WO2020111103A1 - 眼科装置 - Google Patents

眼科装置 Download PDF

Info

Publication number
WO2020111103A1
WO2020111103A1 PCT/JP2019/046321 JP2019046321W WO2020111103A1 WO 2020111103 A1 WO2020111103 A1 WO 2020111103A1 JP 2019046321 W JP2019046321 W JP 2019046321W WO 2020111103 A1 WO2020111103 A1 WO 2020111103A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
anterior segment
alignment
coupling element
interference
Prior art date
Application number
PCT/JP2019/046321
Other languages
English (en)
French (fr)
Inventor
福間 康文
英晴 鈴木
ワング・ゼングォ
和宏 大森
誠 藤野
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to JP2020557764A priority Critical patent/JP7212063B2/ja
Priority to CN201980090331.XA priority patent/CN113423323A/zh
Priority to EP19888349.8A priority patent/EP3888527A4/en
Publication of WO2020111103A1 publication Critical patent/WO2020111103A1/ja
Priority to JP2023002600A priority patent/JP7488924B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/101Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the tear film
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission

Definitions

  • the present invention relates to an ophthalmologic apparatus for inspecting the state of tear fluid of an eye to be examined.
  • the Schirmer test which measures the amount of tears, is the most common test method for dry eye. Further, a cornea stained with fluorescein is observed with a slit lamp microscope, and a test for measuring stability of tears (tear layer breakage time (BUT) test) is also performed.
  • Patent Document 1 in order to efficiently obtain specularly reflected light at the anterior segment of the eye to be inspected, a light projecting system is arranged so that light rays are incident substantially perpendicularly to the corneal surface, and Disclosed is an ophthalmologic apparatus in which a diaphragm having a size substantially the same as the exit pupil diameter is arranged near the exit pupil.
  • Patent Document 2 in order to objectively inspect the state of the tear film, an interference pattern formed by the tear film is interfered with a hue of the interference pattern from a time-series image obtained by color photographing. Disclosed is an ophthalmologic apparatus that obtains a series change.
  • Patent Document 3 analyzes the interference pattern for each color component of an image obtained by color photographing the interference pattern formed by the tear film in order to accurately and accurately quantify the progress state of dry eye. Discloses an ophthalmologic apparatus for evaluating the progress of dry eye.
  • Patent Document 4 discloses a dry spot position and shape by processing a plurality of front images obtained by continuously photographing the anterior segment of the eye to objectively evaluate the type of dry eye. , An ophthalmic device for assessing the direction of movement of tear fluid around a dry spot.
  • JP, 9-289970, A JP 2001-309889 A Japanese Patent Laid-Open No. 2005-211173 JP, 2017-136212, A
  • one of the important items in dry eye evaluation is the position of the dry spot (more generally, the distribution of tear film thickness or the distribution of abnormal tear film conditions).
  • the position of the dry spot more generally, the distribution of tear film thickness or the distribution of abnormal tear film conditions.
  • this anterior segment image is an image depicting a wide range of the anterior segment.
  • An object of the present invention is to make it possible to present a location where an abnormality in the state of tears has occurred over a wide range of the anterior segment with good positional accuracy.
  • An ophthalmologic apparatus includes an illumination system, an interference imaging system, an anterior segment imaging system, a first optical path coupling element, and a controller.
  • the illumination system projects the illumination light output from the light source onto the anterior segment of the subject's eye.
  • the interference imaging system has a configuration for imaging the interference pattern formed on the cornea by the illumination light.
  • the anterior segment imaging system has a configuration for capturing an anterior segment on which illumination light is projected.
  • the first optical path coupling element couples the optical path of the interference imaging system and the optical path of the anterior segment imaging system.
  • the control unit causes the display device to display the interference image acquired by the interference imaging system in an overlapping manner with the anterior segment image acquired by the anterior segment imaging system.
  • a second aspect of some exemplary embodiments is the ophthalmologic apparatus of the first aspect, which includes a first lens group arranged on the side of the eye to be inspected with respect to the first optical path coupling element, It further includes a second lens group arranged on the opposite side of the eye to be inspected with respect to the optical path coupling element.
  • the first lens group and the second lens group function as an objective lens of an interferometric imaging system.
  • the first lens group functions as an objective lens of the anterior segment imaging system.
  • a third aspect of some exemplary embodiments is the ophthalmologic apparatus of the second aspect, in which the lens included in the anterior ocular segment imaging system is located closest to the first optical path coupling element. , Are arranged at or near the focal position of the first lens group.
  • a fourth aspect of some exemplary embodiments is an ophthalmic device according to any of the first to third aspects, wherein the second optical path coupling couples the optical path of the illumination system and the optical path of the coherence imaging system. Further includes elements.
  • a fifth aspect of some exemplary embodiments is the ophthalmologic apparatus of the fourth aspect, wherein each of the first optical path coupling element and the second optical path coupling element is a beam splitter.
  • the return light of the illumination light for photographing the interference pattern is reflected by each of the first optical path coupling element and the second optical path coupling element, and is guided to the imaging element of the interference imaging system.
  • a sixth aspect of some exemplary embodiments is the ophthalmologic apparatus of any of the first to fifth aspects, wherein the illumination intensity changing unit changes the intensity of the illumination light projected on the anterior segment. Is further included.
  • a seventh aspect of some exemplary embodiments is the ophthalmic device of any of the first through sixth aspects, further comprising an exciter filter and a barrier filter.
  • the exciter filter generates the excitation light of the fluorescent agent administered to the anterior segment of the eye from the illumination light.
  • the barrier filter selectively passes the fluorescence emitted by the fluorescent agent that has received the excitation light.
  • An eighth aspect of some exemplary embodiments is the ophthalmologic apparatus of any of the first to seventh aspects, further including a projection system, a detection system, and a first alignment unit.
  • the projection system projects alignment light onto the anterior segment along a direction inclined with respect to the optical axis of the optical path from the first optical path coupling element to the subject's eye.
  • the detection system detects the light reflected by the anterior segment of the alignment light.
  • the first alignment unit executes alignment in the direction along the optical axis based on the output from the detection system.
  • a ninth aspect of some exemplary embodiments is the ophthalmologic apparatus of the eighth aspect, wherein the projection system includes an alignment light source that outputs alignment light, and the detection system is in front of the alignment light. It includes an image sensor for detecting light reflected by the eye.
  • the alignment light source and the image sensor are arranged on the side opposite to the eye to be inspected with respect to the first optical path coupling element.
  • a tenth aspect of some exemplary embodiments is the ophthalmic device of any of the first through ninth aspects, further comprising a second alignment section.
  • the second alignment unit performs alignment in the direction orthogonal to the optical axis of the optical path from the first optical path coupling element to the subject's eye, based on the anterior segment image acquired by the anterior segment imaging system.
  • An eleventh aspect of some exemplary embodiments is an ophthalmologic apparatus according to any one of the first to seventh aspects, which includes two or more imaging units and a third alignment unit.
  • the two or more imaging units image the anterior segment from different directions.
  • the third alignment unit performs three-dimensional alignment based on the two or more captured images respectively acquired by the two or more capturing units.
  • the ophthalmologic apparatus of the embodiment captures an interference pattern by capturing an interference pattern representing the state of tear fluid on the cornea, captures the anterior segment image by capturing the anterior segment, and obtains the interference image as the anterior segment image. It is configured to be presented on top of each other. At least a part of the element group for interferometric imaging (interferometric imaging system) is different from the element group for anterior ocular segment imaging (anterior ocular segment imaging system).
  • the presented interference image may be the interference image itself (raw image) acquired by the interference imaging system, or the interference image (processed image) obtained by processing this raw image.
  • the processed image may be, for example, a color map in which the parameter distribution represented by the raw image is represented in pseudo color, or a map in which a region in which the parameter value belongs to a predetermined range is represented.
  • This parameter may be, for example, the thickness of any one of the oil layer, the water layer, and the mucin layer that constitute the tear fluid, the thickness of any two layers, or the thickness of three layers.
  • the processed image may be an image obtained by applying arbitrary image processing such as correction, adjustment, and enhancement to the raw image.
  • the presented anterior segment image may be the anterior segment image itself (raw image) acquired by the anterior segment imaging system, or the anterior segment image (processed image) obtained by processing this raw image.
  • the processed image may be, for example, an image obtained by applying arbitrary image processing such as correction, adjustment, and enhancement to the raw image.
  • the display device that displays the interference image and the anterior segment image may or may not be included in the ophthalmologic apparatus according to the embodiment.
  • the display device is a peripheral device of the ophthalmologic apparatus according to the embodiment.
  • image data and “image” based on it are not distinguished.
  • site or tissue of the eye to be inspected and an image representing the same are not distinguished.
  • the “lens” indicates a single lens or a combination of two or more lenses.
  • the “lens group” refers to a group of two or more lenses or a single lens.
  • a “processor” is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (eg, SPLD(SimpleProg)). It means circuits such as (Complex Programmable Logic Device) and FPGA (Field Programmable Gate Array).
  • the processor realizes the function according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • FIGS. 1 An example of the configuration of the ophthalmologic apparatus according to the embodiment is shown in FIGS.
  • the ophthalmologic apparatus 1 superimposes an interference pattern representing the state of tears on the cornea Ec of the eye E, a function of capturing the anterior segment Ea, and an interference image representing the interference pattern on the anterior segment image. It has the function of presenting as.
  • the ophthalmologic apparatus 1 includes an inspection unit 2, a unit moving mechanism 70, a display device 80, an operation device 90, and a computer 100.
  • the computer 100 may be, for example, an embedded system of the ophthalmologic apparatus 1.
  • the inspection unit 2 stores various optical systems and various mechanisms.
  • the exemplary inspection unit 2 includes an illumination system 10, an interference imaging system 20, an anterior segment imaging system 30, a first lens group including two lenses 41 and 42, and a first lens group including two lenses 43 and 44. It includes two lens groups, an optical path coupling element 51, a reflection mirror 52, an optical path coupling element 53, an alignment light source 61, and an image sensor 62.
  • the illumination system 10 is configured to project the illumination light onto the anterior segment Ea of the eye E to be examined.
  • the exemplary illumination system 10 includes an illumination light source 11, a collimating lens 12, an exciter filter 13, and a variable filter 14.
  • the optical path of the illumination system 10 includes an illumination light source 11, a collimator lens 12, an exciter filter 13, a variable filter 14, a (optical path coupling element 53,) reflection mirror 52, a lens 44, a lens 43, an optical path coupling element 51, a lens 42, and a lens. It is formed by 41.
  • the illumination light source 11 outputs illumination light.
  • the operation of the illumination light source 11 is controlled by the computer 100.
  • the collimator lens 12 converts the illumination light output from the illumination light source 11 into a parallel light flux.
  • the collimating lens 12 is, for example, a single lens or a combination of two or more lenses.
  • the exciter filter 13 is placed in the optical path when the modality of the anterior segment imaging is fluorescence contrast imaging (shown by the solid line), and is placed outside the optical path in other cases (shown by the dotted line).
  • the exciter filter 13 is moved by the exciter filter moving mechanism 13A.
  • the exciter filter moving mechanism 13A includes an actuator that operates according to a command from the computer 100. This actuator may be, for example, a solenoid actuator.
  • Fluorescent agent (fluorescent dye) is administered to the anterior segment Ea in fluorescence contrast imaging.
  • the exciter filter 13 generates the excitation light of the fluorescent agent from the illumination light. That is, the exciter filter 13 selectively passes the wavelength that excites the fluorescent agent.
  • the fluorescent dye is fluorescein
  • the pass center wavelength of the exciter filter 13 is set to the absorption maximum wavelength of fluorescein of 494 nm or in the vicinity thereof (for example, in the range of 490 to 500 nm).
  • the variable filter 14 is an optical element for changing the intensity (light amount) of the illumination light projected on the eye E to be inspected. Since it takes a certain time (10 seconds or more) to evaluate the time-series change of the interference pattern due to tears, the illumination light so that the subject can keep their eyes open all the time. It would be desirable to be able to adjust the strength.
  • the variable filter 14 is an example of an element for realizing this request.
  • the variable filter 14 may include, for example, one or both of a neutral density filter (ND filter) and a bandpass filter (BPF).
  • ND filter neutral density filter
  • BPF bandpass filter
  • the variable filter 14 includes a single filter or two or more filters.
  • variable filter 14 When the variable filter 14 is composed of a single filter, the variable filter 14 is, for example, an optical filter whose filter characteristics (for example, pass characteristics and absorption characteristics) can be changed continuously or discretely.
  • the control for changing the filter characteristic is performed by the computer 100.
  • variable filter 14 When the variable filter 14 includes two or more filters, these filters are selectively placed in the optical path.
  • the variable filter 14 includes two or more filters mounted on the turret and an actuator that moves (typically rotates) the turret.
  • the actuator may be, for example, a pulse motor that operates according to a command (pulse control signal) from the computer 100.
  • variable filter 14 It is also possible to change the intensity of the illumination light projected on the eye E to be inspected without using the variable filter 14.
  • some exemplary embodiments change the intensity and/or the wavelength band of the illumination light output by the illumination light source (11) to change the illumination light projected on the eye E to be examined. It may be configured to change the intensity. Further, some exemplary embodiments may be configured to change the intensity of the illumination light projected on the eye E by a combination of the control of the illumination light source and the control of the variable filter.
  • any of the two or more filters provided in the variable filter 14 may be the exciter filter 13.
  • the computer 100 controls the variable filter 14 to insert the exciter filter 13 into and out of the optical path. ..
  • the illumination light output from the illumination light source 11 is converted into a parallel light flux by the collimator lens 12.
  • the illumination light that has passed through the collimator lens 12 becomes excitation light by the exciter filter 13, and the intensity of this excitation light is adjusted by the variable filter 14.
  • fluorescence contrast imaging is not applied, the intensity of the illumination light that has passed through the collimator lens 12 is adjusted by the variable filter 14.
  • the illumination light (excitation light) that has passed through the variable filter 14 passes through the optical path coupling element 53, the reflection mirror 52, the lens 44, the lens 43, the optical path coupling element 51, the lens 42, and the lens 41, and the anterior segment Ea. Projected on.
  • the interference imaging system 20 is configured to image the interference pattern formed on the cornea by the illumination light projected on the anterior segment Ea by the illumination system 10.
  • This interference pattern is formed by the illumination light being reflected by the tear fluid layer (layer boundary).
  • the reflected light from the surface of the oil layer of the tear fluid interferes with the reflected light from the back surface, whereby a pattern corresponding to the distribution of the thickness of the oil layer is formed.
  • the interference photographing system 20 includes a diaphragm 21, a telecentric lens 22, and an interference photographing camera 23.
  • the optical path of the interference optical system 20 is formed by a lens 41, a lens 42, an optical path coupling element 51, a lens 43, a lens 44, a reflection mirror 52, an optical path coupling element 53, a diaphragm 21, a telecentric lens 22, and an interference photographing camera 23. There is.
  • the diaphragm 21 is an optical element for limiting (adjusting) the amount of light guided to the interference photographing camera 23.
  • the diaphragm 21 may be a variable diaphragm controlled by the computer 100.
  • the telecentric lens 22 may be, for example, an image-side telecentric lens. As a result, the light rays are incident on the entire imaging surface of the interference photographing camera 23 substantially vertically, so that roll-off and vignetting can be eliminated, and the peripheral light quantity ratio can be made uniform.
  • the telecentric lens 22 is, for example, a single lens or a combination of two or more lenses.
  • the interference photographing camera 23 detects the light passing through the telecentric lens 22 to generate an image (interference image) showing an interference pattern formed on the cornea.
  • the interference photographing camera 23 has sensitivity in at least the visible range.
  • the interferometric camera 23 may be, for example, a color video camera, typically a 3CCD video camera or a 3CMOS video camera. This makes it possible to obtain interference images of various color components.
  • the reflected light of the illumination light projected on the anterior segment Ea by the illumination system 10 includes a lens 41, a lens 42, an optical path coupling element 51, a lens 43, a lens 44, a reflection mirror 52, an optical path coupling element 53, a diaphragm 21, and It is guided to the interference photographing camera 23 via the telecentric lens 22.
  • the anterior segment imaging system 30 is configured to capture the anterior segment Ea on which the illumination light is projected by the illumination system 10.
  • the anterior segment imaging system 30 includes a barrier filter 31, a lens 32, and an anterior segment imaging camera 33.
  • the optical path of the anterior segment imaging system 30 is formed by a lens 41, a lens 42, a (optical path coupling element 51) barrier filter 31, a lens 32, and an anterior segment imaging camera 33.
  • the barrier filter 31 is arranged in the optical path when the modality of anterior segment imaging is fluorescence contrast imaging (state shown by a solid line), and is arranged outside the optical path in other cases (state shown by a dotted line).
  • the barrier filter 31 is moved by the barrier filter moving mechanism 31A.
  • the barrier filter moving mechanism 31A includes an actuator that operates according to a command from the computer 100. This actuator may be, for example, a solenoid actuator.
  • the computer 100 synchronously controls the operation of the exciter filter moving mechanism 13A and the operation of the barrier filter moving mechanism 31A. That is, when the modality of the anterior segment imaging is fluorescence contrast imaging, the computer 100 controls the exciter filter moving mechanism 13A and the barrier filter moving mechanism 31A so that both the exciter filter 13 and the barrier filter 31 are arranged in the optical path. If the modality of the anterior segment imaging is not fluorescence contrast imaging, the computer 100 causes the exciter filter moving mechanism 13A and the barrier filter moving mechanism 31A so that both the exciter filter 13 and the barrier filter 31 are arranged outside the optical path. To control.
  • the fluorescent agent (fluorescent dye) administered to the anterior segment Ea receives the excitation light generated by the exciter filter 13 and emits fluorescence of a specific wavelength.
  • the barrier filter 31 selectively passes the wavelength of this fluorescence.
  • the pass center wavelength of the barrier filter 31 is set to the emission maximum wavelength of fluorescein of 521 nm or in the vicinity thereof.
  • the lens 32 is, for example, an imaging lens that forms an image of light on the light receiving surface of the anterior ocular segment photographing camera 33.
  • the lens 32 may be a (image side) telecentric lens.
  • the lens 32 is, for example, a single lens or a combination of two or more lenses.
  • the lens located closest to the optical path coupling element 51 among the lenses 32 is arranged at or near the focal position of the first lens group including the two lenses 41 and 42.
  • the lens 32 is arranged at or near the rear focal position of the first lens group.
  • the lens closest to the optical path coupling element 51 among these lenses that is, the lens closest to the eye E to be inspected, is the rear focus position of the first lens group. Or, it is arranged in the vicinity thereof.
  • the anterior segment photographing camera 33 images the anterior segment Ea by detecting the light passing through the lens 32. As a result, an anterior segment image is obtained.
  • the anterior segment photographing camera 33 has sensitivity in at least the wavelength region for fluorescence contrast photographing.
  • the anterior segment photographing camera 33 has sensitivity in the visible range and the infrared range, for example.
  • the anterior segment photographing camera 33 may be, for example, a color video camera or a monochrome video camera, and typically a CCD video camera, a 3CCD video camera, a CMOS camera, or a 3CMOS video camera.
  • the first lens group including the two lenses 41 and 42 is arranged on the side of the eye E to be inspected with respect to the optical path coupling element 51.
  • the second lens group including the two lenses 43 and 44 is arranged on the opposite side of the eye E to the optical path coupling element 51.
  • the second lens group is arranged on the interference photographing camera 23 side with respect to the optical path coupling element 51.
  • the lens 41 has, for example, a surface (front surface) on the side of the eye E to be concave or flat, and a surface (rear surface) opposite to the eye E to be convex aspheric. ..
  • the lens 42 is, for example, formed in a convex shape or a flat shape on both the front surface and the rear surface.
  • the lens 43 and the lens 44 form a laminated lens.
  • the lens 43 is, for example, formed in a convex shape on both the front surface and the rear surface.
  • the lens 44 is, for example, formed in a concave shape on both the front surface and the rear surface.
  • Such a lens configuration is for satisfying the following two conditions: (1) Illumination light enters substantially perpendicularly to each position of the cornea Ec; (2) From each position of the cornea Ec. The reflected light of (1) travels in the opposite direction on the substantially same path as the incident path of the illumination light to the position, reaches the lens 41, and is detected by the interference imaging system 20.
  • the path of the illumination light corresponding to each position of the cornea Ec and the path of the reflected light thereof are substantially matched, and as a result, the tear fluid on the curved cornea Ec is It is possible to accurately capture the distribution of the state of from the direction perpendicular to the curved surface.
  • optical system configurations (A) to (C) satisfy the above two conditions. Note that these are also merely examples, and arbitrary modifications (omissions, substitutions, additions, etc.) are allowed.
  • the optical system configuration of this example uses the following three lenses instead of the four lenses 41 to 44 of FIG.
  • the first lens closest to the eye to be inspected has a concave front surface and a convex aspheric rear surface.
  • the second lens adjacent to the first lens is formed in a convex shape on both the front surface and the rear surface.
  • the third lens having the front surface attached to the rear surface of the second lens has a concave front surface and a convex rear surface.
  • the optical system configuration of this example uses the following four lenses instead of the four lenses 41 to 44 of FIG.
  • the first lens closest to the eye to be inspected has a front surface formed into a gently convex surface or a flat surface, and a rear surface formed into a convex aspheric surface.
  • the second lens which is next to the eye to be inspected next to the first lens, has a convex shape on both the front surface and the rear surface.
  • the third lens having the front surface attached to the rear surface of the second lens has a concave front surface and a convex rear surface.
  • the fourth lens whose front surface faces the rear surface of the third lens, has a front surface formed in a convex shape and a rear surface formed in a concave shape.
  • the optical system configuration of this example uses the following five lenses instead of the four lenses 41 to 44 in FIG.
  • the first lens closest to the eye to be inspected has a front surface formed into a flat surface or a concave surface, and a rear surface formed into a convex aspheric surface.
  • the second lens adjacent to the first lens has a front surface formed in a flat shape and a rear surface formed in a convex shape.
  • the third lens adjacent to the second lens is formed in a convex shape on both the front surface and the rear surface.
  • the fourth lens in which the front surface is attached to the rear surface of the third lens has a front surface formed in a concave shape and a rear surface formed in a convex shape.
  • the fifth lens adjacent to the fourth lens has a front surface formed in a convex shape and a rear surface formed in a concave shape.
  • the four lenses 41, 42, 43 and 44 that is, the first lens group and the second lens group function as the objective lens of the interferometric imaging system 20.
  • the two lenses 41 and 42 that is, the first lens group functions as an objective lens of the anterior segment imaging system 30.
  • the interferometric imaging system 20 it becomes possible to make the illumination light incident substantially perpendicularly to each position of the cornea Ec, and the reflected light from each position of the cornea Ec is substantially the same as the incident path. It becomes possible to lead to.
  • the anterior segment imaging system 30 it is possible to secure a wide imaging field of view, that is, to image a wide range of the anterior segment Ea.
  • the light detected by the interferometric imaging system 20 and the light detected by the anterior ocular segment imaging system 30 are both return lights from the anterior ocular segment Ea, but different from each other. Those skilled in the art will understand that it is not easy to configure an optical system to detect each of these different lights by separate optical systems that are configured to meet different requirements. ..
  • the optical path coupling element 51 is an optical element that couples the optical path of the interference imaging system 20 and the optical path of the anterior segment imaging system 30.
  • the optical path coupling element 51 coaxially couples the optical path of the interferometric imaging system 20 and the optical path of the anterior ocular segment imaging system 30 (that is, couples them so that their optical axes intersect each other).
  • the optical path coupling element 51 may be any beam splitter.
  • the interference imaging system 20 uses wideband visible light
  • the anterior segment imaging system 30 uses visible fluorescence (fluorescein), so that a half mirror can be used as the optical path coupling element 51. ..
  • the optical path coupling element 51 also has a function of coupling the optical path of the illumination system 10 and the optical path of the anterior segment imaging system 30.
  • a dichroic mirror can be used as the optical path coupling element 51 when a configuration in which passing light (transmitted light) and reflected light are separated by wavelength is adopted.
  • a polarization beam splitter can be used as the optical path coupling element 51 when a configuration in which transmitted light (transmitted light) and reflected light are separated by polarization is adopted. It should be noted that these are merely examples of the element (first optical path coupling element) for coupling the optical path of the interference imaging system and the optical path of the anterior segment imaging system, and any modification (omission, replacement, addition, etc.) Is acceptable.
  • the reflection mirror 52 bends the optical path of the illumination system 10 and the optical path of the interference imaging system 20.
  • the optical system configuration can be made compact, and as a result, the ophthalmologic apparatus 1 can be made compact.
  • the elements that can be used for this purpose or other purposes are arbitrary, and the configurations that can be adopted are also arbitrary.
  • the position, arrangement angle, number, size, etc. of the reflection mirrors can be appropriately designed.
  • an element different from the reflection mirror may be used.
  • the optical path coupling element 53 is an optical element that couples the optical path of the illumination system 10 and the optical path of the interferometric imaging system 20.
  • the optical path coupling element 53 coaxially couples the optical path of the illumination system 10 and the optical path of the interference imaging system 20, for example.
  • the optical path coupling element 53 may be any beam splitter.
  • a half mirror can be used as the optical path coupling element 53.
  • a dichroic mirror, a polarization beam splitter, or another beam splitter can be used instead of the half mirror if necessary.
  • the light guided by the interferometric imaging system 20 passes through the two beam splitters. , Reflected by both. That is, the light guided by the interference imaging system 20 is reflected by the optical path coupling element 51 and also reflected by the optical path coupling element 53, and is guided to the interference imaging camera 23.
  • This configuration is intended to avoid turbulence of light when passing through the beam splitter. This makes it possible to detect the interference pattern generated on the cornea Ec with high accuracy.
  • the alignment light source 61 and the image sensor 62 are used for alignment (Z alignment) in the direction (Z direction) along the optical axis of the lens 41.
  • the alignment light source 61 projects light (for example, infrared light) for performing Z alignment onto the eye E to be inspected.
  • the light output from the alignment light source 61 is obliquely projected onto the cornea Ec via the lenses 42 and 41.
  • the corneal reflected light of this light is imaged on the light receiving surface of the image sensor 62 by the lens 41 and the lens 42 (and other lenses not shown).
  • the image sensor 62 may be any one-dimensional or two-dimensional image sensor. That is, the image sensor 62 provided in the Z alignment system may be any image sensor in which a plurality of photodetecting elements (photodiodes or the like) are arranged one-dimensionally or two-dimensionally.
  • the image sensor 62 is typically a line sensor.
  • the light traveling from the alignment light source 61 to the lens 42 reaches the lens 42 through a notch, an opening, or a light transmitting portion formed in the optical path coupling element 51, for example.
  • the light traveling from the lens 42 to the image sensor 62 reaches the lens 42 through, for example, a notch, an opening, or a light transmitting portion formed in the optical path coupling element 51.
  • the computer 100 can obtain the position of the cornea Ec (corne apex) based on the position where the image sensor 62 detects light. Further, the computer 100 executes the Z alignment of the inspection unit 2 by controlling the unit moving mechanism 70 based on the obtained position of the cornea Ec (cornea apex).
  • This Z alignment method is an example of an alignment method using optical levers.
  • the unit moving mechanism 70 moves the inspection unit 2 three-dimensionally.
  • the unit moving mechanism 70 is movable in the Z direction (front-back direction), the Z moving mechanism moving the Z stage, and movable in the X direction (horizontal direction) orthogonal to the Z direction.
  • Each of these moving mechanisms includes an actuator (for example, a pulse motor) that operates under the control of the computer 100.
  • the display device 80 functions as a part of the user interface unit and displays information under the control of the computer 100.
  • the display device 80 may be, for example, a liquid crystal display (LCD) or an organic light emitting diode (OLED) display.
  • the operation device 90 functions as a part of the user interface unit and is used to operate the ophthalmologic apparatus 1.
  • the operation device 90 may include various hardware keys (joystick, buttons, switches, etc.) provided in the ophthalmologic apparatus 1.
  • the operation device 90 may include various peripheral devices (keyboard, mouse, joystick, operation panel, etc.) connected to the ophthalmologic apparatus 1.
  • the operation device 90 may also include various software keys (buttons, icons, menus, etc.) displayed on the touch panel.
  • the computer 100 executes various calculations and various controls for operating the ophthalmologic apparatus 1.
  • the computer 100 includes one or more processors and one or more storage devices.
  • As the storage device there are a random access memory (RAM), a read only memory (ROM), a hard disk drive (HDD), a solid state drive (SSD), and the like.
  • RAM random access memory
  • ROM read only memory
  • HDD hard disk drive
  • SSD solid state drive
  • Various computer programs are stored in the storage device, and the processor operates based on the computer programs to realize the arithmetic operations and controls according to the present embodiment.
  • the computer 100 includes an inspection processing unit 110, a display processing unit 120, an illumination intensity change processing unit 130, and an alignment processing unit 140.
  • the inspection processing unit 110 executes processing (calculation, control, etc.) related to the inspection performed by the ophthalmologic apparatus 1.
  • the inspection processing unit 110 is realized by cooperation between hardware including a processor and inspection processing software.
  • the inspection processing unit 110 controls, for example, the illumination light source 11, the exciter filter moving mechanism 13A, the interference photographing camera 23, the barrier filter moving mechanism 31A, and the anterior segment photographing camera 33.
  • the control of the illumination light source 11 includes, for example, turning on and off, changing the output light amount, and changing the output wavelength range.
  • the control of the exciter filter moving mechanism 13A includes, for example, inserting the exciter filter 13 into the optical path and retracting the exciter filter 13 from the optical path.
  • the control of the interferometric camera 23 includes, for example, exposure adjustment, gain adjustment, detection rate adjustment, and selection of detection wavelength range (image sensor to be used).
  • the inspection processing unit 110 controls the diaphragm 21.
  • the control of the barrier filter moving mechanism 31A includes, for example, inserting the barrier filter 31 into the optical path and retracting the barrier filter 31 from the optical path.
  • the control of the anterior segment photographing camera 33 includes, for example, exposure adjustment, gain adjustment, and detection rate adjustment.
  • the inspection processing unit 110 can perform processing and calculation regarding the interference image obtained by the interference imaging camera 23.
  • the inspection processing unit 110 can construct a processed image from a raw image acquired by the interferometric imaging system 20.
  • the processed image may be, for example, a color map in which the parameter distribution represented by the raw image is represented in pseudo color, or a map in which a region in which the parameter value belongs to a predetermined range is represented.
  • This parameter may be, for example, the thickness of any one of the oil layer, the water layer, and the mucin layer that constitute the tear fluid, the thickness of any two layers, or the thickness of three layers.
  • the processed image may be an image obtained by applying arbitrary image processing such as correction, adjustment, and enhancement to the raw image.
  • the inspection processing unit 110 may be capable of executing the processes disclosed in Patent Documents 1 to 4 and other publicly known processes. For example, the inspection processing unit 110 identifies the time series change of the hue of the interference image (interference pattern), evaluates the progress of the dry eye based on the interference pattern of each color component, evaluates the position of the dry spot, and It may be possible to carry out the evaluation of the shape of the spot and the movement direction of the tear fluid around the dry spot.
  • the inspection processing unit 110 can perform processing and calculation relating to the anterior segment image obtained by the anterior segment photographing camera 33.
  • the inspection processing unit 110 can construct a processed image from a raw image acquired by the anterior segment imaging system 30.
  • the processed image may be an image obtained by applying any image processing such as correction, adjustment, and enhancement to the raw image.
  • the display processing unit 120 performs processing for displaying information on the display device 80.
  • the display processing unit 120 is realized by cooperation between hardware including a processor and display processing software.
  • the display processing unit 120 controls, for example, presenting the second layer on the first layer and displaying the first information on the first layer.
  • the control and the control for displaying the second information on the second layer are executed.
  • the display processing unit 120 may execute a process of combining (embedding) the second information with the first information and a process of displaying the combined information obtained thereby.
  • the illumination intensity change processing unit 130 executes a process for changing the intensity of the illumination light projected on the anterior segment Ea by the illumination system 10.
  • the illumination intensity change processing unit 130 is realized by cooperation between hardware including a processor and illumination intensity change processing software.
  • the illumination intensity change processing unit 130 may, for example, perform control for changing the filter characteristic of the variable filter 14 or arrange two or more filters in the optical path. Control to be performed.
  • the illumination intensity change processing unit 130 Controls the illumination light source (11).
  • the illumination intensity change processing unit 130 performs control for changing the illumination intensity according to a signal from the operation device 90. That is, the ophthalmologic apparatus 1 may be configured so that the illumination intensity can be changed manually.
  • the operation device 90 is operated by an examiner or a subject.
  • the variable range of the illumination intensity can be set in advance to a range in which at least one of the interference imaging and the anterior ocular segment imaging can be suitably performed.
  • the illumination intensity change processing unit 130 uses the information of the illumination intensity applied to the subject (the subject's eye E) in the past examination as the subject. May be configured to be acquired from medical information (eg, electronic medical record) associated with, and to reproduce this illumination intensity.
  • medical information eg, electronic medical record
  • the illumination intensity change processing unit 130 is for asking the subject about the degree of glare when the illumination light is projected on the anterior segment Ea. It may be configured to output visual information or auditory information to the ophthalmologic apparatus 1 and adjust the illumination intensity according to the response of the subject.
  • the illumination intensity change processing unit 130 when the illumination light is projected on the anterior segment Ea, the illumination intensity based on the biological signal of the subject. May be configured to adjust.
  • This biological signal may be, for example, miosis, brain waves, heartbeats, sweating, facial expressions, and the like.
  • the ophthalmologic apparatus 1 includes, for example, a device for detecting any biological signal, or is connected to the device.
  • the miosis can be detected by, for example, the anterior segment photographing camera 33 and the illumination intensity change processing unit 130.
  • the electroencephalogram can be detected by, for example, an electroencephalograph.
  • the heartbeat can be detected by, for example, an electrocardiograph or a pulse oximeter. Perspiration can be detected by, for example, a perspiration meter.
  • the facial expression can be detected by, for example, the camera and the illumination intensity change processing unit 130. Biological signals different from these examples can be detected by the corresponding devices.
  • the alignment processing unit 140 executes processing relating to position adjustment (alignment) of the optical system with respect to the eye E to be inspected.
  • the alignment processing unit 140 is realized by cooperation between hardware including a processor and alignment processing software.
  • the ophthalmologic apparatus 1 may be capable of performing alignment in the X direction and the Y direction (XY alignment) in addition to the Z alignment.
  • the alignment processing unit 140 executes a process regarding Z alignment and a process regarding XY alignment.
  • the alignment processor 140 can control the alignment light source 61 and the image sensor 62.
  • the control of the alignment light source includes turning on and off, light amount adjustment, diaphragm adjustment, and the like.
  • the control of the image sensor 62 includes exposure adjustment, gain adjustment, detection rate adjustment, and the like.
  • the alignment processing unit 140 takes in a signal output from the image sensor 62 and specifies the projection position of light on the light receiving surface of the image sensor 62 based on this signal.
  • the alignment processing unit 140 obtains the position of the corneal apex of the eye E based on the specified projection position, and controls the unit moving mechanism 70 based on this to move the inspection unit 2 in the front-back direction (Z alignment).
  • the ophthalmologic apparatus 1 may be configured to perform the XY alignment based on the anterior segment image acquired by the anterior segment imaging system 30.
  • the alignment processing unit 140 first analyzes the anterior segment image to detect a feature point (for example, the center of the pupil or the center of gravity of the pupil). Next, the alignment processing unit 140 calculates the deviation of the feature point with respect to a predetermined position (for example, the frame center) of the frame of the anterior segment image. Then, the alignment processing unit 140 controls the unit moving mechanism 70 to move the inspection unit 2 in the horizontal direction and/or the vertical direction so that the calculated deviation is canceled (XY alignment). Thereby, XY alignment can be performed so that the characteristic point of the anterior segment is located at the predetermined position of the frame.
  • a feature point for example, the center of the pupil or the center of gravity of the pupil.
  • the alignment processing unit 140 calculates the deviation of the feature point with respect to a predetermined position (for example, the frame center) of the frame of the anterior segment image. Then, the alignment processing unit 140 controls the unit moving mechanism 70 to move the inspection unit 2 in the horizontal direction and/or the vertical direction so that the calculated deviation is canceled (XY alignment
  • the computer 100 may include elements different from the elements shown in FIG.
  • computer 100 may include a communication interface.
  • the communication interface has a function of communicating with an external device (not shown).
  • the external device may include, for example, any ophthalmic device, a device (reader) that reads information from a recording medium, and a device (writer) that writes information to the recording medium.
  • the external device may include any information processing device such as a hospital information system (HIS) server, a DICOM (Digital Imaging and Communication in Medicine) server, a doctor terminal, a mobile terminal, a personal terminal, a cloud server, and the like.
  • HIS hospital information system
  • DICOM Digital Imaging and Communication in Medicine
  • the intensity of the illumination light projected on the anterior segment Ea is adjusted by controlling the variable filter 14 or the like.
  • the illumination intensity adjustment can be performed, for example, as described above.
  • an interferometric pattern representing the state (eg, thickness distribution) of tear fluid on the cornea Ec is imaged.
  • Interferometric imaging is performed, for example, over a preset time. Alternatively, the interferometric imaging is performed until the state of the tear fluid on the cornea Ec reaches a predetermined state (for example, until the tear layer is sufficiently destroyed).
  • the anterior ocular segment imaging is executed, for example, at least in part of the period of the interferometric imaging. This makes it possible to obtain an anterior segment image at approximately the same time as a certain interference image obtained by interferometry.
  • anterior ocular segment imaging is performed during the entire interferometric imaging period, such as when performing coherent imaging and anterior ocular segment imaging in parallel, temporally corresponding to each of the interferometric images acquired by interferometric imaging An anterior segment image can be obtained.
  • the display processing unit 120 captures, for example, an interference image and an anterior segment image that are acquired almost simultaneously with each other.
  • the display processing unit 120 may capture the interference image and the anterior segment image that are acquired at timings that are substantially different from each other.
  • the display processing unit 120 causes the display device 80 to display the interference image and the anterior segment image captured in step S6. At this time, the display processing unit 120 superimposes and displays the interference image on the anterior segment image.
  • step S6 when the interference image and the anterior segment image that are acquired almost at the same time are captured, the interference image can be overlaid on the anterior segment image without performing registration between these images.
  • step S6 when an interference image and an anterior segment image acquired at substantially different timings are captured, it is desirable to perform registration between these images.
  • the contents drawn in the interference image and the contents drawn in the anterior segment image are different, it is difficult to directly compare these images and perform registration.
  • the anterior segment image (auxiliary anterior segment image) acquired almost simultaneously with this interference image is used.
  • the selection of the auxiliary anterior segment image can be performed based on, for example, the synchronization between the interferometric image capturing and the anterior segment image capturing described above.
  • the display processing unit 120 can perform registration between the displayed anterior segment image and the auxiliary anterior segment image to obtain the deviation of the latter from the former. Furthermore, the display processing unit 120 can perform registration between the interference image and the displayed anterior segment image so that the obtained deviation is canceled. This is the end of this operation example (end).
  • FIGS. 5A, 5B and 6 show an example of the external appearance of the ophthalmologic apparatus according to this modification.
  • the configuration shown in FIG. 6 can be applied instead of the configuration shown in FIG.
  • the configuration of the ophthalmologic apparatus according to the present modification is, for example, that two anterior segment cameras 300A and 300B are provided, that an alignment processing unit 140A is provided instead of the alignment processing unit 140, and that alignment is performed.
  • the configuration may be the same as that of the ophthalmologic apparatus 1 of the above embodiment, except that the light source 61 and the image sensor 62 are not provided. However, it is not excluded that the ophthalmologic apparatus according to the present modification has the alignment light source 61 and the image sensor 62.
  • the same reference numerals as in the description of the ophthalmologic apparatus 1 are used unless otherwise specified.
  • the ophthalmologic apparatus according to the modified example includes a chin rest and a forehead support for supporting the subject's face.
  • the ophthalmologic apparatus 1 of the above embodiment may be the same.
  • a drive system and a processing system are stored in the base 310.
  • the base 310 stores the unit moving mechanism 70 and the computer 100 shown in FIG.
  • An optical system and a drive system are stored in a housing 320 provided on the base 310.
  • the housing 320 stores the inspection unit 2 shown in FIG.
  • At least the lens 41 is housed in the lens housing section 330 that is provided so as to project from the front surface of the housing 320.
  • the display device 80 shown in FIG. 1 may be provided in the housing 320.
  • the operation device 90 may be provided on at least one of the base 310 and the housing 320.
  • the front of the housing 320 is provided with two anterior segment cameras 300A and 300B.
  • the two anterior segment cameras 300A and 300B capture the anterior segment Ea of the subject's eye E from two different directions (two different positions).
  • Each of the two anterior segment cameras 300A and 300B includes an image pickup device such as a CCD image sensor or a CMOS image sensor.
  • an image pickup device such as a CCD image sensor or a CMOS image sensor.
  • two anterior segment cameras 300A and 300B are provided on the surface of the housing 320 on the subject side. As shown in FIG. 5A, the two anterior segment cameras 300A and 300B are provided at positions deviated from the optical path passing through the lens 41.
  • anterior segment cameras 300A and 300B are provided, but the number of anterior segment cameras may be any number of 2 or more. However, in consideration of the processing load of the calculation for the three-dimensional alignment, it is sufficient (but not limited to this) as long as the anterior segment can be imaged from two different directions.
  • a movable anterior segment camera may be provided and anterior segment imaging may be performed sequentially from two or more different positions.
  • two anterior segment cameras 300A and 300B are provided separately from the anterior segment imaging system 30, but one of the two or more anterior segment cameras is the anterior segment imaging system 30. May be.
  • the anterior segment can be photographed substantially simultaneously from two or more different directions.
  • substantially simultaneous means that, in addition to the case where the image capturing timings of two or more anterior segment cameras are simultaneous, for example, the case where there is a discrepancy in the image capturing timing such that eye movements can be ignored. Show. By performing such substantially simultaneous imaging, it becomes possible to acquire two or more anterior segment images when the subject's eye is in substantially the same position and orientation.
  • the shooting with two or more anterior eye cameras may be either video shooting or still picture shooting.
  • shooting a moving image it is possible to realize substantially the same anterior segment shooting as described above by controlling the shooting start timing, the frame rate, and the shooting timing of each frame. ..
  • still image shooting it is possible to realize substantially simultaneous anterior segment imaging by controlling the shooting timings.
  • the two anterior segment images acquired substantially simultaneously by the two anterior segment cameras 300A and 300B are sent to the computer 100.
  • the alignment processing unit 140A obtains the three-dimensional position of the eye E by analyzing two captured images (anterior segment images) obtained substantially simultaneously by the two anterior segment cameras 300A and 300B.
  • This analysis may include identification of feature positions and calculation of three-dimensional positions, as disclosed in US Patent Application Publication No. 2015/0085252, for example. Before these processes, a process of correcting the distortion of the captured image obtained by each of the two anterior segment cameras 300A and 300B may be performed.
  • the alignment processing unit 140A analyzes each of the two anterior segment images that are acquired substantially simultaneously by the two anterior segment cameras 300A and 300B, to detect the anterior segment Ea.
  • a position (called a characteristic position) in the captured image corresponding to a predetermined characteristic portion is specified.
  • This feature is typically the pupil center (or pupil centroid).
  • the alignment processing unit 140A specifies an image region (pupil region) corresponding to the pupil of the eye E based on the distribution of pixel values (for example, brightness values) of the captured image.
  • the pupil is drawn with a lower luminance than other parts, so that the pupil area can be specified by searching an image area having a low luminance.
  • the pupil region may be specified in consideration of the shape of the pupil. That is, the pupil region can be specified by searching for an image region having a substantially circular shape and low luminance.
  • the alignment processing unit 140A identifies the center position of the identified pupil region. Since the pupil is substantially circular as described above, the contour of the pupil region can be specified, the center position of this contour (or its approximate circle or approximate ellipse) can be specified, and this can be set as the pupil center.
  • the alignment processing unit 140A uses the respective positions of the two anterior segment cameras 300A and 300B and the characteristic positions in the two captured images identified by the above processing to determine the subject's eye E.
  • the three-dimensional position of the characteristic part of is calculated. This operation is performed using trigonometry, as described in US Patent Application Publication No. 2015/0085252.
  • the alignment processing unit 140A controls the unit moving mechanism 70 so that the optical axis of the optical system coincides with the axis of the subject's eye E based on the three-dimensional position of the subject's eye E calculated in this way (XY).
  • the unit moving mechanism 70 is controlled so that the distance between the eye E to be inspected and the optical system matches the predetermined working distance (corresponding to Z alignment).
  • the ophthalmologic apparatus includes an illumination system, an interferometric imaging system, an anterior segment imaging system, a first optical path coupling element, and a control unit.
  • the illumination system projects the illumination light output from the light source to the anterior segment of the subject's eye.
  • the illumination system 10 corresponds to the illumination system.
  • the illumination system 10 is configured to project the illumination light output from the illumination light source 11 onto the anterior segment Ea.
  • the interference imaging system captures the interference pattern formed on the cornea by the illumination light projected on the anterior segment by the illumination system.
  • the interference imaging system 20 corresponds to the interference imaging system.
  • the interference imaging system 20 acquires an interference image by imaging the interference pattern formed on the cornea Ec by the illumination light projected on the anterior segment Ea by the illumination system 10.
  • the anterior segment imaging system captures the anterior segment where the illumination light is projected by the illumination system.
  • the anterior segment imaging system 30 corresponds to the anterior segment imaging system.
  • the anterior segment photographing system 30 photographs the anterior segment Ea on which the illumination light is projected by the illumination system 10.
  • the anterior segment imaging system 30 is configured to capture a wide range of the anterior segment Ea from the front.
  • the first optical path coupling element couples the optical path of the interference imaging system and the optical path of the anterior segment imaging system.
  • the optical path coupling element 51 corresponds to the first optical path coupling element.
  • the optical path coupling element 51 is configured to couple the optical path of the interference imaging system 20 and the optical path of the anterior segment imaging system 30. Further, the optical path coupling element 51 couples the optical path of the illumination system 10 and the optical path of the anterior segment imaging system 30.
  • the control unit displays the interference image acquired by the interferometric imaging system on the display device by superimposing it on the anterior ocular segment image acquired by the anterior ocular segment imaging system.
  • the displayed interference image may be a raw image acquired by an interference imaging system or a processed image obtained from this.
  • the display device may be an element of the ophthalmologic apparatus or a peripheral device of the ophthalmologic apparatus.
  • the computer 100 (particularly the display processing unit 120) corresponds to the control unit.
  • the computer 100 is configured to display the interference image acquired by the interference imaging system 20 on the display device 80 so as to be superimposed on the anterior eye image acquired by the anterior eye imaging system 30.
  • the interferometric imaging system and the anterior segment imaging system are separately provided, and both optical paths are coupled to each other by the first optical path coupling element. Therefore, the interference imaging and the anterior segment imaging can be performed almost at the same time. As a result, it is possible to reduce the risk of positional deviation between the interference image and the anterior segment image due to eye movement or body movement.
  • the exemplary embodiment it is possible to image a wide range of the anterior segment by the anterior segment imaging system provided separately from the interference imaging system. As a result, it is possible to reduce the risk of missing an abnormality that occurs at the end of the cornea, and it is possible to efficiently perform the examination.
  • an interference image expressing the state of tear fluid can be displayed in an overlapping manner on the anterior segment image, so that the location and distribution of abnormal tear fluid can be displayed on the anterior segment image. It is possible to display them on top of each other. As a result, the location of the abnormality can be presented to the user in an easily (intuitively) graspable manner.
  • An ophthalmologic apparatus includes a first lens group disposed on a side of an eye to be examined with respect to a first optical path coupling element, and an opposite side of the eye to be examined with respect to the first optical path coupling element. It may further include a second lens group arranged.
  • the first lens group and the second lens group may be configured to function as an objective lens of an interference imaging system, and the first lens group is configured to function as an objective lens of an anterior segment imaging system. May be done.
  • the two lenses 41 and 42 correspond to the first lens group
  • the two lenses 43 and 44 correspond to the second lens group.
  • the four lenses 41 to 44 function as an objective lens of the interference photographing system 22
  • the two lenses 41 and 42 function as an objective lens of the anterior segment photographing system 30.
  • the lens located closest to the first optical path coupling element is located at or near the focal position of the first lens group. Good.
  • the lens located closest to the optical path coupling element 51 is the focal position of the first lens group including the two lenses 41 and 42 or the vicinity thereof. It is located in.
  • the illumination light can be made to enter substantially perpendicularly to each position of the cornea, and the reflected light from each position of the cornea forms an incident path of the illumination light to that position. It can be detected by traveling in substantially the same route in the opposite direction.
  • the path of the illumination light and the path of the reflected light corresponding to each position of the cornea are substantially matched, and as a result, the distribution of the state of tear fluid on the curved cornea can be accurately measured from the direction perpendicular to the curved surface. It becomes possible to capture.
  • the anterior segment imaging system can be arranged near the first optical path coupling element, and further, the anterior segment imaging at or near the rear focal position of the first lens group.
  • a system (lens) can be placed. This makes it possible to expand the imaging field of view of the anterior segment imaging system.
  • the ophthalmologic apparatus may further include a second optical path coupling element that couples the optical path of the illumination system and the optical path of the coherence imaging system.
  • the optical path coupling element 53 corresponds to the second optical path coupling element.
  • the optical path coupling element 53 is configured to couple the optical path of the illumination system 10 and the optical path of the interference imaging system 20.
  • each of the first optical path coupling element and the second optical path coupling element may be a beam splitter. Furthermore, the return light of the illumination light for photographing the interference pattern may be reflected by each of the first optical path coupling element and the second optical path coupling element and guided to the imaging element of the interferometric imaging system. ..
  • each of the optical path coupling element 51 and the optical path coupling element 53 is a beam splitter (half mirror or the like). Further, the return light of the illumination light for photographing the interference pattern is reflected by each of the optical path coupling element 51 and the optical path coupling element 53, and is guided to the interference imaging camera 23 corresponding to the imaging element. Good.
  • the exemplary embodiment configured in this way, it is possible to avoid the turbulence of light when passing through the beam splitter while achieving the compactness of the optical system, so that the interference pattern generated on the cornea can be reduced. It becomes possible to detect with high accuracy.
  • the ophthalmologic apparatus may further include an illumination intensity changing unit that changes the intensity of the illumination light projected on the anterior segment.
  • an illumination intensity changing unit that changes the intensity of the illumination light projected on the anterior segment.
  • the variable filter 14 and the illumination intensity change processing unit 130 correspond to the illumination intensity change unit.
  • the exemplary embodiment configured as described above it is possible to perform the inspection by using the light having the suitable intensity.
  • a test that takes a certain amount of time such as a tear film destruction time (BUT) test
  • BUT tear film destruction time
  • An ophthalmologic apparatus selectively uses an exciter filter that generates excitation light of a fluorescent agent administered to the anterior segment of the eye from illumination light, and fluorescence emitted by the fluorescent agent that receives this excitation light. It may further include a barrier filter for passing through.
  • the exciter filter 13 corresponds to an exciter filter
  • the barrier filter 31 corresponds to a barrier filter.
  • the ophthalmic device may include elements for alignment.
  • the alignment can facilitate the inspection.
  • An example of the configuration for alignment is given below.
  • an ophthalmologic apparatus may include a projection system, a detection system, and a first alignment unit.
  • the projection system projects alignment light onto the anterior segment along a direction inclined with respect to the optical axis of the optical path from the first optical path coupling element to the subject's eye.
  • the detection system detects the reflected light of the alignment light projected on the anterior segment by the projection system.
  • the first alignment unit executes alignment in the direction along the optical axis based on the output from the detection system.
  • the alignment light source 61, the lens 42, and the lens 41 correspond to the projection system. Further, the lens 41, the lens 42, and the image sensor 62 correspond to a detection system. Further, the unit moving mechanism 70 and the alignment processing section 140 correspond to the first alignment section. Z alignment is realized by these elements.
  • the projection system may include an alignment light source that outputs alignment light.
  • the detection system may include an image sensor that detects the reflected light of the alignment light.
  • the alignment light source and the image sensor may be arranged on the opposite side of the eye to be inspected with respect to the first optical path coupling element.
  • the alignment light source 61 corresponds to the alignment light source
  • the image sensor 62 corresponds to the image sensor.
  • the alignment light source 61 and the image sensor 62 are arranged on the opposite side of the eye E to be inspected with respect to the optical path coupling element 51, that is, on the side of the anterior segment imaging system 30.
  • the optical path coupling element 51 may have a notch, an opening, a light-transmitting portion, or the like, through which light may pass through the optical path coupling element 51.
  • the ophthalmologic apparatus may further include a second alignment unit.
  • the second alignment unit performs alignment in the direction orthogonal to the optical axis of the optical path from the first optical path coupling element to the subject's eye, based on the anterior segment image acquired by the anterior segment imaging system.
  • the unit moving mechanism 70 and the alignment processing section 140 correspond to the second alignment section. XY alignment is realized by these elements.
  • an ophthalmologic apparatus includes two or more imaging units and a third alignment unit.
  • the two or more imaging units image the anterior segment from different directions.
  • the third alignment unit performs three-dimensional alignment based on the two or more captured images respectively acquired by the two or more capturing units.
  • the two anterior segment cameras 300A and 300B correspond to two or more imaging units
  • the unit moving mechanism 70 and the alignment processing unit 140A correspond to the third alignment unit.
  • Three-dimensional alignment XYZ alignment is realized by these elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

幾つかの例示的な実施形態の眼科装置は、照明系と、干渉撮影系と、前眼部撮影系と、第1光路結合素子と、制御部とを含む。照明系は、光源から出力された照明光を被検眼の前眼部に投射する。干渉撮影系は、照明光により角膜上に形成される干渉模様を撮影するための構成を有する。前眼部撮影系は、照明光が投射されている前眼部を撮影するための構成を有する。第1光路結合素子は、干渉撮影系の光路と前眼部撮影系の光路とを結合する。制御部は、干渉撮影系により取得された干渉像を前眼部撮影系により取得された前眼部画像に重ねて表示装置に表示させる。

Description

眼科装置
 本発明は、被検眼の涙液の状態を検査するための眼科装置に関する。
 近年、ドライアイ患者が増加している。これは、コンピュータ等のディスプレイを用いて行われる作業(VDT作業)による眼の酷使、冷暖房による空気の乾燥、コンタクトレンズの装着などが原因であると考えられている。
 ドライアイの検査法としては、涙液量を測定するシルマー試験が最も一般的である。また、フルオレセインで染色された角膜をスリットランプ顕微鏡で観察することや、涙液の安定性を測定する検査(涙液層破壊時間(BUT)検査)も行われている。
 ドライアイの検査を行うための装置として、次のものが知られている。特許文献1は、被検眼の前眼部での鏡面反射光を効率よく得るために、角膜表面に対してほぼ垂直に光線が入射するように投光系を配置し、且つ、鏡面反射光の射出瞳径とほぼ同じ大きさの絞りを射出瞳の近傍に配置した眼科装置を開示している。
 特許文献2は、涙液層の状態を客観的に検査するために、涙液層により形成される干渉模様(interference pattern)をカラー撮影して得られた時系列画像から干渉模様の色相の時系列変化を求める眼科装置を開示している。
 特許文献3は、ドライアイの進行状態を高精度且つ的確に定量化するために、涙液層により形成される干渉模様をカラー撮影して得られた画像の色成分毎の干渉模様を解析してドライアイの進行状態を評価する眼科装置を開示している。
 特許文献4は、ドライアイのタイプを客観的に評価するために、被検眼の前眼部を連続的に撮影して得られた複数の正面画像を処理することにより、ドライスポットの位置や形状、ドライスポットの周囲における涙液の移動方向を評価する眼科装置を開示している。
特開平9-289970号公報 特開2001-309889号公報 特開2005-211173号公報 特開2017-136212号公報
 特許文献4にも開示されているように、ドライアイの評価における重要事項の一つにドライスポットの位置(より一般に、涙液の厚みの分布、又は涙液の状態異常の分布)がある。当然であるが、検査の前には、前眼部のどの箇所に異常が発生するかは分からない。よって、角膜の端部に発生する異常を見逃さないためにも、また、検査を効率的に行うためにも、前眼部の広い範囲を観察可能であることが望まれる。
 また、検査結果を提示する際には、前眼部における異常発生箇所を容易に(直感的に)把握できるように、異常の箇所や分布を前眼部画像に重ねて表示することが望まれる。この前眼部画像は、前眼部の広い範囲を描出した画像であることが望ましい。
 更に、眼球運動や体動に起因して干渉模様画像と前眼部画像との間に位置ずれが生じるおそれを考慮すると、異常の箇所や分布を得るための干渉模様の撮影と、前眼部画像を得るための前眼部の撮影とを、ほぼ同時に行うことが望ましい。
 従来の技術では、ドライアイの検査に用いられる眼科装置に関するこれらの要求を満足することは困難であった。
 本発明の目的は、涙液の状態の異常発生箇所を前眼部の広い範囲にわたり良好な位置精度で提示することを可能にすることにある。
 幾つかの例示的な実施形態の第1の態様に係る眼科装置は、照明系と、干渉撮影系と、前眼部撮影系と、第1光路結合素子と、制御部とを含む。照明系は、光源から出力された照明光を被検眼の前眼部に投射する。干渉撮影系は、照明光により角膜上に形成される干渉模様を撮影するための構成を有する。前眼部撮影系は、照明光が投射されている前眼部を撮影するための構成を有する。第1光路結合素子は、干渉撮影系の光路と前眼部撮影系の光路とを結合する。制御部は、干渉撮影系により取得された干渉像を前眼部撮影系により取得された前眼部画像に重ねて表示装置に表示させる。
 幾つかの例示的な実施形態の第2の態様は、第1の態様の眼科装置であって、第1光路結合素子に対して被検眼の側に配置された第1レンズ群と、第1光路結合素子に対して被検眼の反対側に配置された第2レンズ群とを更に含む。第1レンズ群及び第2レンズ群は、干渉撮影系の対物レンズとして機能する。第1レンズ群は、前眼部撮影系の対物レンズとして機能する。
 幾つかの例示的な実施形態の第3の態様は、第2の態様の眼科装置であって、前眼部撮影系に含まれるレンズのうち最も第1光路結合素子の側に位置するレンズが、第1レンズ群の焦点位置又はその近傍に配置されている。
 幾つかの例示的な実施形態の第4の態様は、第1~第3の態様のいずれかの眼科装置であって、照明系の光路と干渉撮影系の光路とを結合する第2光路結合素子を更に含む。
 幾つかの例示的な実施形態の第5の態様は、第4の態様の眼科装置であって、第1光路結合素子及び第2光路結合素子のそれぞれはビームスプリッタである。干渉模様を撮影するための照明光の戻り光は、第1光路結合素子及び第2光路結合素子のそれぞれにより反射されて、干渉撮影系の撮像素子に導かれる。
 幾つかの例示的な実施形態の第6の態様は、第1~第5の態様のいずれかの眼科装置であって、前眼部に投射される照明光の強度を変更する照明強度変更部を更に含む。
 幾つかの例示的な実施形態の第7の態様は、第1~第6の態様のいずれかの眼科装置であって、エキサイタフィルタと、バリアフィルタとを更に含む。エキサイタフィルタは、前眼部に投与された蛍光剤の励起光を照明光から生成する。バリアフィルタは、励起光を受けた蛍光剤が発する蛍光を選択的に通過させる。
 幾つかの例示的な実施形態の第8の態様は、第1~第7の態様のいずれかの眼科装置であって、投射系と、検出系と、第1アライメント部とを更に含む。投射系は、第1光路結合素子から被検眼に向かう光路の光軸に対して傾斜した方向に沿って前眼部にアライメント光を投射する。検出系は、アライメント光の前眼部での反射光を検出する。第1アライメント部は、検出系からの出力に基づいて、当該光軸に沿う方向におけるアライメントを実行する。
 幾つかの例示的な実施形態の第9の態様は、第8の態様の眼科装置であって、投射系は、アライメント光を出力するアライメント光源を含み、且つ、検出系は、アライメント光の前眼部での反射光を検出するイメージセンサーを含む。アライメント光源及びイメージセンサーは、第1光路結合素子に対して被検眼の反対側に配置されている。
 幾つかの例示的な実施形態の第10の態様は、第1~第9の態様のいずれかの眼科装置であって、第2アライメント部を更に含む。第2アライメント部は、前眼部撮影系により取得された前眼部画像に基づいて、第1光路結合素子から被検眼に向かう光路の光軸に直交する方向におけるアライメントを実行する。
 幾つかの例示的な実施形態の第11の態様は、第1~第7の態様のいずれかの眼科装置であって、2以上の撮影部と、第3アライメント部とを含む。2以上の撮影部は、互いに異なる方向から前眼部を撮影する。第3アライメント部は、2以上の撮影部によりそれぞれ取得された2以上の撮影画像に基づいて3次元アライメントを実行する。
 実施形態によれば、涙液の状態の異常発生箇所を前眼部の広い範囲にわたり良好な位置精度で提示することが可能になる。
例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置の構成の一例を説明するための概略図である。 例示的な実施形態に係る眼科装置の動作の一例を示すフローチャートである。 変形例に係る眼科装置の構成の一例を表す概略図である。 変形例に係る眼科装置の構成の一例を表す概略図である。 変形例に係る眼科装置の構成の一例を表す概略図である。
 幾つかの例示的な実施形態に係る眼科装置について、図面を参照しながら詳細に説明する。
 まず、実施形態の概要を説明する。実施形態の眼科装置は、角膜上の涙液の状態を表す干渉模様を撮影して干渉像を取得し、前眼部を撮影して前眼部画像を取得し、干渉像を前眼部画像に重ねて提示するように構成されている。干渉撮影のための要素群(干渉撮影系)の少なくとも一部は、前眼部撮影のための要素群(前眼部撮影系)と異なっている。
 提示される干渉像は、干渉撮影系により取得された干渉像そのもの(生画像)でもよいし、この生画像を加工して得られた干渉像(加工画像)でもよい。加工画像は、例えば、生画像が表現するパラメータ分布を擬似カラー表現したカラーマップ、又は、パラメータ値が所定範囲に属する領域を表現したマップであってよい。このパラメータは、例えば、涙液を構成する油層、水層及びムチン層のうちのいずれか1つの層の厚み、いずれか2つの層の厚み、又は3つの層の厚みであってよい。また、加工画像は、補正、調整、強調等の任意の画像処理を生画像に適用して得られた画像であってもよい。
 同様に、提示される前眼部画像は、前眼部撮影系により取得された前眼部画像そのもの(生画像)でもよいし、この生画像を加工して得られた前眼部画像(加工画像)でもよい。加工画像は、例えば、補正、調整、強調等の任意の画像処理を生画像に適用して得られた画像であってよい。
 干渉像及び前眼部画像が表示される表示装置は、実施形態に係る眼科装置に含まれてもよいし、含まれなくてもよい。後者の場合、表示装置は、実施形態に係る眼科装置の周辺機器である。
 本明細書において、特に言及しない限り、「画像データ」と、それに基づく「画像」とを区別しない。同様に、特に言及しない限り、被検眼の部位又は組織と、それを表す画像とを区別しない。
 また、本明細書において、特に言及しない限り、「レンズ」は、単一のレンズ、又は、2枚以上のレンズの組み合わせを示す。同様に、特に言及しない限り、「レンズ群」は、2枚以上のレンズの集合、又は、単一のレンズを示す。
 また、本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
〈構成〉
 実施形態に係る眼科装置の構成例を図1及び図2に示す。眼科装置1は、被検眼Eの角膜Ec上の涙液の状態を表す干渉模様を撮影する機能と、前眼部Eaを撮影する機能と、干渉模様を表す干渉像を前眼部画像に重ねて提示する機能とを有する。
 これら機能を実現するための例示的な構成として、眼科装置1は、検査ユニット2と、ユニット移動機構70と、表示デバイス80と、操作デバイス90と、コンピュータ100とを含む。コンピュータ100は、例えば、眼科装置1の組み込みシステム(embedded system)であってよい。
 検査ユニット2には、各種光学系や各種機構が格納されている。例示的な検査ユニット2は、照明系10と、干渉撮影系20と、前眼部撮影系30と、2つのレンズ41及び42を含む第1レンズ群と、2つのレンズ43及び44を含む第2レンズ群と、光路結合素子51と、反射ミラー52と、光路結合素子53と、アライメント光源61と、イメージセンサー62とを含む。
 照明系10は、被検眼Eの前眼部Eaに照明光を投射するように構成されている。例示的な照明系10は、照明光源11と、コリメートレンズ12と、エキサイタフィルタ13と、可変フィルタ14とを含む。照明系10の光路は、照明光源11、コリメートレンズ12、エキサイタフィルタ13、可変フィルタ14、(光路結合素子53、)反射ミラー52、レンズ44、レンズ43、光路結合素子51、レンズ42、及びレンズ41により形成されている。
 照明光源11は照明光を出力する。照明光源11の動作はコンピュータ100によって制御される。
 コリメートレンズ12は、照明光源11から出力された照明光を平行光束に変換する。コリメートレンズ12は、例えば、単一のレンズ、又は、2以上のレンズの組み合わせからなる。
 エキサイタフィルタ13は、前眼部撮影のモダリティが蛍光造影撮影である場合に光路に配置され(実線で示す状態)、その他の場合には光路外に配置される(点線で示す状態)。エキサイタフィルタ13の移動は、エキサイタフィルタ移動機構13Aによって行われる。エキサイタフィルタ移動機構13Aは、コンピュータ100からの命令にしたがって動作するアクチュエータを含む。このアクチュエータは、例えば、ソレノイドアクチュエータであってよい。
 蛍光造影撮影では蛍光剤(蛍光色素)が前眼部Eaに投与される。エキサイタフィルタ13は、蛍光剤の励起光を照明光から生成する。つまり、エキサイタフィルタ13は、蛍光剤を励起する波長を選択的に通過させる。典型的な例において、蛍光色素はフルオレセインであり、エキサイタフィルタ13の通過中心波長は、フルオレセインの吸収極大波長494nm又はその近傍(例えば490~500nmの範囲)に設定される。
 可変フィルタ14は、被検眼Eに投射される照明光の強度(光量)を変更するための光学素子である。涙液に起因する干渉模様の時系列変化を評価するには或る程度の時間(10秒又はそれ以上)が必要であるため、その間ずっと被検者が眼を開けていられるように照明光の強度を調整できることが望ましいと考えられる。可変フィルタ14は、この要望を実現するための要素の例である。
 可変フィルタ14は、例えば、減光フィルタ(NDフィルタ)及びバンドパスフィルタ(BPF)のいずれか一方又は双方を含んでいてよい。可変フィルタ14は、単一のフィルタ、又は、2枚以上のフィルタを含む。
 可変フィルタ14が単一のフィルタからなる場合、可変フィルタ14は、例えば、フィルタ特性(例えば、通過特性、吸収特性)が連続的又は離散的に変化可能な光学フィルタである。フィルタ特性を変化させるための制御はコンピュータ100によって行われる。
 可変フィルタ14が2枚以上のフィルタを含む場合、これらフィルタが選択的に光路に配置される。この場合の典型例として、可変フィルタ14は、ターレットに装着された2以上のフィルタと、ターレットを移動(典型的には回動)するアクチュエータとを含む。アクチュエータは、例えば、コンピュータ100からの命令(パルス制御信号)により動作するパルスモータであってよい。
 なお、可変フィルタ14を用いることなく、被検眼Eに投射される照明光の強度を変更することも可能である。例えば、幾つかの例示的な実施形態は、照明光源(11)により出力される照明光の強度及び波長帯のいずれか一方又は双方を変更することによって、被検眼Eに投射される照明光の強度を変更するように構成されていてよい。また、幾つかの例示的な実施形態は、照明光源の制御と可変フィルタの制御との組み合わせによって、被検眼Eに投射される照明光の強度を変更するように構成されていてよい。
 また、可変フィルタ14に設けられた2以上のフィルタのいずれかがエキサイタフィルタ13であってよい。エキサイタフィルタ13が可変フィルタ14に含まれる場合において、蛍光造影撮影を行う際には、コンピュータ100は、可変フィルタ14を制御することによって、エキサイタフィルタ13の光路への挿入及び光路からの退避を行う。
 本例の照明系10によれば、照明光源11から出力された照明光は、コリメートレンズ12により平行光束に変換される。蛍光造影撮影が適用される場合、コリメートレンズ12を通過した照明光は、エキサイタフィルタ13によって励起光となり、この励起光の強度が可変フィルタ14によって調整される。蛍光造影撮影が適用されない場合、コリメートレンズ12を通過した照明光の強度が可変フィルタ14によって調整される。可変フィルタ14を通過した照明光(励起光)は、光路結合素子53、反射ミラー52、レンズ44、レンズ43、光路結合素子51、レンズ42、及び、レンズ41を経由して、前眼部Eaに投射される。
 干渉撮影系20は、照明系10により前眼部Eaに投射される照明光によって角膜上に形成される干渉模様を撮影するように構成されている。この干渉模様は、照明光が涙液の層(層境界)で反射されることにより形成される。例えば、涙液の油層の表面からの反射光と裏面からの反射光とが干渉することによって、油層の厚みの分布に応じた模様が形成される。
 干渉撮影系20は、絞り21と、テレセントリックレンズ22と、干渉撮影カメラ23とを含む。干渉光学系20の光路は、レンズ41、レンズ42、光路結合素子51、レンズ43、レンズ44、反射ミラー52、光路結合素子53、絞り21、テレセントリックレンズ22、及び干渉撮影カメラ23により形成されている。
 絞り21は、干渉撮影カメラ23に導かれる光の量を制限(調整)するための光学素子である。絞り21は、コンピュータ100によって制御される可変絞りであってよい。
 テレセントリックレンズ22は、例えば、像側テレセントリック(image-space telecentric)レンズであってよい。これにより、干渉撮影カメラ23の撮像面の全体に対して光線が略垂直に入射するため、ロールオフや口径食の解消、ひいては周辺光量比の均一化を図ることができる。テレセントリックレンズ22は、例えば、単一のレンズ、又は、2以上のレンズの組み合わせからなる。
 干渉撮影カメラ23は、テレセントリックレンズ22を通過した光を検出することにより、角膜上に形成される干渉模様を表す画像(干渉像)を生成する。干渉撮影カメラ23は、少なくとも可視域に感度を有する。干渉撮影カメラ23は、例えばカラービデオカメラであってよく、典型的には3CCDビデオカメラ又は3CMOSビデオカメラであってよい。これにより、様々な色成分の干渉像を得ることができる。
 照明系10により前眼部Eaに投射された照明光の反射光は、レンズ41、レンズ42、光路結合素子51、レンズ43、レンズ44、反射ミラー52、光路結合素子53、絞り21、及び、テレセントリックレンズ22を経由して干渉撮影カメラ23に導かれる。
 前眼部撮影系30は、照明系10により照明光が投射されている前眼部Eaを撮影するように構成されている。前眼部撮影系30は、バリアフィルタ31と、レンズ32と、前眼部撮影カメラ33とを含む。前眼部撮影系30の光路は、レンズ41、レンズ42、(光路結合素子51、)バリアフィルタ31、レンズ32、及び前眼部撮影カメラ33により形成されている。
 バリアフィルタ31は、前眼部撮影のモダリティが蛍光造影撮影である場合に光路に配置され(実線で示す状態)、その他の場合には光路外に配置される(点線で示す状態)。バリアフィルタ31の移動は、バリアフィルタ移動機構31Aによって行われる。バリアフィルタ移動機構31Aは、コンピュータ100からの命令にしたがって動作するアクチュエータを含む。このアクチュエータは、例えば、ソレノイドアクチュエータであってよい。
 コンピュータ100は、エキサイタフィルタ移動機構13Aの動作と、バリアフィルタ移動機構31Aの動作とを同期的に制御する。つまり、前眼部撮影のモダリティが蛍光造影撮影である場合、コンピュータ100は、エキサイタフィルタ13及びバリアフィルタ31の双方が光路に配置されるようにエキサイタフィルタ移動機構13A及びバリアフィルタ移動機構31Aを制御し、且つ、前眼部撮影のモダリティが蛍光造影撮影でない場合、コンピュータ100は、エキサイタフィルタ13及びバリアフィルタ31の双方が光路外に配置されるようにエキサイタフィルタ移動機構13A及びバリアフィルタ移動機構31Aを制御する。
 蛍光造影撮影では、前眼部Eaに投与された蛍光剤(蛍光色素)が、エキサイタフィルタ13により生成された励起光を受けて、特定波長の蛍光を放出する。バリアフィルタ31は、この蛍光の波長を選択的に通過させる。典型的な例として、蛍光色素がフルオレセインである場合、バリアフィルタ31の通過中心波長は、フルオレセインの放出極大波長521nm又はその近傍に設定される。
 レンズ32は、例えば、前眼部撮影カメラ33の受光面に光を結像させる結像レンズである。或いは、干渉撮影系20と同様に、レンズ32は、(像側)テレセントリックレンズであってもよい。レンズ32は、例えば、単一のレンズ、又は、2以上のレンズの組み合わせからなる。
 レンズ32のうち最も光路結合素子51の近くに位置するレンズは、2つのレンズ41及び42からなる第1レンズ群の焦点位置又はその近傍に配置される。レンズ32が単一のレンズからなる場合、レンズ32が、第1レンズ群の後側焦点位置又はその近傍に配置される。レンズ32が2以上のレンズからなる場合、これらレンズのうち最も光路結合素子51の近くに位置するレンズ、つまり、最も被検眼Eの側に位置するレンズが、第1レンズ群の後側焦点位置又はその近傍に配置される。これにより、前眼部撮影カメラ33の撮影視野を広くすることができ、前眼部Eaの広い範囲を撮像することが可能になる。
 前眼部撮影カメラ33は、レンズ32を通過した光を検出することにより前眼部Eaを撮像する。これにより前眼部画像が得られる。前眼部撮影カメラ33は、少なくとも蛍光造影撮影のための波長域に感度を有する。前眼部撮影カメラ33は、例えば、可視域及び赤外域に感度を有する。前眼部撮影カメラ33は、例えばカラービデオカメラ又はモノクロビデオカメラであってよく、典型的にはCCDビデオカメラ、3CCDビデオカメラ、CMOSカメラ、又は3CMOSビデオカメラであってよい。
 2つのレンズ41及び42からなる第1レンズ群は、光路結合素子51に対して被検眼Eの側に配置されている。また、2つのレンズ43及び44からなる第2レンズ群は、光路結合素子51に対して被検眼Eの反対側に配置されている。換言すると、第2レンズ群は、光路結合素子51に対して干渉撮影カメラ23の側に配置されている。
 レンズ41は、例えば、被検眼Eの側の面(前面)が凹面状又は平面状に形成され、且つ、被検眼Eの反対側の面(後面)が凸型非球面状に形成されている。レンズ42は、例えば、前面及び後面ともに凸面状又は平面状に形成されている。
 レンズ43及びレンズ44は貼り合わせレンズを形成している。レンズ43は、例えば、前面及び後面ともに凸面状に形成されている。レンズ44は、例えば、前面及び後面ともに凹面状に形成されている。
 このようなレンズ構成は、次の2つの条件を満足するためのものである:(1)角膜Ecの各位置に対して略垂直に照明光が入射する;(2)角膜Ecの各位置からの反射光が、当該位置への照明光の入射経路と略同一の経路を逆向きに進行してレンズ41に到達し、干渉撮影系20により検出される。
 本例に係る干渉撮影系20がこれら2つの条件を満足していることは、図3の光線図(シミュレーション図)から分かる。なお、これら2つの条件に関する事項が特許文献1に記載されているが、これら2つの条件を実際に満足する具体的な光学系は公知文献には開示されておらず、発明者らが初めて考案したものと考えられる。
 上記2つの条件を満足する光学系を適用することにより、角膜Ecの各位置に対応する照明光の経路とその反射光の経路とが略一致され、その結果、湾曲した角膜Ec上の涙液の状態の分布を湾曲面に対し垂直方向から正確に捉えることが可能になる。
 上記2つの条件を満足するための構成はこれに限定されない。発明者らは、鋭意研究を重ねた結果、少なくとも以下に示す光学系構成(A)~(C)が上記2つの条件を満足することを確認した。なお、これらも単なる例示に過ぎず、任意の変形(省略、置換、付加等)が許容される。
 (A)本例の光学系構成は、図1の4つのレンズ41~44の代わりに、次の3つのレンズを使用するものである。被検眼に最も近い第1レンズは、前面が凹面状に形成され、後面が凸型非球面状に形成されている。第1レンズに隣接する第2レンズは、前面及び後面ともに凸面状に形成されている。第2レンズの後面に前面が貼り付けられた第3レンズは、前面が凹面状に形成され、後面が凸面状に形成されている。
 (B)本例の光学系構成は、図1の4つのレンズ41~44の代わりに、次の4つのレンズを使用するものである。被検眼に最も近い第1レンズは、前面が緩凸面状又は平面状に形成され、後面が凸型非球面状に形成されている。第1レンズの次に被検眼に近い第2レンズは、前面及び後面ともに凸面状に形成されている。第2レンズの後面に前面が貼り付けられた第3レンズは、前面が凹面状に形成され、後面が凸面状に形成されている。第3レンズの後面に前面が対向する第4レンズは、前面が凸面状に形成され、後面が凹面状に形成されている。
 (C)本例の光学系構成は、図1の4つのレンズ41~44の代わりに、次の5つのレンズを使用するものである。被検眼に最も近い第1レンズは、前面が平面状又は凹面状に形成され、後面が凸型非球面状に形成されている。第1レンズに隣接する第2レンズは、前面が平面状に形成され、後面が凸面状に形成されている。第2レンズに隣接する第3レンズは、前面及び後面ともに凸面状に形成されている。第3レンズの後面に前面が貼り付けられた第4レンズは、前面が凹面状に形成され、後面が凸面状に形成されている。第4レンズに隣接する第5レンズは、前面が凸面状に形成され、後面が凹面状に形成されている。
 図1に示す例において、4つのレンズ41、42、43及び44、つまり第1レンズ群及び第2レンズ群は、干渉撮影系20の対物レンズとして機能する。また、2つのレンズ41及び42、つまり第1レンズ群は、前眼部撮影系30の対物レンズとして機能する。
 これにより、干渉撮影系20については、角膜Ecの各位置に対して略垂直に照明光を入射させることが可能となり、且つ、角膜Ecの各位置からの反射光を入射経路と略同一の経路に導くことが可能となる。一方、前眼部撮影系30については、広い撮影視野の確保、すなわち前眼部Eaの広い範囲の撮像が可能になる。
 なお、干渉撮影系20により検出される光と前眼部撮影系30により検出される光とは、ともに前眼部Eaからの戻り光ではあるが、互いに異なる光である。互いに異なる要求を満足するように構成された別々の光学系によってこのような互いに異なる光をそれぞれ検出するように光学系を構成することが容易でないことは、当業者であれば理解できるであろう。
 光路結合素子51は、干渉撮影系20の光路と前眼部撮影系30の光路とを結合する光学素子である。光路結合素子51は、例えば、干渉撮影系20の光路と前眼部撮影系30の光路とを同軸に結合する(つまり、互いの光軸が交差するように結合する)。
 光路結合素子51は、任意のビームスプリッタであってよい。本例では、干渉撮影系20は広帯域の可視光を利用し、且つ、前眼部撮影系30は可視蛍光(フルオレセイン)を利用しているので、ハーフミラーを光路結合素子51として用いることができる。また、図1に示す例では、光路結合素子51は、照明系10の光路と前眼部撮影系30の光路とを結合する機能も有する。
 幾つかの例示的な実施形態において、通過光(透過光)と反射光とを波長で分離する構成が採用される場合には、ダイクロイックミラーを光路結合素子51として用いることができる。他の幾つかの例示的な実施形態において、通過光(透過光)と反射光とを偏光で分離する構成が採用される場合には、偏光ビームスプリッタを光路結合素子51として用いることができる。なお、これらは、干渉撮影系の光路と前眼部撮影系の光路とを結合するための要素(第1光路結合素子)の単なる例示に過ぎず、任意の変形(省略、置換、付加等)が許容される。
 反射ミラー52は、照明系10の光路及び干渉撮影系20の光路を折り曲げている。これにより、光学系構成のコンパクト化が可能となり、その結果として眼科装置1の小型化が可能となる。なお、この目的又は他の目的のために使用され得る要素は任意であり、また、採用しうる構成も任意である。例えば、反射ミラーの位置、配置角度、個数、サイズなどを適宜に設計することができる。また、反射ミラーと異なる要素を用いてもよい。
 光路結合素子53は、照明系10の光路と干渉撮影系20の光路とを結合する光学素子である。光路結合素子53は、例えば、照明系10の光路と干渉撮影系20の光路とを同軸に結合する。
 光路結合素子53は、任意のビームスプリッタであってよい。本例では、照明系10及び干渉撮影系20はともに広帯域の可視光を利用しているので、ハーフミラーを光路結合素子53として用いることができる。ダイクロイックミラー、偏光ビームスプリッタ又は他のビームスプリッタを、必要に応じてハーフミラーの代わりに採用できることは、光路結合素子51の場合と同様である。
 図1に示す例では、干渉撮影系20により導かれる光(つまり、角膜Ec上の涙液に起因する干渉模様を撮影するための照明光の戻り光)は、2つのビームスプリッタを経由するが、双方により反射される。すなわち、干渉撮影系20により導かれる光は、光路結合素子51において反射され、且つ、光路結合素子53においても反射されて、干渉撮影カメラ23に導かれる。
 この構成は、ビームスプリッタを透過する際の光の乱れを回避することを意図している。それにより、角膜Ec上に生じた干渉模様を高い確度で検出することが可能になる。
 アライメント光源61及びイメージセンサー62は、レンズ41の光軸に沿う方向(Z方向)におけるアライメント(Zアライメント)に用いられる。アライメント光源61は、Zアライメントを行うための光(例えば赤外光)を被検眼Eに投射する。アライメント光源61から出力された光は、レンズ42及びレンズ41を介して角膜Ecに斜方から投射される。この光の角膜反射光は、レンズ41及びレンズ42(並びに、図示しない他のレンズ)によってイメージセンサー62の受光面に結像される。
 イメージセンサー62は、任意の1次元又は2次元イメージセンサーであってよい。すなわち、Zアライメント系に設けられるイメージセンサー62は、複数の光検出素子(フォトダイオード等)が1次元的又は2次元的に配列された任意のイメージセンサーであってよい。イメージセンサー62は、典型的にはラインセンサーである。
 幾つかの例示的な実施形態において、アライメント光源61からレンズ42に向かう光は、例えば、光路結合素子51に形成された切り欠き、開口、又は透光部を通過してレンズ42に到達する。同様に、レンズ42からイメージセンサー62に向かう光は、例えば、光路結合素子51に形成された切り欠き、開口、又は透光部を通過してレンズ42に到達する。これにより、干渉撮影系20に関する上記条件の満足と、前眼部撮影系30の撮影視野の拡大とを図りつつ、アライメントのための要素を設けることが可能である。
 角膜Ec(角膜頂点)の位置がZ方向に変化すると、イメージセンサー62の受光面に対する光の投射位置が変化する。コンピュータ100は、イメージセンサー62が光を検出した位置に基づいて角膜Ec(角膜頂点)の位置を求めることができる。更に、コンピュータ100は、求められた角膜Ec(角膜頂点)の位置に基づきユニット移動機構70を制御することで、検査ユニット2のZアライメントを実行する。このZアライメント手法は、光テコを利用したアライメント手法の例である。
 ユニット移動機構70は、検査ユニット2を3次元的に移動する。典型的な例において、ユニット移動機構70は、Z方向(前後方向)に移動可能なZステージと、Zステージを移動するZ移動機構と、Z方向に直交するX方向(左右方向)に移動可能なXステージと、Xステージを移動するX移動機構と、Z方向及びX方向の双方に直交するY方向(上下方向)に移動可能なYステージと、Yステージを移動するY移動機構とを含む。これら移動機構のそれぞれは、コンピュータ100の制御の下に動作するアクチュエータ(例えばパルスモータ)を含む。
 表示デバイス80は、ユーザインターフェイス部の一部として機能し、コンピュータ100による制御を受けて情報を表示する。表示デバイス80は、例えば、液晶ディスプレイ(LCD)、又は有機発光ダイオード(OLED)ディスプレイであってよい。
 操作デバイス90は、ユーザインターフェイス部の一部として機能し、眼科装置1を操作するために使用される。操作デバイス90は、眼科装置1に設けられた各種のハードウェアキー(ジョイスティック、ボタン、スイッチなど)を含んでいてよい。また、操作デバイス90は、眼科装置1に接続された各種の周辺機器(キーボード、マウス、ジョイスティック、操作パネルなど)を含んでいてよい。また、操作デバイス90は、タッチパネルに表示される各種のソフトウェアキー(ボタン、アイコン、メニューなど)を含んでよい。
 コンピュータ100は、眼科装置1を動作させるための各種演算や各種制御を実行する。コンピュータ100は、1以上のプロセッサと、1以上の記憶装置とを含む。記憶装置としては、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などがある。記憶装置には各種のコンピュータプログラムが格納されており、それに基づきプロセッサが動作することにより本例に係る演算や制御が実現される。
 コンピュータ100の構成の例を図2に示す。コンピュータ100は、検査処理部110と、表示処理部120と、照明強度変更処理部130と、アライメント処理部140とを含む。
 検査処理部110は、眼科装置1が行う検査に関する処理(演算、制御等)を実行する。検査処理部110は、プロセッサを含むハードウェアと検査処理ソフトウェアとの協働によって実現される。
 検査処理部110は、例えば、照明光源11、エキサイタフィルタ移動機構13A、干渉撮影カメラ23、バリアフィルタ移動機構31A、及び、前眼部撮影カメラ33のそれぞれを制御する。
 照明光源11の制御は、例えば、点灯、消灯、出力光量の変更、及び、出力波長域の変更を含む。エキサイタフィルタ移動機構13Aの制御は、例えば、エキサイタフィルタ13の光路への挿入と、エキサイタフィルタ13の光路からの退避とを含む。
 干渉撮影カメラ23の制御は、例えば、露光調整、ゲイン調整、検出レート調整、及び、検出波長域(使用するイメージセンサ)の選択を含む。なお、絞り21が可変絞りである場合には、検査処理部110は絞り21の制御を行う。
 バリアフィルタ移動機構31Aの制御は、例えば、バリアフィルタ31の光路への挿入と、バリアフィルタ31の光路からの退避とを含む。前眼部撮影カメラ33の制御は、例えば、露光調整、ゲイン調整、及び、検出レート調整を含む。
 更に、検査処理部110は、干渉撮影カメラ23により得られた干渉像に関する処理や演算を行うことができる。例えば、検査処理部110は、干渉撮影系20により取得された生画像から加工画像を構築することができる。加工画像は、例えば、生画像が表現するパラメータ分布を擬似カラー表現したカラーマップ、又は、パラメータ値が所定範囲に属する領域を表現したマップであってよい。このパラメータは、例えば、涙液を構成する油層、水層及びムチン層のうちのいずれか1つの層の厚み、いずれか2つの層の厚み、又は3つの層の厚みであってよい。また、加工画像は、補正、調整、強調等の任意の画像処理を生画像に適用して得られた画像であってもよい。
 また、検査処理部110は、特許文献1~4に開示された処理や他の公知処理を実行可能であってよい。例えば、検査処理部110は、干渉像(干渉模様)の色相の時系列変化の特定や、色成分毎の干渉模様に基づくドライアイの進行状態の評価や、ドライスポットの位置の評価や、ドライスポットの形状の評価、ドライスポットの周囲における涙液の移動方向の評価を実行可能であってよい。
 検査処理部110は、前眼部撮影カメラ33により得られた前眼部画像に関する処理や演算を行うことができる。例えば、検査処理部110は、前眼部撮影系30により取得された生画像から加工画像を構築することができる。前述したように、加工画像は、例えば、補正、調整、強調等の任意の画像処理を生画像に適用して得られた画像であってよい。
 表示処理部120は、表示デバイス80に情報を表示させるための処理を行う。表示処理部120は、プロセッサを含むハードウェアと表示処理ソフトウェアとの協働によって実現される。
 例えば、第1情報上に第2情報を重ねて表示させるために、表示処理部120は、例えば、第1レイヤ上に第2レイヤを提示する制御と、第1レイヤに第1情報を表示させる制御と、第2レイヤに第2情報を表示させる制御とを実行する。或いは、表示処理部120は、第1情報に第2情報を合成する処理(埋め込み)と、それにより得られた合成情報を表示させる処理とを実行してもよい。
 照明強度変更処理部130は、照明系10により前眼部Eaに投射される照明光の強度を変更するための処理を実行する。照明強度変更処理部130は、プロセッサを含むハードウェアと照明強度変更処理ソフトウェアとの協働によって実現される。
 照明強度の変更に可変フィルタ14が用いられる場合、照明強度変更処理部130は、例えば、可変フィルタ14のフィルタ特性を変更するための制御、又は、2枚以上のフィルタのいずれかを光路に配置されるための制御を実行する。
 照明光源(11)により出力される照明光の強度及び波長帯のいずれか一方又は双方を変更することによって前眼部Eaに投射される照明光の強度を変更する場合、照明強度変更処理部130は、照明光源(11)の制御を行う。
 照明強度変更処理部130は、例えば、操作デバイス90からの信号にしたがって照明強度を変更するための制御を行う。すなわち、眼科装置1は、照明強度を手動で変更できるように構成されていてよい。ここで、操作デバイス90は、検者又は被検者によって操作される。なお、照明強度の可変範囲を、干渉撮影及び前眼部撮影の少なくとも一方を好適に実施できるような範囲に事前に設定することができる。
 照明強度の変更を自動で行う場合、例えば、照明強度変更処理部130は、過去の検査で当該被検者(当該被検眼E)に対して適用された照明強度の情報を、当該被検者に関連付けられた医療情報(例えば、電子カルテ)から取得し、この照明強度を再現するように構成されていてよい。
 照明強度の変更を自動で行う場合の他の例として、照明強度変更処理部130は、前眼部Eaに照明光が投射されているときに、眩しさの程度を被検者に問うための視覚情報又は聴覚情報を眼科装置1に出力させ、被検者の応答にしたがって照明強度を調整するように構成されていてよい。
 照明強度の変更を自動で行う場合の更に他の例として、照明強度変更処理部130は、前眼部Eaに照明光が投射されているときに、被検者の生体信号に基づいて照明強度を調整するように構成されていてよい。この生体信号は、例えば、縮瞳、脳波、心拍、発汗、表情などであってよい。眼科装置1は、例えば、いずれかの生体信号を検出するためのデバイスを含んでいるか、或いは、当該デバイスに接続されている。縮瞳は、例えば、前眼部撮影カメラ33及び照明強度変更処理部130により検出可能である。脳波は、例えば、脳波計により検出可能である。心拍は、例えば、心電計又はパルスオキシメータにより検出可能である。発汗は、例えば、発汗計により検出可能である。表情は、例えば、カメラ及び照明強度変更処理部130により検出可能である。これらの例と異なる生体信号は、それに応じたデバイスによって検出可能である。
 アライメント処理部140は、被検眼Eに対する光学系の位置調整(アライメント)に関する処理を実行する。アライメント処理部140は、プロセッサを含むハードウェアとアライメント処理ソフトウェアとの協働によって実現される。
 眼科装置1は、Zアライメントに加え、X方向及びY方向のアライメント(XYアライメント)も実行可能であってよい。アライメント処理部140は、Zアライメントに関する処理と、XYアライメントに関する処理とを実行する。
 まず、Zアライメントに関する処理について説明する。アライメント処理部140は、アライメント光源61の制御と、イメージセンサー62の制御とを実行可能である。アライメント光源の制御は、点灯、消灯、光量調整、絞り調整などを含む。イメージセンサー62の制御は、露光調整、ゲイン調整、検出レート調整などを含む。
 更に、アライメント処理部140は、イメージセンサー62から出力された信号を取り込み、この信号に基づいてイメージセンサー62の受光面における光の投影位置を特定する。アライメント処理部140は、特定された投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づきユニット移動機構70を制御して検査ユニット2を前後方向に移動させる(Zアライメント)。
 次に、XYアライメントについて説明する。眼科装置1は、前眼部撮影系30により取得された前眼部画像に基づいてXYアライメントを実行するように構成されていてよい。
 例えば、アライメント処理部140は、まず、前眼部画像を解析して特徴点(例えば、瞳孔中心又は瞳孔重心)を検出する。次に、アライメント処理部140は、前眼部画像のフレームの所定位置(例えば、フレーム中心)に対する特徴点の偏位を算出する。続いて、アライメント処理部140は、算出された偏位がキャンセルされるようにユニット移動機構70を制御して検査ユニット2を左右方向及び/又は上下方向に移動させる(XYアライメント)。これにより、フレームの所定位置に前眼部の特徴点が配置されるようにXYアライメントを行うことができる。
 コンピュータ100は、図2に示す要素と異なる要素を含んでいてもよい。例えば、コンピュータ100は、通信インターフェイスを含んでいてよい。通信インターフェイスは、図示しない外部装置と通信するための機能を有する。外部装置は、例えば、任意の眼科装置、記録媒体から情報を読み取る装置(リーダ)、及び、記録媒体に情報を書き込む装置(ライタ)のいずれかを含んでいてよい。また、外部装置は、病院情報システム(HIS)サーバ、DICOM(Digital Imaging and COmmunication in Medicine)サーバ、医師端末、モバイル端末、個人端末、クラウドサーバなど、任意の情報処理装置を含んでいてよい。
〈動作〉
 本実施形態に係る眼科装置1の動作について説明する。眼科装置1の動作の例を図4に示す。
(S1:前眼部の照明を開始)
 まず、照明光源11が点灯されて前眼部Eaに照明光が投射される。
(S2:照明強度を調整)
 次に、可変フィルタ14の制御などによって、前眼部Eaに投射される照明光の強度の調整が行われる。照明強度調整は、例えば、前述した要領で実行可能である。
(S3:アライメント)
 次に、アライメントが実行される。本実施形態では、例えば、XYアライメントの後にZアライメントが行われる。XYアライメント及びZアライメントは、例えば、前述した要領で実行可能である。
(S4:蛍光造影撮影用フィルタを光路に配置)
 次に、エキサイタフィルタ13及びバリアフィルタ31がそれぞれ対応する光路に配置される。
(S5:干渉撮影と前眼部撮影を開始)
 以上の準備が完了したら、干渉撮影系20による干渉撮影と、前眼部撮影系30による前眼部撮影とが開始される。
 干渉撮影は、角膜Ec上の涙液の状態(例えば、厚み分布)を表す干渉模様を撮影する。干渉撮影は、例えば、予め設定された時間にわたって行われる。或いは、干渉撮影は、角膜Ec上の涙液の状態が所定の状態に達するまで(例えば、涙液層破壊十分に進行するまで)行われる。
 前眼部撮影は、例えば、干渉撮影の実施期間の少なくとも一部において実行される。これにより、干渉撮影により得られた或る干渉像とほぼ同時刻の前眼部画像を得ることができる。干渉撮影と前眼部撮影とを並行して行う場合のように、干渉撮影の実施期間の全体にわたって前眼部撮影が行われた場合、干渉撮影により取得される干渉像それぞれに時間的に対応する前眼部画像を得ることができる。
 干渉撮影のタイミングと前眼部撮影のタイミングとを同期させることができる。例えば、干渉撮影と前眼部撮影とを同じ繰り返しタイミング(撮影レート、フレームレート)で実行させることが可能である。
(S6:干渉像と前眼部画像を取り込み)
 表示処理部120は、例えば、互いにほぼ同時に取得された干渉像と前眼部画像とを取り込む。なお、表示処理部120は、互いに実質的に異なるタイミングで取得された干渉像と前眼部画像とを取り込んでもよい。
(S7:干渉像を前眼部画像に重ねて表示)
 表示処理部120は、ステップS6で取り込まれた干渉像と前眼部画像とを表示デバイス80に表示させる。このとき、表示処理部120は、前眼部画像上に干渉像を重ねて表示させる。
 ステップS6において、互いにほぼ同時に取得された干渉像と前眼部画像とが取り込まれた場合、これら画像の間のレジストレーションを行うことなく、前眼部画像に干渉像をオーバーレイすることができる。
 他方、ステップS6において、互いに実質的に異なるタイミングで取得された干渉像と前眼部画像とが取り込まれた場合、これら画像の間のレジストレーションを行うことが望ましい。ここで、干渉像に描出された内容と前眼部画像に描出された内容とが異なっているので、これら画像を直接に比較してレジストレーションを行うことは難しい。
 そこで、表示される前眼部画像とは別に、この干渉像とほぼ同時に取得された前眼部画像(補助前眼部画像)を利用する。補助前眼部画像の選択は、例えば、前述した干渉撮影と前眼部撮影との同期に基づき行うことができる。表示処理部120は、表示される前眼部画像と補助前眼部画像と間のレジストレーションを実行し、前者に対する後者の偏位を求めることができる。更に、表示処理部120は、求められた偏位がキャンセルされるように干渉像と表示される前眼部画像との間のレジストレーションを行うことができる。以上で、本動作例は終了となる(エンド)。
〈変形例〉
 上記の実施形態では、光テコを利用したZアライメントと、前眼部画像を利用したXYアライメントとを実行している。これの代わりに適用可能なアライメント手法の例を以下に説明する。
 本変形例では、互いに異なる方向から前眼部Eaを撮影して取得された2以上の撮影画像に基づいて3次元的なアライメント(XYZアライメント)を実行する。これを実現するための構成の例を図5A、図5B及び図6に示す。図5A及び図5Bは、本変形例に係る眼科装置の外観の例を示している。図6に示す構成は、図2に示す構成の代わりに適用可能である。
 本変形例に係る眼科装置の構成は、例えば、2つの前眼部カメラ300A及び300Bが設けられている点、アライメント処理部140の代わりにアライメント処理部140Aが設けられている点、並びに、アライメント光源61及びイメージセンサー62を有しない点を除いて、上記実施形態の眼科装置1の構成と同じであってよい。ただし、本変形例に係る眼科装置がアライメント光源61及びイメージセンサー62を有することを排除するものではない。以下の説明において、特に言及しない限り、眼科装置1の説明と同じ符号が使用される。
 変形例に係る眼科装置は、被検者の顔を支持するための顎受け及び額当てを備えている。上記実施形態の眼科装置1も同様であってよい。
 ベース310には、駆動系や処理系が格納されている。例えば、ベース310には、図1に示すユニット移動機構70及びコンピュータ100が格納されている。
 ベース310上に設けられた筐体320には、光学系や駆動系が格納されている。例えば、筐体320には、図1に示す検査ユニット2が格納されている。
 筐体320の前面に突出して設けられたレンズ収容部330には、少なくともレンズ41が収容されている。
 図1に示す表示デバイス80は、筐体320に設けられていてよい。また、操作デバイス90は、ベース310及び筐体320の少なくとも一方に設けられていてよい。
 筐体320の前面には、2つの前眼部カメラ300A及び300Bが設けられている。2つの前眼部カメラ300A及び300Bは、互いに異なる2つの方向(互いに異なる2つの位置)から被検眼Eの前眼部Eaを撮影する。
 2つの前眼部カメラ300A及び300Bのそれぞれは、CCDイメージセンサー又はCMOSイメージセンサーなどの撮像素子を含む。本変形例では、筐体320の被検者側の面に2つの前眼部カメラ300A及び300Bが設けられている。図5Aに示すように、2つの前眼部カメラ300A及び300Bは、レンズ41を通過する光路から外れた位置に設けられている。
 本変形例では、2つの前眼部カメラ300A及び300Bが設けられているが、前眼部カメラの個数は2以上の任意の個数であってよい。ただし、3次元アライメントのための演算の処理負荷を考慮すると、異なる2方向から前眼部を撮影可能な構成であれば十分である(しかし、これに限定されるものではない)。或いは、移動可能な前眼部カメラを設け、互いに異なる2以上の位置から順次に前眼部撮影を行うようにしてもよい。
 本変形例では前眼部撮影系30とは別個に2つの前眼部カメラ300A及び300Bが設けられているが、2以上の前眼部カメラのうちの1つが前眼部撮影系30であってもよい。
 2以上の前眼部カメラが設けられる場合、互いに異なる2以上の方向から実質的に同時に前眼部を撮影することができる。「実質的に同時」とは、2以上の前眼部カメラによる撮影タイミングが同時である場合に加え、例えば、眼球運動を無視できる程度の撮影タイミングのズレが介在する場合も許容されることを示す。このような実質的同時撮影を行うことで、被検眼が実質的に同じ位置及び向きにあるときの2以上の前眼部画像を取得することが可能になる。
 2以上の前眼部カメラによる撮影は、動画撮影でも静止画撮影でもよい。動画撮影の場合、撮影開始タイミングを合わせるよう制御したり、フレームレートや各フレームの撮影タイミングを制御したりすることにより、上記のような実質的に同時の前眼部撮影を実現することができる。一方、静止画撮影の場合、撮影タイミングを合わせるよう制御を行うことによって、実質的に同時の前眼部撮影を実現することができる。
 2つの前眼部カメラ300A及び300Bにより実質的に同時に取得された2つの前眼部画像は、コンピュータ100に送られる。
 アライメント処理部140Aは、2つの前眼部カメラ300A及び300Bにより実質的に同時に得られた2つの撮影画像(前眼部画像)を解析することで、被検眼Eの3次元位置を求める。
 この解析は、例えば、米国特許出願公開第2015/0085252号に開示されているように、特徴位置の特定と、3次元位置の算出とを含んでいてよい。なお、これら処理の前に、2つの前眼部カメラ300A及び300Bのそれぞれにより得られた撮影画像の歪みを補正する処理を行ってもよい。
 特徴位置の特定において、アライメント処理部140Aは、例えば、2つの前眼部カメラ300A及び300Bにより実質的に同時に取得された2つの前眼部画像のそれぞれを解析することで、前眼部Eaの所定の特徴部位に相当する当該撮影画像中の位置(特徴位置と呼ぶ)を特定する。この特徴部位は、典型的には瞳孔中心(又は瞳孔重心)である。
 瞳孔中心の位置を特定するために、まず、アライメント処理部140Aは、撮影画像の画素値(例えば輝度値)の分布に基づいて、被検眼Eの瞳孔に相当する画像領域(瞳孔領域)を特定する。一般に瞳孔は他の部位よりも低い輝度で描画されるので、低輝度の画像領域を探索することによって瞳孔領域を特定することができる。このとき、瞳孔の形状を考慮して瞳孔領域を特定するようにしてもよい。つまり、略円形かつ低輝度の画像領域を探索することによって瞳孔領域を特定するように構成することができる。
 次に、アライメント処理部140Aは、特定された瞳孔領域の中心位置を特定する。上記のように瞳孔は略円形であるので、瞳孔領域の輪郭を特定し、この輪郭(又は、その近似円若しくは近似楕円)の中心位置を特定し、これを瞳孔中心とすることができる。
 3次元位置の算出において、アライメント処理部140Aは、2つの前眼部カメラ300A及び300Bのそれぞれの位置と、上記処理で特定された2つの撮影画像中の特徴位置とに基づいて、被検眼Eの特徴部位の3次元位置を算出する。この演算は、米国特許出願公開第2015/0085252号に記載されているように、三角法を用いて行われる。
 アライメント処理部140Aは、このようにして算出された被検眼Eの3次元位置に基づいて、光学系の光軸が被検眼Eの軸に一致するようにユニット移動機構70の制御を行い(XYアライメントに相当する)、且つ、被検眼Eと光学系との間の距離が既定のワーキングディスタンスに一致するようにユニット移動機構70の制御を行う(Zアライメントに相当する)。
〈作用・効果〉
 幾つかの例示的な実施形態に係る眼科装置の作用及び効果について説明する。
 例示的な実施形態に係る眼科装置は、照明系と、干渉撮影系と、前眼部撮影系と、第1光路結合素子と、制御部とを含む。
 照明系は、光源から出力された照明光を被検眼の前眼部に投射する。上記の例示においては、照明系10が照明系に相当する。照明系10は、照明光源11から出力された照明光を前眼部Eaに投射するように構成されている。
 干渉撮影系は、照明系により前眼部に投射された照明光によって角膜上に形成される干渉模様を撮影する。上記の例示においては、干渉撮影系20が干渉撮影系に相当する。干渉撮影系20は、照明系10により前眼部Eaに投射された照明光によって角膜Ec上に形成される干渉模様を撮影することで干渉像を取得する。
 前眼部撮影系は、照明系により照明光が投射されている前眼部を撮影する。上記の例示においては、前眼部撮影系30が前眼部撮影系に相当する。前眼部撮影系30は、照明系10により照明光が投射されている前眼部Eaを撮影する。前眼部撮影系30は、前眼部Eaの広い範囲を正面から撮影するように構成されている。
 第1光路結合素子は、干渉撮影系の光路と前眼部撮影系の光路とを結合する。上記の例示においては、光路結合素子51が第1光路結合素子に相当する。光路結合素子51は、干渉撮影系20の光路と前眼部撮影系30の光路とを結合するように構成されている。更に、光路結合素子51は、照明系10の光路と前眼部撮影系30の光路とを結合している。
 制御部は、干渉撮影系により取得された干渉像を前眼部撮影系により取得された前眼部画像に重ねて表示装置に表示させる。表示される干渉像は、干渉撮影系により取得された生画像でもよいし、これから得られた加工画像でもよい。表示装置は、眼科装置の要素であってもよいし、眼科装置の周辺機器であってもよい。
 上記の例示においては、コンピュータ100(特に表示処理部120)が制御部に相当する。コンピュータ100は、干渉撮影系20により取得された干渉像を前眼部撮影系30により取得された前眼部画像に重ねて表示デバイス80に表示させるように構成されている。
 このように構成された例示的な実施形態によれば、干渉撮影系と前眼部撮影系とが別々に設けられており、且つ、双方の光路が第1光路結合素子により互いに結合されているので、干渉撮影と前眼部撮影とをほぼ同時に行うことができる。これにより、眼球運動や体動に起因する干渉像と前眼部画像との間の位置ずれが生じるおそれを低減することができる。
 更に、例示的な実施形態によれば、干渉撮影系とは別に設けられた前眼部撮影系により、前眼部の広い範囲を撮影することが可能である。これにより、角膜の端部に発生する異常を見逃すおそれを低減することができ、また、検査を効率的に行うことが可能である。
 加えて、例示的な実施形態によれば、涙液の状態を表現する干渉像を前眼部画像に重ねて表示することができるので、涙液の異常の箇所や分布を前眼部画像に重ねて表示することが可能である。これにより、異常発生箇所を容易に(直感的に)把握可能な態様でユーザに提示することができる。
 以上のように、例示的な実施形態によれば、涙液の状態の異常発生箇所を前眼部の広い範囲にわたり良好な位置精度で提示することが可能になる。
 幾つかの例示的な実施形態に係る眼科装置は、第1光路結合素子に対して被検眼の側に配置された第1レンズ群と、第1光路結合素子に対して被検眼の反対側に配置された第2レンズ群とを更に含んでいてよい。ここで、第1レンズ群及び第2レンズ群は、干渉撮影系の対物レンズとして機能するように構成されてよく、第1レンズ群は、前眼部撮影系の対物レンズとして機能するように構成されてよい。
 上記の例示においては、2つのレンズ41及び42が第1レンズ群に相当し、2つのレンズ43及び44が第2レンズ群に相当する。更に、4つのレンズ41~44が干渉撮影系22の対物レンズとして機能しており、且つ、2つのレンズ41及び42が前眼部撮影系30の対物レンズとして機能している。
 幾つかの例示的な実施形態において、前眼部撮影系に含まれるレンズのうち最も第1光路結合素子の側に位置するレンズが、第1レンズ群の焦点位置又はその近傍に配置されていてよい。
 上記の例示においては、前眼部撮影系30に含まれるレンズ32のうち最も光路結合素子51の側に位置するレンズが、2つのレンズ41及び42からなる第1レンズ群の焦点位置又はその近傍に配置されている。
 このように構成された例示的な実施形態により、少なくとも次の2つの効果が奏される。第1に、干渉撮影系に関し、角膜の各位置に対して略垂直に照明光を入射させることができ、且つ、角膜の各位置からの反射光が、当該位置への照明光の入射経路と略同一の経路を逆向きに進行して検出されることができる。これにより、角膜の各位置に対応する照明光の経路とその反射光の経路とが略一致され、その結果、湾曲した角膜上の涙液の状態の分布を湾曲面に対し垂直方向から正確に捉えることが可能になる。
 第2に、前眼部撮影系に関し、第1光路結合素子の近くに前眼部撮影系を配置することができ、更に、第1レンズ群の後側焦点位置又はその近傍に前眼部撮影系(レンズ)を配置することができる。これにより、前眼部撮影系の撮影視野の拡大を図ることが可能になる。
 幾つかの例示的な実施形態に係る眼科装置は、照明系の光路と干渉撮影系の光路とを結合する第2光路結合素子を更に含んでいてよい。上記の例示においては、光路結合素子53が第2光路結合素子に相当する。光路結合素子53は、照明系10の光路と干渉撮影系20の光路とを結合するように構成されている。
 幾つかの例示的な実施形態において、第1光路結合素子及び第2光路結合素子のそれぞれはビームスプリッタであってよい。更に、干渉模様を撮影するための照明光の戻り光は、第1光路結合素子及び第2光路結合素子のそれぞれにより反射されて、干渉撮影系の撮像素子に導かれるように構成されていてよい。
 上記の例示においては、光路結合素子51及び光路結合素子53のそれぞれはビームスプリッタ(ハーフミラー等)である。更に、干渉模様を撮影するための照明光の戻り光は、光路結合素子51及び光路結合素子53のそれぞれにより反射されて、撮像素子に相当する干渉撮影カメラ23に導かれるように構成されていてよい。
 このように構成された例示的な実施形態によれば、光学系のコンパクト化を図りつつ、ビームスプリッタを透過する際の光の乱れを回避することができるので、角膜上に生じた干渉模様を高い確度で検出することが可能になる。
 幾つかの例示的な実施形態に係る眼科装置は、前眼部に投射される照明光の強度を変更する照明強度変更部を更に含んでいてよい。上記の例示においては、可変フィルタ14及び照明強度変更処理部130が照明強度変更部に相当する。
 このように構成された例示的な実施形態によれば、好適な強度の光を用いて検査を行うことができる。例えば、涙液層破壊時間(BUT)検査のように或る程度の時間が掛かる検査において、眩しさによって被検者が眼を閉じてしまうおそれを低減することができ、被検者への負担を軽減することもできる。
 幾つかの例示的な実施形態に係る眼科装置は、前眼部に投与された蛍光剤の励起光を照明光から生成するエキサイタフィルタと、この励起光を受けた蛍光剤が発する蛍光を選択的に通過させるバリアフィルタとを更に含んでいてよい。上記の例示においては、エキサイタフィルタ13がエキサイタフィルタに相当し、バリアフィルタ31がバリアフィルタに相当する。
 このように構成された例示的な実施形態によれば、前眼部の蛍光造影撮影を行うことができるので、角膜の状態や涙液の状態を好適に観察することが可能である。
 幾つかの例示的な実施形態に係る眼科装置は、アライメントのための要素を含んでいてよい。アライメントによって検査の容易化を図ることができる。アライメントのための構成の例を以下に挙げる。
 第1の例として、幾つかの例示的な実施形態に係る眼科装置は、投射系と、検出系と、第1アライメント部とを含んでいてよい。投射系は、第1光路結合素子から被検眼に向かう光路の光軸に対して傾斜した方向に沿って前眼部にアライメント光を投射する。検出系は、投射系により前眼部に投射されたアライメント光の反射光を検出する。第1アライメント部は、検出系からの出力に基づいて、当該光軸に沿う方向におけるアライメントを実行する。
 上記の例示においては、アライメント光源61、レンズ42、及びレンズ41が投射系に相当する。また、レンズ41、レンズ42、及びイメージセンサー62が検出系に相当する。更に、ユニット移動機構70及びアライメント処理部140が第1アライメント部に相当する。これら要素によってZアライメントが実現される。
 第1の例において、投射系は、アライメント光を出力するアライメント光源を含んでいてよい。また、検出系は、アライメント光の反射光を検出するイメージセンサーを含んでいてよい。更に、アライメント光源及びイメージセンサーは、第1光路結合素子に対して被検眼の反対側に配置されていてよい。
 上記の例示においては、アライメント光源61がアライメント光源に相当し、イメージセンサー62がイメージセンサーに相当する。更に、アライメント光源61及びイメージセンサー62は、光路結合素子51に対して被検眼Eの反対側、つまり前眼部撮影系30の側、に配置されている。光路結合素子51には切り欠き、開口、透光部等が形成されており、これを介して光が光路結合素子51を通過するように構成されていてよい。
 第2の例として、幾つかの例示的な実施形態に係る眼科装置は、第2アライメント部を更に含んでいてよい。第2アライメント部は、前眼部撮影系により取得された前眼部画像に基づいて、第1光路結合素子から被検眼に向かう光路の光軸に直交する方向におけるアライメントを実行する。
 上記の例示においては、ユニット移動機構70及びアライメント処理部140が第2アライメント部に相当する。これら要素によってXYアライメントが実現される。
 第3の例として、幾つかの例示的な実施形態に係る眼科装置は、2以上の撮影部と、第3アライメント部とを含む。2以上の撮影部は、互いに異なる方向から前眼部を撮影する。第3アライメント部は、2以上の撮影部によりそれぞれ取得された2以上の撮影画像に基づいて3次元アライメントを実行する。
 上記の例示においては、2つの前眼部カメラ300A及び300Bが2以上の撮影部に相当し、ユニット移動機構70及びアライメント処理部140Aが第3アライメント部に相当する。これら要素によって3次元アライメント(XYZアライメント)が実現される。
1 眼科装置
2 検査ユニット
10 照明系
11 照明光源
13 エキサイタフィルタ
13A エキサイタフィルタ移動機構
14 可変フィルタ
20 干渉撮影系
23 干渉撮影カメラ
30 前眼部撮影系
31 バリアフィルタ
31A バリアフィルタ移動機構
32 レンズ
33 前眼部撮影カメラ
41、42、43、44 レンズ
51、53 光路結合素子
61 アライメント光源
62 イメージセンサー
70 ユニット移動機構
80 表示デバイス
100 コンピュータ
110 検査処理部
120 表示処理部
130 照明強度変更処理部
140 アライメント処理部

 

Claims (11)

  1.  光源から出力された照明光を被検眼の前眼部に投射する照明系と、
     前記照明光により角膜上に形成される干渉模様を撮影するための干渉撮影系と、
     前記照明光が投射されている前記前眼部を撮影するための前眼部撮影系と、
     前記干渉撮影系の光路と前記前眼部撮影系の光路とを結合する第1光路結合素子と、
     前記干渉撮影系により取得された干渉像を前記前眼部撮影系により取得された前眼部画像に重ねて表示装置に表示させる制御部と
     を含む眼科装置。
  2.  前記第1光路結合素子に対して前記被検眼の側に配置された第1レンズ群と、
     前記第1光路結合素子に対して前記被検眼の反対側に配置された第2レンズ群と
     を更に含み、
     前記第1レンズ群及び前記第2レンズ群は、前記干渉撮影系の対物レンズとして機能し、
     前記第1レンズ群は、前記前眼部撮影系の対物レンズとして機能する
     ことを特徴とする、請求項1に記載の眼科装置。
  3.  前記前眼部撮影系に含まれるレンズのうち最も前記第1光路結合素子の側に位置するレンズが、前記第1レンズ群の焦点位置又はその近傍に配置されている
     ことを特徴とする、請求項2に記載の眼科装置。
  4.  前記照明系の光路と前記干渉撮影系の光路とを結合する第2光路結合素子を更に含む
     ことを特徴とする、請求項1~3のいずれかに記載の眼科装置。
  5.  前記第1光路結合素子及び前記第2光路結合素子のそれぞれはビームスプリッタであり、
     前記干渉模様を撮影するための前記照明光の戻り光は、前記第1光路結合素子及び前記第2光路結合素子のそれぞれにより反射されて、前記干渉撮影系の撮像素子に導かれる
     ことを特徴とする、請求項4に記載の眼科装置。
  6.  前記前眼部に投射される前記照明光の強度を変更する照明強度変更部を更に含む
     ことを特徴とする、請求項1~5のいずれかに記載の眼科装置。
  7.  前記前眼部に投与された蛍光剤の励起光を前記照明光から生成するエキサイタフィルタと、
     前記励起光を受けた前記蛍光剤が発する蛍光を選択的に通過させるバリアフィルタと
     を更に含む
     ことを特徴とする、請求項1~6のいずれかに記載の眼科装置。
  8.  前記第1光路結合素子から前記被検眼に向かう光路の光軸に対して傾斜した方向に沿って前記前眼部にアライメント光を投射する投射系と、
     前記アライメント光の前記前眼部での反射光を検出する検出系と、
     前記検出系からの出力に基づいて、前記光軸に沿う方向におけるアライメントを実行する第1アライメント部と
     を更に含む
     ことを特徴とする、請求項1~7のいずれかに記載の眼科装置。
  9.  前記投射系は、前記アライメント光を出力するアライメント光源を含み、
     前記検出系は、前記反射光を検出するイメージセンサーを含み、
     前記アライメント光源及び前記イメージセンサーは、前記第1光路結合素子に対して前記被検眼の反対側に配置されている
     ことを特徴とする、請求項8に記載の眼科装置。
  10.  前記前眼部撮影系により取得された前眼部画像に基づいて、前記第1光路結合素子から前記被検眼に向かう光路の光軸に直交する方向におけるアライメントを実行する第2アライメント部を更に含む
     ことを特徴とする、請求項1~9のいずれかに記載の眼科装置。
  11.  互いに異なる方向から前記前眼部を撮影する2以上の撮影部と、
     前記2以上の撮影部によりそれぞれ取得された2以上の撮影画像に基づいて3次元アライメントを実行する第3アライメント部を更に含む
     ことを特徴とする、請求項1~7のいずれかに記載の眼科装置。

     
PCT/JP2019/046321 2018-11-27 2019-11-27 眼科装置 WO2020111103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020557764A JP7212063B2 (ja) 2018-11-27 2019-11-27 眼科装置
CN201980090331.XA CN113423323A (zh) 2018-11-27 2019-11-27 眼科装置
EP19888349.8A EP3888527A4 (en) 2018-11-27 2019-11-27 OPHTHALMOLOGICAL DEVICE
JP2023002600A JP7488924B2 (ja) 2018-11-27 2023-01-11 眼科装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/200,676 2018-11-27
US16/200,676 US11013401B2 (en) 2018-11-27 2018-11-27 Ophthalmologic apparatus

Publications (1)

Publication Number Publication Date
WO2020111103A1 true WO2020111103A1 (ja) 2020-06-04

Family

ID=70771105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046321 WO2020111103A1 (ja) 2018-11-27 2019-11-27 眼科装置

Country Status (5)

Country Link
US (1) US11013401B2 (ja)
EP (1) EP3888527A4 (ja)
JP (2) JP7212063B2 (ja)
CN (1) CN113423323A (ja)
WO (1) WO2020111103A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321678B2 (ja) * 2018-06-13 2023-08-07 株式会社トプコン スリットランプ顕微鏡及び眼科システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289970A (ja) 1996-04-26 1997-11-11 Kowa Co 眼科装置
JP2000237135A (ja) * 1999-02-18 2000-09-05 Nidek Co Ltd 眼科装置
JP2001309889A (ja) 2000-05-01 2001-11-06 Nidek Co Ltd 眼科装置
JP2005211173A (ja) 2004-01-27 2005-08-11 Nidek Co Ltd 眼科装置
JP2012161428A (ja) * 2011-02-04 2012-08-30 Tomey Corporation 眼科装置
US20150085252A1 (en) 2012-05-01 2015-03-26 Kabushiki Kaisha Topcon Ophthalmologic apparatus
JP2017136212A (ja) 2016-02-03 2017-08-10 株式会社ニデック 眼科装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038925B2 (ja) * 2008-01-29 2012-10-03 則彦 横井 眼科測定装置
US8641194B2 (en) 2011-07-08 2014-02-04 Johnson & Johnson Vision Care, Inc. System for in vivo analysis of tear film in the human eye via phase shifting interferometry
JP2016007433A (ja) * 2014-06-25 2016-01-18 株式会社ニデック 眼科装置
WO2016067366A1 (ja) 2014-10-28 2016-05-06 パイオニア株式会社 観察装置及び観察方法並びにコンピュータプログラム
JP7068869B2 (ja) 2017-03-14 2022-05-17 株式会社トプコン 涙液層厚み測定装置及び方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289970A (ja) 1996-04-26 1997-11-11 Kowa Co 眼科装置
JP2000237135A (ja) * 1999-02-18 2000-09-05 Nidek Co Ltd 眼科装置
JP2001309889A (ja) 2000-05-01 2001-11-06 Nidek Co Ltd 眼科装置
JP2005211173A (ja) 2004-01-27 2005-08-11 Nidek Co Ltd 眼科装置
JP2012161428A (ja) * 2011-02-04 2012-08-30 Tomey Corporation 眼科装置
US20150085252A1 (en) 2012-05-01 2015-03-26 Kabushiki Kaisha Topcon Ophthalmologic apparatus
JP2017136212A (ja) 2016-02-03 2017-08-10 株式会社ニデック 眼科装置

Also Published As

Publication number Publication date
US11013401B2 (en) 2021-05-25
JP2023033406A (ja) 2023-03-10
EP3888527A4 (en) 2022-08-24
JP7212063B2 (ja) 2023-01-24
JP7488924B2 (ja) 2024-05-22
EP3888527A1 (en) 2021-10-06
US20200163545A1 (en) 2020-05-28
JPWO2020111103A1 (ja) 2021-10-14
CN113423323A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
JP5061380B2 (ja) 眼底観察装置、眼科画像表示装置及びプログラム
JP6009935B2 (ja) 眼科装置
JP6412707B2 (ja) 眼科装置
JP6566541B2 (ja) 眼科装置
JP2007275375A (ja) 眼科装置
JP6498398B2 (ja) 眼科装置
JP2022027879A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP2020081469A (ja) 眼科装置
JP7488924B2 (ja) 眼科装置
JP6723843B2 (ja) 眼科装置
JP2022075772A (ja) 眼科装置
JP2021166903A (ja) 眼科装置、及びその制御方法
JP6901264B2 (ja) 眼科装置
JP7111832B2 (ja) 眼科装置
JP2020036741A (ja) 眼科装置及びその作動方法
JP7050488B2 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP6959158B2 (ja) 眼科装置
JP2018051340A (ja) 眼科装置
JP6912554B2 (ja) 眼科装置
WO2024004455A1 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
JP6701250B2 (ja) 眼科撮影装置及びその制御方法、並びにプログラム
JP2022075771A (ja) 眼科装置
JP6844949B2 (ja) 眼科装置
JP2020138002A (ja) 眼科装置及びその作動方法
JP2023102032A (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888349

Country of ref document: EP

Effective date: 20210628