WO2020110425A1 - 空気調和システム及び冷媒漏洩防止システム - Google Patents

空気調和システム及び冷媒漏洩防止システム Download PDF

Info

Publication number
WO2020110425A1
WO2020110425A1 PCT/JP2019/035881 JP2019035881W WO2020110425A1 WO 2020110425 A1 WO2020110425 A1 WO 2020110425A1 JP 2019035881 W JP2019035881 W JP 2019035881W WO 2020110425 A1 WO2020110425 A1 WO 2020110425A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
leakage
solenoid valve
detected
power
Prior art date
Application number
PCT/JP2019/035881
Other languages
English (en)
French (fr)
Inventor
井上 貴至
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2020558113A priority Critical patent/JPWO2020110425A1/ja
Publication of WO2020110425A1 publication Critical patent/WO2020110425A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioning system and a refrigerant leakage prevention system.
  • Patent Document 1 discloses an air conditioning system that includes a shutoff valve that closes when leakage of a refrigerant is detected.
  • the safety cutoff valve does not require fine adjustment of the opening, it is possible to use a solenoid valve as the safety cutoff valve.
  • the solenoid valve includes a normally closed solenoid valve which is closed when not energized and is opened when energized, and a normally open solenoid valve which is kept opened when not energized and closed when energized.
  • a normally closed solenoid valve If a normally closed solenoid valve is used as a safety shutoff valve, it can maintain the closed state during a power failure and prevent refrigerant leakage. However, it is necessary to constantly energize during normal operation, which shortens the life of the solenoid valve coil. Therefore, it is conceivable to use a normally open type solenoid valve as a safety shutoff valve. However, if a normally open solenoid valve is used, the solenoid valve can be closed when a refrigerant leak and a power outage occur simultaneously due to an earthquake when the power supply source is a commercial power source. Therefore, safety cannot be guaranteed.
  • the present invention has been made in view of the above points, and an object thereof is to ensure safety by using a normally open type solenoid valve and closing the solenoid valve even during a power failure.
  • the air conditioning system of the present invention is provided in a pipe that circulates a slightly flammable or combustible refrigerant, and is a normally open solenoid valve provided so as to be closed by electric power from a commercial power source and an auxiliary power source, and the refrigerant.
  • Leakage detection means for detecting leakage of the refrigerant, and first control means for closing the solenoid valve by supplying electric power from the commercial power source when leakage of the refrigerant is detected by the leakage detection means Leakage of the refrigerant by the leakage detection means when a power failure detection means for detecting a power failure from the commercial power supply and the power failure detection means detects that the power from the commercial power supply cannot be supplied to the solenoid valve.
  • second control means for closing the electromagnetic valve by supplying electric power from the auxiliary power supply is provided.
  • the safety cutoff valve can be closed even during a power failure, and safety can be ensured.
  • FIG. 1 It is a figure which shows an example of a schematic structure of the air conditioning system of Embodiment 1. It is a figure showing an example of composition of a refrigerant interception device of Embodiment 1. It is a figure which shows an example of a structure of the refrigerant interrupting device of the modification of Embodiment 1.
  • FIG. It is a figure which shows an example of a schematic structure of the air conditioning system of Embodiment 2. It is a figure which shows an example of a structure of the refrigerant cutoff device of Embodiment 2. It is a figure which shows an example of a structure of the refrigerant cutoff device of Embodiment 2.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of the air conditioning system of the first embodiment.
  • the air conditioning system includes an outdoor unit 21, an indoor unit 23, a refrigerant cutoff device 350, and a refrigerant leakage detector 28.
  • the outdoor unit 21 and the indoor unit 23 are connected by the refrigerant circulation line 1 to form a closed circuit. Refrigerant is enclosed in this closed circuit, and the refrigeration cycle is realized by circulating the refrigerant.
  • a four-way valve 19 is provided in the refrigerant circulation line 1 between the outdoor heat exchanger 5 and the compressor 3 and between the indoor heat exchanger 15 and the compressor 3.
  • the four-way valve 19 is a valve for switching the flow of refrigerant.
  • the compressor 3 sucks the refrigerant from the indoor heat exchanger 15 during the cooling operation, and the refrigerant compressed from the compressor 3 toward the outdoor heat exchanger 5 is discharged.
  • the compressor 3 sucks the refrigerant from the outdoor heat exchanger 5 and discharges the compressed refrigerant from the compressor 3 toward the indoor heat exchanger 15.
  • a fan 5a driven by a motor is attached to the outdoor heat exchanger 5. Further, the indoor heat exchanger 15 is additionally provided with a fan 15a driven by a motor.
  • the compressor 3, the outdoor heat exchanger 5, the outdoor expansion valve 7, the accumulator 9, and the four-way valve 19 are provided, and the portion of the refrigerant circulation pipeline 1 divided by the liquid blocking valve 11 and the gas blocking valve 17 is the outdoor unit. It is stored in 21.
  • the outdoor unit 21 further includes a control board 25 that controls the operations of the outdoor unit 21 and the indoor unit 23.
  • the control board 25 includes a compressor control circuit, an outdoor electric valve control circuit, a fan control circuit for the outdoor heat exchanger 5, an indoor electric valve control circuit, and a fan control circuit for the indoor heat exchanger 15.
  • the compressor control circuit controls the operation of the compressor 3.
  • the outdoor electric valve control circuit transmits a pulse signal for driving the pulse motor of the outdoor expansion valve 7.
  • the fan control circuit controls driving of the fan 5 a attached to the outdoor heat exchanger 5.
  • the indoor electric valve control circuit transmits a pulse signal for driving the pulse motor of the indoor expansion valve 16.
  • the fan control circuit controls driving of the fan 15a of the indoor heat exchanger 15.
  • the indoor heat exchanger 15 is provided, and a part of the portion of the refrigerant circulation pipeline 1 divided by the liquid blocking valve 11 and the gas blocking valve 17 is housed in the indoor unit 23.
  • the indoor unit 23 is provided in the utilization unit (indoor) 300.
  • the refrigerant circulation pipeline 1 is filled with a slightly flammable refrigerant.
  • the slightly flammable refrigerant include R32, R1234yf, and R1234ze.
  • the refrigerant circulation pipeline 1 may be filled with a flammable refrigerant.
  • the refrigerant leakage detector 28 detects refrigerant leakage from the refrigerant circulation line 1 and the indoor heat exchanger 15.
  • the refrigerant leakage detector 28 detects, for example, the refrigerant gas concentration, and detects the refrigerant leakage when the refrigerant gas concentration becomes equal to or higher than a threshold value.
  • the refrigerant leakage detector 28 is provided at a height of 30 cm or less under the floor of the utilization unit 300 in which the indoor unit 23 is provided. This is because the refrigerant leakage gas tends to be heavier than air and accumulate on the floor surface.
  • a normally open type electromagnetic valve 130a is provided as a refrigerant shutoff valve.
  • a normally open type electromagnetic valve 130b is provided between the indoor heat exchanger 15 and the gas blocking valve 17 as a refrigerant shutoff valve.
  • the electromagnetic valves 130a and 130b are housed in the refrigerant cutoff device 350, and the opening/closing is controlled by the control of the refrigerant cutoff device 350.
  • the refrigerant cutoff device 350 is connected to the refrigerant leakage detector 28 via a signal line.
  • the refrigerant cutoff device 350 controls to close the electromagnetic valves 130a and 130b when a detection signal is input from the refrigerant leakage detector 28, for example.
  • the detailed configuration and operation of the refrigerant blocking device 350 will be described later.
  • the control board 25 of the outdoor unit 21 is supplied with electric power from a 100 V or 200 V commercial power source via the wiring 33.
  • the refrigerant cutoff device 350 and the refrigerant leakage detector 28 are also configured to be able to supply electric power from a commercial power source via the wiring 33.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 is sequentially sent to the indoor unit 23 through the four-way valve 19 and the gas blocking valve 17.
  • the gas refrigerant sent to the indoor unit 23 exchanges heat with the indoor air by driving the fan 15a in the indoor heat exchanger 15 to become a high-pressure liquid refrigerant, and then the indoor expansion valve 16 and the liquid blocking valve 11 are sequentially operated. pass.
  • the liquid refrigerant exiting the liquid blocking valve 11 is decompressed by the outdoor expansion valve 7 to become a low-pressure low-temperature liquid refrigerant, and the outdoor heat exchanger 5 exchanges heat with the outdoor air by driving the attached fan 5a to form a gas refrigerant. After that, it returns to the compressor 3 through the four-way valve 19 and the accumulator 9.
  • FIG. 2 is a diagram showing an example of the configuration of the refrigerant shutoff device 350 of the first embodiment.
  • the refrigerant cutoff device 350 includes an auxiliary power supply 36, a power cutoff detection unit 37, a control unit 38, a relay circuit 72, a control unit 50, a relay circuit 71, a solenoid valve 130a, and a solenoid valve 130b.
  • the auxiliary power source 36 is a power source for supplementing the commercial power source.
  • the relay circuit 71 and the relay circuit 72 are normally open type.
  • a battery is an example of the auxiliary power supply 36.
  • the battery may be a secondary battery or a dry battery.
  • the auxiliary power source 36 may be a capacitor instead of a battery.
  • the solenoid valve 130a and the solenoid valve 130b are provided so as to be able to supply electric power from the auxiliary power supply 36 via the relay circuit 72 and the wiring 49. Further, the solenoid valve 130a and the solenoid valve 130b are provided so as to be able to supply electric power from a commercial power source via the wiring 33, the relay circuit 71, and the wiring 31.
  • the opening and closing of the relay circuit 72 is controlled by the control unit 38.
  • the power interruption detection unit 37 detects a power failure of the commercial power source. More specifically, the power cutoff detection unit 37 measures the voltage at the wiring 33 in the refrigerant cutoff device 350 and detects a voltage drop for a predetermined period or longer as a power failure.
  • the power cutoff detection unit 37 When the power cutoff detection unit 37 detects a power failure, it outputs a detection signal to the control unit 38.
  • the control unit 38 closes the relay circuit 72.
  • the opening and closing of the relay circuit 71 is controlled by the control unit 50.
  • the control unit 50 closes the relay circuit 71.
  • the refrigerant leakage detector 28 detects the refrigerant leakage. Then, when the refrigerant leakage detector 28 detects the refrigerant leakage, it outputs a detection signal to the control unit 50 of the refrigerant cutoff device 350. The control unit 50 closes the relay circuit 71 according to the detection signal from the refrigerant leakage detector 28. When the relay circuit 71 is closed, the wiring 31 and the wiring 33 are connected.
  • the air conditioning system can close the solenoid valves 130a and 130b when the leakage of the refrigerant is detected.
  • the power cutoff detection unit 37 of the refrigerant cutoff device 350 detects a power failure. Then, when the power interruption detection unit 37 detects a power failure, it outputs a detection signal to the control unit 38.
  • the control unit 38 closes the relay circuit 72 according to the detection signal from the power interruption detection unit 37.
  • the relay circuit 72 is closed, the auxiliary power supply 36 and the wiring 49 are connected. As a result, power is supplied from the auxiliary power supply 36 to the solenoid valves 130a and 130b, and the solenoid valves 130a and 130b are closed.
  • the solenoid valve 130a and the solenoid valve 130b are provided so as to be able to supply the electric power from the auxiliary power source 36, so that the refrigerant shutoff device 350 can operate even during a power failure.
  • the solenoid valve 130a and the solenoid valve 130b can be closed.
  • the air conditioning system according to the present embodiment can close the electromagnetic valves 130a and 130b during a power failure regardless of whether or not refrigerant leakage is detected.
  • the air conditioning system according to the present embodiment since the normally open type solenoid valve 130a and the solenoid valve 130b are used as the refrigerant shutoff valves, it is not necessary to energize during normal operation. Further, the air conditioning system according to the present embodiment supplies electric power from the commercial power supply to the solenoid valves 130a and 130b when the leakage of the refrigerant is detected. As a result, the solenoid valves 130a and 130b can be closed. Further, in the air conditioning system according to the present embodiment, when the power failure of the commercial power source is detected, the power from the auxiliary power source 36 is supplied to the solenoid valves 130a and 130b regardless of whether the leakage of the refrigerant is detected or not. Supply. That is, when a power failure is detected, the electromagnetic valves 130a and 130b can be promptly closed regardless of whether or not refrigerant leakage is detected.
  • FIG. 3 is a diagram showing an example of the configuration of a refrigerant shutoff device 351 of a modified example of the first embodiment.
  • the solenoid valves 130a and 130b described with reference to FIG. 2 are configured to be capable of supplying power from both the commercial power supply and the auxiliary power supply 36.
  • the solenoid valves 131a and 131b may be configured to be capable of supplying power only from the auxiliary power source 36. In the modification, only the wiring 49 for supplying electric power from the auxiliary power source 36 is connected to the solenoid valves 131a and 131b.
  • the refrigerant cutoff device 351 does not have the configuration for supplying electric power from the commercial power supply to the solenoid valve, such as the relay circuit 71 and the control unit 50 described with reference to FIG. 2. Further, in the refrigerant cutoff device 351 of the modified example, the detection signal from the refrigerant leakage detector 28 is input to the control unit 39 that controls the relay circuit 72. Then, the control unit 39 closes the relay circuit 72 not only when the power failure is detected but also when the leakage is detected.
  • the electromagnetic valves 131a and 131b are closed when the leakage of the refrigerant is detected during energization, and whether or not the leakage is detected during the power failure.
  • the solenoid valves 131a and 131b can be closed.
  • the power of the auxiliary power supply 36 is used to close the solenoid valves 131a and 131b at the time of power failure, as in the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of the air conditioning system of the second embodiment.
  • the refrigerant leakage detector 28 is connected to the refrigerant cutoff device 352 via the wiring 65, and is supplied with power from the commercial power supply or the auxiliary power supply 36 via the refrigerant cutoff device 352.
  • FIG. 5 is a diagram showing an example of the configuration of the refrigerant shutoff device 352 of the second embodiment.
  • the refrigerant cutoff device 352 includes an auxiliary power supply 36, a power cutoff detection unit 37, a control unit 212, a switching circuit 151, a control unit 213, a switching circuit 152, a control unit 214, and a normally open relay circuit 73. And a solenoid valve 132a and a solenoid valve 132b.
  • the wiring 65 connected to the refrigerant leakage detector 28 is connected to the output side of the switching circuit 151, and the wiring 33 and the wiring 220 are connected to the input side of the switching circuit 151.
  • the refrigerant leakage detector 28 is supplied with electric power from the commercial power supply or the auxiliary power supply according to the switching of the switching circuit 151. It is assumed that the input side of the switching circuit 151 is normally connected to the wiring 33.
  • the wiring 222 is connected to the output side of the switching circuit 152, and the wiring 33 and the wiring 220 are connected to the input side of the switching circuit 152.
  • the wiring 222 is connected to the wiring 221 connected to the solenoid valves 132a and 132b via the relay circuit 73. With these configurations, electric power from the commercial power source or the auxiliary power source 36 is supplied to the solenoid valves 132a and 132b. It is assumed that the input side of the switching circuit 152 is normally connected to the wiring 33.
  • the detection signal of the power interruption detection unit 37 is input to the control unit 212 and the control unit 213.
  • the control unit 212 switches the input side of the switching circuit 151 so that it is connected to the wiring 220.
  • the control unit 213 switches the input side of the switching circuit 152 to be connected to the wiring 220.
  • the control unit 214 closes the relay circuit 73.
  • the switching circuit 151 connects the wiring 65 and the wiring 33. Therefore, electric power is supplied to the refrigerant leakage detector 28 from the commercial power source via the wiring 65 and the wiring 33. That is, normally, the refrigerant leakage detector 28 detects the leakage of the refrigerant by the electric power from the commercial power source. Further, normally, the switching circuit 152 connects the wiring 222 and the wiring 33. Therefore, when the leakage of the refrigerant is detected and the relay circuit 73 is closed by the control unit 214, the electromagnetic valves 132a and 132b are closed by the electric power of the commercial power source.
  • the switching circuit 151 connects the wiring 65 and the wiring 220 under the control of the control unit 212. Further, at the time of power failure, the switching circuit 152 connects the wiring 222 and the wiring 220 under the control of the control unit 213. That is, at the time of power failure, the refrigerant leakage detector 28 detects the refrigerant leakage by the electric power from the auxiliary power source 36. In addition, the wiring 222 is connected to the wiring 220 at the time of power failure. Therefore, when the leakage of the refrigerant is detected and the relay circuit 73 is closed, the electromagnetic valves 132a and 132b are closed by the power of the auxiliary power supply 36.
  • the air conditioning system similarly to the first embodiment, since the normally open solenoid valve 132a and the solenoid valve 132b are used as the refrigerant shutoff valves, it is not necessary to energize during normal operation. . Further, in the air conditioning system of the present embodiment, when a power failure is detected, the solenoid valve 132a and the solenoid valve 132b are not immediately closed, but the electric power from the auxiliary power supply 36 is supplied to the refrigerant leakage detector 28. Therefore, the refrigerant leakage is continuously detected.
  • the wiring is switched so that power can be supplied from the auxiliary power supply 36 to the solenoid valves 132a and 132b during a power failure.
  • FIG. 6 is a diagram illustrating an example of the configuration of the refrigerant shutoff device 353 of the second embodiment.
  • the solenoid valves 133a and 133b are configured to be able to supply power from both the commercial power supply and the auxiliary power supply 36.
  • the solenoid valves 134a and 134b may be configured to be capable of supplying power only from the auxiliary power source 36.
  • the wiring 230 connected to the solenoid valves 134a and 134b is connected only to the wiring 220 of the auxiliary power supply 36 via the normally open type relay circuit 74.
  • the relay circuit 74 is closed by the control unit 261 when the leakage is detected by the refrigerant leakage detector 28.
  • the electromagnetic valves 134a and 134b are closed by the power of the auxiliary power supply 36 at the time of leakage detection in both the normal time and the power failure.
  • the refrigerant cutoff device 353 according to the modification does not have the configuration for supplying electric power from the commercial power supply to the solenoid valve, such as the switching circuit 152 and the control unit 231 described with reference to FIG.
  • the refrigerant leakage detector 28 may be provided with a function of issuing an alarm. With such a configuration, when the refrigerant leaks, it is possible to notify the user of the refrigerant leak.
  • the configuration in which the solenoid valve, the control unit for closing the solenoid valve (power cutoff detection unit, etc.), and the auxiliary power source are integrally provided has been described.
  • the electromagnetic valve may be provided outside the utilization unit 300 in the circulation line 1, and the electromagnetic valve may not be provided integrally with the control unit and the auxiliary power source in the refrigerant cutoff device.
  • a refrigerant leakage prevention system that performs an operation at the time of refrigerant leakage detection and an operation at the time of power failure is realized as an air conditioning system
  • a system or an apparatus that realizes the refrigerant leakage prevention system It is not limited to air conditioning systems.
  • it may be realized in a cooling device such as a freezer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

微燃性又は可燃性の冷媒を循環させる配管に設けられ、商用電源及び補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、冷媒の漏洩を検知する漏洩検知手段と、漏洩検知手段により冷媒の漏洩が検知された場合に、商用電源からの電力を供給することで電磁弁を閉止させる第1の制御手段と、商用電源からの停電を検知する停電検知手段と、停電検知手段により商用電源からの電力を電磁弁へ供給できなくなったことが検知された場合に、漏洩検知手段により冷媒の漏洩が検知されたか否かに関わらず、補助電源からの電力を供給することで電磁弁を閉止させる第2の制御手段と、を有する。

Description

空気調和システム及び冷媒漏洩防止システム
 本発明は、空気調和システム及び冷媒漏洩防止システムに関する。
 地球の温暖化が問題となるなか地球温暖化係数をより小さくすることが求められている。地球温暖化係数をより小さくするため、冷媒として微燃性の冷媒又は可燃性の冷媒を用いる場合がある。微燃性の冷媒又は可燃性の冷媒を用いる場合には、安全対策として、冷媒漏洩検知器、安全遮断弁等の使用が求められる。特許文献1では、冷媒の漏洩が検知された際に閉止する遮断弁を含む空気調和システムが開示されている。
特開2017-9268号公報
 電気で駆動する自動弁として電磁弁と電動弁とがある。安全遮断弁は、開度の微調整が不要なので、安全遮断弁として電磁弁を使用することが考えられる。ここで、電磁弁には、非通電時には閉状態を保ち、通電時に開くノーマルクローズ型の電磁弁と、非通電時には開状態を保ち、通電時に閉じるノーマルオープン型の電磁弁と、がある。
 ノーマルクローズ型の電磁弁を安全遮断弁として使用すれば、停電時に閉状態を保つことができ、冷媒の漏洩を防止することができる。しかし、通常運転時には常時通電する必要があり、電磁弁コイルの寿命を縮めることになる。したがって、ノーマルオープン型の電磁弁を安全遮断弁として使用することが考えられる。しかし、ノーマルオープン型の電磁弁を用いることとすると、電力供給源を商用電源とした場合には、地震等で冷媒漏洩と停電とが同時に発生した場合には、電磁弁を閉止することができず、安全性を担保することができない。
 本発明は上記の点に鑑みなされたもので、ノーマルオープン型の電磁弁を用いつつ、停電時においても電磁弁を閉止でき、安全性を担保することを目的とする。
 本発明の空気調和システムは、微燃性又は可燃性の冷媒を循環させる配管に設けられ、商用電源及び補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、前記冷媒の漏洩を検知する漏洩検知手段と、前記漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記商用電源からの電力を供給することで前記電磁弁を閉止させる第1の制御手段と、商用電源からの停電を検知する停電検知手段と、前記停電検知手段により前記商用電源からの電力を前記電磁弁へ供給できなくなったことが検知された場合に、前記漏洩検知手段により前記冷媒の漏洩が検知されたか否かに関わらず、前記補助電源からの電力を供給することで前記電磁弁を閉止させる第2の制御手段と、を有することを特徴とする。
 本発明によれば、ノーマルオープン型の電磁弁を用いつつ、停電時においても安全遮断弁を閉止でき、安全性を担保できる。
実施形態1の空気調和システムの概略構成の一例を示す図である。 実施形態1の冷媒遮断装置の構成の一例を示す図である。 実施形態1の変形例の冷媒遮断装置の構成の一例を示す図である。 実施形態2の空気調和システムの概略構成の一例を示す図である。 実施形態2の冷媒遮断装置の構成の一例を示す図である。 実施形態2の冷媒遮断装置の構成の一例を示す図である。
 以下、本発明の実施形態について図面に基づいて説明する。
<実施形態1>
(空気調和システムの概略構成)
 図1は、実施形態1の空気調和システムの概略構成の一例を示す図である。空気調和システムは、室外機21と、室内機23と、冷媒遮断装置350と、冷媒漏洩検知器28と、を有している。室外機21と、室内機23と、は冷媒循環管路1で接続されて閉回路を構成している。この閉回路の中に冷媒が封入されており、冷媒が巡回することで冷凍サイクルが実現されている。
 室外熱交換器5と圧縮機3の間、室内熱交換器15と圧縮機3の間の冷媒循環管路1には四方弁19が設けられている。四方弁19は、冷媒の流れを切り替えるための弁である。冷媒循環管路1は、四方弁19の切り換えによって、冷房運転時には、室内熱交換器15からの冷媒を圧縮機3が吸込み、圧縮機3から室外熱交換器5に向けて圧縮された冷媒を吐出し、暖房運転時には、室外熱交換器5からの冷媒を圧縮機3が吸込み、圧縮機3から室内熱交換器15に向けて圧縮された冷媒を吐出する状態に配管されている。室外熱交換器5には、モータにより駆動されるファン5aが付設されている。また、室内熱交換器15には、モータにより駆動されるファン15aが付設されている。
 圧縮機3、室外熱交換器5、室外膨張弁7、アキュームレータ9、四方弁19が設けられ、液阻止弁11とガス阻止弁17とで分割される冷媒循環管路1の部分は、室外機21に収められている。室外機21はさらに、室外機21及び室内機23の動作を制御する制御基板25を有している。制御基板25は圧縮機制御回路、室外電動弁制御回路、室外熱交換器5のファン制御回路、室内電動弁制御回路、室内熱交換器15のファン制御回路を含んでいる。圧縮機制御回路は、圧縮機3の動作を制御する。室外電動弁制御回路は、室外膨張弁7のパルスモータを駆動させるためのパルス信号を送信する。ファン制御回路は、室外熱交換器5に付設されたファン5aの駆動を制御する。室内電動弁制御回路は、室内膨張弁16のパルスモータを駆動させるためのパルス信号を送信する。ファン制御回路は、室内熱交換器15のファン15aの駆動を制御する。
 一方、室内熱交換器15が設けられ、液阻止弁11とガス阻止弁17とで分割される冷媒循環管路1の部分の一部は、室内機23に収められている。室内機23は、利用部(室内)300に設けられる。
 本実施形態に係る空気調和システムにおいては、冷媒循環管路1には、微燃性の冷媒が充填されている。微燃性の冷媒としては、R32、R1234yf、R1234zeが挙げられる。他の例としては、冷媒循環管路1には、可燃性の冷媒が充填されていてもよい。
 冷媒漏洩検知器28は、冷媒循環管路1及び室内熱交換器15からの冷媒の漏洩を検知する。冷媒漏洩検知器28は、例えば、冷媒ガス濃度を検知し、冷媒ガス濃度が閾値以上になった場合に、冷媒漏洩として検知する。冷媒漏洩検知器28は、室内機23が設けられた利用部300の床下30センチ以下の高さに設けられている。これは、冷媒漏洩ガスが空気よりも重く床面に溜まる傾向にあるためである。
 さらに、冷媒循環管路1において、液阻止弁11と室内膨張弁16の間には、冷媒の遮断弁としてノーマルオープン型の電磁弁130aが設けられている。また、室内熱交換器15とガス阻止弁17の間にも、冷媒の遮断弁としてノーマルオープン型の電磁弁130bが設けられている。さらに、電磁弁130a及び電磁弁130bは、冷媒遮断装置350に収容され、冷媒遮断装置350の制御により開閉が制御される。冷媒遮断装置350は、冷媒漏洩検知器28と信号線を介して接続されている。冷媒遮断装置350は、例えば、冷媒漏洩検知器28から検知信号が入力された場合に、電磁弁130a及び電磁弁130bを閉止するよう制御する。冷媒遮断装置350の詳細な構成及び動作については後述する。
 室外機21の制御基板25には、配線33を介して100V又は200Vの商用電源からの電力が供給される。冷媒遮断装置350及び冷媒漏洩検知器28にも、配線33を介して商用電源からの電力が供給可能に構成されている。
(空気調和システムの動作)
 まず、冷凍サイクルの主要な冷媒の流れについて説明する。圧縮機3より吐出された高温高圧のガス冷媒は、四方弁19によって流れ方向を切り替えられる。冷房運転時には、圧縮機3より吐出された高温高圧のガス冷媒は、室外熱交換器5に送られ、室外熱交換器5に付設されたファン5aの駆動により室外空気と熱交換して凝縮し、高圧の液冷媒となり、室外膨張弁7を通過した液冷媒は、液阻止弁11を通過し、室内機23に送られる。そして室内膨張弁16で減圧された後、低圧低温の液冷媒となり、室内熱交換器15で、付設されたファン15aの駆動により室内空気と熱交換してガス冷媒となり、ガス阻止弁17、四方弁19、アキュームレータ9を順次通り、圧縮機3に戻る。
 一方、暖房運転時には、圧縮機3より吐出された高温高圧のガス冷媒は、四方弁19、ガス阻止弁17を順次通って室内機23へと送られる。室内機23へと送られたガス冷媒は、室内熱交換器15でファン15aの駆動により室内空気と熱交換して高圧の液冷媒となった後、室内膨張弁16、液阻止弁11を順次通過する。液阻止弁11を出た液冷媒は、室外膨張弁7で減圧され、低圧低温の液冷媒となり、室外熱交換器5で、付設されたファン5aの駆動により室外空気と熱交換してガス冷媒となった後、四方弁19、アキュームレータ9を通り圧縮機3に戻る。
 図2は、実施形態1の冷媒遮断装置350の構成の一例を示す図である。冷媒遮断装置350は、補助電源36と、電力遮断検知部37と、制御部38と、リレー回路72と、制御部50と、リレー回路71と、電磁弁130aと、電磁弁130bと、を有する。補助電源36は、商用電源を補助するための電源である。リレー回路71及びリレー回路72は、ノーマルオープン型である。補助電源36の例としては、電池がある。電池は、二次電池であってもよいし、乾電池であってもよい。また、補助電源36としては、電池以外にキャパシタであってもよい。電磁弁130a及び電磁弁130bは、リレー回路72及び配線49を介して補助電源36からの電力を供給可能に設けられている。さらに、電磁弁130a及び電磁弁130bは、配線33、リレー回路71及び配線31を介して商用電源からの電力を供給可能に設けられている。リレー回路72の開閉は、制御部38により制御される。電力遮断検知部37は、商用電源の停電を検知する。より具体的には電力遮断検知部37は、冷媒遮断装置350内の配線33において電圧を測定し、所定期間以上の電圧低下を停電として検知する。電力遮断検知部37は、停電を検知すると、制御部38に検知信号を出力する。制御部38は、電力遮断検知部37から検知信号が入力されると、リレー回路72を閉じる。一方、リレー回路71の開閉は、制御部50により制御される。制御部50は、冷媒漏洩検知器28から検知信号が入力されると、リレー回路71を閉じる。
(冷媒漏洩検知)
 次に、冷媒漏洩検知時の動作について説明する。冷媒漏洩検知器28の電源オン時には、冷媒漏洩検知器28は、冷媒漏洩検知を行う。そして、冷媒漏洩検知器28は、冷媒の漏洩を検知すると、冷媒遮断装置350の制御部50に検知信号を出力する。制御部50は、冷媒漏洩検知器28からの検知信号に従い、リレー回路71を閉じる。リレー回路71が閉じられると、配線31と配線33とが接続される。これにより、商用電源から電磁弁130a及び電磁弁130bへ電力が供給され、電磁弁130a及び電磁弁130bが閉止する。このように、本実施形態に係る空気調和システムは、冷媒の漏洩が検知された場合に、電磁弁130a及び電磁弁130bを閉止することができる。
(停電検知)
 次に、停電時の動作について説明する。空気調和システムの電源オン時には、冷媒遮断装置350の電力遮断検知部37は、停電検知を行う。そして、電力遮断検知部37は、停電を検知すると、制御部38に検知信号を出力する。制御部38は、電力遮断検知部37からの検知信号に従い、リレー回路72を閉じる。リレー回路72が閉じられると、補助電源36と配線49とが接続される。これにより、補助電源36から電磁弁130a及び電磁弁130bへ電力が供給され、電磁弁130a及び電磁弁130bが閉止する。このように、本実施形態に係る空気調和システムにおいては、電磁弁130a及び電磁弁130bは、補助電源36からの電力を供給可能に設けられているため、冷媒遮断装置350は、停電時においても、電磁弁130a及び電磁弁130bを閉止することができる。さらに、本実施形態に係る空気調和システムは、停電時には、冷媒の漏洩が検知されたか否かに関わらず、電磁弁130a及び電磁弁130bを閉止することができる。
 以上のとおり、本実施形態に係る空気調和システムにおいては、冷媒の遮断弁としてノーマルオープン型の電磁弁130a及び電磁弁130bを用いるため、通常運転時には通電する必要がない。また、本実施形態に係る空気調和システムは、冷媒の漏洩が検知された場合、商用電源から電磁弁130a及び電磁弁130bへ電力を供給する。このことによって、電磁弁130a及び電磁弁130bを閉止することができる。また、本実施形態に係る空気調和システムは、商用電源の停電が検知された場合、冷媒の漏洩が検知されたか否かに関わらず、電磁弁130a及び電磁弁130bへ補助電源36からの電力を供給する。即ち、停電が検知された場合には、冷媒の漏洩が検知されたか否かに関わらず、速やかに電磁弁130a及び電磁弁130bを閉止することができる。
<変形例>
(空気調和システムの概略構成)
 図3は、実施形態1の変形例の冷媒遮断装置351の構成の一例を示す図である。実施形態1の空気調和システムでは、図2を参照しつつ説明した電磁弁130a及び電磁弁130bは、商用電源及び補助電源36のいずれからも電力供給が可能な構成とした。ただし、変形例としては、図3に示すように、電磁弁131a及び電磁弁131bは、補助電源36のみから電力供給可能な構成としてもよい。変形例においては、電磁弁131a及び電磁弁131bには、補助電源36からの電力供給のための配線49のみが接続されている。なお、変形例に係る冷媒遮断装置351は、図2を参照しつつ説明した、リレー回路71、制御部50といった、商用電源から電磁弁へ電力を供給するための構成は有さない。さらに、変形例の冷媒遮断装置351においては、冷媒漏洩検知器28からの検知信号は、リレー回路72を制御する制御部39に入力される。そして、制御部39は、停電が検知された場合だけでなく、漏洩が検知された場合にもリレー回路72を閉じる。以上の構成により、変形例に係る空気調和システムにおいても、通電時には冷媒の漏洩が検知された場合に電磁弁131a及び電磁弁131bを閉止し、さらに停電時には漏洩が検知されたか否かに関わらず電磁弁131a及び電磁弁131bを閉止することができる。なお、本変形例においても、停電時の電磁弁131a及び電磁弁131bの閉止には、実施形態1と同様に補助電源36の電力が利用される。
 本変形例によれば、より簡単な構成で実施形態1の効果と同様の効果を奏することができる。
<実施形態2>
(空気調和システムの概略構成)
 以下、実施形態2の空気調和システムについて、実施形態1の空気調和システムと異なる点を主に説明する。実施形態2の空気調和システムにおいては、停電が検知された場合に、冷媒漏洩検知器28は、補助電源36からの電力で動作を継続する。図4は、実施形態2の空気調和システムの概略構成の一例を示す図である。冷媒漏洩検知器28は、配線65を介して冷媒遮断装置352と接続されており、冷媒遮断装置352を介して商用電源又は補助電源36から電力が供給される。
 図5は、実施形態2の冷媒遮断装置352の構成の一例を示す図である。冷媒遮断装置352は、補助電源36と、電力遮断検知部37と、制御部212と、切り替え回路151と、制御部213と、切り替え回路152と、制御部214と、ノーマルオープン型のリレー回路73と、電磁弁132aと、電磁弁132bと、を有する。
 切り替え回路151の出力側には、冷媒漏洩検知器28に接続された配線65が接続され、切り替え回路151の入力側には、配線33及び配線220が接続されている。これらの構成により、冷媒漏洩検知器28には、切り替え回路151の切り替えに応じて、商用電源又は補助電源からの電力が供給される。なお、通常時においては、切り替え回路151の入力側は配線33に接続されているものとする。
 また、切り替え回路152の出力側には、配線222が接続され、切り替え回路152の入力側には、配線33及び配線220が接続されている。なお、配線222は、電磁弁132a及び電磁弁132bに接続された配線221にリレー回路73を介して接続している。これらの構成により、電磁弁132a及び電磁弁132bには、商用電源又は補助電源36からの電力が供給される。なお、通常時においては、切り替え回路152の入力側は配線33に接続されているものとする。
 電力遮断検知部37の検知信号は、制御部212及び制御部213に入力される。制御部212は、電力遮断検知部37からの検知信号が入力されると、切り替え回路151の入力側が配線220に接続されるように切り替える。また、制御部213は、電力遮断検知部37からの検知信号が入力されると、切り替え回路152の入力側が配線220に接続されるように切り替える。制御部214は、冷媒漏洩検知器28から検知信号が入力されると、リレー回路73を閉じる。
(冷媒漏洩検知及び停電検知)
 次に、冷媒漏洩検知時の動作について説明する。通常時には切り替え回路151は、配線65と配線33を接続している。そのため、冷媒漏洩検知器28には、配線65と配線33を介して商用電源から電力が供給される。即ち、通常時には、冷媒漏洩検知器28は、商用電源からの電力により冷媒の漏洩検知を行う。さらに、通常時には、切り替え回路152は、配線222と配線33を接続している。したがって、冷媒の漏洩が検知され、制御部214によりリレー回路73が閉じられると、商用電源の電力により電磁弁132a及び電磁弁132bが閉止する。
 一方、停電時には、制御部212の制御により切り替え回路151は、配線65と配線220を接続する。また、停電時には、制御部213の制御により切り替え回路152は、配線222と配線220を接続する。即ち、停電時には、冷媒漏洩検知器28は、補助電源36からの電力により冷媒の漏洩検知を行う。また、停電時には、配線222は、配線220と接続されている。したがって、冷媒の漏洩が検知され、リレー回路73が閉じられると、補助電源36の電力により電磁弁132a及び電磁弁132bが閉止する。
 以上のとおり、本実施形態に係る空気調和システムにおいては、実施形態1と同様に、冷媒の遮断弁としてノーマルオープン型の電磁弁132a及び電磁弁132bを用いるため、通常運転時には通電する必要がない。さらに、本実施形態の空気調和システムにおいては、停電を検知した場合に、直ちに電磁弁132a及び電磁弁132bを閉止するのではなく、冷媒漏洩検知器28へ補助電源36からの電力を供給することで、冷媒漏洩の検知を継続して行う。そして、本実施形態の空気調和システムにおいては、停電時には、電磁弁132a及び電磁弁132bへ補助電源36からの電力供給を可能なように配線を切り替えておく。これにより、本実施形態に係る空気調和システムにおいては、停電時においても冷媒漏洩の検知を継続して行うことができ、冷媒の漏洩が検知された場合には、停電中か否かに関わらず電磁弁132a及び電磁弁132bを閉止することができる。
<変形例>
 図6は、実施形態2の冷媒遮断装置353の構成の一例を示す図である。図5を参照しつつ説明したように、実施形態2の空気調和システムでは、電磁弁133a及び電磁弁133bは、商用電源及び補助電源36のいずれからも電力を供給可能な構成とした。ただし、変形例としては、図6に示すように、電磁弁134a及び電磁弁134bは、補助電源36のみから電力供給可能な構成としてもよい。電磁弁134a及び電磁弁134bに接続される配線230は、ノーマルオープン型のリレー回路74を介して補助電源36の配線220のみと接続している。リレー回路74は、冷媒漏洩検知器28により漏洩が検知された場合に、制御部261により閉止される。以上の構成により、変形例に係る冷媒遮断装置353においては、電磁弁134a及び電磁弁134bは、通常時及び停電時のいずれの場合においても、漏洩検知時には、補助電源36の電力により閉止する。なお、変形例に係る冷媒遮断装置353は、図5を参照しつつ説明した、切り替え回路152、制御部231といった、商用電源から電磁弁へ電力を供給するための構成は有さない。
 本変形例によれば、より簡単な構成で実施形態2の効果と同様の効果を奏することができる。
 以上、本発明の実施形態の一例について詳述したが、本発明は係る特定の実施形態に限定されるものではない。例えば、冷媒漏洩検知器28に警報を発する機能を設けてもよい。このような構成とすることにより、冷媒が漏洩した際にユーザ等に冷媒の漏洩を知らせることができる。また、上記実施形態においては、冷媒遮断装置において、電磁弁と、電磁弁を閉止するための制御部(電力遮断検知部など)と、補助電源とが一体に設けられる構成を説明したが、冷媒循環管路1で利用部300の外側に電磁弁が設けられていればよく、電磁弁は、冷媒遮断装置において制御部、補助電源と一体に設けられていなくてもよい。
 また、本実施形態においては、冷媒漏洩検知時の動作及び停電時の動作を行う冷媒漏洩防止システムを空気調和システムとして実現する例について説明したが、冷媒漏洩防止システムを実現するシステム、又は装置は空気調和システムに限定されるものではない。他の例としては、冷凍庫等の冷却装置において実現されてもよい。
 以上、上述した各実施形態等によれば、ノーマルオープン型の電磁弁を用いつつ、停電時においても冷媒の漏洩を防止することができる。
1   冷媒循環管路
13a ノーマルオープン型の電磁弁
13b ノーマルオープン型の電磁弁
21  室外機
23  室内機
350 冷媒遮断装置

Claims (10)

  1.  微燃性又は可燃性の冷媒を循環させる配管に設けられ、商用電源及び補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、
     前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記商用電源からの電力を供給することで前記電磁弁を閉止させる第1の制御手段と、
     商用電源からの停電を検知する停電検知手段と、
     前記停電検知手段により前記商用電源からの電力を前記電磁弁へ供給できなくなったことが検知された場合に、前記漏洩検知手段により前記冷媒の漏洩が検知されたか否かに関わらず、前記補助電源からの電力を供給することで前記電磁弁を閉止させる第2の制御手段と、
    を有することを特徴とする空気調和システム。
  2.  微燃性又は可燃性の冷媒を循環させる配管に設けられ、補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、
     商用電源の停電を検知する停電検知手段と、
     前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記電磁弁を閉止させ、また前記停電検知手段により停電が検知された場合に、前記漏洩検知手段により前記冷媒の漏洩が検知されたか否かに関わらず、前記電磁弁を閉止させる制御手段と、
    を有することを特徴とする空気調和システム。
  3.  前記漏洩検知手段を更に有することを特徴とする請求項1又は2に記載の空気調和システム。
  4.  微燃性又は可燃性の冷媒を循環させる配管に設けられた、ノーマルオープン型の電磁弁と、
     商用電源の電力を用いて前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記電磁弁を閉止させる第1の制御手段と、
     前記商用電源の停電を検知する停電検知手段と、
     前記停電検知手段により前記商用電源の停電が検知された場合に、補助電源の電力を前記漏洩検知手段に供給する第2の制御手段と、
    を有することを特徴とする空気調和システム。
  5.  前記漏洩検知手段を更に有することを特徴とする請求項4に記載の空気調和システム。
  6.  前記電磁弁は、前記停電が検知されていない状態においては前記商用電源からの電力で閉止し、前記停電中は前記補助電源からの電力で閉止するように設けられていることを特徴とする請求項4又は5に記載の空気調和システム。
  7.  前記電磁弁は、前記補助電源からの電力で閉止するように設けられており、
     前記漏洩検知手段により前記冷媒の漏洩が検知された場合には、前記電磁弁は、前記補助電源からの電力により閉止することを特徴とする請求項4又は5に記載の空気調和システム。
  8.  微燃性又は可燃性の冷媒を循環させる配管に設けられ、商用電源及び補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、
     前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記商用電源からの電力を供給することで前記電磁弁を閉止させる第1の制御手段と、
     商用電源からの停電を検知する停電検知手段と、
     前記停電検知手段により前記商用電源からの電力を前記電磁弁へ供給できなくなったことが検知された場合に、前記漏洩検知手段により前記冷媒の漏洩が検知されたか否かに関わらず、前記補助電源からの電力を供給することで前記電磁弁を閉止させる第2の制御手段と、
    を有することを特徴とする冷媒漏洩防止システム。
  9.  微燃性又は可燃性の冷媒を循環させる配管に設けられ、補助電源からの電力により閉止するように設けられたノーマルオープン型の電磁弁と、
     商用電源の停電を検知する停電検知手段と、
     前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記電磁弁を閉止させ、また前記停電検知手段により停電が検知された場合に、前記漏洩検知手段により前記冷媒の漏洩が検知されたか否かに関わらず、前記電磁弁を閉止させる制御手段と、
    を有することを特徴とする冷媒漏洩防止システム。
  10.  微燃性又は可燃性の冷媒を循環させる配管に設けられた、ノーマルオープン型の電磁弁と、
     商用電源の電力を用いて前記冷媒の漏洩を検知する漏洩検知手段により前記冷媒の漏洩が検知された場合に、前記電磁弁を閉止させる第1の制御手段と、
     前記商用電源の停電を検知する停電検知手段と、
     前記停電検知手段により前記商用電源の停電が検知された場合に、補助電源の電力を前記漏洩検知手段に供給する第2の制御手段と、
    を有することを特徴とする冷媒漏洩防止システム。
PCT/JP2019/035881 2018-11-26 2019-09-12 空気調和システム及び冷媒漏洩防止システム WO2020110425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558113A JPWO2020110425A1 (ja) 2018-11-26 2019-09-12 空気調和システム及び冷媒漏洩防止システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-220684 2018-11-26
JP2018220684 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110425A1 true WO2020110425A1 (ja) 2020-06-04

Family

ID=70852789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035881 WO2020110425A1 (ja) 2018-11-26 2019-09-12 空気調和システム及び冷媒漏洩防止システム

Country Status (2)

Country Link
JP (1) JPWO2020110425A1 (ja)
WO (1) WO2020110425A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134005A (ja) * 2019-02-19 2020-08-31 パナソニックIpマネジメント株式会社 空気調和装置
EP4008975A1 (en) * 2020-12-01 2022-06-08 Panasonic Intellectual Property Management Co., Ltd. Air conditioning system
WO2022264368A1 (ja) * 2021-06-17 2022-12-22 東芝キヤリア株式会社 冷凍サイクルの遮断弁制御装置及び空気調和装置
WO2023095202A1 (ja) * 2021-11-24 2023-06-01 東芝キヤリア株式会社 空気調和機
WO2023119505A1 (ja) * 2021-12-22 2023-06-29 東芝キヤリア株式会社 空気調和機
WO2024028946A1 (ja) * 2022-08-01 2024-02-08 東芝キヤリア株式会社 冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201681A (ja) * 2000-12-27 2002-07-19 Inax Corp 給水装置
JP2005121333A (ja) * 2003-10-20 2005-05-12 Hitachi Ltd 空気調和装置
JP2015117931A (ja) * 2013-11-14 2015-06-25 ダイキン工業株式会社 室内機
JP2017067428A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268908A (ja) * 2009-05-20 2010-12-02 Rinnai Corp 食器洗浄機
JP6637702B2 (ja) * 2015-09-08 2020-01-29 日立ジョンソンコントロールズ空調株式会社 空気調和システム
US11118821B2 (en) * 2017-01-19 2021-09-14 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201681A (ja) * 2000-12-27 2002-07-19 Inax Corp 給水装置
JP2005121333A (ja) * 2003-10-20 2005-05-12 Hitachi Ltd 空気調和装置
JP2015117931A (ja) * 2013-11-14 2015-06-25 ダイキン工業株式会社 室内機
JP2017067428A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134005A (ja) * 2019-02-19 2020-08-31 パナソニックIpマネジメント株式会社 空気調和装置
EP4008975A1 (en) * 2020-12-01 2022-06-08 Panasonic Intellectual Property Management Co., Ltd. Air conditioning system
WO2022264368A1 (ja) * 2021-06-17 2022-12-22 東芝キヤリア株式会社 冷凍サイクルの遮断弁制御装置及び空気調和装置
JP7466061B2 (ja) 2021-06-17 2024-04-11 東芝キヤリア株式会社 冷凍サイクルの遮断弁制御装置及び空気調和装置
WO2023095202A1 (ja) * 2021-11-24 2023-06-01 東芝キヤリア株式会社 空気調和機
WO2023119505A1 (ja) * 2021-12-22 2023-06-29 東芝キヤリア株式会社 空気調和機
WO2024028946A1 (ja) * 2022-08-01 2024-02-08 東芝キヤリア株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2020110425A1 (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
WO2020110425A1 (ja) 空気調和システム及び冷媒漏洩防止システム
US9958175B2 (en) Air-conditioning apparatus
US9353958B2 (en) Air-conditioning apparatus
JP3414464B2 (ja) 空気調和機
WO2018216127A1 (ja) 空調システム
EP2535653A1 (en) Air-conditioning device
JP5211894B2 (ja) 空気調和機
AU2020349218B2 (en) Heat pump device
EP3869122B1 (en) Air conditioning apparatus
JP2020134005A (ja) 空気調和装置
JPWO2019038797A1 (ja) 空気調和装置および膨張弁ユニット
CN114303032A (zh) 制冷剂系统
WO2021234857A1 (ja) 冷凍サイクル装置
JP2007282318A (ja) 空気調和機
JP2002061996A (ja) 空気調和機
US20210325068A1 (en) Air conditioner and cut-off valve
KR20080070239A (ko) 멀티 에어컨 시스템 및 그 운전 방법
JP6105270B2 (ja) 空気調和機
US20240117989A1 (en) Shut-off valve control device for refrigeration cycle, and air conditioner
JP2001304651A (ja) 空気調和装置及びその運転制御方法
WO2019097604A1 (ja) ダクト式空気調和機
JPH11142017A (ja) 空気調和機
JP6251429B2 (ja) 空気調和機
JP3420652B2 (ja) 空気調和機
JP3642609B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888791

Country of ref document: EP

Kind code of ref document: A1