WO2020111808A1 - 자율주행 카트 - Google Patents

자율주행 카트 Download PDF

Info

Publication number
WO2020111808A1
WO2020111808A1 PCT/KR2019/016552 KR2019016552W WO2020111808A1 WO 2020111808 A1 WO2020111808 A1 WO 2020111808A1 KR 2019016552 W KR2019016552 W KR 2019016552W WO 2020111808 A1 WO2020111808 A1 WO 2020111808A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor
following object
driving
cart
Prior art date
Application number
PCT/KR2019/016552
Other languages
English (en)
French (fr)
Inventor
천홍석
김태형
변용진
권아영
이찬
조한민
김용휘
김재성
이재훈
Original Assignee
주식회사 트위니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 트위니 filed Critical 주식회사 트위니
Publication of WO2020111808A1 publication Critical patent/WO2020111808A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0026Propulsion aids
    • B62B5/0069Control

Definitions

  • the present invention relates to an autonomous driving cart, and more particularly, to an autonomous driving cart that stores information on a following object, detects a following object from the sensed information, and tracks the detected following object.
  • a shopping cart is a cart used when shopping.
  • the shopping carts provided by the hypermarkets can control the loading cart that can accommodate a large number of items, the frame supporting the loading section, and the wheels and shopping carts that make it easy to move the heavy shopping cart loaded with many items. Includes a handle to do.
  • Korean Registered Patent [10-1709683] discloses a user-oriented autonomous shopping cart system through a non-contact user interface, and a method for controlling an autonomous driving shopping cart.
  • the present invention has been devised to solve the problems as described above, and the object of the present invention is to store information on a following object, detect a following object from the sensed information, and track the detected following object. , It is to provide an autonomous driving cart capable of tracking a tracking target without having a separate device for the tracking target (user).
  • An autonomous driving cart for achieving the above object is a storage unit 100 for storing the goods;
  • a driving unit 200 coupled with the storage unit 100 and configured with a motor and wheels for driving;
  • a sensor unit 300 that acquires surrounding environment information;
  • a tracking target storage unit 400 that stores information about the tracking target;
  • a tracking target recognition unit 500 that detects a tracking target based on information sensed by the sensor unit 300 and information on a tracking target stored in the tracking target storage unit 400;
  • a control unit (600) for controlling the driving unit (200) to track the following object detected by the following object recognition unit (500).
  • the sensor unit 300 is characterized in that it includes any one or a plurality of depth camera, camera, ultrasonic sensor, vision sensor and distance sensor.
  • the following object storage unit 400 is characterized by storing information about the following object based on a feature including any one or a plurality of color, size, and shape information.
  • control unit 600 includes an environment recognition unit 610 for recognizing the environment including the obstacles based on the obtained from the sensor unit 300; A path planning unit 620 for planning a movement path to avoid following obstacles recognized by the environment recognition unit 610 and to track the following object detected by the user recognition unit 500; And a driving control unit 630 for controlling the driving unit 200 according to the planned movement path from the path planning unit 620.
  • control unit 600 is characterized in that it controls the driving unit 200 to follow when the distance to the object to be followed is more than a certain distance, and stop when the distance is less than a certain distance.
  • controller 600 controls the driving unit 200 so that the direction in which the sensor unit 300 faces the following object is rotated at a stopped point when the distance to the following object is less than a specific distance. Is done.
  • the sensor unit 300 includes; a sensor rotation unit 310 for rotating the sensor unit 300; and the control unit 600 rotates the sensor rotation unit 310 to rotate the sensor unit 300. It is characterized in that the direction of the sensor unit 300 is adjusted so that the following object exists within a certain range within the detection range.
  • the sensor unit 300 includes; a sensor rotation unit 310 for rotating the sensor unit 300, and the control unit 600 rotates at a point where it stops when the distance to the following object is less than a specific distance
  • the driving unit 200 is controlled such that the direction in which the sensor unit 300 faces toward the following object, but if the following object is expected to fall outside a range detectable by the sensor unit 300, the sensor unit 300 It is characterized by rotating the sensor rotation unit 310 so that the direction toward) is toward the following object.
  • the autonomous driving cart includes an operation unit 700 that receives user's operation information; and the control unit 600 stores (recognizes) following information according to operation information input to the operation unit 700 (recognition). , Characterized in that the operation is stopped.
  • control unit 600 is characterized in that to change the driving mode according to the operation information input to the operation unit 700.
  • a tracking target is detected from the sensed information, and the detected tracking target is tracked, so that the tracking target (user) does not have a separate device.
  • a depth camera a camera, an ultrasonic sensor, a vision sensor, a distance sensor, and the like, based on color, size, shape information, etc., it is possible to detect a tracking object in real time.
  • control unit includes an environmental recognition unit, a path planning unit, and a driving control unit, and thus has an effect capable of driving by planning an obstacle avoiding movement path based on environmental recognition including obstacles.
  • the sensor unit can continuously detect the following object by rotating the front toward the following object at a stopped point.
  • 1 to 2 is a conceptual diagram of an autonomous driving cart according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram embodying the control unit of FIG. 2.
  • FIG. 4 is a conceptual diagram of an autonomous driving cart according to another embodiment of the present invention.
  • 5 is an exemplary view showing a global coordinate system, a cart coordinate system, and an estimated user's location.
  • FIG. 6 is an exemplary view showing a cart coordinate system and a sensor unit coordinate system.
  • FIG. 7 is an exemplary view showing a sensor unit coordinate system and a target rotation angle.
  • FIG. 8 is a conceptual diagram of an autonomous driving cart according to another embodiment of the present invention.
  • control unit 600 control unit
  • FIG. 1 to 2 is a conceptual diagram of an autonomous driving cart according to an embodiment of the present invention
  • FIG. 3 is a conceptual diagram embodying the control unit of FIG. 2
  • FIG. 4 is a conceptual diagram of an autonomous driving cart according to another embodiment of the present invention
  • 5 is an exemplary view showing a global coordinate system, a cart coordinate system and an estimated user's location
  • FIG. 6 is an exemplary view showing a cart coordinate system and a sensor unit coordinate system
  • FIG. 7 is an example showing a sensor unit coordinate system and a target rotation angle 8 is a conceptual diagram of an autonomous driving cart according to another embodiment of the present invention.
  • the autonomous driving cart includes a storage unit 100, a driving unit 200, a sensor unit 300, a tracking target storage unit 400, and a tracking target It includes a recognition unit 500 and the control unit 600.
  • the storage unit 100 is used for storing objects to be moved, and is provided with a storage space for storing the goods.
  • the driving unit 200 is coupled to the storage unit 100 and is composed of a motor and wheels for driving.
  • the driving unit 200 is for moving the storage unit 100, it may be provided with a wheel coupled to the lower or side of the storage unit to move the storage unit 100.
  • the wheel refers to a round-shaped object mounted on the shaft for the purpose of rotation, but the shape of the wheel is not limited in the present invention, and various shapes such as a polygonal shape mounted on the shaft for rotation are applicable. .
  • the motor is configured to rotate the wheel, and the wheel may be directly rotated, but various structures may be applied if the wheel can be rotated, such as indirectly using a gear or the like. .
  • the sensor unit 300 acquires surrounding environment information (environmental recognition and movement recognition).
  • the sensor unit 300 is for sensing an obstacle and a follow-up object, and a sensor capable of acquiring distance information, a sensor capable of acquiring image information, and the like may be used.
  • the following object storage unit 400 stores information about the following object.
  • the following object storage unit 400 stores information necessary for recognition of the following object, and may acquire and store information necessary for recognition of the following object through the sensor unit 300.
  • the following object recognition unit 500 detects the following object based on the information sensed by the sensor unit 300 and the information about the following object stored in the following object storage unit 400.
  • the following object recognition unit 500 recognizes the following object by detecting information about the following object stored in the following object storage unit 400 among information sensed by the sensor unit 300.
  • the control unit 600 controls the driving unit 200 to track the following object detected by the following object recognition unit 500.
  • the control unit 600 controls the autonomous driving cart (hereinafter, the autonomous driving cart) according to an embodiment of the present invention to track the following object, but it is preferable to control to follow the collision object without colliding with it.
  • the autonomous driving cart hereinafter, the autonomous driving cart
  • the present invention is not limited to this, and various implementations are possible, as long as it does not collide with a following object such as a distance of 0.5 m to 2 m.
  • the sensor unit 300 of the autonomous driving cart is characterized by including one or a plurality of depth cameras, cameras, ultrasonic sensors, vision sensors, and distance sensors.
  • the depth camera, the ultrasonic sensor, and the distance sensor can acquire distance information to the object, the vision sensor can acquire information about an object and a scene, and the camera can acquire image information.
  • a sensor that can be used as the sensor unit 300 is given, but the present invention is not limited thereto, and various sensors can be obtained if information about other environments such as obstacles can be obtained and information necessary for recognition of a follow-up object can be obtained. Of course, it is possible to apply.
  • a depth camera capable of obtaining distance information and a camera capable of obtaining color image information can be installed and used, and the following object is stored in the following object storage unit 400
  • the sensor unit 300 may also be used to detect information about.
  • the sensor unit 300 may be used for the purpose of detecting information on the first following object and storing it in the following object storage unit 400, and thereafter, detecting the following object through the following object recognition unit 500 Can also be used for
  • the tracking object storage unit 400 of the autonomous driving cart is characterized in that it stores information on the tracking object based on a feature including any one or a plurality of color, size, and shape information. do.
  • the following object storage unit 400 stores information related to features that can distinguish the following object from other objects (objects, people, etc.).
  • available information includes color information such as color ratio and color distribution, size information such as area width and height, and shape information such as shape.
  • Size information and shape information can be acquired using a depth camera, and color information can be acquired using a color image camera.
  • the controller 600 of the autonomous driving cart may include an environment recognition unit 610, a route planning unit 620, and a driving control unit 630.
  • the environment recognition unit 610 recognizes an environment including an obstacle based on the acquired from the sensor unit 300.
  • the environment recognition unit 610 may recognize environments related to static obstacles and dynamic obstacles. That is, it is possible to distinguish each object and recognize whether each object is a static obstacle that does not move like a pillar or a dynamic obstacle that moves like a person.
  • the classification of static obstacles can be confirmed by comparing with previously input map information, and the classification of dynamic obstacles can be confirmed with information such as whether motion information has been detected.
  • the environment recognition unit 610 may recognize the environment by processing data obtained through the sensor unit 300. Processing data is to reduce the amount of computation.
  • the route planning unit 620 plans a moving route to follow the object detected by the user recognition unit 500 while avoiding obstacles recognized by the environment recognition unit 610.
  • Time state region' refers to a set of state values considered with respect to time.
  • The'status value' refers to a value including coordinates for position and orientation (heading angle, etc.) and any one or a plurality of information selected from steering angle, velocity (linear velocity, angular velocity) and acceleration. For example, (x coordinate, y coordinate, orientation, speed, acceleration), and the like.
  • Time coordination region' refers to a set of coordination values considered over time.
  • The'coordinate value' refers to a value including position and orientation (heading angle, etc.). For example, (x coordinate, y coordinate, orientation), and the like.
  • 'Waypoint' refers to the position designated to be passed by the robot when calculating the driving route of the robot.
  • the status value of the robot's current position is denoted by's k ',
  • the status value of the f step calculated from the current position of the robot in the forward path is indicated as's f ',
  • the robot's status value is indicated as'g w ',
  • step b The status value of step b calculated from the current target waypoint in the reverse path is denoted by's -b ',
  • the robot's status value is denoted by's' (lowercase s),
  • the status area which is a set of robot status values, is denoted by'S' (uppercase S),
  • the time status value which is the status value at time step n, is denoted as s n (lowercase s),
  • the time status area is denoted by'S n '(s n ⁇ S n ),
  • the coordinate region which is a set of coordinate values of the robot, is denoted by'Q' (uppercase Q),
  • the time coordination value which is the coordination value in time step n, is denoted by q n (lowercase q),
  • the time coordination region is denoted by'Q n '(q n ⁇ Q n ),
  • the coordinate region that collides with the static obstacle is' '
  • a state in which collision could not be avoided was referred to as an'inevitable conflict state'.
  • the route planning unit 620 calculates a forward route in a time state area considering a state value (s) and a time value (time index n) toward the current target waypoint at the current position of the robot or the last calculation point of the forward route.
  • the state value (s n ) in the time state domain used to plan the forward path includes coordinate values for position and orientation (heading angle), and any one of steering angle, speed (linear velocity, angular velocity), and acceleration, or Characterized in that it comprises a plurality of information,
  • Time coordination safety area which is a safe area on the coordination area that does not collide with static obstacles and dynamic obstacles Calculate the forward path based on the If the collision cannot be avoided because it does not exist, it is judged that an inevitable collision state will occur.
  • part of the forward path planning is canceled, and the forward path passing through the temporary target is planned to avoid collision.
  • the time value is a value that can check the future time progressing from the current time, but can be used only with a time index (n), but by multiplying the calculation cycle for calculating one step by a time index (n) (calculation cycle *
  • various methods can be used if the actual progress time can be checked, such as using a time index (n)).
  • the forward path calculation calculates a forward path in the time state area toward the current target waypoint from the current position of the first robot, and then, a forward path in the time state area toward the current target waypoint at the last calculation point of the forward route. To calculate.
  • the forward path is sequentially calculated, and if an inevitable collision state occurs during the calculation of the forward path, part of the planned (calculated) forward path plan is canceled, and a temporary goal is set to avoid the inevitable collision state. Re-plan the forward path through the temporary goal to avoid collisions.
  • the state value at the target point (s to ) and the number of steps to be calculated (m), at the point where the state value (s n ) is given It may be characterized in that the state value s n+m in the step to be progressed by the number of steps m to be calculated toward the target point s to may be obtained.
  • the forward path calculation can be defined as follows.
  • s n +m is the state value at n+m time
  • H is the cost minimization function
  • s is the given state value
  • s to is the state value at the target point
  • m is the number of steps to be calculated
  • the input u n of the robot can be obtained as follows.
  • the optimization method based on function decomposition decomposes the cost function (H) required for movement, and gives priority (r (r is a natural number)) to the decomposed cost function (H r ),
  • the state value (s n) is the target point from the given point to be calculated (s to It may be characterized in that the state value s n+m in the step to be progressed by the number of steps to be calculated toward) can be obtained.
  • the function decomposition-based optimization method decomposes the function into simple parts, and then minimizes the dominant part. Assume that H is composed of R parts as follows.
  • H r is arranged in a predominant order. That is, H r with small r is more prevalent.
  • Time State Safe Area Calculated by Unresolved Movement Cost Function Is the time state safety area Is the same as
  • the r value from which one state value is derived It is called Continue to minimize the decomposed moving cost function until is found.
  • the time state safety area available here is reduced to a single state as follows.
  • N is the approximate optimal time state value calculation function
  • s n is the given state value at n step
  • s to is state value at the target point
  • m is Number of steps to be calculated
  • H 1 is the speed reading independent moving cost function
  • H 2 is the angular-travel direction partial cost function
  • H 3 is the velocity magnitude partial moving cost function
  • the moving cost function H(s from , s to ) can be composed of three parts, and D is a predefined critical distance.
  • Each time state is determined based on the speed-independent moving cost function H 1 because each position of the reachable region is matched with an allowable velocity region 1:1.
  • the moving direction partial moving cost function H 2 and the velocity magnitude partial moving cost function H 3 are used to set the state of the current target waypoint.
  • each time setting is determined to be closest to the target.
  • H 2 and H 3 are designed to set the state of the current target waypoint.
  • the speed at the current target waypoint is determined by considering the position of the robot, the position of the target waypoint, and the position of the next waypoint.
  • the direction is determined by the average direction of the two vectors up to the position of the robot, the position of the target waypoint, and the position of the target waypoint and the position of the next waypoint.
  • the magnitude of the speed at the target waypoint is determined by the cabinet of the route at the target waypoint.
  • the magnitude of the speed of the current target waypoint is set in proportion to the distance so as not to vibrate near the waypoint.
  • the forward path calculation is a time zone safety zone, which is a safe zone on a coordinate zone that does not collide with static obstacles and dynamic obstacles. If present, the coordinate of the robot at time index (n) ( ) And time index (n) in the time coordinate safety zone It may be characterized by calculating the forward path based on.
  • the robot can predict the path of each dynamic obstacle, such as a person and another robot, based on a tracking algorithm using sensor data.
  • the free dynamic coordination region at time index n Is a safe area for robots that do not collide with obstacles including dynamic obstacles and static obstacles in time index n.
  • the motion of the robot system with the input value u n (u n ⁇ U) of the robot at the time index n in the input area U of the robot can be defined as follows.
  • the environmental detector uses a sensor such as a vision sensor or laser range finder (LRF) to detect and track obstacles based on the sensor system, and classifies them into static obstacles (environmental obstacles) and dynamic obstacles (non-environmental obstacles). And Can get a sensor such as a vision sensor or laser range finder (LRF) to detect and track obstacles based on the sensor system, and classifies them into static obstacles (environmental obstacles) and dynamic obstacles (non-environmental obstacles). And Can get a sensor such as a vision sensor or laser range finder (LRF) to detect and track obstacles based on the sensor system, and classifies them into static obstacles (environmental obstacles) and dynamic obstacles (non-environmental obstacles). And Can get
  • LRF laser range finder
  • a global route planner that plans a route by giving waypoints is a free static coordination area. Plan a series of waypoints and goals inside.
  • the robot passes through the waypoint sequentially, And You can use to plan your route to reach your goal without crashing.
  • an reachable time state area at the time index n + m may be defined, and at this time, an reachable time coordination area may also be defined.
  • the robot can be controlled with a uniform robot input for m time steps.
  • the reachable time state area accessible by the input value of the uniform robot can be defined as follows.
  • the reachable time coordination region approximated by the input value of the uniform robot can be defined as follows.
  • a safe time state safe area at time index n + m Can be defined as
  • the safe time coordination safe area at the time index n + m can be defined as
  • the driving control unit 630 controls the driving unit 200 according to the planned movement path from the path planning unit 620.
  • the control unit 600 of the autonomous driving cart may be characterized in that it controls the driving unit 200 to follow when the distance from the following object is greater than or equal to a certain distance, and to stop when the distance to the following object is less than or equal to a specific distance. .
  • the autonomous driving cart is stopped when a follow-up object (user) approaches to insert or remove an object from the storage unit 100.
  • the control unit 600 of the autonomous driving cart rotates at a stopped point when the distance to the following object is less than a specific distance, so that the direction the sensor unit 300 faces the following object
  • the driving unit 200 may be controlled.
  • the sensor unit 300 may be installed in front of the autonomous driving cart (storage unit 100), and may be installed toward a circumferential reference direction (straight direction) of the autonomous driving cart.
  • the direction in which the autonomous driving cart is directed is preferably controlled by the control unit 600 so that the sensor unit 300 can detect the following object.
  • the autonomous driving cart when the autonomous driving cart is stopped, the autonomous driving cart can be controlled to rotate only.
  • the present invention is not limited thereto, and the direction in which the autonomous driving cart faces while driving the autonomous driving cart It is more preferable to allow the sensor unit 300 to detect a follow-up object.
  • the sensor unit 300 of the autonomous driving cart includes a sensor rotating unit 310 for rotating the sensor unit 300,
  • control unit 600 rotates the sensor rotation unit 310 to adjust the direction in which the sensor unit 300 faces such that the following object exists within a certain range within the detection range of the sensor unit 300 Can be done with
  • the sensor rotation unit 310 is a configuration for rotating the sensor unit 300, an unexpected situation in which the following object does not exist within the detection range of the sensor unit 300 due to an operation restriction of the driving unit 200 It is to cope with.
  • the following detection object may exist within the sensing range of the sensor unit 300.
  • the control unit 600 controls the driving unit 200 such that the front of the autonomous driving cart faces the following object, and at the same time, the sensor rotation unit 310 It can be controlled so that it returns.
  • the direction in which the sensor unit 300 faces may be always directed toward the following object, and the front of the autonomous driving cart may be directed toward the following object more slowly.
  • the rotation of the sensor unit 300 by the sensor rotation unit 310 can be generated even while the autonomous driving cart is running.
  • the sensor unit 300 of the autonomous driving cart includes a sensor rotation unit 310 for rotating the sensor unit 300;
  • control unit 600 controls the driving unit 200 so that the direction toward which the sensor unit 300 faces the following object is rotated at a stopped point when the distance to the following object is less than or equal to a specific distance.
  • the sensor rotation unit 310 is rotated so that the direction in which the sensor unit 300 faces the following object. .
  • the sensor rotation unit 310 is a configuration for rotating the sensor unit 300, an unexpected situation in which the following object does not exist within the detection range of the sensor unit 300 due to an operation restriction of the driving unit 200 It is to cope with.
  • the following detection object may exist within the sensing range of the sensor unit 300.
  • the sensor rotating unit 310 may be rotated first to face the target, and then, the autonomous driving cart may be rotated by the driving unit 200.
  • the sensor rotation unit 310 is also entrusted to it.
  • the direction in which the autonomous driving cart faces and the direction in which the sensor unit 300 faces may be matched.
  • control unit 600 controls the driving unit 200 such that the front of the autonomous driving cart faces the following object, and at the same time, the sensor rotation unit 310 ) Can be controlled to be restored.
  • the direction in which the sensor unit 300 faces may be always directed toward the following object, and the front of the autonomous driving cart may be directed toward the following object more slowly.
  • the sensor unit 300 and the autonomous driving cart (storage unit 100) follow the following object, but the sensor unit 300 follows the following object first, and the autonomous driving cart (storage unit 100) ) Suitably follows the driving target of the autonomous driving cart (the environment of the driving unit 200).
  • the sensor unit 300 is also returned as the autonomous driving cart (storage unit 100) follows the tracking target.
  • the controller 600 whenever the posture of the autonomous driving cart or the estimated position of a tracking target (user) (hereinafter referred to as an object) is updated, the target player angle of the autonomous driving cart and the target rotation angle of the sensor unit 300 Calculate and control the bow angle of the autonomous driving cart (hereinafter referred to as a cart) and the rotation angle of the sensor unit 300 to be a target value.
  • the global coordinate system is a coordinate system that is a reference for the entire system.
  • Cart posture information Is given based on the corresponding coordinate system, and connects the cart coordinate system and the global coordinate system. Also the position of the object It can also be given based on the global coordinate system.
  • the cart coordinate system is a coordinate system determined such that the front of the cart is the x-axis direction, the left side is the y-axis direction, and the top is the z-axis direction based on the center of the cart.
  • Posture information of the sensor unit 300 Is given based on the corresponding coordinate system, and may connect the cart coordinate system and the sensor unit 300 coordinate system.
  • the coordinate system of the sensor unit 300 is based on the center of the axis of rotation of the sensor unit 300 as an origin, and a direction in which the angle of the axis becomes 0 radian in the x-axis and counterclockwise pi/2 radian (90 deg ) Is a coordinate system that is set such that the direction of y is the y-axis and the top is the z-axis.
  • Goal cart player angle The cart posture , Or user estimated location Whenever is newly updated, it is newly calculated.
  • Cart controller cart position Player angle Go Goal Cart Player Angle This can be controlled using the following equation.
  • Target sensor unit 300 rotation angle Silver cart posture Or user assumed location Whenever is newly updated, it is newly calculated. Since the rotation angle of the target sensor unit 300 is the rotation angle based on the coordinate system of the sensor unit 300, the user's estimated position Is calculated after conversion to the sensor unit 300 coordinate system.
  • the rotation angle controller of the sensor unit 300 is the rotation angle of the current sensor unit 300 A target sensor unit 300 rotation angle This can be controlled.
  • the user's estimated position in the global coordinate system The user's estimated position in the sensor unit 300 coordinate system Convert to Cart pose for coordinate system conversion And the mounting position of the sensor unit 300 Using the information, it can be calculated using the following equation.
  • the autonomous driving cart may include an operation unit 700 for receiving the user's operation information,
  • control unit 600 may be characterized in that it performs the following object information storage (recognition), tracking, and stop operation according to the operation information input to the operation unit 700.
  • the operation unit 700 is for allowing a user (following object) to operate the autonomous driving cart, and according to the operation information input to the operation unit 700, the following object information storage (recognition), following object tracking, operation
  • the control unit 600 may perform a task such as stopping.
  • An input device such as a button, joystick, or touch pad may be used as the manipulation unit 700.
  • the autonomous driving cart according to an embodiment of the present invention is not intended to be followed, and is intended to be used by anyone.
  • the storage (recognition) of information to identify the object to be followed must be preceded. For this, it is preferable that the operation unit is provided.
  • the user when the user wants to use the autonomous driving cart, when the user first inputs a command to store following information (recognition) using the manipulation unit 700, the user automatically performs tracking, or the manipulation unit 700 If you enter the tracking command using, you can automatically follow the tracking.
  • control unit 600 of the autonomous driving cart may be characterized in that the driving mode is changed according to the operation information input to the operation unit 700.
  • the driving mode may include autonomous driving, responsive manual driving, and non-responsive manual driving.
  • the autonomous driving is to follow a follow-up object without input of a separate movement-related command.
  • the responsive manual driving performs manual driving according to a driving movement command using an input device or the like of the manipulation unit 700, but automatically generates an obstacle so as not to collide with an obstacle based on the input information of the sensor unit 300 during manual driving. It is to drive while avoiding.
  • the non-reactive manual driving is to perform manual driving according to a driving movement command using an input unit or the like of the operation unit 700.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 자율주행 카트에 관한 것으로서, 더욱 상세하게는 추종대상에 대한 정보를 저장하고, 센서부에서 센싱된 정보로부터 추종대상을 검출하고, 검출된 추종대상을 추미하는 자율주행 카트를 제공하는 것이며, 사용자가 별도의 장치를 소지하지 않고도 추종대상의 추미가 가능함으로써, 사용자가 카트를 편리하게 이용할 수 있는 효과가 있다.

Description

자율주행 카트
본 발명은 자율주행 카트에 관한 것으로서, 더욱 상세하게는 추종대상에 대한 정보를 저장하고, 센싱된 정보로부터 추종대상을 검출하고, 검출된 추종대상을 추미하는 자율주행 카트에 관한 것이다.
쇼핑카트는 쇼핑할 때 이용하는 카트이다.
미국에서 처음 발명되었고 손잡이 바로 너머에는 어린 아이를 한 명 또는 두 명 앉힐 수 있는 의자가 있는 경우가 많다.
최근 상품 구매 행태가 대형 할인 매장을 위주로 이루어지고 있어서 대형 할인 매장들이 곳곳에 들어서고 있다. 쇼핑카트는 대형할인점 또는 쇼핑몰 등에서 소비자들이 구매를 위해 선택한 물품을 담아서 운반하기 위하여 주로 사용되고 있다.
한편 대형마트에서 제공하는 쇼핑카트는 많은 물품을 수용할 수 있는 적재부와, 적재부를 지지하는 프레임, 많은 물품이 적재되어 무거워진 쇼핑카트를 손쉽게 이동할 수 있도록 해주는 바퀴와 쇼핑카트를 제어가 가능하게 하는 손잡이를 포함한다.
그러나 물품을 많이 적재하여 무거워진 쇼핑카트를 제어하는데 많은 어려움을 느껴 다른 사람들과 부딪히거나 방향 전환에 어려움을 겪으며 또한 간혹 경사로에서 쇼핑카트가 굴러 내려가 안전사고를 불러일으키는 문제가 있다.
또한, 장애인이나 노약자 등 쇼핑카트를 끌고 쇼핑하기 어려운 사람들은 쇼핑을 하기 어려운 문제가 있다.
한국등록특허 [10-1709683]에서는 비접촉성 사용자 인터페이스를 통한 사용자 지향 자율주행 쇼핑카트 시스템, 그리고 자율주행 쇼핑카트 제어방법이 개시되어 있다.
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 추종대상에 대한 정보를 저장하고, 센싱된 정보로부터 추종대상을 검출하고, 검출된 추종대상을 추미도록 하여, 추종대상(사용자)이 별도의 장치를 소지하지 않고도 추종대상의 추미가 가능한 자율주행 카트를 제공하는 것이다.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 자율주행 카트는 물품을 보관하는 보관부(100); 상기 보관부(100)와 결합되며, 주행을 위한 모터 및 바퀴로 구성된 구동부(200); 주변 환경 정보를 획득하는 센서부(300); 추종대상에 대한 정보를 저장하는 추종대상저장부(400); 상기 센서부(300)에 의해 센싱된 정보 및 상기 추종대상저장부(400)에 저장된 추종대상에 대한 정보를 근거로, 추종대상을 검출하는 추종대상인식부(500); 및 상기 추종대상인식부(500)에 의해 검출된 추종대상을 추미하도록 상기 구동부(200)를 제어하는 제어부(600);를 포함하는 것을 특징으로 한다.
또한, 상기 센서부(300)는 뎁스카메라, 카메라, 초음파센, 비전센서 및 거리센서 중 어느 하나 또는 복수를 포함하는 것을 특징으로 한다.
또, 상기 추종대상저장부(400)는 색, 크기, 모양 정보 중 어느 하나 또는 복수를 포함하는 특징을 기반으로 상기 추종대상에 대한 정보를 저장하는 것을 특징으로 한다.
또한, 상기 제어부(600)는 상기 센서부(300)로부터 획득된 바탕으로 장애물을 포함한 환경을 인식하는 환경인식부(610); 상기 환경인식부(610)에서 인식된 장애물을 피해 상기 사용자인식부(500)에 의해 검출된 추종대상을 추미하도록 이동 경로를 계획하는 경로계획부(620); 및 상기 경로계획부(620)로부터 계획된 이동 경로에 따라 상기 구동부(200)를 제어하는 구동제어부(630);를 포함하는 것을 특징으로 한다.
또, 상기 제어부(600)는 추종대상과의 거리가 특정 거리 이상일 때는 따라다니고, 특정 거리 이하일 때는 정지하도록 상기 구동부(200)를 제어하는 것을 특징으로 한다.
또한, 상기 제어부(600)는 추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하는 것을 특징으로 한다.
또, 상기 센서부(300)는 상기 센서부(300)를 회전시키는 센서회전부(310);를 포함하고, 상기 제어부(600)는 상기 센서회전부(310)를 회전시켜 상기 센서부(300)의 감지범위 내 일정 범위 이내에 상기 추종대상이 존재하도록 상기 센서부(300)가 향하는 방향을 조정하는 것을 특징으로 한다.
또한, 상기 센서부(300)는 상기 센서부(300)를 회전시키는 센서회전부(310);를 포함하고, 상기 제어부(600)는 추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하되, 추종대상이 상기 센서부(300)가 감지할 수 있는 범위를 벗어날 것으로 예상되면 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 센서회전부(310)를 회전시키는 것을 특징으로 한다.
또, 상기 자율주행 카트는 사용자의 조작정보를 입력받는 조작부(700);를 포함하며, 상기 제어부(600)는 상기 조작부(700)에 입력된 조작정보에 따라 추종대상 정보 저장(인식), 추미, 운행 정지를 수행하는 것을 특징으로 한다.
아울러, 상기 제어부(600)는 상기 조작부(700)에 입력된 조작정보에 따라 주행모드를 변경하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 자율주행 카트에 의하면, 센싱된 정보로부터 추종대상을 검출하고, 검출된 추종대상을 추미도록 하여, 추종대상(사용자)가 별도의 장치를 소지하지 않고도 추종대상의 추미가 가능함으로써, 사용자의 편리한 이용이 가능한 효과가 있다.
또한, 뎁스카메라, 카메라, 초음파센, 비전센서, 거리센서 등을 이용하여, 색, 크기, 모양 정보 등을 기반으로 추종대상을 검출함으로써, 실시간으로 추종대상을 검출하는 것이 가능한 효과가 있다.
또한, 제어부에 환경인식부, 경로계획부 및 구동제어부가 포함됨으로써, 장애물을 포함한 환경인식 기반의 장애물 회피 이동경로를 계획하여 주행 가능한 효과가 있다.
또, 추종대상과 특정 거리 이하일 때는 정지하도록 함으로써, 사용자가 물건을 넣거나 빼기 용이한 효과가 있다.
또한, 추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 정면이 추종대상을 향하도록 회전함으로써, 센서부가 추종대상을 지속적으로 감지할 수 있는 효과가 있다.
또, 센서회전부를 구비함으로써, 추종대상의 갑작스런 움직임에도 센서부가 추종대상을 지속적으로 감지할 수 있는 효과가 있다.
또한, 조작부를 구비함으로써, 사용자가 원하는 다양한 조작이 가능한 효과가 있다.
아울러, 다양한 주행모드를 변경하여 사용할 수 있음으로써, 사용자의 목적에 맞도록 자율주행 카트를 주행시킬 수 있는 효과가 있다.
도 1 내지 도 2는 본 발명의 일 실시예에 따른 자율주행 카트의 개념도.
도 3은 도 2의 제어부를 구체화 시킨 개념도.
도 4는 본 발명의 다른 실시예에 따른 자율주행 카트의 개념도.
도 5는 전역 좌표계, 카트 좌표계 및 추정된 사용자의 위치를 보여주는 예시도.
도 6은 카트 좌표계 및 센서부 좌표계를 보여주는 예시도.
도 7은 센서부 좌표계 및 목표 회전각을 보여주는 예시도.
도 8은 본 발명의 또 다른 실시예에 따른 자율주행 카트의 개념도.
*도면의 주요부호에 대한 상세한 설명*
100: 보관부
200: 구동부
300: 센서부
310: 센서회전부
400: 추종대상저장부
500: 추종대상인식부
600: 제어부
610: 환경인식부 620: 경로계획부
630: 구동제어부
700: 조작부
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다.
도 1 내지 도 2는 본 발명의 일 실시예에 따른 자율주행 카트의 개념도이고, 도 3은 도 2의 제어부를 구체화 시킨 개념도이며, 도 4는 본 발명의 다른 실시예에 따른 자율주행 카트의 개념도이고, 도 5는 전역 좌표계, 카트 좌표계 및 추정된 사용자의 위치를 보여주는 예시도이며, 도 6은 카트 좌표계 및 센서부 좌표계를 보여주는 예시도이고, 도 7은 센서부 좌표계 및 목표 회전각을 보여주는 예시도이며, 도 8은 본 발명의 또 다른 실시예에 따른 자율주행 카트의 개념도이다.
도 1 내지 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트는 보관부(100), 구동부(200), 센서부(300), 추종대상저장부(400), 추종대상인식부(500) 및 제어부(600)를 포함한다.
보관부(100)는 물품이 보관된다.
상기 보관부(100)는 이동시킬 물건을 보관 하는 용도로 사용되며, 물품을 보관할 수용공간이 구비된다.
구동부(200)는 상기 보관부(100)와 결합되며, 주행을 위한 모터 및 바퀴로 구성된다.
상기 구동부(200)는 상기 보관부(100)를 이동시키기 위한 것으로, 상기 보관부의 하부 또는 측부 등에 결합되어 상기 보관부(100)를 이동시키는 바퀴가 구비될 수 있다.
바퀴는 회전을 목적으로 축에 장치한 둥근 테 모양의 물체를 말하는 것이나, 본 발명에서 바퀴의 형상을 한정한 것은 아니며, 회전을 목적으로 축에 장치한 다각형 모양 등 다양한 형상도 적용 가능함은 물론이다.
또한, 바퀴가 직접 바닥에 닿아 상기 보관부(100)를 이동시키도록 하는 것도 가능하나, 캐터필러나 궤도 등 다른 구성을 회전시켜 상기 보관부(100)를 이동시키도록 하는 것도 가능함은 물론이다.
아울러, 모터는 상기 바퀴를 회전시키기 위한 구성으로, 상기 바퀴를 직접 회전시킬 수도 있으나, 기어 등을 이용해 간접적으로 회전시킬 수도 있는 등 상기 바퀴를 회전시킬 수 있다면 다양한 구조를 적용할 수 있음은 물론이다.
센서부(300)는 주변 환경 정보를(환경 인식 및 이동 인식) 획득한다.
상기 센서부(300)는 장애물 및 추종대상을 센싱하기 위한 것으로, 거리 정보를 획득할 수 있는 센서, 영상정보를 획득할 수 있는 센서 등을 이용할 수 있다.
추종대상저장부(400)는 추종대상에 대한 정보를 저장한다.
상기 추종대상저장부(400)는 추종대상의 인식에 필요한 정보를 저장하는 것으로, 상기 센서부(300)를 통해 상기 추종대상의 인식에 필요한 정보를 획득하여 저장할 수 있다.
추종대상인식부(500)는 상기 센서부(300)에 의해 센싱된 정보 및 상기 추종대상저장부(400)에 저장된 추종대상에 대한 정보를 근거로(비교), 추종대상을 검출한다.
상기 추종대상인식부(500)는 상기 센서부(300)에 의해 센싱된 정보 중 상기 추종대상저장부(400)에 저장된 상기 추종대상에 대한 정보를 검출하여 추종대상을 인식한다.
제어부(600)는 상기 추종대상인식부(500)에 의해 검출된 추종대상을 추미하도록 상기 구동부(200)를 제어한다.
상기 제어부(600)는 본 발명의 일 실시예에 따른 자율주행 카트(이하 자율주행 카트)가 추종대상을 추미하도록 제어하되, 상기 추종대상과 충돌하지 않고 추미하도록 제어하는 것이 바람직하다.
이를 위해 일정거리를 유지하면서 추미하도록(따라다니도록) 제어하는 것이 바람직하다. 일 예로는 1m 거리를 유지하면서 추미하도록 할 수 있다.
상기에서 1m 거리를 유지하면서 추미하는 예를 들었으나, 본 발명이 이에 한정된 것은 아니며, 0.5m~2m 거리 등 추종대상과 충돌하지 않을 수 있다면 다양한 실시가 가능함은 물론이다.
본 발명의 일 실시예에 따른 자율주행 카트의 센서부(300)는 뎁스카메라, 카메라, 초음파센서, 비전센서 및 거리센서 중 어느 하나 또는 복수를 포함하는 것을 특징으로 한다.
뎁스카메라, 초음파센서, 거리센서는 대상과의 거리 정보를 획득할 수 있으며, 비전센서는 물체와 장면에 관한 정보를 획득할 수 있고, 카메라는 영상정보를 획득할 수 있다.
상기 센서부(300)로 사용 가능한 센서의 예를 들었으나, 본 발명이 이에 한정된 것은 아니며, 장애물 등 기타 환경에 대한 정보를 획득할 수 있으며 추종대상의 인식에 필요한 정보를 획득할 수 있다면 다양한 센서의 적용이 가능함은 물론이다.
예를 들어, 상기 센서부(300)에 사용되는 센서로 거리정보 획득이 가능한 뎁스카메라와 컬러영상정보 획득이 가능한 카메라를 설치하여 사용할 수 있으며, 상기 추종대상저장부(400)에 저장되는 추종대상에 대한 정보 검출에도 상기 센서부(300)를 사용할 수 있다.
즉, 상기 센서부(300)는 최초 추종대상에 대한 정보를 검출하여 상기 추종대상저장부(400)에 저장하는 용도로도 사용될 수 있고, 이후, 추종대상인식부(500)를 통한 추종대상 검출에도 사용될 수 있다.
본 발명의 일 실시예에 따른 자율주행 카트의 추종대상저장부(400)는 색, 크기, 모양 정보 중 어느 하나 또는 복수를 포함하는 특징을 기반으로 상기 추종대상에 대한 정보를 저장하는 것을 특징으로 한다.
상기 추종대상저장부(400)는 추종대상을 다른 사물(물건, 사람 등)과 구분 가능할 수 있는 특징과 관련된 정보가 저장되는 것이 바람직하다.
이는, 추종대상을 올바르게 인식할 수 있어야 추종대상을 올바르게 추미할 수 있기 때문이다.
그러나, 정확성을 올리기 위해 많은 정보를 저장하게 된다면 실시간으로 추종대상을 검출하기 어려운 문제가 있다.
따라서, 정확성은 올리되 빠른 정보 획득이 가능한 정보 위주로 추종대상에 대한 정보를 저장하는 것이 바람직하다.
이를 위해, 사용 가능한 정보가 색의 비율, 색의 분포 등과 같은 색 정보가 있으며, 면의 넓이, 키 등의 크기 정보가 있고, 형상과 같은 모양 정보가 있다.
크기 정보나 모양 정보는 뎁스카메라를 이용하여 획득이 가능하고, 색 정보는 컬러영상카메라를 이용하여 획득이 가능하다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트의 제어부(600)는 환경인식부(610), 경로계획부(620) 및 구동제어부(630)를 포함할 수 있다.
환경인식부(610)는 상기 센서부(300)로부터 획득된 바탕으로 장애물을 포함한 환경을 인식한다.
상기 환경인식부(610)는 정적장애물과 동적장애물에 관한 환경을 인식할 수 있다. 즉, 각각의 개체를 구분하고, 각각의 객체가 기둥 등과 같이 움직이지 않는 정적장애물인지 사람 등과 같이 움직이는 동적장애물인지 인식이 가능하다.
정적장애물의 구분에는 미리 입력된 지도정보 등과 비교하여 확인할 수 있고, 동적장애물의 구분에는 움직임에 관한 정보가 검출 되었는지 등의 정보로 확인할 수 있다.
이때, 상기 환경인식부(610)는 상기 센서부(300)를 통해 얻어진 데이터를 가공하여 환경을 인식할 수 있다. 데이터를 가공하는 것은 연산 량을 줄이기 위함이다.
경로계획부(620)는 상기 환경인식부(610)에서 인식된 장애물을 피해 상기 사용자인식부(500)에 의해 검출된 추종대상을 추미하도록 이동 경로를 계획한다.
상기 경로계획부(620)의 장애물을 피해 상기 추종대상을 추미하는 이동 경로를 계획하는 것에 대해 상세하게 설명하도록 한다.
설명에 앞서, 이하 사용되는 용어에 대해 간단히 설명하도록 한다.
'시간상태 영역'이란 시간에 대해 고려된 상태값의 집합을 말한다.
'상태값'이란 위치, 방위(헤딩각 등)에 대한 배위값을 포함하고 조향각, 속도(선속도, 각속도), 가속도 중 선택되는 어느 하나 또는 복수의 정보를 포함하는 값을 말한다. 예를 들면, (x 좌표, y좌표, 방위, 속도, 가속도) 등이 될 수 있다.
'시간배위 영역'이란 시간에 대해 고려된 배위값의 집합을 말한다.
'배위값'이란 위치, 방위(헤딩각 등)을 포함하는 값을 말한다. 예를 들면, (x 좌표, y좌표, 방위) 등이 될 수 있다.
'웨이포인트'란 로봇의 주행경로 계산 시 로봇이 경유하도록 지정된 위치를 말한다.
설명을 위해 다양한 변수 및 용어를 지정하여 설명하였으며, 그 변수 및 용어들은 아래와 같다.
로봇의 현재 위치의 상태값은 'sk'으로 표기하였고,
로봇의 현재 위치에서 순방향경로로 f 스텝 계산된 상태값은 'sf'으로 표기하였고,
현재 목표 웨이포인트에 로봇의 도착 시 로봇의 상태값은 'gw'로 표기하였고,
현재 목표 웨이포인트에서 역방향경로로 b 스텝 계산된 상태값은 's-b'으로 표기하였고,
몇 스텝에 해당되는 계산인지 표시하는 타임인덱스는 'n'으로 표기하였고,
한 스텝을 계산하는데 부여된 시간 주기는 'T'로 표기하였고,
타임인덱스 n에서의 시간은 't'(t = nT)로 표기하였고,
로봇의 상태값은 's'(소문자 s)로 표기하였고,
로봇의 상태값의 집합인 상태영역은 'S'(대문자 S)로 표기하였고,
타임스텝 n 에서의 상태값인 시간상태값을 sn(소문자 s)이라 표기하였고,
시간상태 영역은 'Sn'(sn ∈ Sn)으로 표기하였고,
로봇의 배위값은 'q'(소문자 q)로 표기하였고,
로봇의 배위값의 집합인 배위영역은 'Q'(대문자 Q)로 표기하였고,
타임스텝 n 에서의 배위값인 시간배위값을 qn(소문자 q)이라 표기하였고,
시간배위 영역은 'Qn'(qn ∈ Qn)으로 표기하였고,
정적 장애물과 충돌하는 배위영역은 '
Figure PCTKR2019016552-appb-I000001
'로 표기하였고,
정적 장애물과 충돌하지 않는 여유정적배위영역은
Figure PCTKR2019016552-appb-I000002
(
Figure PCTKR2019016552-appb-I000003
= Q -
Figure PCTKR2019016552-appb-I000004
)로 표기하였고,
타임인덱스 n에서 동적장애물과 충돌하는 배위영역은
Figure PCTKR2019016552-appb-I000005
으로 표기하였고,
정적 장애물 및 동적 장애물과 충돌하지 않는 여유동적배위영역은 '
Figure PCTKR2019016552-appb-I000006
'(
Figure PCTKR2019016552-appb-I000007
=
Figure PCTKR2019016552-appb-I000008
-
Figure PCTKR2019016552-appb-I000009
)으로 표기하였고,
충돌을 피할 수 없는 상태를 '필연적충돌상태'라 하였다.
기본적인 변수 및 용어를 정리하였으나, 설명에 필요한 모든 변수 및 용어를 정리한 것은 아니며, 상기에 정의된 변수 및 용어 이외에 새로이 등장되는 변수 및 용어들은 추후 설명하도록 한다.
상기 경로계획부(620)는 로봇의 현재 위치 또는 순방향경로의 마지막 계산 지점에서 현재 목표 웨이포인트를 향한, 상태값(s)과 시간값(타임인덱스 n)을 고려한 시간상태 영역에서의 순방향경로 계산을 하며,
순방향경로를 계획하는데 이용되는 시간상태 영역에서의 상태값 (sn)은 위치, 방위(헤딩각)에 대한 배위값을 포함하고 조향각, 속도(선속도, 각속도), 가속도 중 선택되는 어느 하나 또는 복수의 정보를 포함하는 것을 특징으로 하고,
정적장애물 및 동적장애물과 충돌하지 않는 배위영역 상의 안전한 영역인 시간배위안전영역
Figure PCTKR2019016552-appb-I000010
을 근거로 순방향경로를 계산하되, 시간배위안전영역
Figure PCTKR2019016552-appb-I000011
이 존재하지 않아 충돌을 피할 수 없는 경우 필연적충돌상태가 발생될 것으로 판단하며,
필연적충돌상태가 발생되면, 순방향경로 계획의 일부를 취소하고, 임시목표를 통과하는 순방향경로를 계획하여 충돌을 회피하는 것을 특징으로 한다.
여기서, 상기 시간값은 현재 시간부터 진행되는 앞으로의 시간을 확인할 수 있는 값으로, 타임인덱스(n) 만으로 사용할 수도 있지만, 한 스텝을 계산하는 계산주기에 타임인덱스(n)을 곱하여(계산주기 * 타임인덱스(n)) 사용할 수 있는 등 실제 진행 시간을 확인할 수 있다면 다양한 방법을 사용할 수 있음은 물론이다.
상기 순방향경로 계산은 최초 로봇의 현재 위치에서 현재 목표 웨이포인트를 향한 시간상태 영역에서의 순방향경로를 계산 하며, 이후, 순방향경로의 마지막 계산 지점에서 현재 목표 웨이포인트를 향한 시간상태 영역에서의 순방향경로 계산 한다.
즉, 순차적으로 순방향경로를 계산하며, 순방향경로의 계산 중 필연적충돌상태가 발생되면 그동안 계획(계산)된 순방향경로 계획의 일부를 취소하고, 필연적충돌상태를 피할 수 있는 임시목표를 설정한 뒤 상기 임시목표를 통과하는 순방향경로를 재 계획하여 충돌을 회피 한다.
이때, 필연적충돌상태는 발생여부는 시간배위안전영역
Figure PCTKR2019016552-appb-I000012
이 존재하지 않는 것으로 확인할 수 있다.
상기 순방향경로 계산은
이동에 필요한 비용 함수(H)를 분해하고, 분해된 비용 함수(Hr)에 우선순위 (r(r은 자연수))를 부여하며,
미리 정해진 기준에 따라(r* 값을 설정하거나 계산에 의해 정할 수 있음) 상기 분해된 비용 함수(Hr)를 합한 값이 최소가 되도록 경로를 계산하는 근사 최적 상태 시간 함수(N)를 적용하여,
n(n은 자연수) 스텝에서의 주어진 상태값(sn), 목표지점에서의 상태 값(sto) 및 계산하고자 하는 스텝 수(m)를 근거로, 상태값(sn)이 주어진 지점에서 목표지점(sto)을 향해 계산하고자 하는 스텝 수(m) 만큼 진행될 스텝에서의 상태값(sn+m)을 구하는 것을 특징으로 할 수 있다.
주어진 상태값 sn을 가진 상태값 sn + m을 계획 할 때, 상태값 sn +m에서 목표 상태값 sto에 해당되는 지점으로 이동하기 위한 이동비용을 최소화하려고 노력한다.
즉, 순방향경로 계산은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000013
(여기서, sn +m은 n+m 시간에서의 상태값, H는 비용 최소화 함수, s는 주어진 상태 값, sto는 목표지점에서의 상태 값, m은 계산하고자 하는 스텝 수)
비용 최소화 함수 H를 사용하게 되면, 계산에 소요되는 시간이 많아 실시간 경로계산에 적용이 어려운 문제가 있다.
로봇의 입력값 un은 다음과 같이 얻을 수 있다.
Figure PCTKR2019016552-appb-I000014
여기서
Figure PCTKR2019016552-appb-I000015
Figure PCTKR2019016552-appb-I000016
은 최소 노력에 대한 입력에 대한 주어진 이동비용 함수이다.
사용 가능한 로봇의 입력영역으로 제한되는 동적안전상태 내부에 sn +m을 계획하므로 사용 가능한 입력이 항상 존재한다.
이동 비용을 최소화 시키는 이동비용 함수가 너무 복잡하여 실시간으로 경로를 계산할 수 없는 경우, 함수 분해 기반 최적화 방법을 사용할 수 있다.
함수 분해 기반 최적화 방법은 이동에 필요한 비용 함수(H)를 분해하고, 분해된 비용 함수(Hr)에 우선순위 (r(r은 자연수))를 부여하며,
우선순위에 따라(r* 값을 설정하거나 계산에 의해 정할 수 있음) 상기 분해된 비용 함수(Hr)를 순차적으로 적용하여, 상기 분해된 비용 함수(Hr) 각각의 값이 최소가 되도록 경로를 계산하는 근사 최적 상태 시간 함수(N)를 적용하여,
n 스텝에서의 주어진 상태값(sn), 목표지점에서의 상태 값(sto) 및 계산하고자 하는 스텝 수(m)를 근거로, 상태값(sn)이 주어진 지점에서 목표지점(sto)을 향해 계산하고자 하는 스텝 수 만큼 진행될 스텝에서의 상태값(sn+m)을 구하는 것을 특징으로 할 수 있다.
함수 분해 기반 최적화 방법은 함수를 단순한 부분으로 분해 한 다음 우선 지배적인 부분을 최소화한다. H가 다음과 같이 R 부분으로 구성된다고 가정한다.
Figure PCTKR2019016552-appb-I000017
여기서 Hr은 우세한 순서로 배열된다. 즉, r이 작은 Hr이 더 우세하다. H1에서 HR까지 하나씩 순차적으로 최소화 할 때 사용 가능한 안전 영역은 더 작아지며, 결국 하나의 상태값이 도출될 때 까지 r 값을 증가시키면서 분해된 비용 함수(Hr)를 최소화 시킨다.
H1에서 Hr까지의 r 부분을 최소화하는 시간상태안전영역
Figure PCTKR2019016552-appb-I000018
을 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000019
분해되지 않은 이동비용함수로 계산되는 시간상태안전영역
Figure PCTKR2019016552-appb-I000020
은 시간상태안전영역
Figure PCTKR2019016552-appb-I000021
과 동일하다.
하나의 상태값이 도출되는 r 값을
Figure PCTKR2019016552-appb-I000022
이라 하며,
Figure PCTKR2019016552-appb-I000023
을 찾을 때까지 분해된 이동비용함수를 계속 최소화 시킨다. 여기서 사용 가능한 시간상태안전영역은 다음과 같이 단일 상태로 축소된다.
Figure PCTKR2019016552-appb-I000024
여기서,
Figure PCTKR2019016552-appb-I000025
함수 분해 기반 최소화로부터 얻은 시간상태값이 H를 최소화하지 않을지라도 함수의 지배적 인 부분을 최소화하기 때문에 결과는 최소에 가깝다.
또한, 실시간으로 실행이 가능하며, 계산이 효율적이다.
따라서, 근사 최적 상태 시간 함수(N)를 적용하면 다음과 같이
Figure PCTKR2019016552-appb-I000026
(여기서, sn +m은 n+m 스텝에서의 상태값, N은 근사 최적 시간상태값 계산 함수, sn은 n 스텝에서의 주어진 상태 값, sto는 목표지점에서의 상태 값, m은 계산하고자 하는 스텝 수)
으로 순방향경로 계산을 할 수 있다.
전방향 이동이 가능한 로봇의 예를 들면,
상기 근사 최적 상태 시간 함수(N)는 다음식
Figure PCTKR2019016552-appb-I000027
(여기서, H1는 속독 독립적인 이동 비용 함수, H2는 각도-이동 방향 부분 비용 함수, H3는 속도 크기 부분 이동 비용 함수)
을 이용하여 계산할 수 있다.
로봇이 목표물 쪽으로 빠르게 움직이도록 유도하고 목표 지점을 효과적으로 통과하기 위해, 이동 비용 함수 H(sfrom, sto)는 세 부분으로 구성될 수 있되며, D는 사전 정의 된 임계 거리이다.
도달 가능한 영역의 각 위치는 허용 가능한 속도 영역과 1 : 1로 매칭 되기 때문에 각 시간 상태는 속도 독립적인 이동 비용 함수 H1을 기반으로 결정된다.
이동 방향 부분 이동 비용 함수 H2 및 속도 크기 부분 이동 비용 함수 H3는 현재 목표 웨이포인트의 상태를 설정하는 데 사용된다.
H1에 기초하여, 각 시간 설정은 목표에 가장 가까운 것으로 결정된다.
H2와 H3은 현재 목표 웨이포인트의 상태를 설정하기 위해 설계되었다.
현재 목표 웨이포인트에서의 속도는 로봇의 위치, 목표 웨이포인트의 위치 및 그 다음의 웨이포인트의 위치를 고려하여 결정된다.
방향은 로봇의 위치, 목표 웨이포인트의 위치까지 그리고 목표 웨이포인트의 위치 및 그 다음의 웨이포인트의 위치까지의 두 벡터의 평균 방향으로 결정된다.
또한 목표 웨이포인트에서 속도의 크기는 목표 웨이포인트에서 경로의 내각에 따라 결정된다.
각도가 클수록 속도가 빨라지거나 그 반대로 된다.
로봇의 위치와 목표 웨이포인트 사이 또는 목표 웨이포인트와 그 다음의 웨이포인트 사이의 유클리드 거리가 D보다 작으면, 현재 목표 웨이포인트의 속도의 크기는 웨이포인트 근처에서 진동하지 않도록 거리에 비례하여 설정된다.
상기 순방향경로 계산은 정적장애물 및 동적장애물과 충돌하지 않는 배위영역 상의 안전한 영역인 시간배위안전영역
Figure PCTKR2019016552-appb-I000028
이 존재하면, 타임인덱스(n) 에서 로봇의 배위값(
Figure PCTKR2019016552-appb-I000029
)과 타임인덱스(n) 에서 시간배위안전영역
Figure PCTKR2019016552-appb-I000030
을 근거로 순방향경로를 계산하는 것을 특징으로 할 수 있다.
벽과 같은 정적 환경 장애물과 충돌하는 배위값들의 집합을
Figure PCTKR2019016552-appb-I000031
이라 하고 '환경장애물영역'(
Figure PCTKR2019016552-appb-I000032
⊂ Q)이라 하면, 배위영역 Q에서 환경장애물영역
Figure PCTKR2019016552-appb-I000033
을 뺀 차집합을 '여유정적배위영역'
Figure PCTKR2019016552-appb-I000034
이라 할 수 있다.
로봇은 센서 데이터를 이용한 추적 알고리즘을 기반으로 사람과 다른 로봇과 같은 각각의 동적 장애물의 경로를 예측할 수 있다.
따라서, 시간 인덱스 n에서 사람과 같은 동적 장애물과 충돌이 예상되는 배위값들의 집합을
Figure PCTKR2019016552-appb-I000035
이라 하고 '동적장애물영역'(
Figure PCTKR2019016552-appb-I000036
⊂ Q)이라 하면, 여유정적배위영역
Figure PCTKR2019016552-appb-I000037
에서 동적장애물영역
Figure PCTKR2019016552-appb-I000038
을 뺀 차집합을 '여유동적배위영역'
Figure PCTKR2019016552-appb-I000039
이라 할 수 있다.
즉, 타임인덱스 n 에서의 여유동적배위영역
Figure PCTKR2019016552-appb-I000040
은 타임인덱스 n에서 동적장애물 및 정적장애물을 포함하는 장애물과 충돌하지 않는 로봇을 위한 안전한 영역이라 할 수 있다.
로봇의 입력영역 U에서 타임인덱스 n 에서의 로봇의 입력값 un(un ∈ U)를 갖는 로봇 시스템의 운동은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000041
(여기서, f는 로봇의 운동 모델 함수)
로봇의 상태영역 S와 로봇의 입력영역 U는 경계가 정해져 있기 때문에 로봇 동작은 구속되어 있으며 이를 동작 구속 이라고 한다.
환경 검출기(센서)는 비전 센서 또는 레이저 거리 측정기(LRF) 등 같은 센서를 사용하여 센서 시스템을 기반으로 장애물을 탐지하고 추적하며 정적 장애물(환경 장애물) 및 동적 장애물(비 환경 장애물)로 분류하여
Figure PCTKR2019016552-appb-I000042
Figure PCTKR2019016552-appb-I000043
을 얻을 수 있다.
웨이포인트를 부여하여 경로를 계획하는 글로벌 경로 플래너는 여유정적배위영역은
Figure PCTKR2019016552-appb-I000044
내부에 일련의 웨이포인트와 목표를 계획한다.
매 순간 t = kT, k = 0, 1,.. . 알고리즘은 참조 입력 k를 사용하여 경로를 계획한다.
이 입력을 통해 로봇은 웨이포인트를 순차적으로 통과하고
Figure PCTKR2019016552-appb-I000045
Figure PCTKR2019016552-appb-I000046
을 사용하여 충돌 없이 목표에 도달하는 경로를 계획할 수 있다.
시간상태값 sn이 주어질 때, 타임인덱스 n + m에서의 도달 가능한 시간상태 영역을 정의할 수 있으며, 이때, 도달 가능한 시간배위 영역 역시 정의할 수 있다.
실시간 경로 계획을 위해, 도달 할 수 있는 시간상태 영역 또는 시간배위 영역을 근사화 하여 계산량을 줄이는 것이 바람직하다.
도달 할 수 있는 시간상태 영역 또는 시간배위 영역을 정확하게 계산하여 사용하는 것은 실시간 계산이 어려울 수 있기 때문이다.
도달 가능한 영역을 단순화하기 위해, m 개의 타임스텝에 대해 균일 한 로봇의 입력값으로 로봇을 제어할 수 있다.
균일 한 로봇의 입력값에 의해 접근 가능한 도달 가능한 시간상태 영역은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000047
(여기서, g는 근사화 시킨 로봇의 운동 모델 함수)
이때, 균일 한 로봇의 입력값에 의해 근사화 된 도달 가능한 시간배위 영역은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000048
Figure PCTKR2019016552-appb-I000049
Figure PCTKR2019016552-appb-I000050
은 실제 도달 가능 영역 전체를 커버하지 않지만, 실제 도달 가능 영역 전체를 계산하는 것에 비해 계산 부하가 매우 작기 때문에 실시간 경로 계획에 유용하다.
상태값 sn이 주어지면, 시간 인덱스 n + m에서 안전한 시간상태안전영역
Figure PCTKR2019016552-appb-I000051
은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000052
또한, 상태값 sn이 주어지면, 시간 인덱스 n + m에서 안전한 시간배위안전영역
Figure PCTKR2019016552-appb-I000053
은 다음과 같이 정의할 수 있다.
Figure PCTKR2019016552-appb-I000054
Figure PCTKR2019016552-appb-I000055
Figure PCTKR2019016552-appb-I000056
내에서 계획되지만
Figure PCTKR2019016552-appb-I000057
은 예상 충돌을 확인하고 사용 가능한 안전 영역이 있는지 확인하는 것으로 충분하다.
현재 목표 웨이포인트에서 역방향경로의 상기 시간배위안전영역
Figure PCTKR2019016552-appb-I000058
계산 시,
Figure PCTKR2019016552-appb-I000059
Figure PCTKR2019016552-appb-I000060
로 대체된다.
이는,
Figure PCTKR2019016552-appb-I000061
에 대한 실제 시간을 알 수 없기 때문에 동적 장애물의 데이터를 확인할 수 없기 때문이다.
구동제어부(630)는 상기 경로계획부(620)로부터 계획된 이동 경로에 따라 상기 구동부(200)를 제어한다.
본 발명의 일 실시예에 따른 자율주행 카트의 제어부(600)는 추종대상과의 거리가 특정 거리 이상일 때는 따라다니고, 특정 거리 이하일 때는 정지하도록 상기 구동부(200)를 제어하는 것을 특징으로 할 수 있다.
즉, 추종대상이 가까이 다가올 때 멈추도록 하여 추종대상(사용자)이 물건을 넣거나 빼기 용이하도록 할 수 있다.
예를 들어, 1m 거리를 유지하면서 추미하되, 1m 이내의 거리가 되면 멈추도록 할 수 있다.
즉, 추종대상(사용자)이 물건을 상기 보관부(100)에 넣거나 빼기 위해 다가 올 때는 상기 자율주행 카트가 멈춰있도록 하는 것이 바람직하다.
본 발명의 일 실시예에 따른 자율주행 카트의 제어부(600)는 추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하는 것을 특징으로 할 수 있다.
상기 센서부(300)는 상기 자율주행 카트(보관부(100))의 정면에 설치될 수 있으며, 상기 자율주행 카트의 주향 기준 방향(직진 방향)을 향하여 설치될 수 있다.
이때, 자율주행 카트가 향하는 방향은 상기 센서부(300)가 추종대상을 감지할 수 있도록 상기 제어부(600)가 제어하는 것이 바람직하다.
즉, 상기 자율주행 카트가 멈춘 상태에서는 상기 자율주행 카트는 회전만 되도록 제어할 수 있다.
상기에서 상기 자율주행 카트가 향하는 방향을 회전시키는 조건으로 상기 자율주행 카트가 멈추었을 때의 예를 들었으나, 본 발명이 이에 한정된 것은 아니며, 상기 자율주행 카트의 주행 중에도 상기 자율주행 카트가 향하는 방향이 상기 센서부(300)가 추종대상을 감지할 수 있도록 하는 것이 더욱 바람직하다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트의 센서부(300)는 상기 센서부(300)를 회전시키는 센서회전부(310)를 포함하고,
이때, 상기 제어부(600)는 상기 센서회전부(310)를 회전시켜 상기 센서부(300)의 감지범위 내 일정 범위 이내에 상기 추종대상이 존재하도록 상기 센서부(300)가 향하는 방향을 조정하는 것을 특징으로 할 수 있다.
상기 센서회전부(310)는 상기 센서부(300)를 회전시키기 위한 구성으로, 상기 구동부(200)의 동작 제한으로 인해 상기 센서부(300)의 감지범위 내에 상기 추종대상이 존재하지 않게 되는 돌발상황에 대처하기 위한 것이다.
즉, 상기 추종대상의 급작스런 움직임 등에도, 상기 센서회전부(310)의 회전에 의해, 상기 센서부(300)의 감지범위 내에 상기 추종대상이 존재하도록 할 수 있다.
이때, 상기 센서회전부(310)의 회전이 발생되면, 상기 제어부(600)는 상기 자율주행 카트의 정면이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하며, 이와 동시에 상기 센서회전부(310)가 원복되도록 제어할 수 있다.
즉, 상기 센서부(300)가 향하는 방향은 항시 상기 추종대상을 향하도록 하면서, 상기 자율주행 카트의 정면이 보다 천천히 상기 추종대상을 향하도록 할 수 있다.
이는, 상기 구동부(200)의 동작 제한으로 상기 추종대상을 상기 센서부(300)가 놓치는 상황을 방지함과 동시에 상기 구동부(200)에 보다 무리가 가지 않도록 부드러운 제어가 가능하도록 한다.
이러한 상기 센서회전부(310)에 의한 상기 센서부(300)의 회전은 상기 자율주행 카트의 주행 중에도 발생되는 것이 가능함은 물론이다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트의 센서부(300)는 상기 센서부(300)를 회전시키는 센서회전부(310);를 포함하고,
이때, 상기 제어부(600)는 추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하되, 추종대상이 상기 센서부(300)가 감지할 수 있는 범위를 벗어날 것으로 예상되면 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 센서회전부(310)를 회전시키는 것을 특징으로 할 수 있다.
상기 센서회전부(310)는 상기 센서부(300)를 회전시키기 위한 구성으로, 상기 구동부(200)의 동작 제한으로 인해 상기 센서부(300)의 감지범위 내에 상기 추종대상이 존재하지 않게 되는 돌발상황에 대처하기 위한 것이다.
즉, 상기 추종대상의 급작스런 움직임 등에도, 상기 센서회전부(310)의 회전에 의해, 상기 센서부(300)의 감지범위 내에 상기 추종대상이 존재하도록 할 수 있다.
이러한 상황은 상기 자율주행 카트가 정지된 상태에서 발생될 가능성이 높으며, 추종대상이 상기 센서부(300)가 감지할 수 있는 범위를 벗어날 것으로 예상되면 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 센서회전부(310)를 먼저 회전시키고, 이후, 구동부(200)에 의해 상기 자율주행 카트가 회전하도록 할 수 있다.
상기 센서회전부(310)의 회전 이후에 상기 추종대상이 멈춰있다는 가정하에 보다 상세하게 설명하면, 상기 구동부(200)에 의해 상기 자율주행 카트가 회전됨에 따라, 그에 맡추어 상기 센서회전부(310)도 역회전(원복) 하도록 하여, 최종적으로는 상기 자율주행 카트가 향하는 방향과 상기 센서부(300)가 향하는 방향을 일치시킬 수 있다.
다시 말해, 상기 센서회전부(310)의 회전이 발생되면, 상기 제어부(600)는 상기 자율주행 카트의 정면이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하며, 이와 동시에 상기 센서회전부(310)가 원복되도록 제어할 수 있다.
즉, 상기 센서부(300)가 향하는 방향은 항시 상기 추종대상을 향하도록 하면서, 상기 자율주행 카트의 정면이 보다 천천히 상기 추종대상을 향하도록 할 수 있다.
다시 말해, 센서부(300)와 상기 자율주행 카트(보관부(100))가 추종대상을 따라가지만, 센서부(300)는 추종대상을 먼저 따라가고, 상기 자율주행 카트(보관부(100))는 추종대상을 상기 자율주행 카트의 구동환경(구동부(200)의 환경)에 적합하게 따라간다.
즉, 센서부(300)가 추종대상을 따라간 이후, 상기 자율주행 카트(보관부(100))가 추종대상을 따라오는 것에 맞추어 상기 센서부(300)도 복귀된다.
이는, 상기 구동부(200)의 동작 제한으로 상기 추종대상을 상기 센서부(300)가 놓치는 상황을 방지함과 동시에 상기 구동부(200)에 보다 무리가 가지 않도록 부드러운 제어가 가능하도록 한다.
상기 센서회전부(310)에 의하여 회전이 가능한 센서부(300)와 상기 자율주행 카트의 몸체(보관부(100))가 제어되는 과정에 대하여 전역좌표계를 예로 보다 구체적으로 설명하도록 한다.
상기 제어부(600)는 상기 자율주행 카트의 자세 또는 추종대상(사용자)(이하 물체라 함)의 추정 위치가 갱신될 때마다 상기 자율주행 카트의 목표 선수각과 상기 센서부(300)의 목표 회전각을 계산하고, 상기 자율주행 카트(이하 카트라 함)의 선수각과 센서부(300)의 회전각이 목표값이 되도록 제어한다.
도 5를 참조하여 설명하면, 전역 좌표계는 시스템 전체의 기준이 되는 좌표계이다. 카트의 자세 정보
Figure PCTKR2019016552-appb-I000062
는 해당 좌표계를 기준으로 주어지며, 카트 좌표계과 전역 좌표계를 연결시킨다. 또한 물체의 위치
Figure PCTKR2019016552-appb-I000063
도 전역좌표계를 기준으로 주어질 수 있다.
도 6을 참조하여 설명하면, 카트 좌표계는 카트의 중심을 기준으로 카트의 정면을 x축 방향, 왼편을 y축 방향, 상단이 z축 방향이 되도록 정해진 좌표계이다. 센서부(300)의 자세 정보
Figure PCTKR2019016552-appb-I000064
는 해당 좌표계를 기준으로 주어지며, 카트 좌표계와 센서부(300) 좌표계를 연결시킬 수 있다.
도 7을 참조하여 설명하면, 센서부(300) 좌표계는 센서부(300)의 회전 축 중심을 원점으로 축의 각도가 0 radian이 되는 방향을 x축, 반시계 방향으로 pi/2 radian(90 deg)이 되는 방향이 y축, 상단이 z축이 되도록 정해진 좌표계이다. 해당 좌표계에서 물체의 위치는
Figure PCTKR2019016552-appb-I000065
로 표시되며, 목표 센서부(300) 회전각
Figure PCTKR2019016552-appb-I000066
가 계산할 수 있다.
목표 카트 선수각
Figure PCTKR2019016552-appb-I000067
는 카트 자세
Figure PCTKR2019016552-appb-I000068
, 또는 사용자 추정 위치
Figure PCTKR2019016552-appb-I000069
가 새롭게 갱신될 때 마다 새롭게 계산된다. 카트 제어기는 카트 자세
Figure PCTKR2019016552-appb-I000070
의 선수각
Figure PCTKR2019016552-appb-I000071
가 목표 카트 선수각
Figure PCTKR2019016552-appb-I000072
이 되도록 다음 식을 이용하여 제어할 수 있다.
Figure PCTKR2019016552-appb-I000073
목표 센서부(300) 회전각
Figure PCTKR2019016552-appb-I000074
은 카트 자세
Figure PCTKR2019016552-appb-I000075
또는 사용자 추정 위치
Figure PCTKR2019016552-appb-I000076
가 새롭게 갱신될 때 마다 새롭게 계산된다. 목표 센서부(300) 회전각은 센서부(300) 좌표계 기준의 회전각이므로, 사용자 추정 위치
Figure PCTKR2019016552-appb-I000077
를 센서부(300) 좌표계로 변환 후에 계산된다. 센서부(300) 회전각 제어기는 현재 센서부(300)의 회전각
Figure PCTKR2019016552-appb-I000078
가 목표 센서부(300) 회전각
Figure PCTKR2019016552-appb-I000079
이 되도록 제어할 수 있다.
먼저 전역 좌표계의 사용자 추정 위치
Figure PCTKR2019016552-appb-I000080
를 센서부(300) 좌표계에서의 사용자 추정 위치
Figure PCTKR2019016552-appb-I000081
로변환한다. 좌표계 변환을 위해서 카트 자세
Figure PCTKR2019016552-appb-I000082
와 센서부(300)의 탑재 자세
Figure PCTKR2019016552-appb-I000083
정보를 이용하여 다음식을 이용하여 계산할 수 있다.
Figure PCTKR2019016552-appb-I000084
계산된 센서부(300) 좌표계의 사용자 추정 위치
Figure PCTKR2019016552-appb-I000085
로부터 목표 센서부(300) 회전각
Figure PCTKR2019016552-appb-I000086
을 다음식을 이용하여 계산할 수 있다.
Figure PCTKR2019016552-appb-I000087
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트는 사용자의 조작정보를 입력받는 조작부(700)를 포함할 수 있으며,
이때, 상기 제어부(600)는 상기 조작부(700)에 입력된 조작정보에 따라 추종대상 정보 저장(인식), 추미, 운행 정지를 수행하는 것을 특징으로 할 수 있다.
상기 조작부(700)는 사용자(추종대상)가 상기 자율주행 카트를 조작할 수 있도록 하기 위한 것으로, 상기 조작부(700)에 입력된 조작정보에 따라 추종대상 정보 저장(인식), 추종대상 추미, 운행 정지 등의 임무를 상기 제어부(600)가 수행하도록 할 수 있다.
상기 조작부(700)로는 버튼, 조이스틱, 터치패드 등의 입력기를 이용할 수 있다.
본 발명의 일 실시예에 따른 자율주행 카트는 추종대상이 정해진 것이 아니고 누구나 사용할 수 있도록 하기 위한 것으로, 추종대상(사용자)이 별도의 장치를 소지하지 않고도 추종대상(사용자)을 추미하도록 하기 위해, 추종대상을 확인할 수 있는 정보 저장(인식)이 선행되어야 한다. 이를 위해 상기 조작부가 구비되는 것이 바람직하다.
예를 들어, 상기 자율주행 카트를 이용하고자 할 때, 사용자가 먼저 상기 조작부(700)를 이용하여 추종대상 정보 저장(인식) 명령을 입력 하면, 이후 자동으로 추미를 하게 하거나, 상기 조작부(700)를 이용하여 추미 명령을 입력 하면, 이후 자동으로 추미를 하게 할 수 있다.
또한, 추종대상(사용자)을 추미 중 잠시 상기 자율주행 카트를 세워두고 싶을 때는, 상기 조작부(700)를 이용하여 정지 명령을 입력 하면, 이후 추미를 멈추고 제자리에 대기하게 할 수 있다. 이후, 다시 상기 조작부(700)를 이용하여 추미 명령을 입력 하면, 이후 자동으로 추미를 하게 할 수 있다.
또, 사용자가 상기 자율주행 카트의 이용이 끝났으면 다른 사용자를 위해, 상기 조작부(700)를 이용하여 운행 정지 명령을 입력 하면, 이후 다른 사용자의 추종대상 정보 저장(인식) 명령 입력 전 까지 운행을 정지하고 대시할 수 있다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자율주행 카트의 제어부(600)는 상기 조작부(700)에 입력된 조작정보에 따라 주행모드를 변경하는 것을 특징으로 할 수 있다.
상기 주행모드는 자율 주행, 반응형 수동 주행, 비반응형 수동 주행 등을 포함할 수 있다.
상기 자율 주행은 별도의 이동 관련 명령 입력 없이 추종대상을 추미하는 것이다.
상기 반응형 수동 주행은 상기 조작부(700)의 입력기 등을 이용한 주행 이동 명령에 따라 수동 주행을 실시하나 수동 주행 중에도 상기 센서부(300)의 입력된 정보를 기반으로 장애물과 충돌하지 않도록 장애물을 자동으로 회피하면서 주행하는 것이다.
상기 비반응형 수동주행은 조작부(700)의 입력기 등을 이용한 주행 이동 명령에 따라 수동 주행을 실시하는 것이다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.

Claims (10)

  1. 물품을 보관하는 보관부(100);
    상기 보관부(100)와 결합되며, 주행을 위한 모터 및 바퀴로 구성된 구동부(200);
    주변 환경 정보를 획득하는 센서부(300);
    추종대상에 대한 정보를 저장하는 추종대상저장부(400);
    상기 센서부(300)에 의해 센싱된 정보 및 상기 추종대상저장부(400)에 저장된 추종대상에 대한 정보를 근거로, 추종대상을 검출하는 추종대상인식부(500); 및
    상기 추종대상인식부(500)에 의해 검출된 추종대상을 추미하도록 상기 구동부(200)를 제어하는 제어부(600);
    를 포함하는 자율주행 카트.
  2. 제1항에 있어서,
    상기 센서부(300)는
    뎁스카메라, 카메라, 초음파센, 비전센서 및 거리센서 중 어느 하나 또는 복수를 포함하는 것을 특징으로 하는 자율주행 카트.
  3. 제1항에 있어서,
    상기 추종대상저장부(400)는
    색, 크기, 모양 정보 중 어느 하나 또는 복수를 포함하는 특징을 기반으로 상기 추종대상에 대한 정보를 저장하는 것을 특징으로 하는 자율주행 카트.
  4. 제1항에 있어서,
    상기 제어부(600)는
    상기 센서부(300)로부터 획득된 바탕으로 장애물을 포함한 환경을 인식하는 환경인식부(610);
    상기 환경인식부(610)에서 인식된 장애물을 피해 상기 사용자인식부(500)에 의해 검출된 추종대상을 추미하도록 이동 경로를 계획하는 경로계획부(620); 및
    상기 경로계획부(620)로부터 계획된 이동 경로에 따라 상기 구동부(200)를 제어하는 구동제어부(630);
    를 포함하는 자율주행 카트.
  5. 제1항에 있어서,
    상기 제어부(600)는
    추종대상과의 거리가 특정 거리를 초과할 때는 따라다니고, 특정 거리 이하일 때는 정지하도록 상기 구동부(200)를 제어하는 것을 특징으로 하는 자율주행 카트.
  6. 제5항에 있어서,
    상기 제어부(600)는
    추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하는 것을 특징으로 하는 자율주행 카트.
  7. 제1항에 있어서,
    상기 센서부(300)는
    상기 센서부(300)를 회전시키는 센서회전부(310);를 포함하고,
    상기 제어부(600)는
    상기 센서회전부(310)를 회전시켜 상기 센서부(300)의 감지범위 내 일정 범위 이내에 상기 추종대상이 존재하도록 상기 센서부(300)가 향하는 방향을 조정하는 것을 특징으로 하는 자율주행 카트.
  8. 제5항에 있어서,
    상기 센서부(300)는
    상기 센서부(300)를 회전시키는 센서회전부(310);를 포함하고,
    상기 제어부(600)는
    추종대상과의 거리가 특정 거리 이하일 때는 정지한 지점에서 회전하여 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 구동부(200)를 제어하되, 추종대상이 상기 센서부(300)가 감지할 수 있는 범위를 벗어날 것으로 예상되면 상기 센서부(300)가 향하는 방향이 상기 추종대상을 향하도록 상기 센서회전부(310)를 회전시키는 것을 특징으로 하는 자율주행 카트.
  9. 제1항에 있어서,
    상기 자율주행 카트는
    사용자의 조작정보를 입력받는 조작부(700);
    를 포함하며,
    상기 제어부(600)는
    상기 조작부(700)에 입력된 조작정보에 따라 추종대상 정보 저장(인식), 추미, 운행 정지를 수행하는 것을 특징으로 하는 자율주행 카트.
  10. 제9항에 있어서,
    상기 제어부(600)는
    상기 조작부(700)에 입력된 조작정보에 따라 주행모드를 변경하는 것을 특징으로 하는 자율주행 카트.
PCT/KR2019/016552 2018-11-29 2019-11-28 자율주행 카트 WO2020111808A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180151197A KR102018832B1 (ko) 2018-11-29 2018-11-29 자율주행 카트
KR10-2018-0151197 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111808A1 true WO2020111808A1 (ko) 2020-06-04

Family

ID=68578135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016552 WO2020111808A1 (ko) 2018-11-29 2019-11-28 자율주행 카트

Country Status (3)

Country Link
US (1) US11762397B2 (ko)
KR (1) KR102018832B1 (ko)
WO (1) WO2020111808A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051279B1 (fr) * 2016-05-10 2021-01-29 Vincent Jacquemart Procede de gestion de deplacements d’une flotte d’objets mobiles autonomes, procede de deplacement d’un objet mobile autonome, dispositifs et produits programme d’ordinateur correspondants
KR102018832B1 (ko) * 2018-11-29 2019-11-04 주식회사 트위니 자율주행 카트
CN110926476B (zh) * 2019-12-04 2023-09-01 三星电子(中国)研发中心 一种智能机器人的伴随服务方法及装置
KR102179238B1 (ko) * 2020-05-25 2020-11-16 센서기술 주식회사 장치의 사람 추종 주행 및 자율 주행 방법
US11820380B2 (en) * 2020-08-06 2023-11-21 Piaggio Fast Forward Inc. Etiquette-based vehicle having pair mode and smart behavior mode and control systems therefor
KR102395387B1 (ko) 2020-09-04 2022-05-12 선문대학교 산학협력단 자율 주행 카트 장치
KR102422251B1 (ko) * 2020-11-19 2022-07-19 주식회사 탭스인터내셔널 의료폐기물 쓰레기통용 자율이송 카트
KR102548741B1 (ko) * 2021-02-24 2023-06-28 충남대학교산학협력단 자율주행 콤바인의 곡물배출 시스템 및 그의 운용방법
KR102433786B1 (ko) * 2021-10-13 2022-08-18 주식회사 케이티 모듈형 전동 카트 및 이를 이용한 원격 작업 지시 방법
KR102539265B1 (ko) 2022-02-07 2023-06-02 이상훈 전동 보조 반 자율주행 손수레

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060064A (ko) * 2010-12-01 2012-06-11 한국기술교육대학교 산학협력단 지능형 카트 및 제어 방법
KR20150126096A (ko) * 2014-05-01 2015-11-11 한화테크윈 주식회사 카트로봇 주행 시스템
KR20170131958A (ko) * 2016-05-23 2017-12-01 한국철도기술연구원 모바일 파워 카트
KR20180083569A (ko) * 2017-01-13 2018-07-23 주식회사 웨이브엠 사물인터넷 기반 운송 로봇 및 운송 로봇의 동작 방법
KR20180109107A (ko) * 2017-03-27 2018-10-08 (주)로직아이텍 매장 및 창고에서 활용할 수 있는 지능형 카트로봇장치
KR102018832B1 (ko) * 2018-11-29 2019-11-04 주식회사 트위니 자율주행 카트

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079197B1 (ko) 2010-03-25 2011-11-03 부산대학교 산학협력단 자율주행 장치의 경로추적 방법
US9395723B2 (en) * 2013-09-30 2016-07-19 Five Elements Robotics, Inc. Self-propelled robot assistant
KR101709683B1 (ko) 2015-02-10 2017-02-23 동서대학교산학협력단 비접촉성 사용자 인터페이스를 통한 사용자 지향 자율주행 쇼핑카트 시스템, 그리고 자율주행 쇼핑카트 제어방법
KR101877488B1 (ko) 2015-12-04 2018-08-09 김현득 스마트 골프 카트
KR101840700B1 (ko) 2015-12-04 2018-03-21 주식회사 하이인텍 스마트 골프 카트
US10471611B2 (en) * 2016-01-15 2019-11-12 Irobot Corporation Autonomous monitoring robot systems
US20170220040A1 (en) * 2016-02-02 2017-08-03 Justin London Smart luggage systems
US11160340B2 (en) * 2017-07-10 2021-11-02 Travelmate Robotics, Inc. Autonomous robot system
US11161236B2 (en) * 2017-09-14 2021-11-02 Sony Interactive Entertainment Inc. Robot as personal trainer
US11209887B1 (en) * 2018-03-20 2021-12-28 Amazon Technologies, Inc. Dynamic allocation of power from multiple sources in an autonomous mobile device
US10908612B2 (en) * 2018-03-29 2021-02-02 Toyota Research Institute, Inc. Systems and methods for an autonomous cart robot
KR102031348B1 (ko) * 2018-04-13 2019-11-08 주식회사 랜도르아키텍쳐 자율 작업 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
US11372408B1 (en) * 2018-08-08 2022-06-28 Amazon Technologies, Inc. Dynamic trajectory-based orientation of autonomous mobile device component
US10919555B1 (en) * 2018-10-16 2021-02-16 Robert Spruill Automated robotic shopping cart

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060064A (ko) * 2010-12-01 2012-06-11 한국기술교육대학교 산학협력단 지능형 카트 및 제어 방법
KR20150126096A (ko) * 2014-05-01 2015-11-11 한화테크윈 주식회사 카트로봇 주행 시스템
KR20170131958A (ko) * 2016-05-23 2017-12-01 한국철도기술연구원 모바일 파워 카트
KR20180083569A (ko) * 2017-01-13 2018-07-23 주식회사 웨이브엠 사물인터넷 기반 운송 로봇 및 운송 로봇의 동작 방법
KR20180109107A (ko) * 2017-03-27 2018-10-08 (주)로직아이텍 매장 및 창고에서 활용할 수 있는 지능형 카트로봇장치
KR102018832B1 (ko) * 2018-11-29 2019-11-04 주식회사 트위니 자율주행 카트

Also Published As

Publication number Publication date
KR102018832B1 (ko) 2019-11-04
US20200174497A1 (en) 2020-06-04
US11762397B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2020111808A1 (ko) 자율주행 카트
WO2022045808A1 (ko) 청소 로봇 및 그 제어 방법
WO2009125916A1 (ko) 차량의 조향방법 및 그 장치
WO2018074903A1 (ko) 이동 로봇의 제어방법
WO2021221343A1 (ko) 실내 이동 로봇이 엘리베이터에서 환경을 인식하기 위한 장치 및 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
WO2017188706A1 (ko) 이동 로봇 및 이동 로봇의 제어방법
WO2015183005A1 (en) Mobile device, robot cleaner, and method for controlling the same
AU2018216517B9 (en) Cleaner
WO2019194628A1 (ko) 이동 로봇 및 그 제어방법
WO2015152692A1 (ko) 차량 주변 이미지 생성 장치 및 방법
WO2020162662A1 (ko) 선도 추미 대차
WO2021006677A2 (en) Mobile robot using artificial intelligence and controlling method thereof
WO2018110963A1 (en) Movable object and method for controlling the same
WO2020241934A1 (ko) 멀티 센서를 동기화시켜 위치를 추정하는 방법 및 이를 구현하는 로봇
WO2019135437A1 (ko) 안내 로봇 및 그의 동작 방법
WO2021040214A1 (ko) 이동 로봇 및 그 제어 방법
WO2018117616A1 (ko) 이동 로봇
WO2021221344A1 (ko) 경사로가 있는 환경에서 이동로봇의 환경 인식 장치 및 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
WO2019117576A1 (ko) 이동 로봇 및 이동 로봇의 제어방법
WO2020106088A1 (en) Moving device and object detection method thereof
WO2018043780A1 (ko) 이동 로봇 및 그 제어방법
WO2022092571A1 (ko) 로봇 청소기 및 그의 주행 방법
WO2019199112A1 (ko) 자율 작업 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
WO2017188708A2 (ko) 이동 로봇, 복수의 이동 로봇 시스템 및 이동 로봇의 맵 학습방법
WO2020222408A1 (ko) 실시간 웨이포인트 경로 개선 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890603

Country of ref document: EP

Kind code of ref document: A1