WO2020111411A1 - 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법 - Google Patents

펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법 Download PDF

Info

Publication number
WO2020111411A1
WO2020111411A1 PCT/KR2019/006105 KR2019006105W WO2020111411A1 WO 2020111411 A1 WO2020111411 A1 WO 2020111411A1 KR 2019006105 W KR2019006105 W KR 2019006105W WO 2020111411 A1 WO2020111411 A1 WO 2020111411A1
Authority
WO
WIPO (PCT)
Prior art keywords
femtosecond laser
blade
blade edge
laser
grinding
Prior art date
Application number
PCT/KR2019/006105
Other languages
English (en)
French (fr)
Inventor
김성환
Original Assignee
주식회사 21세기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 21세기 filed Critical 주식회사 21세기
Priority to EP19890063.1A priority Critical patent/EP3791996B1/en
Priority to US16/972,484 priority patent/US11938568B2/en
Priority to CN201980023816.7A priority patent/CN111971145B/zh
Priority to JP2020572368A priority patent/JP7040824B2/ja
Publication of WO2020111411A1 publication Critical patent/WO2020111411A1/ko
Priority to PH12020551640A priority patent/PH12020551640A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3576Diminishing rugosity, e.g. grinding; Polishing; Smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/40Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • B23P17/02Single metal-working processes; Machines or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/36Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of cutting blades
    • B24B3/361Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of cutting blades of reciprocating blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing

Definitions

  • the present invention relates to an ultra-precision blade edge processing method using a laser, and more particularly to an ultra-precision blade edge processing method using a laser, which is etched by a femtosecond laser to improve blade precision and life.
  • the cutting process using blades is commonly used for manufacturing various parts used in various precision electronics industries such as mobile electrical and electronic devices, battery and display industries.
  • Korean Registered Patent Publication No. 10-917140, Korean Registered Patent Publication No. 10-762074 and Korean Registered Patent Publication No. 10-1478048 disclose techniques related to grinding.
  • Patent documents 1 and 2 are patent documents related to conventional general grinding for blade grinding
  • patent documents 3 are related to blade grinding using ELID grinding.
  • blade life and quality are deteriorated for various reasons.
  • the edge of the blade is excessively polished by using the curvature surface of the grinding wheel of the rotating chain, the cutting load increases and cuts as the edge part does not drop out due to processing and a burr phenomenon occurs. It may cause deterioration of substances.
  • a chipping phenomenon in which a part of the edge of the blade is finely dropped as the cutting load increases may occur.
  • contamination of the polishing wheel may remain at the edge of the blade and cause defects.
  • the ultra-precision grinding technology has limitations in technology development due to various problems of the general grinding and ELID grinding methods described above.
  • the problem to be solved by the present invention is to provide a blade edge processing apparatus and method using a laser capable of reducing the defect rate of the blade edge and minimizing the damage rate of the cutting surface by improving the strength of the blade edge.
  • Another problem to be solved by the present invention is to provide a blade edge processing apparatus and method using a laser capable of improving the precision of the blade through laser processing.
  • an ultra-precision blade edge processing method using a femtosecond laser includes: first grinding a blade edge portion using a grinding wheel; And secondaryly etching at least a portion of the blade edge portion by irradiating a femtosecond laser along the longitudinal direction of the ground blade edge portion, wherein the secondary etching comprises oscillating the femtosecond laser; Modifying the energy distribution of the femtosecond laser; Increasing the size of the energy distribution of the femtosecond laser; Aligning the central portion of the energy distribution of the femtosecond laser to the edge of the blade edge portion, changing the traveling direction of the femtosecond laser and irradiating the blade edge portion through a movable objective lens and the stage on which the blade is placed, It may include the step of irradiating the femtosecond laser by moving in the longitudinal direction of the blade.
  • the step of modifying the energy distribution of the femtosecond laser may include transforming a femtosecond laser beam having a Gaussian distribution into a femtosecond laser beam having a rectangular energy distribution using a condenser lens and an aspherical cylindrical lens.
  • the energy distribution of the femtosecond laser is preferably square.
  • one side of the square of the energy distribution of the femtosecond laser may be 50 ⁇ m or less.
  • the step of aligning the central portion of the energy distribution of the femtosecond laser to the edge of the blade edge portion is a step in which a CCD camera photographs the blade and the femtosecond laser aligned, and inputs the captured image to an autoencoder. Extracting a feature vector, deriving a control amount to control the position of the blade based on the feature vector, and controlling the stage on which the blade is placed based on the derived step, to control the blade edge portion and the femtosecond laser. And sorting.
  • the auto-encoder captures the blade and the femtosecond laser aligned from the CCD camera and receives them as input, and extracting a feature vector by inputting the captured image into the auto-encoder.
  • the center portion of the energy distribution of the laser may include learning to output an image normally aligned to the end portion of the blade edge portion.
  • the present invention can reduce the defect rate of the blade edge and minimize the cut surface damage rate by strengthening the strength of the blade edge.
  • the present invention can improve the precision of the blade through laser processing.
  • FIG. 1 is a schematic diagram of a blade edge processing apparatus using a laser according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the grinding process of the blade edge according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the laser processing process of the blade edge according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a femtosecond laser unit according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the energy state and beam size of a femtosecond laser according to an embodiment of the present invention.
  • 6 and 7 are diagrams for explaining the energy distribution of the femtosecond laser beam according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a movable objective lens according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining auto-focus adjustment according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining laser precision grinding of blades and alignment of blades according to an embodiment of the present invention.
  • FIG. 11 is a view for explaining an autoencoder according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining an input/output image of an autoencoder according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a blade edge portion according to an embodiment of the present invention.
  • FIG. 14 is a perspective view of a blade according to an embodiment and a comparative example of the present invention.
  • the blade edge processing apparatus 100 using a laser includes a grinding unit 110, a femtosecond laser unit 200, and a control unit 120.
  • the grinding unit 110 is a configuration for grinding the edge of the blade 140 (see FIG. 2), a moving plate, a workpiece (blade 140), a power supply 111, a grinding wheel 112, an electrode 113, etc.
  • Various components required for grinding the blade edge portion 142 may be included.
  • the grinding wheel 112 is seated and fixed on a moving plate supporting various components and moved in the direction of the conveying device by the moving plate to grind the cutting edge of the blade 140 vertically fixed to the conveying device. .
  • the grinding wheel 112 rotates according to the signal of the control unit 120 that controls the rotation speed, and the rotation speed may be determined according to a difference in hardness of a workpiece of the grinding wheel 112 or a target surface roughness and a material of the workpiece.
  • the operation of the specific grinding wheel 112 will be described later with reference to FIGS. 2 and 3.
  • a camera may be installed in the grinding unit 110, and a monitor for checking and controlling image information received from the installed camera may be further installed.
  • the femtosecond laser unit 200 is configured for ultra-precision ultra-fine processing of the blade 140 and includes a laser transmission unit 210.
  • the laser transmission unit 210 mainly utilizes a femtosecond laser used for ultra-precision material processing and the like, and it is possible to minimize the thermal effect by irradiating the photon energy of the ultra-short width of the femtosecond ( 10-15 ).
  • the femtosecond laser unit 200 is provided with a mirror 221 at the tip to change the direction of light output from the laser transmission unit 210, and light reflected through the mirror 221 Is transferred to the movable objective lens 222.
  • the movable objective lens 222 converges the femtosecond pulse, thereby helping the femtosecond laser light emitted from the laser transmission unit 210 to be irradiated to the local area of the blade 140.
  • the control unit 120 is a configuration for controlling the grinding unit 110 and the femtosecond laser unit 200, and includes a grinding wheel control unit 121, a laser driving unit 122, and a blade position control unit 123.
  • the control unit 120 may be implemented by, for example, a computer, and may be implemented by various devices capable of computing functions, such as a PC, mobile, and tablet PC.
  • the grinding wheel control unit 121 is a configuration that controls the grinding wheel 112 so that the blade 140 can be ground, and controls the rotational speed, rotational direction of the grinding wheel 112, and the moving speed of the grinding wheel 112. can do.
  • the laser driving unit 122 is a configuration for driving the laser transmission unit 210 included in the femtosecond laser unit 200, and the intensity and energy distribution of the laser wavelength to irradiate the laser to the local area of the blade edge unit 142 Can be controlled, and the laser irradiation time and the laser irradiation direction can be controlled.
  • the blade position control unit 123 may precisely control the positional relationship between the blade 140 to be etched and the laser beam in the femtosecond laser unit 200, thereby precisely controlling the laser etching position of the blade 140.
  • FIG. 2 is a view for explaining the grinding process of the blade edge.
  • 3 is a view for explaining the laser processing process of the blade edge portion.
  • the blade edge is ground using the grinding wheel 112, and then the femtosecond laser is irradiated only to the local area located at one end of the edge from the ground blade edge. That is, in the ultra-precision blade edge processing method using a laser according to an embodiment of the present invention, both the ELID grinding processing technology and the laser transmission unit 210 processing technology are performed, thereby minimizing the defect rate of the blade edge unit 142 and improving precision. Can be improved.
  • the grinding wheel 112 during the grinding process of the blade 140, the grinding wheel 112, the grinding wheel 112 and the electrode 113 disposed opposite to each other with a certain gap, a power supply, and a grinding oil 114 which is a conductive grinding fluid Needs
  • the grinding wheel 112 may grind the edge of the blade 140 to a surface perpendicular to the rotation direction of the grinding wheel 112 as the blade 140 moves in the x-axis direction.
  • the electrode 113 is an electrode 113 for etching, and is disposed to face the grinding wheel 112 with a certain gap.
  • the power supply unit applies power to the grinding wheel 112 which is the positive electrode (+) and the electrode 113 which is the negative electrode (-), and the grinding oil 114 which serves as an electrolyte between the grinding wheel 112 and the electrode 113.
  • chips generated from metals present in the grinding wheel 112 are ionized, and metal ions are combined with oxygen ions at the anode to form a metal oxide to form an oxide film, and the metals are ionized repeatedly. .
  • the gap between the electrode 113 and the grinding wheel 112 may further include a nozzle for supplying a grinding oil 114, which is a conductive grinding liquid made of oxygen ions.
  • a grinding oil 114 which is a conductive grinding liquid made of oxygen ions.
  • the ionization is not properly performed, the abrasive tip of the grinding tip becomes dull, and the grinding performance decreases and the grinding process is performed for a long time. If the blade 140 that requires considerable precision is ground, the blade 140 Burring occurs at the edge end or chipping is formed on the cutting edge of the blade 140 while raising the temperature of the blade 140, or it is a fatal problem to the straightness of the blade tip. Effect.
  • the ultra-precision blade edge processing apparatus 100 using a laser can improve the straightness of the blade 140 because the blade 140 can be finely processed using a laser.
  • it is determined that the straightness of the blade 140 when grinding the blade 140 is within a range of 10 ⁇ m to 25 ⁇ m.
  • the ultra-precision blade 140 grinding method using a laser can solve the problems as described above by simultaneously performing the grinding method illustrated in FIG. 2 and the laser machining method illustrated in FIG. 3. have.
  • the braid is composed of a blade body portion 141 having a flat shape and a blade edge portion 142 extending from the blade 140 body and inclined at a certain angle for cutting to form a sharp edge.
  • the blade edge portion 142 includes a first inclined surface 142-1 and a second inclined surface 142-2.
  • the first inclined surface 142-1 is an area in which a laser beam is irradiated, that is, an etching processing range of the blade 140 using a laser. As shown in FIG. 3, the first inclined surface 142-1 forms a gentler slope than the second inclined surface 142-2, and the angle between the second inclined surfaces 142-2 is approximately 9°.
  • the laser beam irradiated to the first inclined surface 142-1 is an ultra-short photon energy beam of femtosecond ( 10-15 ), and a laser having a higher energy is irradiated to the first inclined surface 142-1 Since the deformation by heat may occur, it is necessary to irradiate a laser of suitable energy.
  • the blade 140 may move in the y-axis direction, that is, in the direction in which the blade 140 is formed, or for adjusting the distance according to the height direction of the x-axis blade 140.
  • FIG. 4 is a view for explaining in detail the femtosecond laser unit 200 according to an embodiment of the present invention.
  • the femtosecond laser unit 200 may include a laser transmission unit 210 for transmitting the femtosecond laser 241, an imaging optical system 220, and a stage 230.
  • the laser transmission unit 210 may include a laser oscillator 211, a shutter 212, a beam expander 216 and a mirror 221.
  • the laser oscillator 211 is a device that oscillates the femtosecond laser 241, and is an ultra-short pulse having a pulse emission time of 10 -15 m/s or less, which greatly increases the oscillation density of laser energy.
  • a femtosecond laser when a femtosecond laser has a pulse energy of 1 mJ and a pulse emission time of 100 femtoseconds or less, the energy density of the laser beam reaches a level of approximately 10 gigawatts, and any material can be processed.
  • a very short pulse laser beam is radiated to a workpiece, such as a femtosecond laser, multi-photon absorption occurs in a material lattice.
  • the shutter 212 blocks or passes the laser scanned by the laser oscillator 211 to increase concentration and efficiency, and the shutter 212 may be installed anywhere before or after the beam expander 216. In the example, it was described as being installed in front.
  • the beam expander 216 serves to enlarge the beam, and prevents damage to the optical system transmitting the beam due to the energy of the beam, and can adjust the magnification by a motor controlled by the computer 120. For example, the beam expander 216 initially increases the size of the beam so that the size of the femtosecond laser beam having a size of 5 ⁇ m or less has a size of 50 ⁇ m or more.
  • the imaging optical system 220 includes first and second splitters 215 and 225, an imaging slit 224, and a movable objective lens 222.
  • the first splitter 215 serves to allow the aiming beam 223 and the femtosecond laser beam to be incident on the coaxial.
  • the aiming beam 223 serves to guide the femtosecond laser beam from the laser oscillator 211 to be accurately incident on the desired portion of the blade 140.
  • the aiming beam 223 may use a coaxial He-Ne laser beam.
  • the imaging slits 224 shape the energy distribution of the laser generated by the laser oscillator 211 such that the femtosecond laser 241 has a uniform energy distribution in a square shape.
  • the imaging slit 224 may use, for example, a precision imaging slit system that is a rectangular movable slit.
  • FIG. 5 when a large amount of energy is applied to the femtosecond laser beam, the size of the beam may increase, but when energy is excessively applied, the peripheral portion of the portion to be etched is melted during etching, and FIG. 5(c) Can be like
  • the beam size is limited to approximately 5 ⁇ m in order to cause normal etching as shown in FIG. 5(b).
  • the beam 241-1 formed through the imaging slits 224 has defects on the first inclined surface 142-1 of the blade 140 and the straightness of the blade 140 ( Despite the size of about 25um or less), the laser beam has a size of about 50um or less that can be easily aligned.
  • the reason why the size of the beam is determined to be 50 ⁇ m or less is that the size of the defect is ground to about 1 ⁇ m or less, but the difference in height between the left and right sides of the blade edge may have an error of about 25 ⁇ m or less due to the straightness.
  • the size of the beam is preferably determined to be 50 um or less.
  • the etching power may be greatly reduced, so the size of the beam is preferably set to 50 ⁇ m or less.
  • the imaging slits 224 may be formed with a femtosecond laser 241 to have a uniform energy distribution, for example, an energy distribution having a square shape. This is because, when grinding the blade, it is advantageous to have a square energy distribution in order to expose the machining surface to the femtosecond laser for the same time.
  • the laser beam passing through the imaging slits 224 is shaped to have a uniform energy distribution of, for example, square, rectangular or circular.
  • the laser beam 250 that has passed through the imaging slits 224 is shaped to have a square uniform energy distribution.
  • the energy distribution is in a Gaussian form, but as shown in FIGS. 6(b) and 7(b) through the imaging slits 224, A uniform beam is formed.
  • femtosecond lasers for blade etching has not been known in the prior art, and in particular, there has been no example of using femtosecond lasers for blade blade etching for cutting precision electronic components such as MLCCs. Because, because the femtosecond laser has a very small size for concentration of energy, it is advantageous for cutting and generating small holes, but it is not suitable for etching a large area such as a blade blade as in the present invention. However, in the embodiment of the present invention, these problems are solved through the beam expander 216 and the imaging slits 224.
  • the laser transmission unit 210 may include a second splitter 225.
  • the second splitter 225 transmits a portion of the laser light to the CCD camera 234 so that the control unit 120 can check the energy distribution or size of the beam.
  • the control unit 120 may control the energy distribution or size of the beam by controlling the imaging slits 224.
  • the CCD camera 234 may further include illumination (not shown) for clear imaging.
  • the femtosecond laser 241 passing through the second splitter 225 may include a movable objective lens 222 that focuses the laser on the first inclined surface 142-1 of the blade 140 as a workpiece.
  • the movable objective lens 222 is implemented to move in a direction parallel to the beam passing through the imaging optical system (Z-axis direction) by an LM guide (Linear Motion Guide) and a motor.
  • Z-axis direction the imaging optical system
  • LM guide Linear Motion Guide
  • the auto focus adjustment module 240 automatically adjusts a focal length between the movable objective lens and the blade 140.
  • the laser light emitted from the light emitting unit is received from the laser diode, the distance to the blade 140 as a workpiece is measured using a phototriangular method, the measured distance information is transmitted to the control unit 120, and the mobile object The distance between the lens 222 and the blade 140 is adjusted to adjust the focal length.
  • the stage 230 may move back and forth/left and right in a state where the blade 140 as a workpiece is placed.
  • the stage 230 is driven by the blade position control unit 123 of the control unit 120, and at this time, an image of a CCD camera may be used for precise control. Alignment control of the blade position using the image of the CCD camera will be described later.
  • the movable objective lens 222 is moved up and down to adjust the focal length by shielding the inside of the barrel from outside air and filling it with nitrogen gas or the like to prevent foreign matter from entering the filter It is implemented to be, there is no need to transfer the blade 140 in the Z-axis direction.
  • the stage 230 is configured to move in the XY axis under the control of the blade position control unit 123, and at the same time, it is possible to increase the processing precision than to control the three axes.
  • the illumination light source 223 uses a white light source or a He-Ne laser having a wavelength of 633 nm and is scanned to the blade 140 through the reflection mirror 228.
  • control of the stage 230 according to an embodiment of the present invention will be described with reference to FIGS. 11 and 12.
  • the femtosecond laser energy distribution has a small size of 50 ⁇ m or less, for example, 20 ⁇ m, so that the blade 140 and the laser beam are aligned. Very difficult
  • an autoencoder 300, Autoencoder
  • the autoencoder 300 may be implemented in the form of a software module on a PC on which the controller 120 is implemented or a separate server connected to the controller 120.
  • the learning image of the autoencoder 300 inputs the image (for example, (b) or (c) of FIG. 12) on which the actual blade 140 is placed on the stage 230, and the blade 140.
  • the image for example, (b) or (c) of FIG. 12
  • the image for example, (b) or (c) of FIG. 12
  • the image for example, (b) or (c) of FIG. 12
  • the image for example, (b) or (c) of FIG. 12
  • the image for example, (b) or (c) of FIG. 12
  • the autoencoder 300 is trained to output an image where the blade and the laser beam are preferably placed no matter what image comes in.
  • an image captured by the CCD camera 234 is input to the autoencoder 300, and in that case, it is preferable to output what image the placed image is.
  • the feature vector may be extracted from the hidden layer 320 of the autoencoder 300, and the front and rear left and right direction control amounts of the stage 230 may be derived based on the feature vector.
  • the derived control amount is transmitted to the blade position control unit 123 of the control unit 120 so that the central position of the femtosecond laser energy distribution is at the end of the first inclined surface 142-1 of the blade 140.
  • the blade 140 and the laser beam may be aligned.
  • FIGS. 13 to 15. 13 is a cross-sectional view of the blade edge portion.
  • the angle A of the blade edge portion 142 additionally ground with a laser is 9°
  • the blade width W of the blade 140 is 0.03 It has the following values.
  • the blade 140 according to the embodiment does not generate side edges CP.
  • the angle A of the blade edge portion 142 according to the comparative example (that is, when there is no additional grinding by the femtosecond laser) is 18°, and the blade width of the blade 140 ( W) is 0.03 or more.
  • the blade 140 according to the comparative example has a side edge CP, damage to the side portion due to the side inflection point may occur.
  • the blade 140 angle is significantly reduced to 9°, thereby reducing the cutting load due to the blunt edge edge, and thus significantly increasing the life of the blade.
  • the reduced cutting load reduces the coefficient of friction that occurs between the part and the blade 140 when the blade 140 cuts the part.
  • 14 is a perspective view of a blade according to a comparative example and an embodiment.
  • 14(c) is a view for explaining FIGS. 14(a) and 14(b), and is an enlarged view of a part of the blade 140 including the first inclined surface 142-1.
  • 14 (a) is a view for explaining a defect of the blade 140 according to the comparative example, and shows a cross section of part A and part B of FIG. 14(c), and
  • FIG. 14 (b) is an embodiment of the present invention.
  • FIG. 14 (a) is a comparative example, and shows a case where only the grinding by the blade 140, that is, the grinding wheel 112, before laser processing, shows that a curved cross section is generated on one side of the blade edge portion 142. can see.
  • a phenomenon in which the blade 140 is bent is determined to have a defect in the blade 140, and the size of the defect is an area disposed above the area indicated by the oblique pattern in the cross-sectional view showing the BB section of FIG. 14(a). It can be seen that it appears very large.
  • a curved section that is, a defect
  • the size of the defect is an area disposed on the area where the diagonal pattern is displayed in the cross-sectional view showing the B-B section of FIG. 14(b).
  • the ultra-precision blade 140 processing apparatus using a laser can improve the precision of the blade 140 by minimizing defects by increasing the strength of the blade 140 through laser processing.
  • the strength of the blade edge portion 142 is enhanced to minimize the defect rate of the blade.
  • burr or chipping may occur in conventional grinding or ELID grinding.
  • these problems can be solved because burna chipping is removed through the femtosecond laser after the burner chipping occurs.
  • foreign matters generated from the existing grinding may increase the cutting load when cutting the part using the blade 140 to make the cut part defective, but the femtosecond laser does not generate additional etching particles, so additional laser micromachining is not performed. It can be seen that the foreign matter is completely removed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법에 관한 것으로서, 연삭휠을 이용하여 블레이드 엣지부를 1차 연삭하는 단계; 및 상기 연삭된 블레이드 엣지부의 길이 방향을 따라 펨토초 레이저를 조사하여 상기 블레이드 엣지부의 적어도 일부를 2차 연삭하는 단계를 포함하되, 상기 2차 연삭하는 단계는 상기 펨토초 레이저를 발진하는 단계; 상기 펨토초 레이저의 에너지 분포를 변형하는 단계; 상기 펨토초 레이저의 에너지 분포의 크기를 증가시키는 단계; 상기 펨토초 레이저의 에너지 분포의 중앙부를 상기 블레이드 엣지부의 끝부분에 정렬하는 단계 및 상기 펨토초 레이저의 진행 방향을 변경하고 포커싱 렌즈를 통하여 상기 블레이드 엣지부에 조사하는 단계 및 상기 블레이드가 놓여진 스테이지를 상기 블레이드의 길이 방향으로 이동시켜 펨토초 레이저를 조사하는 단계를 포함하는 것을 특징으로 한다.

Description

펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법
본 발명은 레이저를 이용한 초정밀 블레이드 엣지 가공방법에 관한 것으로서, 보다 상세하게는 펨토초 레이저(Femtosecond Laser)에 의해 식각되어 블레이드의 정밀도와 수명이 향상된, 레이저를 이용한 초정밀 블레이드 엣지 가공방법에 관한 것이다.
블레이드를 사용한 컷팅 공정은 모바일 전기전자기기, 배터리 및 디스플레이 산업 등의 각종 정밀 전자 산업 분야에 사용되는 다양한 부품 제조에 보편적으로 사용된다.
특히, MLCC(Multi-Layer Ceramic Capacitor)를 비롯하여 전자부품산업이 발달하면서 초미세 초정밀 가공시스템의 수요가 급증하고 있는 추세이다. 이에, 부품 소형화 및 정밀화에 따른 초정밀 가공기술로서는 일반 연삭 기술과 ELID(Electrolytic In-Prosess Dressing) 연삭법이 많이 이용되고 있다.
대한민국 등록특허공보 제10-917140호, 대한민국 등록특허공보 제10-762074호 및 대한민국 등록특허공보 제10-1478048호에는 연삭에 관련된 기술들이 개시되어 있다.
특허문헌 1 및 특허문헌 2는 블레이드 연삭을 위한 기존의 일반 연삭에 관한 특허문헌이며, 특허문헌 3은 ELID 연삭을 이용한 블레이드 연삭에 관한 것이다. 이러한 일반 연삭과 ELID 연삭법의 경우 여러가지 이유로 블레이드 수명 및 품질이 저하되는 문제점을 갖고 있다. 예를 들면, 회전체인 연삭휠의 곡률면을 이용해서 블레이드의 엣지(edge)가 과도하게 연마되면서 엣지 부분이 가공으로 탈락되지 않고 붙어 있는 버(Burr) 현상이 발생하면서 절단부하가 증가 및 절단 물질의 저하를 가져올 수 있다. 또한, 절단부하가 증가함에 따라 블레이드의 엣지의 일부가 미세하게 탈락되는 치핑(chipping) 현상이 발생할 수도 있다. 또한, 연마휠의 이물질(contamination)이 블레이드의 엣지에 남아 불량을 유발할 수도 있다.
따라서, 초정밀 연삭 가공 기술은 상술한 일반 연삭 및 ELID 연삭법의 다양한 문제점으로 인해 기술 개발의 한계를 가지고 있다.
본 발명이 해결하고자 하는 과제는 블레이드 엣지의 강도를 향상시킴으로서 블레이드 엣지의 불량률을 감소시키고 절단면 손상률을 최소화할 수 있는 레이저를 이용한 블레이드 엣지 가공 장치 및 그 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 레이저 가공을 통해 블레이드의 정밀도를 향상시킬 수 있는 레이저를 이용한 블레이드 엣지 가공 장치 및 그 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법은, 연삭휠을 이용하여 블레이드 엣지부를 1차 연삭하는 단계; 및 상기 연삭된 블레이드 엣지부의 길이 방향을 따라 펨토초 레이저를 조사하여 상기 블레이드 엣지부의 적어도 일부를 2차 식각하는 단계를 포함하되, 상기 2차 식각하는 단계는 상기 펨토초 레이저를 발진하는 단계; 상기 펨토초 레이저의 에너지 분포를 변형하는 단계; 상기 펨토초 레이저의 에너지 분포의 크기를 증가시키는 단계; 상기 펨토초 레이저의 에너지 분포의 중앙부를 상기 블레이드 엣지부의 끝부분에 정렬하는 단계 및 상기 펨토초 레이저의 진행 방향을 변경하고 이동식 대물 렌즈를 통하여 상기 블레이드 엣지부에 조사하는 단계 및 상기 블레이드가 놓여진 스테이지를 상기 블레이드의 길이 방향으로 이동시켜 펨토초 레이저를 조사하는 단계를 포함할 수 있다.
이 경우, 상기 펨토초 레이저의 에너지 분포를 변형하는 단계는 집광 렌즈 및 비구면 원통렌즈를 사용하여 가우시안 분포를 가지는 펨토초 레이저 빔을 사각형의 에너지 분포를 가지는 펨토초 레이저 빔으로 변형하는 단계를 포함할 수 있다.
또한, 상기 펨토초 레이저의 에너지 분포는 정사각형인 것이 바람직하다.
또한, 상기 펨토초 레이저의 에너지 분포의 정사각형의 한 변은 50um 이하일 수 있다.
또한, 상기 펨토초 레이저의 에너지 분포의 중앙부를 상기 블레이드 엣지부의 끝부분에 정렬하는 단계는, CCD 카메라가 상기 블레이드와 상기 펨토초 레이저가 정렬된 것을 촬영하는 단계와, 촬영된 영상을 오토인코더에 입력하여 특징 벡터를 추출하는 단계와, 상기 특징 벡터에 기초하여 블레이드의 위치를 제어하는 제어량을 도출하는 단계와, 상기 도출된 단계에 기초하여 블레이드가 놓여진 스테이지를 제어하여 상기 블레이드 엣지부와 상기 펨토초 레이저를 정렬하는 단계를 포함할 수 있다.
또한, 상기 오토인코더는 상기 CCD 카메라로부터 상기 블레이드와 상기 펨토초 레이저가 정렬된 것을 촬영하여 입력으로서 입력받고, 상기 촬영된 영상을 오토인코더에 입력하여 특징 벡터를 추출하는 단계는 상기 오토인코더가 상기 펨토초 레이저의 에너지 분포의 중앙부가 상기 블레이드 엣지부의 끝부분에 정상적으로 정렬된 영상을 출력하도록 학습되는 단계를 포함할 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명은 블레이드 엣지의 강도를 강화시킴으로서 블레이드 엣지의 불량률을 저하시키고 절단면 손상률을 최소화할 수 있다.
또한, 본 발명은 레이저 가공을 통해 블레이드의 정밀도를 향상시킬 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 실시예에 따른 레이저를 이용한 블레이드 엣지 가공 장치의 개략도이다.
도 2는 본 발명의 실시예에 따른 블레이드 엣지의 연삭 과정을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따른 블레이드 엣지의 레이저 가공 과정을 설명하기 위한 도면이다.
도 4는 본 발명의 실시예에 따른 펨토초 레이저 유닛을 설명하기 위한 블록도이다.
도 5는 본 발명의 실시예에 따른 펨토초 레이저의 에너지 상태와 빔 사이즈를 설명하기 위한 도면이다.
도 6 및 도 7은 본 발명의 실시예에 따른 펨토초 레이저 빔의 에너지 분포를 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 이동식 대물 렌즈를 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 자동 초점 조정을 설명하기 위한 도면이다.
도 10은 본 발명의 실시예에 따른 블레이드의 레이저 정밀 연삭 및 블레이드의 정렬을 설명하기 위한 도면이다.
도 11은 본 발명의 실시예에 따른 오토인코더를 설명하기 위한 도면이다.
도 12는 본 발명의 실시예에 따른 오토인코더의 입출력 영상을 설명하기 위한 도면이다.
도 13은 본 발명의 실시예에 따른 블레이드 엣지부의 단면도이다.
도 14는 본 발명의 실시예 및 비교예에 따른 블레이드의 사시도이다.
도 15는 본 발명의 실시예와 종래 기술의 효과를 비교하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예들을 상세히 설명한다.
도 1은 레이저를 이용한 블레이드 엣지 가공 장치의 개략도이다. 도 1을 참조하면, 레이저를 이용한 블레이드 엣지 가공 장치(100)는 연삭 유닛(110), 펨토초 레이저 유닛(200) 및 제어부(120)를 포함한다.
연삭 유닛(110)는 블레이드(140, 도 2 참조)의 엣지를 연삭하기 위한 구성으로서 이동플레이트, 가공물(블레이드(140)), 전원 장치(111), 연삭휠(112), 전극(113) 등 블레이드 엣지부(142) 연삭에 필요한 다양한 구성요소들이 포함될 수 있다.
구체적으로, 연삭휠(112)은 다양한 구성요소를 지지하는 이동플레이트에 안착 고정되어 이동 플레이트에 의해 이송 장치 방향으로 이동되어 이송 장치에 수직하게 고정된 블레이드(140)의 인선날을 연삭할 수 있다. 연삭휠(112)은 회전수를 제어하는 제어부(120)의 신호에 따라 회전하며, 그 회전수는 연삭휠(112)의 공작물의 경도차이 또는 목표 표면 조도 및 공작물의 재질에 따라 결정될 수 있다. 구체적인 연삭휠(112)의 동작은 도 2 및 도 3을 참조하여 후술하기로 한다.
또한, 도 1에 도시하지는 않았지만, 연삭 유닛(110)에는 카메라가 설치될 수 있고, 설치된 카메라로부터 수신한 이미지 정보들을 확인하고 제어하기 위한 모니터가 더 설치될 수도 있다.
펨토초 레이저 유닛(200)은 블레이드(140)의 초정밀 초미세 가공을 위한 구성으로서, 레이저 전송부(210)를 포함한다. 레이저 전송부(210)는 주로 초정밀 재료가공 등을 위해 사용되는 펨토초 레이저를 활용하며, 펨토초(10-15)의 극초단파폭의 광자 에너지 조사로 열영향을 최소화할 수 있다.
도 1에 도시된 바와 같이, 펨토초 레이저 유닛(200)은 레이저 전송부(210)에서 출력되는 광의 방향을 바꾸기 위하여 선단으로 미러(221, mirror)가 설치되고, 미러(221)를 통해 반사되는 광은 이동식 대물 렌즈(222)로 전달된다.
이동식 대물 렌즈(222)는 펨토초 펄스를 집광하므로 레이저 전송부(210)에서 나오는 펨토초 레이저광이 블레이드(140)의 국소 영역에 조사될 수 있도록 도와준다.
제어부(120)는 연삭 유닛(110) 및 펨토초 레이저 유닛(200)을 제어하기 위한 구성으로서, 연삭휠 제어부(121), 레이저 구동부(122) 및 블레이드 위치 제어부(123)를 포함한다. 이 때, 제어부(120)는 예컨대, 컴퓨터로 구현될 수 있으며, 예를 들어, PC, 모바일, 태블릿 PC 등 컴퓨팅 기능이 가능한 다양한 장치로 구현될 수 있다.
연삭휠 제어부(121)는 블레이드(140)가 연삭될 수 있도록 연삭휠(112)을 제어하는 구성으로서, 연삭휠(112)의 회전속도, 회전방향, 연삭휠(112)의 이동속도 등을 제어할 수 있다.
레이저 구동부(122)는 펨토초 레이저 유닛(200)에 포함된 레이저 전송부(210)를 구동시키기 위한 구성으로서, 블레이드 엣지부(142)의 국소 영역에 레이저를 조사하기 위해 레이저 파장의 세기 및 에너지 분포를 조절할 수 있고, 레이저 조사 시간 및 레이저 조사 방향 등을 제어할 수 있다.
블레이드 위치 제어부(123)는 펨토초 레이저 유닛(200)에서 피 식각될 블레이드(140)와 레이저 빔의 위치 관계를 정밀하게 제어하여, 블레이드(140)의 레이저 식각 위치를 정밀하게 제어할 수 있다.
이하에서는, 도 2 및 도 3을 참조하여 블레이드 엣지부(142)의 연마 과정을 상세히 설명하기로 한다.
도 2는 블레이드 엣지부의 연삭 과정을 설명하기 위한 도면이다. 도 3은 블레이드 엣지부의 레이저 가공 과정을 설명하기 위한 도면이다.
레이저를 이용한 초정밀 블레이드 엣지 가공 방법은 연삭휠(112)을 이용하여 블레이드 엣지를 연삭한 후 연삭된 블레이드 엣지에서 엣지의 일단에 위치한 국소 영역에만 펨토초 레이저를 조사한다. 즉, 본 발명의 일 실시예에 따른 레이저를 이용한 초정밀 블레이드 엣지 가공 방법은 ELID 연삭 가공 기술과 레이저 전송부(210) 가공 기술을 모두 수행함으로써, 블레이드 엣지부(142)의 불량률을 최소화하고 정밀도를 향상시킬 수 있다.
도 2를 참조하면, 블레이드(140) 연삭 과정 시, 연삭휠(112), 연삭휠(112)과 일정 간극을 두고 대향 배치된 전극(113), 전원 장치 및 전도성 연삭액인 연삭유(114)를 필요로 한다.
연삭휠(112)은 블레이드(140)가 x축 방향으로 이동함에 따라 연삭휠(112)의 회전방향과 수직하는 면으로 블레이드(140)의 엣지를 연삭할 수 있다.
전극(113)은 에칭용 전극(113)으로서 연삭휠(112)과 일정 간극을 두고 대향 배치된다.
전원 공급부는 양극(+)인 연삭휠(112)과 음극(-)인 전극(113)에 전원을 인가하고 연삭휠(112)과 전극(113) 사이에 전해액 역할을 하는 연삭유(114)를 공급하게 되면 연삭휠(112)에 존재하는 금속들로부터 발생하는 칩들이 이온화되면서 금속이온들이 양극에서 산소이온과 결합하여 금속산화물로 되어 산화피막을 형성하게 되고, 금속들이 이온화되는 과정을 반복하게 된다.
또한, 전극(113)과 연삭휠(112) 사이의 간극으로 산소 이온으로 이루어진 전도성 연삭액인 연삭유(114)를 공급하기 위한 노즐을 더 포함할 수 있다. 다만, 도 2에 도시된 바와 같이 연삭휠(112)과 전극(113) 사이의 간극으로 공급되는 연삭액이 노즐을 통해 외부로부터 공급되기 때문에 연삭휠(112)과 전극(113) 사이의 간극으로 연삭액이 균일하게 공급되지 않을 수 있다.
이에 따라, 이온화가 제대로 이루어지지 못하여 연삭팁의 지립 돌출이 무뎌지게 되면서 연삭성능 저하와 함께 연삭가공이 장시간 이루어지게 되며, 만일 상당한 정밀도를 요구하는 블레이드(140)를 연삭하는 경우 블레이드(140)의 엣지 끝단에 버(Burr)가 발생하거나 또는 블레이드(140)의 온도를 상승시키면서 연삭된 블레이드(140)의 인선날에 칩핑(chipping)이 형성하거나 또는 칼날끝의 진직도(Strightness)에 치명적인 문제를 초래하게 된다.
일반적인 블레이드 연삭 장치는 블레이드를 연삭하더라도 연삭 장치의 정밀도에 따라 공차가 발생하게 된다. 다시 말해, 연삭휠을 이용하여 블레이드를 연삭할 경우 블레이드는 이상적인 직선처럼 연삭되지 않고 굴곡질 수 있다.
본 발명의 일 실시예에 따른 레이저를 이용한 초정밀 블레이드 엣지 가공 장치(100)는 레이저를 이용하여 블레이드(140)를 미세하게 가공할 수 있으므로 블레이드(140)의 진직도를 향상시킬 수 있다. 본 발명에서는 블레이드(140) 연삭 가공 시 블레이드(140)의 진직도가 10μm 내지 25μm 범위 내인 경우만 적합한 것으로 판단한다.
따라서, 본 발명의 일 실시예에 따른 레이저를 이용한 초정밀 블레이드(140) 연삭 가공 방법은 도 2에 도시된 연삭 방법과 도 3에 도시된 레이저 가공 방법을 동시에 수행하여 상술한 바와 같은 문제를 해결할 수 있다.
도 3을 참조하면, 브레이드는 평평한 형상을 갖는 블레이드 바디부(141) 및 블레이드(140) 바디로부터 연장되며 절삭을 위하여 일정 각도로 경사져서 뾰족한 엣지를 형성하는 블레이드 엣지부(142)로 이루어져 있다. 이 경우, 블레이드 엣지부(142)는 제1 경사면(142-1) 및 제2 경사면(142-2)으로 이루어져 있다.
제1 경사면(142-1)은 레이저 빔이 조사되는 영역, 즉 레이저를 이용한 블레이드(140)의 식각 가공 범위이다. 도 3에 도시된 바와 같이, 제1 경사면(142-1)은 제2 경사면(142-2)보다 완만한 경사를 이루며, 제2 경사면(142-2) 사이의 각도는 대략 9°이다.
또한, 제1 경사면(142-1)에 조사되는 레이저 빔은 펨토초(10-15)의 극초단파폭의 광자 에너지 빔이며, 이보다 높은 에너지의 레이저가 제1 경사면(142-1)에 조사되게 되는 경우 열에 의한 변형이 발생할 수 있으므로 적당한 에너지의 레이저를 조사하여야 한다.
도 3을 참조하면, 블레이드(140)는 y축 방향 즉, 블레이드(140)가 형성된 방향으로 움직이거나, x축 블레이드(140) 높이 방향에 따라 거리를 조절을 위해 움직일 수 있다.
도 4는 본 발명의 실시예에 따른 펨토초 레이저 유닛(200)을 상세하게 설명하기 위한 도면이다.
본 발명의 실시예에 따른 펨토초 레이저 유닛(200)은 펨토초 레이저(241)를 전송시키는 레이저 전송부(210), 결상 광학계(220) 및 스테이지(230)를 포함할 수 있다.
이 경우, 레이저 전송부(210)는 레이저발진기(211), 셔터(212), 빔 익스펜더(216) 및 미러(221)를 포함할 수 있다.
레이저 발진기(211)는 펨토초 레이저(241)를 발진시키는 장치로서, 펄스 방사시간이 10-15 m/s 이하인 극초단펄스를 발진하여 레이저 에너지의 발진 밀도를 매우 크게 형성시킨 레이저이다.
한편, 일반적으로 펨토초 레이저가 1mJ의 광에너지를 가지고 100펨토초 이하의 펄스 방사시간을 가지면 레이저 빔의 에너지 밀도는 대략 10 기가와트의 수준에 달해 어떠한 재질의 가공도 가능하게 된다. 또한 펨토초 레이저와 같이 극초단 펄스 레이저빔을 가공물에 방사하면 재료의 구성격자에 다광자 흡수 현상(multi-photon absorption)이 발생한다. 이 때 원자의 들뜸 현상이 일어나는 동안 광자가 주위의 구성격자에 열을 전달하는 시간보다 입사 펄스가 짧기 때문에 블레이드가 식각되는 동안 발생할 수 있는 열확산으로 인한 가공 정밀도의 저하, 재질의 물리/화학적 변화 및 가공부위의 일부분 용융 등의 기존 레이저 가공의 문제점이 해결될 수 있다.
셔터(212)는 레이저 발진기(211)에서 주사되는 레이저를 차단시키거나 통과시키켜 집중도와 효율을 높이도록 하며 상기 셔터(212)는 빔 익스펜더(216)의 전후 어느 곳에 설치하여도 무방하나 본 실시 예에서는 앞에 설치된 것으로 기재하였다.
빔 익스펜더(216)는 빔을 확대하는 역할을 하는데 빔의 에너지로 인하여 빔을 전송하는 광학계의 손상을 방지하고 컴퓨터(120)의 제어를 받는 모터에 의하여 배율을 조정할 수 있다. 예컨대, 빔 익스펜더(216)는 최초에 5um 이하의 크기를 가지는 펨토초 레이저 빔의 크기를 가로 세로 50um 이상의 크기를 가지도록 빔의 크기를 늘려준다.
결상 광학계(220)는 제 1 및 제 2 스플리터(215, 225), 결상 슬리트(224), 및 이동식 대물렌즈(222)를 포함한다.
한편, 제1 스플리터(215)는 조준 빔(223)과 펨토초 레이저 빔이 동축 상에 입사될 수 있도록 하는 역할을 수행한다.
조준 빔(223, aiming beam)은 레이저 발진기(211)에서 나온 펨토초 레이저 빔이 블레이드(140)의 식각을 원하는 부분에 정확하게 입사될 수 있도록 가이드해 주는 역할을 수행한다. 예를 들어, 조준 빔(223)은 동축 He-Ne 레이저 빔을 사용할 수 있다.
결상 슬리트(224)는 펨토초 레이저(241)가 사각형의 균일한 에너지 분포를 가지도록 레이저 발진기(211)에서 생성한 레이저의 에너지 분포를 성형한다. 결상 슬리트(224)는 예컨대, 사각형의 이동형 슬리트(Movable Slit)인 정밀 결상 슬리트 시스템을 이용할 수 있다.
도 5에 나타낸 바와 같이, 펨토초 레이저 빔은 기본적으로 큰 에너지를 인가하게 되면 빔의 사이즈가 커질 수 있으나, 에너지가 과도하게 인가되어 식각 시 식각하려는 부위의 주변 부위가 용융되어 도 5의 (c)와 같이 될 수 있다. 한편, 에너지가 작은 상태(도 5(a))에서는 식각 자체가 제대로 진행되지 않으므로, 도 5(b)와 같이 정상적인 식각이 일어나기 위해서는 빔 사이즈가 대략 5um 내외로 한정적이다.
이 때, 도 10에서와 같이 결상 슬리트(224)를 통과해 성형된 빔(241-1)은 블레이드(140)의 제1 경사면(142-1) 상의 결함 및 블레이드(140)의 진직도(대략 25um 이하)에도 불구하고 용이하게 정렬(align)될 수 있는 대략 50um 이하의 크기로 레이저 빔의 크기를 가진다. 여기서, 빔의 크기가 50um 이하로 정해지는 이유는 결함의 크기는 대략 1um 이하의 정도로 연삭이 되지만 진직도에 의하여 블레이드 날의 좌측과 우측의 높이 차가 대략 25um 이하의 오차를 가질 수 있기 때문이다. 일반적으로 진직도가 25um 이상이 되는 블레이드는 불량으로 처리되므로, 빔의 크기는 50um 이하로 정해지는 것이 바람직하다. 또한, 빔의 크기가 너무 커질 경우에는 크게 레이저의 밀도가 낮아지기 때문에 식각력이 크게 감소할 수 있으므로, 빔의 크기는 50um 이하로 정해지는 것이 바람직하다.
또한, 결상 슬리트(224)는 가공의 용이함을 위하여, 균일한 에너지 분포 예컨대, 정사각의 형태를 가지는 에너지 분포를 가지도록 펨토초 레이저(241)를 성형할 수 있다. 왜냐하면, 블레이드 연삭 시, 가공면이 동일한 시간동안 펨토초 레이저에 노출되게 하기 위해서는 정사각형의 에너지 분포를 가지는 것이 유리하기 때문이다.
도 6 및 도 7을 참조하면, 결상 슬리트(224)를 통과한 레이저 빔은 예컨대, 정사각형, 직사각형 또는 원형의 균일한 에너지 분포를 가지도록 성형된다. 바람직하게는, 결상 슬리트(224)를 통과한 레이저 빔(250)은 정사각형의 균일한 에너지 분포를 가지도록 성형된다. 이 때, 기존에는 도 6(a) 및 도 7(a)와 같이 가우시안 형태의 에너지 분포를 가지나, 결상 슬리트(224)를 통하여 도 6(b), 도 7(b)와 같이, 정사각형의 균일한 빔이 형성되게 된다.
블레이드 식각에 펨토초 레이저를 사용하는 것은 종래 기술에는 없었으며, 특히, MLCC 등의 정밀 전자 부품의 커팅을 위한 블레이드 날 식각에 펨토초 레이저를 활용하는 예는 없었다. 왜냐하면, 펨토초 레이저는 에너지의 집중을 위하여 매우 작은 크기를 가지기 때문에 작은 구멍을 절삭하여 생성하는 것에는 유리하지만, 본 발명과 같이 블레이드 날과 같은 대면적을 식각하는 것에는 적합하지가 않았다. 단, 본 발명의 실시예에서는 빔 익스펜더(216) 및 결상 슬리트(224)를 통하여 이러한 문제점을 해결하고 있다.
다시, 도 4를 참조하면, 레이저 전송부(210)는 제2 스플리터(225)를 포함할 수 있다. 제2 스플리터(225)는 레이저 광의 일부를 CCD카메라(234)에 전송하여 빔의 에너지 분포나 크기 등을 제어부(120)에서 확인할 수 있도록 한다. 그리고, 제어부(120)는 결상 슬리트(224)를 제어하여 빔의 에너지 분포나 크기를 제어할 수 있다. 이 경우, CCD카메라(234)는 선명한 촬영을 위하여 조명(미도시)을 더 포함할 수 있다.
한편, 제2 스플리터(225)를 통과한 펨토초 레이저(241)는 레이저를 피 가공물인 블레이드(140)의 제1 경사면(142-1)에 집중시키는 이동식 대물 렌즈(222)를 포함할 수 있다. 이 경우, 이동식 대물 렌즈(222)는 LM 가이드(Linear Motion Guide) 및 모터에 의하여 결상 광학계를 통과한 빔에 평행한 방향(Z 축 방향)으로 이동할 수 있도록 구현된다. Z 축 방향으로 이동하는 경우에는 경통(222-1)이 일점쇄선으로 표시한 부분까지 하방으로 이동하며 이동식 대물 렌즈(222)도 경통(222-1)과 함께 이동하게 된다.
자동 초점 조정 모듈(240)은 자동으로 이동식 대물 렌즈와 블레이드(140) 사이의 초점 거리를 조정하는 역할을 수행한다. 바람직하게는 발광부에서 발광한 레이저 광을 레이저 다이오드에서 수신하여 광삼각법을 이용하여 피가공물인 블레이드(140)까지의 거리를 측정하고, 측정된 거리 정보를 제어부(120)로 송신하고, 이동식 대물 렌즈(222)와 블레이드(140)과의 거리를 조절하여 초점 거리를 조정하게 된다.
한편, 스테이지(230)는 피 가공물인 블레이드(140)를 올려 놓은 상태에서 전후/좌우로 이동할 수 있다. 스테이지(230)는 제어부(120)의 블레이드 위치 제어부(123)에 의하여 구동되며, 이 때 정밀한 제어를 위하여 CCD 카메라의 영상을 이용할 수 있다. CCD 카메라의 영상을 활용한 블레이드 위치의 정렬 제어는 후술하기로 한다.
이 경우, 스테이지(230)를 제어하여 스테이지(230) 위에 놓여진 블레이드를 도 10에 표시한 길이 방향으로 이동시키면서 펨토초 레이저로 블레이드(140)의 제1 경사면(142-1)의 적어도 일부를 식각하게 된다.
레이저 광학계의 정렬 및 청정도를 위하여 경통 내부를 외기와 차폐시키고 내부에 질소 가스 등으로 충진하거나 필터를 사용하여 이물질이 유입되지 않도록 하는 상황에서 이동식 대물 렌즈(222)을 상하로 움직임으로서 촛점거리를 맞추도록 구현되며, 블레이드(140)의 Z축 방향의 이송이 필요 없게 된다.
따라서 상기 스테이지(230)는 블레이드 위치 제어부(123)의 제어에 따라 XY축으로 운동하도록 구성하며 동시에 3개 축을 제어하는 것 보다 가공 정밀도를 높일 수 있도록 하였다.
또한 상기 조명광원(223)은 백색광원 또는 파장 633nm인 He-Ne 레이저를 사용하고 반사미러(228)를 통해 블레이드(140)에 주사되도록 하는 것이 바람직하다.
이하에서는 도 11 및 도 12를 참조하여, 본 발명의 실시예에 따른 스테이지(230)의 제어에 대하여 설명한다.
도 12를 참조하면, 도 12(a)와 같이, 바람직하게는 펨토초 레이저 에너지 분포의 중앙부가 블레이드(140)의 제1 경사면(142-1)의 끝부분에 오도록 블레이드(140)과 레이저빔이 정렬되는 것이 바람직하다.
그러나, 블레이드(140)는 23cm, 3cm 정도의 매우 큰 크기를 가지는 것에 비하여 펨토초 레이저 에너지 분포는 50um 이하, 예를 들면, 20um 정도의 작은 크기를 가지기 때문에 블레이드(140)과 레이저빔이 정렬하는 것은 매우 어렵다.
따라서, 인공지능, 예컨대, 오토인코더(300, Autoencoder)를 활용하여, 스테이지(230)를 제어하여 스테이지(230) 위에 놓여진 블레이드(140)를 레이저 빔과 정렬할 수 있다. 오토인코더(300)는 제어부(120)가 구현된 PC 또는 제어부(120)과 연결된 별도의 서버에 소프트웨어 모듈의 형태로 구현될 수 있다.
이 경우, 오토인코더(300)의 학습영상은 실제 블레이드(140)가 스테이지(230) 위에 놓여진 영상(예컨대, 도 12의 (b) 또는 (c))을 입력(310)으로, 블레이드(140)가 바람직하게 놓여진 도 12의 (a)와 같은 영상을 출력(330)으로 준비하고, 오토인코더(300)를 학습모드에서 학습하게 한다.
학습이후에, 검출 모드에서 오토인코더(300)는 어떤 영상이 들어오더라도 블레이드와 레이저빔이 바람직하게 놓여진 영상을 출력하도록 학습되게 된다.
이후 검출모드에서는 오토인코더(300)에 CCD 카메라(234)에서 촬영한 영상을 입력으로 넣고 그 경우, 바람직하게 놓여진 영상이 어떤 영상인지를 출력하게 된다. 이 때, 오토인코더(300)의 은닉층(320)에서 특징 벡터를 추출하고, 상기 특징 벡터에 기초하여 스테이지(230)의 전후 좌우 방향 제어량을 도출할 수 있다.
도출된 제어량은 제어부(120)의 블레이드 위치 제어부(123)에 전송되어 블레이드 위치 제어부(123)는 펨토초 레이저 에너지 분포의 중앙부가 블레이드(140)의 제1 경사면(142-1)의 끝부분에 오도록 블레이드(140)과 레이저 빔을 정렬할 수 있다.
이하에서는 본 발명의 효과를 도 13 내지 도 15를 참조하여 설명한다. 도 13는 블레이드 엣지부의 단면도이다.
도 13 및 하기의 표 1를 참조하면, 본 발명의 실시예에 따라 레이저로 추가 연삭된 블레이드 엣지부(142)의 각도(A)는 9°이고, 블레이드(140) 날 폭(W)은 0.03이하의 값을 갖는다. 또한, 도 13에 도시된 바와 같이 실시예에 따른 블레이드(140)는 측면 모서리(CP)가 발생하지 않는다.
반면, 하기의 표에 도시된 바와 같이 비교예(즉, 펨토초 레이저에 의한 추가 연삭이 없는 경우)에 따른 블레이드 엣지부(142)의 각도(A)는 18°이고, 블레이드(140) 날 폭(W)은 0.03 이상이다. 또한, 비교예에 따른 블레이드(140)는 측면 모서리(CP)를 갖기 때문에 측면 변곡점에 의한 측면부 손상이 발생할 수 있다.
구분 비교예 실시예
블레이드 각도(A) 18°
블레이드 날 폭(W) 0.03 0.03이하
측면 모서리(CP) 있음 없음
따라서, 펨토초 레이저를 통한 추가 연삭 시, 블레이드(140) 각도가 9°로 크게 감소되었기 때문에 블레이드 엣지 무딤에 따른 절단부하를 줄여 칼날의 수명이 크게 증가될 수 있다는 것을 알 수 있다. 여기서, 절단부하가 줄어든다는 것은 블레이드(140)가 부품을 절단할 때에 부품과 블레이드(140) 사이에서 발생하는 마찰 계수가 감소한다는 것으로 이해되는 것이 바람직할 것이다.
도 14는 비교예 및 실시예에 따른 블레이드의 사시도이다. 도 14 (c)는 도 14 (a) 및 도 14 (b)를 설명하기 위한 도면으로, 제1 경사면(142-1)을 포함하는 블레이드(140)의 일부를 확대한 도면이다. 도 14 (a)는 비교예에 따른 블레이드(140)의 결함을 설명하기 위한 도면으로, 도 14(c)의 A 부분 및 B 부분의 단면을 나타낸 것이고, 도 14 (b)는 본 발명의 실시예에 따른 블레이드(140)의 결함을 설명하기 위한 도면으로, 도 14(c)의 A 부분 및 B 부분의 단면을 나타낸 것이다.
도 14 (a)는 비교예로서, 레이저 가공 전 블레이드(140) 즉, 연삭휠(112)에 의한 연삭만 진행되었을 경우를 나타낸 것으로 블레이드 엣지부(142)의 일 측에는 굴곡진 단면이 발생하는 것을 볼 수 있다. 블레이드(140)에 굴곡이 진 현상은 블레이드(140)에 결함이 발생한 것으로 판단하고 이때, 결함의 크기는 도 14 (a)의 B-B섹션을 나타낸 단면도에서의 사선패턴이 표시된 영역 상부에 배치된 영역으로 매우 크게 나타난다는 것을 알 수 있다.
도 14 (b)를 참조하면, 블레이드(140)의 일 측에도 굴곡진 단면, 즉, 결함이 발생한 것을 알 수 있다. 여기서, 결함의 크기는 도 14 (b)의 B-B섹션을 나타낸 단면도에서 사선패턴이 표시된 영역 상부에 배치된 영역인 것으로 볼 수 있다.
단, 도 14 (a)와 도 14 (b)를 비교하면 실시예에 따른 블레이드(140)의 결함 영역의 크기가 비교예에 따른 블레이드(140)의 결함 크기에 비하여 훨씬 감소된 것을 알 수 있다. 다시 말해, 블레이드 엣지부(142)를 연삭한 후 레이저 전송부(210)를 이용하여 추가 연삭하는 경우에는 블레이드(140)에 발생하는 결함의 크기를 최소화할 수 있다.
따라서, 본 발명의 실시예에 따른 레이저를 이용한 초정밀 블레이드(140) 가공 장치는 레이저 가공을 통해 블레이드(140)의 강도를 높여 결함을 최소화함으로써 블레이드(140)의 정밀도를 향상시킬 수 있다. 또한, 칼날의 각도를 줄여서 절단 부하를 함께 감소시켜 블레이드의 수명을 크게 증가시킬 수 있다. 또한, 블레이드 엣지부(142)의 강도를 강화시켜 블레이드의 불량률을 최소화할 수 있는 효과가 있다.
도 15를 참조하면, 기존 기술인 일반 연삭이나 ELID 연삭 기술에서는 버(Burr) 또는 치핑(Chipping)이 발생할 수 있다. 그러나, 본 발명의 펨토초 레이저 미세 가공에 따르면, 버 나 치핑이 발생한 이후에 펨토초 레이저를 통하여 버나 치핑등을 제거하기 때문에 이러한 문제점들이 해결될 수 있다.
또한, 기존의 연삭에서 발생한 이물질들도 블레이드(140)를 이용한 부품 커팅 시 절단 부하를 증가시키면서 절단된 부품을 불량으로 만들 수 있으나, 펨토초 레이저는 추가적인 식각 파티클이 발생하지 않기 때문에 추가적인 레이저 미세 가공을 통하여 이물들이 완전히 제거됨을 알 수 있다.

Claims (6)

  1. 연삭휠을 이용하여 블레이드 엣지부를 1차 연삭하되, 상기 연산휠의 회전방향과 수직하는 면으로 상기 블레이드 엣지부를 1차 연삭하는 단계; 및
    상기 연삭된 블레이드 엣지부의 길이 방향을 따라 펨토초 레이저를 조사하여 상기 블레이드 엣지부의 적어도 일부를 2차 식각하는 단계;를 포함하되,
    상기 2차 식각하는 단계는 상기 펨토초 레이저를 발진하는 단계; 상기 펨토초 레이저의 에너지 분포의 크기를 증가시키는 단계; 상기 펨토초 레이저의 에너지 분포를 변형하는 단계; 상기 펨토초 레이저의 에너지 분포의 중앙부를 상기 블레이드 엣지부의 끝부분에 정렬하는 단계; 상기 펨토초 레이저의 진행 방향을 변경하고 이동식 대물 렌즈를 통하여 상기 블레이드 엣지부에 조사하는 단계; 및 상기 블레이드가 놓여진 스테이지를 상기 블레이드의 길이 방향으로 이동시켜 펨토초 레이저를 조사하는 단계;를 포함하며,
    상기 블레이드 엣지부는 제1경사면과 제2경사면을 가지며, 상기 제2경사면은 상기 1차 연삭하는 단계를 통하여 형성되고, 상기 제1경사면은 상기 2차 식각하는 단계를 통하여 형성되며, 상기 제1경사면은 상기 제2경사면보다 완만한 경사를 이루도록 형성되는, 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
  2. 제1항에 있어서,
    상기 펨토초 레이저의 에너지 분포를 변형하는 단계는 집광 렌즈 및 비구면 원통렌즈를 사용하여 가우시안 분포를 가지는 펨토초 레이저 빔을 사각형의 에너지 분포를 가지는 펨토초 레이저 빔으로 변형하는 단계를 포함하는,
    펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
  3. 제2항에 있어서,
    상기 펨토초 레이저의 에너지 분포는 정사각형인,
    펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
  4. 제3항에 있어서,
    상기 펨토초 레이저의 에너지 분포의 정사각형의 한 변은 50um 이하인,
    펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
  5. 제1항에 있어서,
    상기 펨토초 레이저의 에너지 분포의 중앙부를 상기 블레이드 엣지부의 끝부분에 정렬하는 단계는, CCD 카메라가 상기 블레이드와 상기 펨토초 레이저가 정렬된 것을 촬영하는 단계와, 촬영된 영상을 오토인코더에 입력하여 특징 벡터를 추출하는 단계와, 상기 특징 벡터에 기초하여 블레이드의 위치를 제어하는 제어량을 도출하는 단계와, 상기 도출된 단계에 기초하여 블레이드가 놓여진 스테이지를 제어하여 상기 블레이드 엣지부와 상기 펨토초 레이저를 정렬하는 단계를 포함하는,
    펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
  6. 제5항에 있어서,
    상기 오토인코더는 상기 CCD 카메라로부터 상기 블레이드와 상기 펨토초 레이저가 정렬된 것을 촬영하여 입력으로서 입력받고,
    상기 촬영된 영상을 오토인코더에 입력하여 특징 벡터를 추출하는 단계는 상기 오토인코더가 상기 펨토초 레이저의 에너지 분포의 중앙부가 상기 블레이드 엣지부의 끝부분에 정상적으로 정렬된 영상을 출력하도록 학습되는 단계를 포함하는
    펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공 방법.
PCT/KR2019/006105 2018-11-27 2019-05-22 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법 WO2020111411A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19890063.1A EP3791996B1 (en) 2018-11-27 2019-05-22 Method of processing superfine blade edge using femtosecond laser
US16/972,484 US11938568B2 (en) 2018-11-27 2019-05-22 Method for processing superfine blade edge using femtosecond laser
CN201980023816.7A CN111971145B (zh) 2018-11-27 2019-05-22 使用飞秒激光的超精密刀刃加工方法
JP2020572368A JP7040824B2 (ja) 2018-11-27 2019-05-22 フェムト秒レーザーを用いた超精密ブレードエッジ加工方法
PH12020551640A PH12020551640A1 (en) 2018-11-27 2020-10-02 Method for processing superfine blade edge using femtosecond laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180148258A KR101976441B1 (ko) 2018-11-27 2018-11-27 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법
KR10-2018-0148258 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020111411A1 true WO2020111411A1 (ko) 2020-06-04

Family

ID=67775278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006105 WO2020111411A1 (ko) 2018-11-27 2019-05-22 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법

Country Status (7)

Country Link
US (1) US11938568B2 (ko)
EP (1) EP3791996B1 (ko)
JP (1) JP7040824B2 (ko)
KR (1) KR101976441B1 (ko)
CN (1) CN111971145B (ko)
PH (1) PH12020551640A1 (ko)
WO (1) WO2020111411A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683009A (zh) * 2022-04-27 2022-07-01 佛山仙湖实验室 一种飞秒激光制备掩膜版的方法
CN115500143B (zh) * 2022-11-02 2023-08-29 无锡君创飞卫星科技有限公司 一种具有激光雷达的割草机控制方法及装置
KR102588275B1 (ko) * 2023-04-10 2023-10-12 지이티에스 주식회사 레이저를 이용한 프릿 실링 시스템
CN117548812B (zh) * 2024-01-11 2024-03-22 济南京华金属制品有限公司 一种脚手架生产用钢管切割装置及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285924A (ja) * 1998-04-03 1999-10-19 Akazawa Kikai Kk 金型用加工システム
KR100762074B1 (ko) 2000-06-20 2007-10-01 리켄 미세형상 가공용 이엘아이디 연삭장치
KR100917140B1 (ko) 2002-02-07 2009-09-15 더 글리슨 웍스 절삭 블레이드를 연삭하는 방법
JP2011000667A (ja) * 2009-06-17 2011-01-06 Fukuoka Institute Of Technology 高硬度材の加工装置及び加工方法
KR20120043850A (ko) * 2010-10-27 2012-05-07 삼성전자주식회사 레이저 광학계 및 이를 가지는 리페어 장치 및 방법
KR101478048B1 (ko) 2014-08-27 2014-12-31 주식회사 21세기 나이프 연삭용 전해 인프로세스 드레싱 연삭장치
KR20150121340A (ko) * 2014-04-18 2015-10-29 한국기계연구원 빔 쉐이핑 및 펄스 횟수 조절을 이용하여 박막 가공 깊이를 제어하는 레이저 가공 방법
JP2018126788A (ja) * 2013-03-15 2018-08-16 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザアブレーション装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3164830D1 (en) * 1980-04-10 1984-08-23 Lasag Ag Method of deburring a sharp instrument, apparatus to use the method and sharp instrument obtained by the method
JPS61189885A (ja) * 1985-02-18 1986-08-23 ジエロ−ム、エツチ、レメルソン 切刃を形成する方法および切刃の改良法ならびにそのための装置
JP3013448B2 (ja) * 1991-01-16 2000-02-28 住友電気工業株式会社 多結晶ダイヤモンド切削工具およびその製造方法
US5471970A (en) * 1994-03-16 1995-12-05 Diamant Boart, Inc. Method of manufacturing a segmented diamond blade
GB2365372B (en) * 1998-05-06 2002-10-09 Izard Ind Ltd Improvements in laser cut saw blades
JP4741056B2 (ja) * 2000-06-05 2011-08-03 株式会社貝印刃物開発センター 刃部材及びその刃先の製造方法
US7140113B2 (en) 2001-04-17 2006-11-28 Lazorblades, Inc. Ceramic blade and production method therefor
US20050028389A1 (en) * 2001-06-12 2005-02-10 Wort Christopher John Howard Cvd diamond cutting insert
US6701627B2 (en) * 2001-07-26 2004-03-09 American Saw & Mfg. Company, Inc. Composite utility knife blade
EP1437806B1 (en) * 2001-10-16 2014-11-19 Kataoka Corporation Pulse oscillation solid-state laser apparatus and laser machining apparatus
JP3789802B2 (ja) * 2001-10-19 2006-06-28 富士通株式会社 半導体装置の製造方法
US20050155956A1 (en) * 2002-08-30 2005-07-21 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
US6903304B1 (en) * 2003-09-12 2005-06-07 Asat Ltd. Process for dressing molded array package saw blade
KR101074408B1 (ko) * 2004-11-05 2011-10-17 엘지디스플레이 주식회사 펨토초 레이저 발생장치 및 이를 이용한 기판의 절단방법
TWI380868B (zh) * 2005-02-02 2013-01-01 Mitsuboshi Diamond Ind Co Ltdl Fine processing method of sintered diamond using laser, cutter wheel for brittle material substrate, and method of manufacturing the same
JP2006239817A (ja) 2005-03-03 2006-09-14 Mitsubishi Materials Corp 切削工具及びインサート
JP2006297458A (ja) 2005-04-22 2006-11-02 Hikari Physics Kenkyusho:Kk バイト加工方法及び該バイトを用いた加工装置
WO2008087612A1 (en) * 2007-01-19 2008-07-24 Dutch Diamond Technologies B.V. Cutting disk for forming a scribed line
CN101646524A (zh) * 2007-02-23 2010-02-10 康宁股份有限公司 热边缘精整
CN101767252B (zh) * 2010-01-06 2012-10-03 北京沃尔德超硬工具有限公司 一种激光工具刃磨方法及工具刃磨机
JP2012006135A (ja) * 2010-06-28 2012-01-12 Mitsubishi Materials Corp エンドミルおよびその製造方法
US20110147350A1 (en) * 2010-12-03 2011-06-23 Uvtech Systems Inc. Modular apparatus for wafer edge processing
JP5956855B2 (ja) * 2012-07-04 2016-07-27 日本航空電子工業株式会社 切れ刃エッジの加工方法及び器具の製造方法
CN103465187A (zh) * 2013-09-29 2013-12-25 哈尔滨工业大学 微结构化大磨粒金刚石砂轮的制造方法
JP2015085336A (ja) 2013-10-28 2015-05-07 三菱マテリアル株式会社 レーザ加工方法及び加工装置
JP2016175141A (ja) 2015-03-19 2016-10-06 三菱マテリアル株式会社 硬質炭素被膜付切削工具
CN105880733B (zh) * 2016-05-11 2018-04-13 蔡锦霞 一种锯刀削切结构的激光蚀刻工艺
EP3463688A1 (en) 2016-05-31 2019-04-10 Edgewell Personal Care Brands, LLC Pulsed laser deposition of fluorocarbon polymers on razor blade cutting edges
JP7033867B2 (ja) 2017-08-31 2022-03-11 イムラ アメリカ インコーポレイテッド 人工ダイヤモンドコーティング領域を処理する方法及びシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285924A (ja) * 1998-04-03 1999-10-19 Akazawa Kikai Kk 金型用加工システム
KR100762074B1 (ko) 2000-06-20 2007-10-01 리켄 미세형상 가공용 이엘아이디 연삭장치
KR100917140B1 (ko) 2002-02-07 2009-09-15 더 글리슨 웍스 절삭 블레이드를 연삭하는 방법
JP2011000667A (ja) * 2009-06-17 2011-01-06 Fukuoka Institute Of Technology 高硬度材の加工装置及び加工方法
KR20120043850A (ko) * 2010-10-27 2012-05-07 삼성전자주식회사 레이저 광학계 및 이를 가지는 리페어 장치 및 방법
JP2018126788A (ja) * 2013-03-15 2018-08-16 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザアブレーション装置
KR20150121340A (ko) * 2014-04-18 2015-10-29 한국기계연구원 빔 쉐이핑 및 펄스 횟수 조절을 이용하여 박막 가공 깊이를 제어하는 레이저 가공 방법
KR101478048B1 (ko) 2014-08-27 2014-12-31 주식회사 21세기 나이프 연삭용 전해 인프로세스 드레싱 연삭장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3791996A4

Also Published As

Publication number Publication date
EP3791996A4 (en) 2021-12-08
US11938568B2 (en) 2024-03-26
CN111971145A (zh) 2020-11-20
JP7040824B2 (ja) 2022-03-23
JP2021516631A (ja) 2021-07-08
US20210268606A1 (en) 2021-09-02
KR101976441B1 (ko) 2019-08-28
CN111971145B (zh) 2022-04-12
PH12020551640A1 (en) 2021-07-05
EP3791996A1 (en) 2021-03-17
EP3791996B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2020111411A1 (ko) 펨토초 레이저를 이용한 초정밀 블레이드 엣지 가공방법
WO2017188639A1 (ko) 레이저 핀 빔을 이용한 취성 소재 가공 방법 및 장치와 이를 위한 광학계
CN203265909U (zh) 修复装置
CN101266409A (zh) 激光加工装置
CN111215765B (zh) 一种紫外激光加工精密感光孔的加工方法及激光设备
JP2012096288A (ja) レーザー光学系とこれを有するリペア装置及び方法
CN114007803B (zh) 激光加工装置及方法、芯片转印装置及方法
KR100492245B1 (ko) 펨토초 레이저를 이용한 고정도 가공장치
CN104842075A (zh) 激光加工槽的检测方法
WO2022055062A1 (ko) 레이저 가공 시스템 및 방법
JP2006007619A (ja) レーザ加工方法及びレーザ加工装置
TWI610350B (zh) 改質層形成方法
KR100921662B1 (ko) Uv 레이저를 이용한 기판의 절단 장치 및 방법
WO2021137488A1 (ko) 레이저 가공 시스템 및 레이저 가공 방법
TWI553981B (zh) 雷射處理設備和方法
CN212858217U (zh) 一种集成同轴视觉的激光切割光学系统
JP2000343257A (ja) 戻り光除去方法と装置
CN114633018A (zh) 使用于光轴倾斜加工的光学透镜模块
JP2009142841A (ja) レーザー加工装置
JP2994968B2 (ja) マスクとワークの位置合わせ方法および装置
KR100811115B1 (ko) 디스플레이 패널용 배기홀 가공방법
US20190009373A1 (en) Laser processing apparatus and laser processing method
JPH1152583A (ja) プロキシミティ露光装置
WO2017204386A1 (ko) 레이저의 틸팅 조사를 이용한 기판 절단 방법 및 장치
JP3175731B2 (ja) レーザcvd装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572368

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019890063

Country of ref document: EP

Effective date: 20201211

NENP Non-entry into the national phase

Ref country code: DE