the horizontal angle between the monitoring target and the specified direction based on the first P coordinate.
  • the designated direction may be a true north direction, a true south direction, a true east direction, or a true west direction, which is not specifically limited.
  • step S102 may include: obtaining the P-coordinate of the dome camera when the dome camera is pointing in a specified direction through the electronic compass of the dome camera as the second P-coordinate; calculating the first P-coordinate and the first The difference between the two P coordinates is the horizontal angle between the monitoring target and the specified direction.
  • the electronic compass of the dome camera you can obtain the P-coordinates of the dome camera when the dome camera points to the north, south, east, and west directions.
  • the second P coordinate The difference between the first P coordinate and the second P coordinate is the horizontal angle between the monitoring target and the specified direction.
  • S103 Calculate the horizontal distance between the monitoring target and the dome camera based on the first T coordinate and the height of the dome camera.
  • step S102 and step S103 are not limited.
  • the product of the tangent of the first T coordinate and the height of the dome can be calculated as the horizontal distance between the monitoring target and the dome.
  • tanT*h L
  • h represents the height of the dome camera
  • L represents the horizontal distance between the monitoring target and the dome camera.
  • the horizontal distance is the distance between the dome camera and the monitoring target under the assumption that the dome camera and the monitoring target have the same height.
  • a trigonometric function is used to calculate the distance in the meridian direction and the distance in the latitude direction between the monitoring target and the dome camera.
  • step S104 may include: calculating the product of the sine value of the horizontal angle and the horizontal distance as the monitoring target and all The distance in the meridian direction of the dome camera; calculate the product of the cosine of the horizontal angle and the horizontal distance as the distance in the latitude direction between the monitoring target and the dome camera.
  • FIG. 3 is a top view of the dome camera.
  • the height of the dome camera is not shown in FIG. 3.
  • L*sin ⁇ L lon
  • L*cos ⁇ L lat
  • L represents the level calculated in step S103 Distance
  • represents the horizontal angle between the monitoring target obtained in step S102 and the true north direction
  • L lon represents the distance between the monitoring target and the dome in the longitude direction
  • L lat represents the distance between the monitoring target and the dome in the latitude direction.
  • step S104 may include: calculating the product of the cosine of the horizontal angle and the horizontal distance as the monitoring target and the ball machine’s The distance in the meridian direction; calculate the product of the sine of the horizontal angle and the horizontal distance as the distance in the latitude direction between the monitoring target and the dome camera.
  • step S102 may be true west or true south, and the specific calculation process is similar and will not be repeated here.
  • S105 Calculate the GPS coordinates of the monitoring target based on the latitude and longitude of the dome camera and the distances in the meridian direction and the latitude direction.
  • the dome camera usually has a GPS positioning device, and the GPS coordinates of the dome camera can be obtained based on the GPS positioning device.
  • the GPS coordinates include the latitude and longitude.
  • the latitude and longitude of the monitoring target can be calculated, and the GPS coordinates of the monitoring target can be obtained.
  • the PT coordinates when the dome camera shoots the monitoring target are obtained; based on the P coordinate, the horizontal angle between the monitoring target and the specified direction is determined; based on the T coordinate and the height of the dome camera, the monitoring target is calculated The horizontal distance from the dome camera; according to the horizontal angle and horizontal distance, the triangulation function is used to calculate the longitude and latitude distance between the monitoring target and the dome camera; based on the latitude and longitude of the dome camera and the longitude and latitude direction distances, the monitoring is calculated The GPS coordinates of the target. It can be seen that in this solution, the PT coordinates of the dome camera are converted into GPS coordinates, and the coordinate conversion for the dome camera is implemented.
  • the conversion method of PT coordinates and GPS coordinates includes:
  • S401 Calculate the meridian distance and the latitude direction distance between the dome camera and the monitoring target according to the GPS coordinates of the monitoring target and the GPS coordinates of the dome camera photographing the monitoring target.
  • the GPS coordinates include latitude and longitude.
  • the difference between the longitude of the monitoring target and the dome camera is the calculated distance in the meridian direction, and the difference in the latitude of the monitoring target and the dome camera is the calculated distance in the latitude direction.
  • S402 Calculate the horizontal distance between the monitoring target and the dome camera based on the longitude direction distance and the latitude direction distance.
  • the horizontal distance is the distance between the dome camera and the monitoring target under the assumption that the dome camera and the monitoring target have the same height.
  • the ground can be regarded as a plane, and the horizontal distance between the monitoring target and the dome camera can be calculated using the following formula:
  • Aw represents the latitude of the monitoring target
  • Aj represents the longitude of the monitoring target
  • Bw represents the latitude of the dome
  • Bj represents the longitude of the dome
  • L represents the horizontal distance between the monitoring target and the dome
  • R represents the location of the dome Earth radius.
  • the ground can be regarded as a spherical surface, and the spherical sine and cosine formula can be used to calculate the horizontal distance between the monitoring target and the ball machine, that is, the spherical distance.
  • the horizontal distance between the monitoring target and the dome camera There are many ways to calculate the horizontal distance between the monitoring target and the dome camera, and they are not listed one by one.
  • S403 Based on the distance in the longitude direction and the distance in the latitude direction, calculate the horizontal angle between the monitoring target and the specified direction through a trigonometric function.
  • step S403 may include: calculating the ratio of the distance in the latitude direction to the distance in the longitude direction as the tangent of the horizontal angle; Tangent value, solve the horizontal angle.
  • tan ⁇ distance in the latitude direction/distance in the longitude direction, where ⁇ is the horizontal angle between the monitoring target and the true east direction.
  • the specified direction may also be true west or true south, and the specific calculation process is similar and will not be repeated here.
  • S404 Determine the P coordinate of the dome camera according to the horizontal angle.
  • the P coordinate of the dome can be understood as the angle of the dome in the horizontal direction. Knowing the horizontal angle between the dome and the specified direction, the angle of the dome in the horizontal direction can be determined and the P coordinate of the dome can be obtained. Among them, the specified direction can be such as true north.
  • S405 Calculate the T coordinate of the dome camera according to the horizontal distance and the height of the dome camera.
  • Step S405 may be performed after step S402, and the execution order of step S402 and step S403-step S404 is not limited.
  • the ratio of the horizontal distance to the height of the dome can be calculated as the tangent of the T coordinate of the dome; the tangent of the T coordinate of the dome can be used to solve the ball The T coordinate of the machine.
  • tanT*h L
  • h represents the height of the ball machine
  • L represents the horizontal distance between the monitoring target and the ball machine
  • T represents the T coordinate of the ball machine.
  • the T coordinate of the ball machine can be calculated according to this formula.
  • the GPS coordinates of the monitoring target can be converted into the PT coordinates of the dome camera.
  • the horizontal error is reduced by adjusting the electronic compass of the ball machine.
  • the vertical error is reduced by adjusting the height value of the dome camera.
  • the height of the dome camera in the above embodiments may be pre-configured in the dome camera.
  • the pre-configured height value may have errors.
  • the vertical error can be reduced by adjusting the height value configured in the dome camera.
  • the inventor found through experiments that by adjusting the electronic compass of the ball machine, the horizontal error of coordinate conversion can be reduced, and by adjusting the height value of the ball machine, the vertical error of coordinate conversion can be reduced.
  • the error of coordinate conversion is corrected overall, but the error correction in different directions will affect each other.
  • different parameters can be adjusted to realize the correction of errors in different directions, which reduces this mutual influence and improves the accuracy of error correction.
  • the GPS coordinates of the monitoring target are converted into the PT coordinates of the ball machine, and the coordinate conversion for the ball machine is realized.
  • An embodiment of the present application further provides a dome camera. As shown in FIG. 5, it includes an image collector 501, a processor 502, and a memory 503;
  • the image collector 501 is used to collect images and use the collected images as images to be processed;
  • the processor 502 is used to implement any one of the conversion methods between PT coordinates and GPS coordinates when executing the program stored in the memory.
  • the above image collector may include various components such as a lens and an image sensor, which is not specifically limited.
  • the memory may include random access memory (Random Access Memory, RAM), or non-volatile memory (Non-Volatile Memory, NVM), for example, at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory may also be at least one storage device located away from the foregoing processor.
  • the aforementioned processor may be a general-purpose processor, including a central processor (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it may also be a digital signal processor (Digital Signal Processing, DSP), dedicated integration Circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • a central processor Central Processing Unit, CPU
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种PT坐标与GPS坐标的转换方法及球机,方法包括:获取球机拍摄监控目标时的PT坐标;基于该P坐标,确定监控目标与指定方向的水平夹角;基于该T坐标以及球机的高度,计算监控目标与球机的水平距离;根据水平夹角和水平距离,通过三角函数计算监控目标与球机的经线方向距离和纬线方向距离;基于球机的经纬度以及该经线方向距离和纬线方向距离,计算监控目标的GPS坐标。可见,本方案实现了将球机的PT坐标转换为GPS坐标,实现了针对球机的坐标转换。

Description

一种PT坐标与GPS坐标的转换方法及球机
本申请要求于2018年12月5日提交中国专利局、申请号为201811482019.9发明名称为“一种PT坐标与GPS坐标的转换方法、装置及球机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及安防技术领域,特别是涉及一种PT坐标与GPS坐标的转换方法及球机。
背景技术
一些场景中,需要将相机坐标系中的坐标与GPS(Global Positioning System,全球定位系统)坐标进行相互转换。转换方案一般包括:根据同一组标定点在相机坐标系中的坐标、以及GPS坐标,计算相机坐标系与GPS坐标系之间的映射关系;然后便可以根据该映射关系,将相机坐标转换为GPS坐标,或者将GPS坐标转换为相机坐标。
但是这种方案,只是针对拍摄角度、焦距均固定的相机进行坐标转换,而对于拍摄角度、焦距均不固定的球机来说,这种方案并不适用。
发明内容
本申请实施例提供一种PT坐标与GPS坐标的转换方法及球机,以针对球机进行坐标转换。
本申请实施例提供了一种PT坐标与GPS坐标的转换方法,包括:
获取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标;
基于所述第一P坐标,确定所述监控目标与指定方向的水平夹角;
基于所述第一T坐标以及所述球机的高度,计算所述监控目标与所述球机的水平距离;
根据所述水平夹角和所述水平距离,通过三角函数计算所述监控目标与所述球机的经线方向距离和纬线方向距离;
基于所述球机的经纬度以及所述经线方向距离和纬线方向距离,计算所 述监控目标的GPS坐标。
一种实施例,所述获取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标,包括:
获取监控目标在球机拍摄图像中的图像坐标;
根据所述图像坐标、以及所述球机拍摄所述监控目标时的视场角,确定所述球机正对所述监控目标时的PT坐标,作为第一P坐标和第一T坐标。
一种实施例,所述基于所述第一P坐标,确定所述监控目标与指定方向的水平夹角,包括:
通过所述球机的电子罗盘,获取球机指向指定方向时的球机P坐标,作为第二P坐标;
计算所述第一P坐标与所述第二P坐标之差,作为所述监控目标与所述指定方向的水平夹角。
一种实施例,所述基于所述第一T坐标以及所述球机的高度,计算所述监控目标与所述球机的水平距离,包括:
计算所述第一T坐标的正切值与所述球机的高度的乘积,作为监控目标与所述球机的水平距离。
一种实施例,所述指定方向为正北;
所述根据所述水平夹角和所述水平距离,通过三角函数计算所述监控目标与所述球机的经线方向距离和纬线方向距离,包括:
计算所述水平夹角的正弦值与所述水平距离的乘积,作为所述监控目标与所述球机的经线方向距离;
计算所述水平夹角的余弦值与所述水平距离的乘积,作为所述监控目标与所述球机的纬线方向距离。
为达到上述目的,本申请实施例提供了一种PT坐标与GPS坐标的转换方法,包括:
根据监控目标的GPS坐标、以及拍摄所述监控目标的球机的GPS坐标,计 算所述球机与所述监控目标的经线方向距离和纬线方向距离;
根据所述经线方向距离和纬线方向距离,计算所述监控目标与所述球机的水平距离;
根据所述经线方向距离和纬线方向距离,通过三角函数计算所述监控目标与指定方向的水平夹角;
根据所述水平夹角,确定所述球机的P坐标;
根据所述水平距离及所述球机的高度,计算所述球机的T坐标。
一种实施例,所述指定方向为正北;
所述根据所述经线方向距离和纬线方向距离,通过三角函数计算所述监控目标与指定方向的水平夹角,包括:
计算所述经线方向距离与所述纬线方向距离的比值,作为所述水平夹角的正切值;
通过所述水平夹角的正切值,求解所述水平夹角。
一种实施例,所述根据所述水平距离及所述球机的高度,计算所述球机的T坐标,包括:
计算所述水平距离与所述球机的高度的比值,作为所述球机的T坐标的正切值;
通过所述球机的T坐标的正切值,求解所述球机的T坐标。
一种实施例,所述方法还包括:
若确定的所述球机的P坐标存在水平误差,则通过调节所述球机的电子罗盘,减少所述水平误差。
一种实施例,所述方法还包括:
若计算得到的所述球机的T坐标存在垂直误差,则通过调节所述球机的高度值,减少所述垂直误差。
本申请实施例提供了一种球机,包括图像采集器、处理器和存储器;
图像采集器,用于采集图像,并将所采集的图像作为待处理图像;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现上述任一种PT坐标与GPS坐标的转换方法。
本申请实施例中,获取球机拍摄监控目标时的PT坐标;基于该P坐标,确定监控目标与指定方向的水平夹角;基于该坐标以及球机的高度,计算监控目标与球机的水平距离;根据水平夹角和水平距离,通过三角函数计算监控目标与球机的经线方向距离和纬线方向距离;基于球机的经纬度以及该经线方向距离和纬线方向距离,计算监控目标的GPS坐标。可见,本方案实现了将球机的PT坐标转换为GPS坐标,实现了针对球机的坐标转换。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种PT坐标与GPS坐标的转换方法的流程示意图;
图2为本申请实施例中垂直方向转换示意图;
图3为本申请实施例中水平方向转换示意图;
图4为本申请实施例提供的第二种PT坐标与GPS坐标的转换方法的流程示意图;
图5为本申请实施例提供的一种球机的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决上述技术问题,本申请实施例提供了一种PT坐标与GPS坐标的转换方法及球机,该方法可以应用于球机,或者也可以应用于与球机通信连接的其他电子设备,比如,手机、电脑,等等,具体不做限定。下面首先对本申请实施例提供的第一种PT坐标与GPS坐标的转换方法进行详细介绍,PT坐标与GPS坐标的转换方法也就是将PT坐标转换为GPS坐标的方法。
图1为本申请实施例提供的第一种PT坐标与GPS坐标的转换方法的流程示意图,包括:
S101:获取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标。
球机坐标系通常为PTZ(Pan/Tilt/Zoom,云台左右/上下移动及镜头变倍、变焦控制)坐标系。图1所示实施例中的监控目标,即为需要确定GPS坐标的目标,也就是需要将球机拍摄该监控目标时的PT坐标转换为该监控目标的GPS坐标。为了方便描述,将球机拍摄监控目标时的P坐标称为第一P坐标,将球机拍摄监控目标时的T坐标称为第一T坐标。
一种实施方式中,在球机具有检测自身的PT坐标功能时,可以直接读取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标。
另一种实施方式中,可以获取监控目标在球机拍摄图像中的图像坐标;根据所述图像坐标、以及所述球机拍摄所述监控目标时的视场角,确定所述球机正对所述监控目标时的PT坐标,作为第一P坐标和第一T坐标。
本实施方式中,可以先读取球机拍摄监控目标时的PT坐标,然后根据监控目标在球机拍摄图像中的图像坐标、以及球机拍摄监控目标时的视场角,将读取到的PT坐标转换为球机正对所述监控目标时的PT坐标,作为第一P坐标和第一T坐标。
应用本申请实施例将球机的PT坐标转换为监控目标的GPS坐标时,若球机正对监控目标,则得到的监控目标的GPS坐标更准确。而应用本实施方式得到的第一P坐标和第一T坐标为球机正对监控目标时的PT坐标,因此, 利用本实施方式,可以得到更准确的GPS坐标。
具体来说,假设监控目标在球机拍摄图像中的图像坐标为(X,Y),则可以利用以下算式转换得到第一P坐标和第一T坐标:
Pan_tar=Pan_cur+arctan((2*X/L 1-1)*tan(θ 1/2));
Tilt_tar=Tilt_cur+arctan((2*Y/L 2-1)*tan(θ 2/2));
其中,Pan_tar表示第一P坐标,Tilt_tar表示第一T坐标,Pan_cur表示当前球机在PT坐标系中的水平方向角度,也就是上述读取到的P坐标,Tilt_cur表示当前球机在PT坐标系中的垂直方向角度,也就是上述读取到的T坐标,(Pan_cur,Tilt_cur)为当前图像中心位置的坐标,L 1表示图像横向的总像素数,L 2表示图像纵向的总像素数,θ 1表示为当前图像所对应的水平视场角,θ 2表示为当前图像所对应的垂直视场角;XY坐标系以图像左上角为原点,以像素为单位。
S102:基于第一P坐标,确定监控目标与指定方向的水平夹角。
举例来说,该指定方向可以为正北方向,也可以为正南方向,也可以为正东方向,也可以为正西方向,具体不做限定。
作为一种实施方式,步骤S102可以包括:通过所述球机的电子罗盘,获取球机指向指定方向时的球机P坐标,作为第二P坐标;计算所述第一P坐标与所述第二P坐标之差,作为所述监控目标与所述指定方向的水平夹角。
通过球机的电子罗盘,可以获取球机指向正北、正南、正东、正西等方向时的球机P坐标,为了区分描述,将球机指向指定方向时的球机P坐标称为第二P坐标。第一P坐标与第二P坐标之差,即为监控目标与指定方向的水平夹角。
S103:基于第一T坐标以及球机的高度,计算监控目标与球机的水平距离。
步骤S102与步骤S103的执行顺序不做限定。
一种实施方式中,可以计算第一T坐标的正切值与所述球机的高度的乘积,作为监控目标与所述球机的水平距离。参考图2可知,tanT*h=L,h表示球机的高度,L表示监控目标与球机的水平距离。水平距离也就是假设球机与监控目标高度相同的情况下,球机与监控目标的距离。
S104:根据该水平夹角和该水平距离,通过三角函数计算监控目标与球机的经线方向距离和纬线方向距离。
一种实施方式中,步骤S102中的指定方向为正北,这种情况下,步骤S104可以包括:计算所述水平夹角的正弦值与所述水平距离的乘积,作为所述监控目标与所述球机的经线方向距离;计算所述水平夹角的余弦值与所述水平距离的乘积,作为所述监控目标与所述球机的纬线方向距离。
参考图3,图3为球机的俯视图,图3中未体现球机的高度,由图3可知,L*sinθ=L lon,L*cosθ=L lat,L表示步骤S103中计算得到的水平距离,θ表示步骤S102中得到的监控目标与正北方向的水平夹角,L lon表示监控目标与球机的经线方向距离,L lat表示监控目标与球机的纬线方向距离。
或者,步骤S102中的指定方向为正东,这种情况下,步骤S104可以包括:计算所述水平夹角的余弦值与所述水平距离的乘积,作为所述监控目标与所述球机的经线方向距离;计算所述水平夹角的正弦值与所述水平距离的乘积,作为所述监控目标与所述球机的纬线方向距离。
这种情况下,步骤S102中得到的监控目标与正东方向的水平夹角为图3中的α,L*sinα=L lon,L*cosα=L lat
或者,步骤S102中的指定方向可以为正西或者正南,具体计算过程类似,不再赘述。
S105:基于球机的经纬度以及该经线方向距离和纬线方向距离,计算监控目标的GPS坐标。
球机通常具有GPS定位装置,可以基于该GPS定位装置得到球机的GPS坐标,GPS坐标中包括经纬度,这样,得到了球机的经纬度以及球机与监控目标的经线方向距离和纬线方向距离,便可以计算得到监控目标的经纬度,也就得到了监控目标的GPS坐标。
本申请图1所示实施例中,获取球机拍摄监控目标时的PT坐标;基于该P坐标,确定监控目标与指定方向的水平夹角;基于该T坐标以及球机的高度,计算监控目标与球机的水平距离;根据水平夹角和水平距离,通过三角函数计算监控目标与球机的经线方向距离和纬线方向距离;基于球机的经纬度以及该经线方向距离和纬线方向距离,计算监控目标的GPS坐标。可见, 本方案实现了将球机的PT坐标转换为GPS坐标,实现了针对球机的坐标转换。
图4为本申请实施例提供的第二种PT坐标与GPS坐标的转换方法的流程示意图,PT坐标与GPS坐标的转换方法也就是将GPS坐标转换为PT坐标的方法,包括:
S401:根据监控目标的GPS坐标、以及拍摄监控目标的球机的GPS坐标,计算球机与监控目标的经线方向距离和纬线方向距离。
GPS坐标包括经纬度,监控目标与球机的经度差即为计算得到的经线方向距离,监控目标与球机的纬度差即为计算得到的纬线方向距离。
S402:根据该经线方向距离和纬线方向距离,计算监控目标与球机的水平距离。
水平距离也就是假设球机与监控目标高度相同的情况下,球机与监控目标的距离。参考图3,一种情况下,可以认为地面是平面,利用下式计算监控目标与球机的水平距离:
Figure PCTCN2019119269-appb-000001
或者,也可以采用Haversine(半正矢)函数计算监控目标与球机的水平距离,参见下式:
Figure PCTCN2019119269-appb-000002
上式中,Aw表示监控目标的纬度,Aj表示监控目标的经度,Bw表示球机的纬度,Bj表示球机的经度,L表示监控目标与球机的水平距离,R表示球机所在位置的地球半径。
或者,也可以认为地面为球面,利用球面正余弦公式计算监控目标与球机的水平距离,也就是球面距离。计算监控目标与球机的水平距离的方式有多种,不再一一列举。
S403:根据该经线方向距离和纬线方向距离,通过三角函数计算监控目标与指定方向的水平夹角。
举例来说,如果指定方向为正北方向,则步骤S403可以包括:计算所述经线方向距离与所述纬线方向距离的比值,作为所述水平夹角的正切值;通过所述水平夹角的正切值,求解所述水平夹角。参考图3可知,tanθ=经线方向距离/纬线方向距离,θ即为监控目标与正北方向的水平夹角。
或者,该指定方向也可以为正东方向,这种情况下,步骤S403可以包括:计算所述纬线方向距离与所述经线方向距离的比值,作为所述水平夹角的正切值;通过所述正切值,求解所述水平夹角。参考图3可知,tanα=纬线方向距离/经线方向距离,α即为即为监控目标与正东方向的水平夹角。
或者,该指定方向也可以为正西或者正南,具体计算过程类似,不再赘述。
S404:根据该水平夹角,确定球机的P坐标。
球机的P坐标可以理解为球机在水平方向的角度,已知球机与指定方向的水平夹角,即可确定球机在水平方向的角度,也就得到了球机的P坐标。其中,指定方向可以如正北等方向。
S405:根据该水平距离及球机的高度,计算球机的T坐标。
步骤S405可以在步骤S402之后执行,步骤S402与步骤S403-步骤S404的执行顺序不做限定。
作为一种实施方式,可以计算所述水平距离与所述球机的高度的比值,作为所述球机的T坐标的正切值;通过所述球机的T坐标的正切值,求解所述球机的T坐标。
参考图2可知,tanT*h=L,h表示球机的高度,L表示监控目标与球机的水平距离,T表示球机的T坐标。可以根据该算式计算得到球机的T坐标。
基于以上步骤,便可以将监控目标的GPS坐标转换为球机的PT坐标。
作为一种实施方式,若确定的所述球机的P坐标存在水平误差,则通过调节所述球机的电子罗盘,减少所述水平误差。
作为一种实施方式,若计算得到的所述球机的T坐标存在垂直误差,则通过调节所述球机的高度值,减少所述垂直误差。
上述实施例中的球机高度可以预先配置在球机中,该预先配置的高度值可能是存在误差的,可以通过调节配置在球机中的高度值,减少所述垂直误 差。
发明人经实验发现,通过调节球机的电子罗盘,可以减少坐标转换的水平误差,通过调节球机的高度值,可以减少坐标转换的垂直误差。
一些相关方案中,对坐标转换的误差进行整体矫正,但是不同方向上的误差矫正会相互影响。而本申请所提供的这两种实施方式中,可以通过调节不同的参数实现对不同方向的误差分别进行矫正,减少了这种相互影响,提高了误差矫正的准确度。
应用本申请图4所示实施例,将监控目标的GPS坐标转换为球机的PT坐标,实现了针对球机的坐标转换。
本申请实施例还提供了一种球机,如图5所示,包括图像采集器501、处理器502和存储器503;
图像采集器501,用于采集图像,并将所采集的图像作为待处理图像;
存储器503,用于存放计算机程序;
处理器502,用于执行存储器上所存放的程序时,实现上述任一种PT坐标与GPS坐标的转换方法。
上述图像采集器可以包括镜头、图像传感器等各种组件,具体不做限定。
上述存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。一种实施例,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、 “包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于球机实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (11)

  1. 一种PT坐标与GPS坐标的转换方法,其特征在于,包括:
    获取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标;
    基于所述第一P坐标,确定所述监控目标与指定方向的水平夹角;
    基于所述第一T坐标以及所述球机的高度,计算所述监控目标与所述球机的水平距离;
    根据所述水平夹角和所述水平距离,通过三角函数计算所述监控目标与所述球机的经线方向距离和纬线方向距离;
    基于所述球机的经纬度以及所述经线方向距离和纬线方向距离,计算所述监控目标的GPS坐标。
  2. 根据权利要求1所述的方法,其特征在于,所述获取球机拍摄监控目标时的PT坐标,作为第一P坐标和第一T坐标,包括:
    获取监控目标在球机拍摄图像中的图像坐标;
    根据所述图像坐标、以及所述球机拍摄所述监控目标时的视场角,确定所述球机正对所述监控目标时的PT坐标,作为第一P坐标和第一T坐标。
  3. 根据权利要求1所述的方法,其特征在于,所述基于所述第一P坐标,确定所述监控目标与指定方向的水平夹角,包括:
    通过所述球机的电子罗盘,获取球机指向指定方向时的球机P坐标,作为第二P坐标;
    计算所述第一P坐标与所述第二P坐标之差,作为所述监控目标与所述指定方向的水平夹角。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述第一T坐标以及所述球机的高度,计算所述监控目标与所述球机的水平距离,包括:
    计算所述第一T坐标的正切值与所述球机的高度的乘积,作为监控目标与所述球机的水平距离。
  5. 根据权利要求1所述的方法,其特征在于,所述指定方向为正北;
    所述根据所述水平夹角和所述水平距离,通过三角函数计算所述监控目标与所述球机的经线方向距离和纬线方向距离,包括:
    计算所述水平夹角的正弦值与所述水平距离的乘积,作为所述监控目标与所述球机的经线方向距离;
    计算所述水平夹角的余弦值与所述水平距离的乘积,作为所述监控目标与所述球机的纬线方向距离。
  6. 一种PT坐标与GPS坐标的转换方法,其特征在于,包括:
    根据监控目标的GPS坐标、以及拍摄所述监控目标的球机的GPS坐标,计算所述球机与所述监控目标的经线方向距离和纬线方向距离;
    根据所述经线方向距离和纬线方向距离,计算所述监控目标与所述球机的水平距离;
    根据所述经线方向距离和纬线方向距离,通过三角函数计算所述监控目标与指定方向的水平夹角;
    根据所述水平夹角,确定所述球机的P坐标;
    根据所述水平距离及所述球机的高度,计算所述球机的T坐标。
  7. 根据权利要求6所述的方法,其特征在于,所述指定方向为正北;
    所述根据所述经线方向距离和纬线方向距离,通过三角函数计算所述监控目标与指定方向的水平夹角,包括:
    计算所述经线方向距离与所述纬线方向距离的比值,作为所述水平夹角的正切值;
    通过所述水平夹角的正切值,求解所述水平夹角。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述水平距离及所述球机的高度,计算所述球机的T坐标,包括:
    计算所述水平距离与所述球机的高度的比值,作为所述球机的T坐标的正切值;
    通过所述球机的T坐标的正切值,求解所述球机的T坐标。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若确定的所述球机的P坐标存在水平误差,则通过调节所述球机的电子罗盘,减少所述水平误差。
  10. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若计算得到的所述球机的T坐标存在垂直误差,则通过调节所述球机的高度值,减少所述垂直误差。
  11. 一种球机,其特征在于,包括图像采集器、处理器和存储器;
    图像采集器,用于采集图像,并将所采集的图像作为待处理图像;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-5或者6-10任一所述的方法步骤。
PCT/CN2019/119269 2018-12-05 2019-11-18 一种pt坐标与gps坐标的转换方法及球机 WO2020114235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811482019.9A CN111275609B (zh) 2018-12-05 2018-12-05 一种pt坐标与gps坐标的转换方法、装置及球机
CN201811482019.9 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020114235A1 true WO2020114235A1 (zh) 2020-06-11

Family

ID=70975134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119269 WO2020114235A1 (zh) 2018-12-05 2019-11-18 一种pt坐标与gps坐标的转换方法及球机

Country Status (2)

Country Link
CN (1) CN111275609B (zh)
WO (1) WO2020114235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115100026A (zh) * 2022-06-15 2022-09-23 佳都科技集团股份有限公司 基于目标对象的标签坐标转换方法、装置、设备及存储介质
CN117459709A (zh) * 2023-10-26 2024-01-26 天讯瑞达通信技术有限公司 云台摄像头可视化标签定位方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112559657B (zh) * 2020-12-10 2022-12-27 河北先进环保产业创新中心有限公司 水污染溯源方法、装置及终端设备
CN113012047B (zh) * 2021-03-26 2021-12-14 广州赋安数字科技有限公司 动态摄像头坐标映射建立方法、装置及可读存储介质
CN113347357A (zh) * 2021-06-01 2021-09-03 安徽创世科技股份有限公司 一种摄像头跟随目标运动而自动联动跟踪的系统及方法
CN113674312A (zh) * 2021-06-30 2021-11-19 浙江大华技术股份有限公司 目标跟踪特写方法及装置
CN113660421A (zh) * 2021-08-16 2021-11-16 北京中安瑞力科技有限公司 一种定位视频的联动方法及联动系统
CN114596362B (zh) * 2022-03-15 2023-03-14 云粒智慧科技有限公司 一种高点摄像头坐标计算方法、装置、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033612A (zh) * 2015-03-09 2016-10-19 杭州海康威视数字技术股份有限公司 一种目标跟踪方法、装置和系统
US9906710B2 (en) * 2015-12-01 2018-02-27 Idis Co., Ltd. Camera pan-tilt-zoom (PTZ) control apparatus
CN108810473A (zh) * 2018-06-15 2018-11-13 高新兴科技集团股份有限公司 一种在移动平台上实现gps映射摄像机画面坐标的方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201013214A (en) * 2008-09-17 2010-04-01 Altek Corp Photography device and method for sensing the moving speed of the photographed object
TW201015202A (en) * 2008-10-03 2010-04-16 Altek Corp Image pickup device capable of providing GPS coordinates of subject to be shot and method for detecting GPS coordinates thereof
CN101729765B (zh) * 2008-10-21 2011-09-14 华晶科技股份有限公司 提供被摄物gps坐标的摄像装置与侦测被摄物gps坐标的方法
US9949339B2 (en) * 2014-05-23 2018-04-17 Lonestar Inventions, L.P. Method and apparatus for controlling electrical power usage based on exact sun elevation angle and measured geographical location
CN105206108B (zh) * 2015-08-06 2017-06-13 同济大学 一种基于电子地图的车辆碰撞预警方法
KR20180054219A (ko) * 2016-11-15 2018-05-24 주식회사 센서뷰 전방위 영상의 좌표 맵핑 방법 및 장치
KR101794311B1 (ko) * 2017-09-11 2017-11-07 공간정보기술 주식회사 지피에스(gps) 좌표를 3차원 공간좌표로 투영하여 목표 지점으로 피티젯(ptz) 카메라를 이동시키는 스테레오 카메라 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033612A (zh) * 2015-03-09 2016-10-19 杭州海康威视数字技术股份有限公司 一种目标跟踪方法、装置和系统
US9906710B2 (en) * 2015-12-01 2018-02-27 Idis Co., Ltd. Camera pan-tilt-zoom (PTZ) control apparatus
CN108810473A (zh) * 2018-06-15 2018-11-13 高新兴科技集团股份有限公司 一种在移动平台上实现gps映射摄像机画面坐标的方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115100026A (zh) * 2022-06-15 2022-09-23 佳都科技集团股份有限公司 基于目标对象的标签坐标转换方法、装置、设备及存储介质
CN115100026B (zh) * 2022-06-15 2023-07-14 佳都科技集团股份有限公司 基于目标对象的标签坐标转换方法、装置、设备及存储介质
CN117459709A (zh) * 2023-10-26 2024-01-26 天讯瑞达通信技术有限公司 云台摄像头可视化标签定位方法

Also Published As

Publication number Publication date
CN111275609B (zh) 2023-03-24
CN111275609A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2020114235A1 (zh) 一种pt坐标与gps坐标的转换方法及球机
WO2020114231A1 (zh) 一种基于gps的目标跟踪系统、方法及球机
CN109035320B (zh) 基于单目视觉的深度提取方法
WO2018161797A1 (zh) 一种实现目标跟踪的方法、云台摄像机和监控平台
US9109889B2 (en) Determining tilt angle and tilt direction using image processing
KR101900873B1 (ko) 안테나 엔지니어링 파라미터를 획득하는 방법, 장치 및 시스템
CN110278382B (zh) 一种聚焦方法、装置、电子设备及存储介质
CN104284155B (zh) 视频图像信息标注方法及装置
JP2019045425A (ja) 測量データ処理装置、測量データ処理方法および測量データ処理用プログラム
US8155387B2 (en) Method and system for position determination using image deformation
JP6172987B2 (ja) 方位角推定装置及び方位角推定プログラム
US20100061593A1 (en) Extrapolation system for solar access determination
CN104613930A (zh) 一种测距的方法、装置及移动终端
CN109949232B (zh) 图像与rtk结合的测量方法、系统、电子设备及介质
CN110779491A (zh) 一种水平面上目标测距的方法、装置、设备及存储介质
WO2022241964A1 (zh) 测温方法、计算机设备和计算机可读存储介质
WO2022152194A1 (zh) 监控相机的标定方法
WO2020114234A1 (zh) 一种确定目标gps的方法及摄像机
CN110458888A (zh) 基于图像的测距方法、装置、存储介质和电子设备
WO2023035301A1 (en) A camera calibration method
WO2020114232A1 (zh) 一种基于gps坐标的目标统筹方法及摄像机
CN105043252A (zh) 一种基于图像处理的无参考物尺寸测量方法
JP2006234703A (ja) 画像処理装置及び三次元計測装置並びに画像処理装置用プログラム
KR20110094664A (ko) 전방향 피티지 카메라 제어 장치 및 그 방법
JP2011058854A (ja) 携帯端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892141

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19892141

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19892141

Country of ref document: EP

Kind code of ref document: A1