WO2020110292A1 - 表示制御システム、表示制御装置及び表示制御方法 - Google Patents

表示制御システム、表示制御装置及び表示制御方法 Download PDF

Info

Publication number
WO2020110292A1
WO2020110292A1 PCT/JP2018/044181 JP2018044181W WO2020110292A1 WO 2020110292 A1 WO2020110292 A1 WO 2020110292A1 JP 2018044181 W JP2018044181 W JP 2018044181W WO 2020110292 A1 WO2020110292 A1 WO 2020110292A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
display control
display
unit
Prior art date
Application number
PCT/JP2018/044181
Other languages
English (en)
French (fr)
Inventor
満 中澤
裕章 岩瀬
Original Assignee
楽天株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天株式会社 filed Critical 楽天株式会社
Priority to PCT/JP2018/044181 priority Critical patent/WO2020110292A1/ja
Priority to US17/042,928 priority patent/US12019441B2/en
Priority to JP2020547432A priority patent/JP6831949B2/ja
Priority to CN201880093256.8A priority patent/CN112105559B/zh
Publication of WO2020110292A1 publication Critical patent/WO2020110292A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0033Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by having the operator tracking the vehicle either by direct line of sight or via one or more cameras located remotely from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/223Command input arrangements on the remote controller, e.g. joysticks or touch screens
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/224Output arrangements on the remote controller, e.g. displays, haptics or speakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the present invention relates to a display control system, a display control device, and a display control method.
  • the operator of the unmanned aerial vehicle When flying an unmanned aerial vehicle, as a general rule, the operator of the unmanned aerial vehicle must be watching the unmanned aerial vehicle in order to ensure the safety of the unmanned aerial vehicle and its surroundings.
  • the driver of the unmanned aerial vehicle may be detected by, for example, an image captured by the camera of the unmanned aerial vehicle (hereinafter, referred to as an aircraft image). It is required to be able to grasp the situation around the unmanned aerial vehicle.
  • Patent Document 1 As an example of a technique for presenting an aircraft-captured image to the operator of the unmanned aerial vehicle, in Patent Document 1, a pilot image created from an omnidirectional image captured by an omnidirectional camera attached to an unmanned helicopter is used. The remote control system presented in.
  • Patent Document 2 describes that an image taken by a camera of an unmanned aerial vehicle is displayed on a head-mounted display attached to the head of a pilot.
  • the present invention has been made in view of the above problems, and one of its objects is a display control system, a display control device, and a display that can appropriately control a display state of an image captured by a camera of an unmanned aerial vehicle. It is to provide a control method.
  • a display control system is an image acquisition unit that acquires an aircraft image captured by a camera included in a flying unmanned aerial vehicle, the unmanned aerial vehicle, and a driver of the unmanned aerial vehicle. Based on sensing data relating to at least one of the determination means for determining whether or not the unmanned aerial vehicle is visible by the operator, and the aircraft photographing on the display unit according to the determination result by the determination means. Display control means for controlling the display state of the image.
  • the display control unit controls whether or not to display the aircraft-captured image on the display unit according to the determination result by the determination unit.
  • the display control unit controls the size of the aircraft imaged image displayed on the display unit according to the determination result by the determination unit.
  • the determination means determines whether or not the unmanned aerial vehicle can be visually recognized by the driver based on the distance between the unmanned aerial vehicle and the operator.
  • the determination means determines whether or not the unmanned aerial vehicle can be visually recognized by the operator based on the aircraft captured image.
  • the determination means capable of visually recognizing the unmanned aerial vehicle by the pilot based on a pilot-captured image captured by a camera arranged on the head of the pilot. Determine whether or not.
  • the display control unit controls a display state of the aircraft-captured image on the display unit included in the head mounted display worn by the pilot according to the determination result by the determination unit. ..
  • the determination means capable of visually recognizing the unmanned aerial vehicle by the pilot based on a pilot-captured image captured by a camera included in a head mounted display worn by the pilot.
  • the display control unit controls the display state of the aircraft-captured image on the display unit included in the head mounted display according to the determination result of the determination unit.
  • the operator when the unmanned aerial vehicle is visible by the pilot and the operator does not see the unmanned aerial vehicle, the operator is guided to see the unmanned aerial vehicle.
  • Guide means for providing guidance information to the operator when the unmanned aerial vehicle is visible by the pilot and the operator does not see the unmanned aerial vehicle, the operator is guided to see the unmanned aerial vehicle.
  • a display control device relates to at least one of an image acquisition unit that acquires an aircraft image captured by a camera included in a flying unmanned aerial vehicle, and the unmanned aerial vehicle and the operator of the unmanned aerial vehicle. Based on the sensing data, a determination unit that determines whether the unmanned aerial vehicle is visible by the operator, and a display state of the aircraft captured image on the display unit according to the determination result by the determination unit Display control means for
  • the display control method includes a step of acquiring an aircraft image captured by a camera included in a flying unmanned aerial vehicle, and sensing data regarding at least one of the unmanned aerial vehicle and a driver of the unmanned aerial vehicle. Based on, the step of determining whether or not the unmanned aerial vehicle is visible by the operator, and controlling the display state of the aircraft captured image on the display unit according to the determination result in the determining step. And a step.
  • FIG. 1 is a diagram showing an example of the overall configuration of a display control system 1 according to an embodiment of the present invention.
  • the display control system 1 includes a head mounted display (HMD) 10, an unmanned aerial vehicle 12, and a control terminal 14.
  • HMD head mounted display
  • unmanned aerial vehicle unmanned aerial vehicle
  • control terminal 14 and the unmanned aerial vehicle 12 can communicate with each other. Further, the HMD 10 and the control terminal 14 can communicate with each other. Note that the HMD 10 and the unmanned aerial vehicle 12 may be capable of directly communicating with each other without the control terminal 14.
  • the HMD 10 is a display device that the driver of the unmanned aerial vehicle 12 can wear on the head.
  • the HMD 10 according to the present embodiment is a video transmission type (video see-through type). Therefore, the operator of the unmanned aerial vehicle 12 can visually recognize the state of the real space while wearing the HMD 10 through an image captured by the camera unit 30 described later (hereinafter, referred to as an operator captured image).
  • the HMD 10 includes a processor 20, a storage unit 22, a communication unit 24, a display unit 26, a sensor unit 28, and a camera unit 30, as shown in FIG. 2A, for example.
  • the HMD 10 may include a voice output unit such as a speaker.
  • the processor 20 is a program control device such as a microprocessor that operates according to a program installed in the HMD 10, for example.
  • the storage unit 22 is, for example, a storage element such as a ROM, a RAM, or a flash memory.
  • the storage unit 22 stores programs executed by the processor 20 and the like.
  • the communication unit 24 is, for example, a communication interface such as a wireless LAN module or a Bluetooth (registered trademark) module.
  • the display unit 26 is a display arranged on the front side of the HMD 10, such as a liquid crystal display or an organic EL display.
  • the display unit 26 according to the present embodiment can display a three-dimensional image by displaying an image for the left eye and an image for the right eye, for example.
  • the display unit 26 may not be able to display a three-dimensional image but only a two-dimensional image.
  • the sensor unit 28 is a device including a GNSS (Global Navigation Satellite System) receiver such as a GPS (Global Positioning System), an inertial sensor such as an acceleration sensor or a gyro sensor, and a geomagnetic sensor.
  • the sensor unit 28 can measure the position and orientation of the HMD 10.
  • the sensor unit 28 may output measurement results such as the position and orientation of the HMD 10 to the processor 20 at a predetermined sampling rate.
  • the camera unit 30 is a device including one or a plurality of cameras that capture an operator-captured image that is an image of the field of view of the wearer of the HMD 10.
  • the camera unit 30 may capture the operator-captured image at a predetermined sampling rate.
  • the unmanned aerial vehicle 12 is an aircraft on which no person is boarding, and is, for example, an unmanned aerial vehicle (so-called drone) driven by a battery or an engine.
  • the unmanned aerial vehicle 12 according to the present embodiment may have an autonomous flight function.
  • the unmanned aerial vehicle 12 includes a processor 40, a storage unit 42, a communication unit 44, a sensor unit 46, and a camera unit 48, as shown in FIG. 2B, for example.
  • the unmanned aerial vehicle 12 also includes general hardware such as a propeller, a motor, and a battery, they are omitted here.
  • the processor 40 is a program control device such as a microprocessor that operates according to a program installed in the unmanned aerial vehicle 12, for example.
  • the storage unit 42 is, for example, a storage element such as a ROM, a RAM, or a flash memory.
  • the storage unit 42 stores programs executed by the processor 40 and the like.
  • the communication unit 44 is a communication interface such as a wireless LAN module or a Bluetooth module.
  • the sensor unit 46 is a device including, for example, a GNSS receiver such as GPS, an atmospheric pressure sensor, a LIDAR (Light Detection and Ranging), an altitude sensor such as a sound wave sensor, an inertial sensor, and a wind speed sensor.
  • the sensor unit 46 can measure the position and orientation of the unmanned aerial vehicle 12.
  • the sensor unit 46 may output measurement results such as the position and orientation of the unmanned aerial vehicle 12 to the processor 40 at a predetermined sampling rate.
  • the communication unit 44 may also transmit the measurement result to the HMD 10 at a predetermined sampling rate.
  • the camera unit 48 is a device including, for example, one or a plurality of cameras that photograph the surroundings of the unmanned aerial vehicle 12.
  • the camera unit 48 may include, for example, an omnidirectional camera capable of photographing the surroundings of the unmanned aerial vehicle 12 in all directions.
  • the image captured by the camera unit 48 of the unmanned aerial vehicle 12 will be referred to as an aircraft captured image.
  • the camera unit 48 may capture an aircraft captured image at a predetermined sampling rate.
  • the communication unit 44 may also transmit the aircraft captured image to the HMD 10 at a predetermined sampling rate.
  • the control terminal 14 is, for example, a device for controlling the unmanned aerial vehicle 12.
  • a pilot-captured image captured by the camera unit 30 of the HMD 10 is displayed on the display unit 26 of the HMD 10.
  • the unmanned aerial vehicle 12 is present at the position P1 shown in FIG. 3 and the operator of the unmanned aerial vehicle 12 is present at the position P0 shown in FIG.
  • the position P1 is shorter than the predetermined distance from the position P0, and the unmanned aerial vehicle 12 can be visually recognized by the image captured by the operator.
  • the operator-captured image captured by the camera unit 30 of the HMD 10 is displayed on the display unit 26 of the HMD 10. Therefore, the operator of the unmanned aerial vehicle 12 can visually recognize the unmanned aerial vehicle 12 through the image captured by the operator on the display unit 26.
  • the aircraft image captured by the camera unit 48 of the unmanned aerial vehicle 12 is not displayed on the display unit 26.
  • the unmanned aerial vehicle 12 is present at the position P2 shown in FIG. 3 and the operator of the unmanned aerial vehicle 12 is present at the position P0 shown in FIG.
  • the position P2 is longer than the predetermined distance from the position P0, and the unmanned aerial vehicle 12 is not visually recognizable by the image captured by the operator.
  • the aircraft image captured by the camera unit 48 of the unmanned aerial vehicle 12 is displayed on the display unit 26. Therefore, the operator of the unmanned aerial vehicle 12 can visually recognize the surroundings of the unmanned aerial vehicle 12 through the aircraft-captured image displayed on the display unit 26. In this case, the operator-captured image captured by the camera unit 30 of the HMD 10 is not displayed on the display unit 26.
  • the unmanned aerial vehicle 12 exists at the position P3 shown in FIG. 3 and the operator of the unmanned aerial vehicle 12 exists at the position P0 shown in FIG.
  • the position P3 is shorter than the predetermined distance from the position P0, but is blocked by an obstacle such as a tree 50 existing between the positions P3 and P0, and the unmanned aerial vehicle 12 is photographed by the pilot at the position P0. It is not visible in the image.
  • the aircraft image captured by the camera unit 48 of the unmanned aerial vehicle 12 is displayed on the display unit 26. Therefore, the operator of the unmanned aerial vehicle 12 can visually recognize the surroundings of the unmanned aerial vehicle 12 through the aircraft-captured image displayed on the display unit 26. In this case, the operator-captured image captured by the camera unit 30 of the HMD 10 is not displayed on the display unit 26.
  • both the operator-captured image and the aircraft-captured image may be displayed on the display unit 26 of the HMD 10.
  • the pilot captured image may be displayed larger than the aircraft captured image.
  • the operator-captured image may be displayed on the entire screen of the display unit 26 and the aircraft-captured image may be wiped displayed on a part of the display unit 26.
  • the aircraft captured image may be displayed larger than the pilot captured image.
  • the aircraft-captured image may be displayed on the entire screen of the display unit 26, and the pilot-captured image may be wiped-displayed on a part of the display unit 26.
  • the operator of the unmanned aerial vehicle 12 When flying the unmanned aerial vehicle 12, as a general rule, the operator of the unmanned aerial vehicle 12 needs to visually check the unmanned aerial vehicle 12 in order to ensure the safety of the unmanned aerial vehicle 12 and its surroundings.
  • the driver of the unmanned aerial vehicle 12 cannot visually recognize the unmanned aerial vehicle 12, it is required that the operator of the unmanned aerial vehicle 12 can grasp the situation around the unmanned aerial vehicle 12 by the image captured by the aircraft. Further, even if the unmanned aerial vehicle 12 is capable of autonomous flight, the operator can visually secure the unmanned aerial vehicle 12, switch from the autonomous flight according to the situation, and perform the operation by the operator to further ensure safety.
  • the presentation of the aircraft-captured image to the relevant unmanned aerial vehicle 12 be suppressed as much as possible so as not to obstruct the viewing.
  • the driver of the unmanned aerial vehicle 12 cannot see the unmanned aerial vehicle 12, the suppression needs to be released.
  • whether or not the operator of the unmanned aerial vehicle 12 can visually recognize the unmanned aerial vehicle 12 is determined at any time. Then, the display state of the aircraft-captured image on the display unit 26 is controlled according to whether or not the operator of the unmanned aerial vehicle 12 can visually recognize the unmanned aerial vehicle 12. In this way, according to the present embodiment, the display state of the aircraft captured image can be appropriately controlled.
  • FIG. 4 is a functional block diagram showing an example of functions implemented in the HMD 10 according to this embodiment. It should be noted that the HMD 10 according to the present embodiment does not need to have all the functions shown in FIG. 4, and may have functions other than those shown in FIG.
  • the HMD 10 functionally includes, for example, a sensing data acquisition unit 60, a determination unit 62, a display control unit 64, and a guide unit 66.
  • the sensing data acquisition unit 60 is mainly mounted on the processor 20, the communication unit 24, the sensor unit 28, and the camera unit 30.
  • the determination unit 62 is mainly mounted on the processor 20.
  • the display control unit 64 and the guide unit 66 are mainly mounted on the processor 20 and the display unit 26.
  • the above functions may be implemented by executing a program, which is installed in the HMD 10 that is a computer and includes instructions corresponding to the above functions, in the processor 20. Further, this program may be supplied to the HMD 10 via a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, a magneto-optical disk, or via the Internet or the like.
  • a program which is installed in the HMD 10 that is a computer and includes instructions corresponding to the above functions, in the processor 20. Further, this program may be supplied to the HMD 10 via a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, a magneto-optical disk, or via the Internet or the like.
  • the sensing data acquisition unit 60 acquires, for example, sensing data regarding at least one of the unmanned aerial vehicle 12 and the operator of the unmanned aerial vehicle 12.
  • the sensing data acquisition unit 60 may acquire, for example, sensing data indicating the measurement result by the sensor unit 28 of the HMD 10 or the sensor unit 46 of the unmanned aerial vehicle 12.
  • the sensing data acquired by the sensing data acquisition unit 60 may include an aircraft image captured by the camera unit 48 included in the unmanned aerial vehicle 12 in flight.
  • the sensing data acquired by the sensing data acquisition unit 60 may include a pilot-captured image captured by the camera unit 30 arranged on the head of the pilot of the unmanned aerial vehicle 12.
  • the sensing data acquisition unit 60 may also acquire sensing data including an aircraft captured image and an operator captured image generated at a predetermined sampling rate at a predetermined sampling rate.
  • the determination unit 62 determines whether or not the unmanned aerial vehicle 12 can be visually recognized by the unmanned aerial vehicle 12 based on sensing data regarding at least one of the unmanned aerial vehicle 12 and the operator of the unmanned aerial vehicle 12. judge.
  • the sensing data acquired by the sensing data acquisition unit 60 it is determined whether or not the unmanned aerial vehicle 12 is visible to the operator.
  • the determination unit 62 may determine whether or not the unmanned aerial vehicle 12 can be visually recognized by the pilot based on the distance between the unmanned aerial vehicle 12 and the pilot.
  • the position of the HMD 10 may be regarded as the position of the operator. Then, the determination unit 62 may determine whether or not the unmanned aerial vehicle 12 is visible by the operator based on the distance between the position of the unmanned aerial vehicle 12 and the position of the HMD 10.
  • the determination unit 62 may determine whether or not the unmanned aerial vehicle 12 can be visually recognized by the pilot based on the pilot-captured image captured by the camera arranged on the head of the pilot. ..
  • whether or not the unmanned aerial vehicle 12 can be visually recognized by the pilot may be determined based on whether or not the image captured by the pilot is overexposed.
  • the determination unit 62 may also determine whether or not the unmanned aerial vehicle 12 can be visually recognized by the pilot based on the image captured by the aircraft. For example, the determination unit 62 determines whether or not the unmanned aerial vehicle 12 can be visually recognized by the pilot based on whether or not the image of the HMD 10 is detected from the aircraft captured image acquired by the sensing data acquisition unit 60. You may.
  • the determination unit 62 determines whether the image of the operator of the HMD 10 is detected from the image captured by the aircraft instead of the image of the HMD 10 or in addition to the image of the HMD 10 by the operator. It may be determined whether or not is visible. For example, when the pilot is facing the direction opposite to the direction in which the unmanned aerial vehicle 12 exists, the HMD 10 is likely to be in a blind spot hidden in the pilot's head when viewed from the camera unit 48. .. In such a case, it is considered that the determination unit 62 can detect the image of the operator from the image captured by the aircraft more easily than the image of the HMD 10.
  • the determination unit 62 may further determine whether or not the unmanned aerial vehicle 12 is visually observed by the operator. For example, the determination unit 62 may determine whether or not the operator is visually watching the unmanned aerial vehicle 12 based on the range of the field of view (FOV) of the camera unit 30.
  • FOV field of view
  • the display control unit 64 controls the display state of the aircraft captured image on the display unit 26 included in the HMD 10 according to the determination result of the determination unit 62.
  • the display control unit 64 may control whether to display the aircraft captured image on the display unit 26 according to the determination result of the determination unit 62.
  • the display control unit 64 controls the speed of the unmanned aerial vehicle 12, the position of the unmanned aerial vehicle 12 (latitude, longitude, altitude, etc.), the distance from the operator to the unmanned aerial vehicle 12, the distance to the destination, the remaining battery level, and other unmanned vehicles. Information regarding the aircraft 12 may be displayed.
  • the guide unit 66 guides the pilot so that the unmanned aerial vehicle 12 can be visually recognized by the pilot and the unmanned aerial vehicle 12 can be viewed when the pilot is not watching the unmanned aerial vehicle 12. Providing guidance information to the pilot. For example, even if the determination unit 62 determines that the unmanned aerial vehicle 12 can be visually recognized by the operator and the operator does not see the unmanned aerial vehicle 12, the guidance information is provided to the operator. Good.
  • the guide unit 66 may generate a pilot-captured image on which a guide image such as an image of an arrow indicating the direction in which the unmanned aerial vehicle 12 exists is superimposed.
  • the pilot in the present embodiment may be any person who can control the unmanned aerial vehicle 12, and it is not necessary for the operator to actually control the unmanned aerial vehicle 12.
  • the unmanned aerial vehicle 12 has an autonomous flight function and can switch between a state in which it is autonomously flying and a state in which it is not autonomously flying, when the unmanned aircraft 12 is autonomously flying,
  • the person who is gripping corresponds to the operator in the present embodiment.
  • the image is displayed on the display unit 26 at a predetermined frame rate corresponding to the above-described predetermined sampling rate. Then, it is assumed that the processing shown in S101 to S108 is repeatedly executed at the predetermined frame rate.
  • the sensing data acquisition unit 60 acquires the sensing data in the frame (S101).
  • the sensing data includes an aircraft shot image in the frame and a pilot shot image in the frame.
  • the determination unit 62 determines whether or not the distance between the position of the HMD 10 and the position of the unmanned aerial vehicle 12 is less than or equal to a predetermined distance, based on the sensing data acquired in the process shown in S101 (S102). ).
  • the position of the HMD 10 the position measured by the sensor unit 28, the position of the camera unit 30 specified based on the measurement result of the sensor unit 28, or the like may be used.
  • the position of the unmanned aerial vehicle 12 a position measured by the sensor unit 46, a position of the camera unit 48 specified based on the measurement result of the sensor unit 46, or the like may be used.
  • the above-mentioned predetermined distance may be determined in advance based on design values such as the resolution and the angle of view of the display unit 26 and design values such as the resolution and the angle of view of the camera unit 30. Further, the above-mentioned predetermined distance may be a distance in a three-dimensional space, or a distance between a position on the horizontal plane where the HMD 10 is projected on the horizontal plane and a position at which the unmanned aerial vehicle 12 is projected on the horizontal plane. It may be.
  • the above-mentioned predetermined distance may be different in the horizontal direction and the height direction.
  • the distance between the position where the HMD 10 is projected on the horizontal plane and the position where the unmanned aerial vehicle 12 is projected on the horizontal plane may be specified as the first distance.
  • the distance between the position where the HMD 10 is projected on the vertical line and the position where the unmanned aerial vehicle 12 is projected on the vertical line on the vertical line may be specified as the second distance. If the first distance is less than or equal to the first predetermined distance and the value indicating the second distance is less than or equal to the second predetermined distance, then between the position of the HMD 10 and the position of the unmanned aerial vehicle 12. May be determined to be less than or equal to the predetermined distance. If not, it may be determined that the distance between the position of the HMD 10 and the position of the unmanned aerial vehicle 12 is not less than or equal to the predetermined distance.
  • the determination unit 62 determines whether or not the image of the HMD 10 is detected from the aircraft captured image acquired in the process shown in S101 (S103). The detection may be performed using a known image recognition technique here.
  • the determination unit 62 determines whether or not the pilot-captured image acquired in the process shown in S101 is blown out (S104). The determination may be performed using a known image processing technique here.
  • the display control unit 64 causes the display unit 26 to display the aircraft captured image acquired in the process of S101 (S105), and returns to the process of S101.
  • the display control unit 64 similarly displays the aircraft captured image. It is displayed on the display unit 26 (S105), and the process returns to S101.
  • the display control unit 64 causes the display unit 26 to display the aircraft imaged image (S103:N). S105), and the process returns to S101.
  • the determination unit 62 determines whether the unmanned aerial vehicle 12 is within the field of view of the camera unit 30 (S106).
  • the range of the field of view of the camera unit 30 is, for example, in the three-dimensional space specified based on the posture of the operator's head, the position of the operator, and the design value such as the angle of view of the camera unit 30.
  • the posture of the driver's head and the position of the operator are specified based on the measurement result by the sensor unit 28, for example.
  • the range of the field of view of the camera unit 30 in the processing shown in S106 means the range of the field of view that does not consider the influence of obstacles. Therefore, for example, when the unmanned aerial vehicle 12 is present at the position P3 shown in FIG. 3 and the operator is facing the position P3 from the position P0, the unmanned aerial vehicle 12 is within the range of the visual field of the camera unit 30. Is determined.
  • the determination unit 62 does not specify the range of the field of view of the camera unit 30 and makes the above determination as described above, but based on whether or not the unmanned aerial vehicle 12 can be detected from the image captured by the operator, the unmanned aircraft. It may be determined whether 12 is within the range of the visual field. Alternatively, the determination unit 62 determines the range of the field of view of the unmanned aerial vehicle 12 based on the range of the field of view of the camera unit 30 specified as described above and whether or not the unmanned aerial vehicle 12 can be detected from the image captured by the operator. It may be determined whether or not it is within.
  • the detection of the unmanned aerial vehicle 12 from the image captured by the operator may be performed using a known image recognition technique.
  • the display control unit 64 causes the display unit 26 to display the operator-captured image acquired in the process of S101 (S107), and returns to the process of S101.
  • the display control unit 64 causes the display unit 26 to display the pilot captured image on which the guide image that guides the pilot so that the unmanned aerial vehicle 12 can be visually recognized is superimposed (S108), and the processing shown in S101 is performed.
  • the guide unit 66 may specify the direction in which the unmanned aerial vehicle 12 exists based on the range of the field of view of the camera unit 30 and the position of the unmanned aerial vehicle 12. This orientation corresponds to, for example, the orientation in which the camera unit 30 should be moved so that the unmanned aerial vehicle 12 is within the field of view of the camera unit 30. Then, the guide unit 66 may generate a pilot-captured image on which a guide image that is an image of an arrow indicating the specified direction is superimposed.
  • a pilot captured image on which a guide image, which is an image of an arrow pointing to the upper left, is superimposed may be generated.
  • the display control unit 64 may cause the display unit 26 to display the operator-captured image on which the guide image generated in this manner is superimposed.
  • the unmanned aerial vehicle 12 in the processing shown in S102 to S104, it is determined whether or not the unmanned aerial vehicle 12 can be visually recognized by the operator.
  • the operator can view the image captured by the operator including the image of the unmanned aerial vehicle 12 when the HMD 10 is oriented in an appropriate direction, the unmanned aerial vehicle 12 is visible by the operator. Is determined.
  • the operator cannot view the image captured by the operator including the image of the unmanned aerial vehicle 12 in any direction of the HMD 10, it is determined that the unmanned aerial vehicle 12 is not visible.
  • the processing load of the processing of S103 is generally higher than that of the processing of S102. Further, the processing load of the processing of S104 is higher than that of the processing of S102. Therefore, when it is determined that the distance between the position of the HMD 10 and the position of the unmanned aerial vehicle 12 is not less than or equal to the predetermined distance in the processing shown in S102, the processing image with a high processing load is not executed and the aircraft captured image is displayed. It can be displayed on the section 26.
  • processing shown in S102 to S104 is only an example of the processing for determining whether or not the unmanned aerial vehicle 12 is visible by the operator, and it is determined whether or not the unmanned aerial vehicle 12 is visible by the operator.
  • the determination process is not limited to the processes shown in S102 to S104.
  • the processes shown in S106 to S108 may not be executed.
  • the display control unit 64 displays the image of the pilot image on the display unit 26, and the process shown in S101. You may return to.
  • the display control unit 64 may control the size of the aircraft captured image displayed on the display unit 26 according to the determination result of the determination unit 62. For example, in the processing shown in S107 and S108, the display control unit 64 may perform control so that the pilot captured image is displayed larger than the aircraft captured image. Then, in this case, in the processing shown in S105, the display control unit 64 may perform control so that the aircraft captured image is displayed larger than the pilot captured image.
  • the display control unit 64 controls so that the aircraft captured image is displayed on the entire screen of the display unit 26 and the pilot captured image is wiped displayed on a part of the display unit 26. Good.
  • the display control unit 64 controls so that the aircraft captured image is displayed on the entire screen of the display unit 26 and the pilot captured image is wiped on a part of the display unit 26. Good.
  • the HMD 10 displays or outputs such a message.
  • the operator may be notified by. Further, in this case, for example, the operator may be able to select whether to switch the image.
  • the HMD 10 may switch the image displayed on the display unit 26 according to the operation of the operator.
  • the pilot captured image is displayed on the display unit 26. May be.
  • the aircraft image is displayed on the display unit 26.
  • the hysteresis may be provided at the above-described predetermined number of times or predetermined time.
  • the predetermined number of times the pilot-captured image is displayed may be different from the predetermined number of times the aircraft-captured image is displayed.
  • the predetermined time when the pilot-captured image is displayed may be different from the predetermined time when the aircraft-captured image is displayed. By doing so, it is possible to prevent the displayed image from being frequently switched.
  • the predetermined distance when the pilot-captured image is displayed may be different from the predetermined distance when the aircraft-captured image is displayed.
  • the predetermined distance when the aircraft image is displayed may be longer than the predetermined distance when the pilot image is displayed.
  • the predetermined distance when the pilot captured image is displayed may be longer than the predetermined distance when the aircraft captured image is displayed.
  • the guide unit 66 represents a sentence that guides the operator, such as "the drone is flying in the upper left” or "look at the upper left.”
  • a guide image in which a character string image is arranged may be generated.
  • the guide unit 66 may generate an operator-captured image on which the guide image is superimposed.
  • the guidance unit 66 provides a voice for guiding the pilot, such as "the drone is flying in the upper left” or "look at the upper left”. May be output to the operator.
  • the present invention is not limited to the above embodiment.
  • the HMD 10 is a video transmission type (video see-through type) HMD 10, but the present invention is applicable even when the HMD 10 is an optical transmission type (optical see-through type) HMD 10. ..
  • the display control unit 64 controls the display unit 26 to display the aircraft-captured image in the process of S105 and does not control the display unit 26 to display the aircraft-captured image in the processes of S107 and S108. Good.
  • the operator can see the state of the real space passing through the display unit 26.
  • the aircraft-captured image may be displayed large in the process shown in S105, and the aircraft-captured image may be displayed small in the processes shown in S107 and S108.
  • the operator can easily see the unmanned aerial vehicle 12.
  • the range of the visual field of the operator may be used instead of the range of the visual field of the camera unit 30.
  • the range of the visual field of the pilot may be specified based on, for example, the posture of the head of the pilot and the viewing angle of the given pilot.
  • the predetermined distance in the processing shown in S102 may be set according to the visual acuity of the operator.
  • the operator-captured image captured by the camera unit 30 may be used only in the processing shown in S104.
  • the display control unit 64 may cause the display unit 26 to display the guide image in an AR (Augmented Reality) state in the process shown in S108.
  • the display control unit 64 may cause the display unit 26 to display the information for steering support in an AR manner.
  • the information it is desirable that the information be arranged so as to avoid the central portion or have high transparency so as not to interfere with the visual observation of the unmanned aerial vehicle 12.
  • the scope of application of the present invention is not limited to the HMD10.
  • the present invention can be applied to a situation in which the pilot operates the unmanned aerial vehicle 12 while looking at the display that is not the HMD 10.
  • an image taken by a camera provided at a takeoff point or a landing point of the unmanned aerial vehicle 12 may be used as a pilot taken image.
  • the camera does not have to be a fixed camera, and may be, for example, a camera (a pan-tilt camera or the like) whose posture can be controlled by the operator.
  • some or all of the functions shown in FIG. 4 may be implemented in the unmanned aerial vehicle 12 or the control terminal 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • User Interface Of Digital Computer (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

無人航空機が備えたカメラが撮影する画像の表示状態を適切に制御できる表示制御システム、表示制御装置及び表示制御方法を提供する。センシングデータ取得部(60)は、飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得する。判定部(62)は、無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する。表示制御部(64)は、判定部(62)による判定結果に応じて、表示部における航空機撮影画像の表示状態を制御する。

Description

表示制御システム、表示制御装置及び表示制御方法
 本発明は、表示制御システム、表示制御装置及び表示制御方法に関する。
 無人航空機を飛行させる際には、当該無人航空機やその周囲の安全を確保するため、原則として、当該無人航空機の操縦者が当該無人航空機を目視している必要がある。そして無人航空機の操縦者が当該無人航空機を視認可能でない状況においては、例えば当該無人航空機が備えたカメラが周囲を撮影する画像(以下、航空機撮影画像と呼ぶ。)などによって無人航空機の操縦者が当該無人航空機の周囲の状況を把握できるようにすることが求められる。
 航空機撮影画像を当該無人航空機の操縦者に提示する技術の一例として、特許文献1には、無人ヘリコプタに取り付けられた全方位カメラにより撮影された全方位画像から作成された操縦用画像を操縦者に提示する遠隔操縦システムが記載されている。
 また特許文献2には、操縦者の頭部に装着されるヘッドマウントディスプレイに、無人飛行体のカメラによって撮影された映像が表示されることが記載されている。
特開2003-267295号公報 特開2017-119501号公報
 無人航空機の操縦者が当該無人航空機を視認可能な状況においては、目視を妨げないよう航空機撮影画像の当該操縦者への提示はできる限り抑制されることが望ましい。一方で、無人航空機の操縦者が当該無人航空機を視認可能でない状況になったら当該抑制は解除される必要がある。
 この点、特許文献1に記載の技術では、上述の操縦用画像は操縦者に常に提示されてしまう。また特許文献2に記載の技術においても、無人飛行体のカメラによって撮影された映像は、ヘッドマウントディスプレイに表示されたままとなる。
 本発明は、上記課題に鑑みてなされたものであって、その目的の一つは、無人航空機が備えたカメラが撮影する画像の表示状態を適切に制御できる表示制御システム、表示制御装置及び表示制御方法を提供することにある。
 上記課題を解決するために、本発明に係る表示制御システムは、飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得する画像取得手段と、前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する判定手段と、前記判定手段による判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御する表示制御手段と、を含む。
 本発明の一態様では、前記表示制御手段は、前記判定手段による判定結果に応じて、前記表示部に前記航空機撮影画像を表示させるか否かを制御する。
 あるいは、前記表示制御手段は、前記判定手段による判定結果に応じて、前記表示部に表示される前記航空機撮影画像のサイズを制御する。
 また、本発明の一態様では、前記判定手段は、前記無人航空機と前記操縦者との間の距離に基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する。
 また、本発明の一態様では、前記判定手段は、前記航空機撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定する。
 また、本発明の一態様では、前記判定手段は、前記操縦者の頭部に配置されたカメラにより撮影される操縦者撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定する。
 また、本発明の一態様では、前記表示制御手段は、前記判定手段による判定結果に応じて、前記操縦者が装着するヘッドマウントディスプレイが備える前記表示部における前記航空機撮影画像の表示状態を制御する。
 また、本発明の一態様では、前記判定手段は、前記操縦者が装着するヘッドマウントディスプレイが備えるカメラが撮影する操縦者撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定し、前記表示制御手段は、前記判定手段による判定結果に応じて、前記ヘッドマウントディスプレイが備える前記表示部における前記航空機撮影画像の表示状態を制御する。
 また、本発明の一態様では、前記操縦者により前記無人航空機が視認可能であって、前記操縦者が前記無人航空機を目視していない場合に、前記無人航空機を目視できるよう前記操縦者を案内する案内情報を前記操縦者に提供する案内手段、をさらに含む。
 また、本発明に係る表示制御装置は、飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得する画像取得手段と、前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する判定手段と、前記判定手段による判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御する表示制御手段と、を含む。
 また、本発明に係る表示制御方法は、飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得するステップと、前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定するステップと、前記判定するステップでの判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御するステップと、を含む。
本発明の一実施形態に係る表示制御システムの全体構成の一例を示す図である。 本発明の一実施形態に係るヘッドマウントディスプレイの構成の一例を示す図である。 本発明の一実施形態に係る無人航空機の構成の一例を示す図である。 無人航空機の位置と操縦者の位置との関係の一例を模式的に示す図である。 本発明の一実施形態に係るヘッドマウントディスプレイで実装される機能の一例を示す機能ブロック図である。 本発明の一実施形態に係るヘッドマウントディスプレイにおいて行われる処理の流れの一例を示すフロー図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。
 図1は、本発明の一実施形態に係る表示制御システム1の全体構成の一例を示す図である。図1に示すように、本実施形態に係る表示制御システム1には、ヘッドマウントディスプレイ(HMD)10、無人航空機12、及び、操縦端末14が含まれる。
 図1に示すように、操縦端末14と無人航空機12とは互いに通信可能となっている。またHMD10と操縦端末14とは互いに通信可能となっている。なおHMD10と無人航空機12とは、操縦端末14を介さずに直接互いに通信可能でも構わない。
 HMD10は、無人航空機12の操縦者が頭部に装着可能なディスプレイ装置である。なお以下の説明では、本実施形態に係るHMD10は、映像透過型(ビデオシースルー型)であることとする。そのため、無人航空機12の操縦者は、後述するカメラ部30が撮影する画像(以下、操縦者撮影画像と呼ぶ。)を通して、HMD10を装着している状態で実空間の様子を視認可能である。
 本実施形態に係るHMD10には、例えば図2Aに示すように、プロセッサ20、記憶部22、通信部24、表示部26、センサ部28、カメラ部30が含まれる。なお、HMD10に、スピーカなどの音声出力部が含まれていてもよい。
 プロセッサ20は、例えばHMD10にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。
 記憶部22は、例えばROM、RAM、フラッシュメモリ等の記憶素子などである。記憶部22には、プロセッサ20によって実行されるプログラムなどが記憶される。
 通信部24は、例えば無線LANモジュールやブルートゥース(登録商標)モジュールなどの通信インタフェースである。
 表示部26は、HMD10の前側に配置されている、例えば液晶ディスプレイや有機ELディスプレイ等のディスプレイである。本実施形態に係る表示部26は、例えば左目用の画像と右目用の画像を表示することによって三次元画像を表示させることができるようになっている。なお表示部26は三次元画像の表示ができず二次元画像の表示のみができるものであっても構わない。
 センサ部28は、例えばGPS(Global Positioning System)等のGNSS(Global Navigation Satellite System)受信機、加速度センサやジャイロセンサ等の慣性センサ、地磁気センサなどを含むデバイスである。センサ部28は、HMD10の位置や姿勢を計測可能である。センサ部28は、HMD10の位置や姿勢などの計測結果を所定のサンプリングレートで、プロセッサ20に出力してもよい。
 カメラ部30は、HMD10の装着者の視野の範囲の画像である操縦者撮影画像を撮影する1又は複数のカメラを含むデバイスである。カメラ部30は、所定のサンプリングレートで操縦者撮影画像を撮影してもよい。
 無人航空機12は、人が搭乗しない航空機であり、例えば、バッテリーやエンジンで駆動する無人航空機(いわゆるドローン)である。本実施形態に係る無人航空機12が自律飛行機能を備えていてもよい。
 本実施形態に係る無人航空機12には、例えば図2Bに示すように、プロセッサ40、記憶部42、通信部44、センサ部46、カメラ部48が含まれる。なお、無人航空機12には、プロペラ、モーター、バッテリーなどの一般的なハードウェアも含まれるが、ここでは省略している。
 プロセッサ40は、例えば無人航空機12にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。
 記憶部42は、例えばROM、RAM、フラッシュメモリ等の記憶素子などである。記憶部42には、プロセッサ40によって実行されるプログラムなどが記憶される。
 通信部44は、例えば無線LANモジュールやブルートゥースモジュールなどの通信インタフェースである。
 センサ部46は、例えばGPS等のGNSS受信機、気圧センサ、LIDAR(Light Detection and Ranging)、音波センサ等の高度センサ、慣性センサ、風速センサなどを含むデバイスである。センサ部46は、無人航空機12の位置や姿勢を計測可能である。センサ部46は、無人航空機12の位置や姿勢などの計測結果を所定のサンプリングレートで、プロセッサ40に出力してもよい。また通信部44が、当該計測結果を所定のサンプリングレートでHMD10に送信してもよい。
 カメラ部48は、例えば無人航空機12の周囲を撮影する1又は複数のカメラを含むデバイスである。カメラ部48には、例えば無人航空機12の周囲を全方位にわたって撮影可能な全方位カメラが含まれていてもよい。以下、無人航空機12のカメラ部48が撮影する画像を航空機撮影画像と呼ぶこととする。カメラ部48は、所定のサンプリングレートで航空機撮影画像を撮影してもよい。また通信部44が、所定のサンプリングレートで航空機撮影画像をHMD10に送信してもよい。
 本実施形態に係る操縦端末14は、例えば無人航空機12を操縦するための機器である。
 本実施形態では例えば、原則として、HMD10のカメラ部30が撮影する操縦者撮影画像がHMD10の表示部26に表示される。例えば、図3に示す位置P1に無人航空機12が存在しており、図3に示す位置P0に無人航空機12の操縦者が存在していることとする。ここで位置P1は、位置P0からの距離が所定の距離より短く、無人航空機12は操縦者撮影画像により視認可能であることとする。この場合は、HMD10のカメラ部30が撮影する操縦者撮影画像がHMD10の表示部26に表示される。そのため無人航空機12の操縦者は、表示部26に表示される操縦者撮影画像を介して無人航空機12を視認可能である。なおこの場合は、無人航空機12のカメラ部48が撮影する航空機撮影画像は表示部26に表示されない。
 一方、図3に示す位置P2に無人航空機12が存在しており、図3に示す位置P0に無人航空機12の操縦者が存在していることとする。ここで位置P2は、位置P0からの距離が所定の距離よりも長く、無人航空機12は操縦者撮影画像により視認可能でないこととする。この場合は、無人航空機12のカメラ部48が撮影する航空機撮影画像が表示部26に表示される。そのため無人航空機12の操縦者は、表示部26に表示される航空機撮影画像を介して無人航空機12の周囲を視認可能である。なおこの場合は、HMD10のカメラ部30が撮影する操縦者撮影画像は表示部26に表示されない。
 また、図3に示す位置P3に無人航空機12が存在しており、図3に示す位置P0に無人航空機12の操縦者が存在していることとする。ここで位置P3は、位置P0からの距離が所定の距離より短いが、位置P3と位置P0との間に存在する木50などの障害物に阻まれ、位置P0において無人航空機12は操縦者撮影画像により視認可能でないこととする。この場合も、無人航空機12のカメラ部48が撮影する航空機撮影画像が表示部26には表示される。そのため無人航空機12の操縦者は、表示部26に表示される航空機撮影画像を介して無人航空機12の周囲を視認可能である。なおこの場合は、HMD10のカメラ部30が撮影する操縦者撮影画像は表示部26に表示されない。
 なお、HMD10の表示部26に操縦者撮影画像と航空機撮影画像の両方が表示されるようにしてもよい。この場合に例えば、図3に示す位置P1に無人航空機12が存在している場合は、操縦者撮影画像が航空機撮影画像よりも大きく表示されるようにしてもよい。あるいは表示部26の全画面に操縦者撮影画像が表示され、表示部26の一部に航空機撮影画像がワイプ表示されるようにしてもよい。
 また例えば、図3に示す位置P2あるいは位置P3に無人航空機12が存在している場合は、航空機撮影画像が操縦者撮影画像よりも大きく表示されるようにしてもよい。あるいは表示部26の全画面に航空機撮影画像が表示され、表示部26の一部に操縦者撮影画像がワイプ表示されるようにしてもよい。
 無人航空機12を飛行させる際には、無人航空機12やその周囲の安全を確保するため、原則として、無人航空機12の操縦者が無人航空機12を目視している必要がある。そして無人航空機12の操縦者が無人航空機12を視認可能でない状況においては、航空機撮影画像などによって無人航空機12の操縦者が無人航空機12の周囲の状況を把握できるようにすることが求められる。また仮に無人航空機12が自律飛行可能な場合であっても、操縦者が無人航空機12を視認し、状況に応じて自律飛行から切り替えて操縦者が操縦を行うことでより安全を確保できる。
 無人航空機12の操縦者が無人航空機12を視認可能な状況においては、目視を妨げないよう航空機撮影画像の当該操縦者への提示はできる限り抑制されることが望ましい。一方で、無人航空機12の操縦者が無人航空機12を視認可能でない状況になったら当該抑制は解除される必要がある。
 本実施形態では、無人航空機12の操縦者が当該無人航空機12を視認可能な状況であるか否かが随時判定される。そして無人航空機12の操縦者が当該無人航空機12を視認可能な状況であるか否かに応じて、表示部26における航空機撮影画像の表示状態が制御される。このようにして本実施形態によれば、航空機撮影画像の表示状態を適切に制御できる。
 なお無人航空機12を操縦者が視認可能な間は目視で操縦し、無人航空機12が視認可能でなくなったら操縦者がHMD10を装着して航空機撮影画像を見ながら操縦を行うという運用も考えられる。しかしこの場合操縦者にとってHMD10を着脱するといった余計な作業が発生し、また、操縦者が操縦できない期間が発生してしまう。本実施形態によればこのような運用を行う必要がない。
 以下、本実施形態に係るHMD10の機能並びに本実施形態に係るHMD10で実行される処理についてさらに説明する。
 図4は、本実施形態に係るHMD10で実装される機能の一例を示す機能ブロック図である。なお、本実施形態に係るHMD10で、図4に示す機能のすべてが実装される必要はなく、また、図4に示す機能以外の機能が実装されていても構わない。
 図4に示すように、本実施形態に係るHMD10には、機能的には例えば、センシングデータ取得部60、判定部62、表示制御部64、案内部66、が含まれる。センシングデータ取得部60は、プロセッサ20、通信部24、センサ部28、及び、カメラ部30を主として実装される。判定部62は、プロセッサ20を主として実装される。表示制御部64、案内部66は、プロセッサ20及び表示部26を主として実装される。
 以上の機能は、コンピュータであるHMD10にインストールされた、以上の機能に対応する指令を含むプログラムをプロセッサ20で実行することにより実装されてもよい。また、このプログラムは、例えば、光ディスク、磁気ディスク、磁気テープ、光磁気ディスク等のコンピュータ読み取り可能な情報記憶媒体を介して、あるいは、インターネットなどを介してHMD10に供給されてもよい。
 センシングデータ取得部60は、本実施形態では例えば、無人航空機12及び当該無人航空機12の操縦者のうちの少なくとも一方に関するセンシングデータを取得する。センシングデータ取得部60は、例えば、HMD10のセンサ部28や無人航空機12のセンサ部46による計測結果を示すセンシングデータを取得してもよい。またセンシングデータ取得部60が取得するセンシングデータに、飛行中の無人航空機12が備えるカメラ部48により撮影される航空機撮影画像が含まれてもよい。またセンシングデータ取得部60が取得するセンシングデータに、無人航空機12の操縦者の頭部に配置されたカメラ部30により撮影される操縦者撮影画像が含まれてもよい。
 またセンシングデータ取得部60は、所定のサンプリングレートで生成される航空機撮影画像及び操縦者撮影画像を含むセンシングデータを、所定のサンプリングレートで取得してもよい。
 判定部62は、本実施形態では例えば、無人航空機12及び無人航空機12の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機12が視認可能であるか否かを判定する。ここでは例えば、センシングデータ取得部60により取得されるセンシングデータに基づいて、操縦者により無人航空機12が視認可能であるか否かが判定される。
 また本実施形態において、判定部62が、無人航空機12と操縦者との間の距離に基づいて、操縦者により無人航空機12が視認可能であるか否かを判定してもよい。ここでHMD10の位置を操縦者の位置とみなしてもよい。そして判定部62が、無人航空機12の位置とHMD10の位置との間の距離に基づいて、操縦者により無人航空機12が視認可能であるか否かを判定してもよい。
 また、判定部62が、操縦者の頭部に配置されたカメラにより撮影される操縦者撮影画像に基づいて、当該操縦者により無人航空機12が視認可能であるか否かを判定してもよい。ここで例えば、センシングデータ取得部60により取得される、HMD10が備えるカメラ部30により撮影される操縦者撮影画像に基づいて、当該操縦者により無人航空機12が視認可能であるか否かが判定されてもよい。また例えば、操縦者撮影画像が白飛びしているか否かに基づいて、操縦者により無人航空機12が視認可能であるか否かが判定されてもよい。
 また、判定部62が、航空機撮影画像に基づいて、操縦者により無人航空機12が視認可能であるか否かを判定してもよい。例えば、判定部62が、センシングデータ取得部60により取得される航空機撮影画像からHMD10の像が検出されるか否かに基づいて、操縦者により無人航空機12が視認可能であるか否かを判定してもよい。
 また判定部62が、航空機撮影画像から、HMD10の像の代わりに、あるいは、HMD10の像に加えて、HMD10の操縦者の像が検出されるか否かに基づいて、操縦者により無人航空機12が視認可能であるか否かを判定してもよい。例えば操縦者が、無人航空機12が存在する向きとは逆の向きを向いている際には、HMD10はカメラ部48から見た際に操縦者の頭部に隠れた死角にある可能性が高い。このような場合には、判定部62は、操縦者の像の方がHMD10の像よりも航空機撮影画像から検出しやすいものと思われる。
 また判定部62は、操縦者により無人航空機12が視認可能であると判定された場合、当該操縦者が無人航空機12を目視しているか否かを、さらに判定してもよい。例えば、判定部62は、カメラ部30の視野(Field of View (FOV))の範囲に基づいて、無人航空機12を操縦者が目視しているか否かを判定してもよい。
 表示制御部64は、本実施形態では例えば、判定部62による判定結果に応じて、HMD10が備える表示部26における航空機撮影画像の表示状態を制御する。表示制御部64は、判定部62による判定結果に応じて、表示部26に航空機撮影画像を表示させるか否かを制御してもよい。なお表示制御部64が、無人航空機12の速度、無人航空機12の位置(緯度、経度及び高度など)、操縦者から無人航空機12までの距離、目的地までの距離、バッテリー残量、などといった無人航空機12に関する情報を表示させてもよい。
 案内部66は、本実施形態では例えば、操縦者により無人航空機12が視認可能であって、操縦者が無人航空機12を目視していない場合に、無人航空機12を目視できるよう操縦者を案内する案内情報を操縦者に提供する。例えば、判定部62によって、操縦者により無人航空機12が視認可能であり、かつ、当該操縦者が無人航空機12を目視していないと判定される場合に、案内情報が操縦者に提供されてもよい。ここで例えば案内部66が、無人航空機12が存在する向きを示す矢印の画像などといった案内画像が重畳された操縦者撮影画像を生成してもよい。
 なお本実施形態における操縦者とは、無人航空機12を操縦可能な状態にある者であればよく、操縦者が無人航空機12を実際に操縦している必要はない。例えば無人航空機12が自律飛行機能を備えており自律飛行している状態と自律飛行していない状態とが切替可能な場合に、無人航空機12が自律飛行をしている際において、操縦端末14を把持している者は、本実施形態における操縦者に相当することとなる。
 以下、本実施形態に係るHMD10で実行される処理の流れの一例を、図5に示すフロー図を参照しながら説明する。
 また本実施形態では例えば、上述の所定のサンプリングレートに相当する所定のフレームレートで表示部26に画像が表示されることとする。そして当該所定のフレームレートでS101~S108に示す処理が繰り返し実行されることとする。
 まず、センシングデータ取得部60が、当該フレームにおけるセンシングデータを取得する(S101)。当該センシングデータには、当該フレームにおける航空機撮影画像、及び、当該フレームにおける操縦者撮影画像が含まれる。
 そして、判定部62が、S101に示す処理で取得されたセンシングデータに基づいて、HMD10の位置と無人航空機12の位置との間の距離が所定の距離以下であるか否かを判定する(S102)。ここでHMD10の位置として、センサ部28により計測される位置や、センサ部28による計測結果に基づいて特定されるカメラ部30の位置などが用いられてもよい。また無人航空機12の位置として、センサ部46により計測される位置や、センサ部46による計測結果に基づいて特定されるカメラ部48の位置などが用いられてもよい。
 また上述の所定の距離は、表示部26の解像度や画角などの設計値や、カメラ部30の解像度や画角などの設計値などに基づいて予め決定されていてもよい。また、上述の所定の距離は、三次元空間における距離であってもよいし、水平面上における、HMD10を当該水平面に投影した位置と無人航空機12を当該水平面に投影した位置との間の距離であってもよい。
 また水平方向と高さ方向とで上述の所定の距離が異なっていてもよい。例えば水平面上における、HMD10を当該水平面に投影した位置と無人航空機12を当該水平面に投影した位置との間の距離が第1の距離として特定されてもよい。また、鉛直線上における、HMD10を当該鉛直線に投影した位置と無人航空機12を当該鉛直線に投影した位置との間の距離が第2の距離として特定されてもよい。そして第1の距離が第1の所定の距離以下であり、かつ、第2の距離を示す値が第2の所定の距離以下である場合に、HMD10の位置と無人航空機12の位置との間の距離が所定の距離以下であると判定されてもよい。そしてそうでない場合に、HMD10の位置と無人航空機12の位置との間の距離が所定の距離以下ではないと判定されてもよい。
 S102に示す処理でHMD10の位置と無人航空機12の位置との間の距離が所定の距離以下であると判定されたとする(S102:Y)。この場合、判定部62が、S101に示す処理で取得された航空機撮影画像からHMD10の像が検出されるか否かを判定する(S103)。ここで公知の画像認識技術を用いて当該検出が行われてもよい。
 S103に示す処理で、航空機撮影画像からHMD10の像が検出されると判定されたとする(S103:Y)。この場合、判定部62は、S101に示す処理で取得された操縦者撮影画像が白飛びしているか否かを判定する(S104)。ここで公知の画像処理技術を用いて当該判定が行われてもよい。
 S104に示す処理で、操縦者撮影画像が白飛びしていると判定されたとする(S104:Y)。この場合、表示制御部64が、S101に示す処理で取得された航空機撮影画像を表示部26に表示させて(S105)、S101に示す処理に戻る。S102に示す処理でHMD10の位置と無人航空機12の位置との間の距離が所定の距離以下でないと判定された場合(S102:N)も同様に、表示制御部64が、当該航空機撮影画像を表示部26に表示させて(S105)、S101に示す処理に戻る。また、S103に示す処理で航空機撮影画像からHMD10の像が検出されないと判定された場合(S103:N)も同様に、表示制御部64が、当該航空機撮影画像を表示部26に表示させて(S105)、S101に示す処理に戻る。
 S104に示す処理で、操縦者撮影画像が白飛びしていないと判定されたとする(S104:N)。この場合、判定部62が、無人航空機12がカメラ部30の視野の範囲内であるか否かを判定する(S106)。
 ここでカメラ部30の視野の範囲とは、例えば、操縦者の頭部の姿勢、操縦者の位置、及び、カメラ部30の画角等の設計値に基づいて特定される三次元空間内の錐台が占める範囲を指す。なお操縦者の頭部の姿勢、及び、操縦者の位置は、例えば、センサ部28による計測結果に基づいて特定される。
 なおS106に示す処理におけるカメラ部30の視野の範囲とは、障害物の影響を考慮しない視野の範囲を意味する。そのため、例えば、図3に示す位置P3に無人航空機12が存在しており、操縦者が位置P0から位置P3を向いている際には、無人航空機12がカメラ部30の視野の範囲内であると判定される。
 なお、判定部62は、上述のようにカメラ部30の視野の範囲を特定して上述の判定を行う代わりに、操縦者撮影画像から無人航空機12を検出できるか否かに基づいて、無人航空機12が視野の範囲内であるか否かを判定してもよい。あるいは、判定部62は、上述のようにして特定されるカメラ部30の視野の範囲、及び、操縦者撮影画像から無人航空機12を検出できるか否かに基づいて、無人航空機12が視野の範囲内であるか否かを判定してもよい。ここで、操縦者撮影画像からの無人航空機12の検出は公知の画像認識技術を用いて行われてもよい。
 S106に示す処理で無人航空機12がカメラ部30の視野の範囲内であると判定されたとする(S106:Y)。この場合、表示制御部64が、S101に示す処理で取得された操縦者撮影画像を表示部26に表示させて(S107)、S101に示す処理に戻る。
 一方、S106に示す処理で無人航空機12がカメラ部30の視野の範囲内でないと判定されたとする(S106:N)。この場合、表示制御部64が、無人航空機12が視認可能となるよう操縦者を案内する案内画像が重畳された操縦者撮影画像を表示部26に表示させて(S108)、S101に示す処理に戻る。
 S108に示す処理では、例えば、案内部66が、カメラ部30の視野の範囲と無人航空機12の位置とに基づいて、無人航空機12が存在する向きを特定してもよい。この向きは例えば、無人航空機12がカメラ部30の視野の範囲内となるようにするためにカメラ部30を動かすべき向きに相当する。そして案内部66が、特定される向きを表す矢印の画像である案内画像が重畳された操縦者撮影画像を生成してもよい。例えば、カメラ部30の向きに対して無人航空機12が左上に存在する場合は、左上を向いた矢印の画像である案内画像が重畳された操縦者撮影画像が生成されてもよい。そして表示制御部64が、このようにして生成された案内画像が重畳された操縦者撮影画像を表示部26に表示させてもよい。
 上述の処理例では、S102~S104に示す処理において、操縦者により当該無人航空機12が視認可能であるか否かが判定されている。ここでは例えば、HMD10を適切な方向に向けた場合に無人航空機12の像を含む操縦者撮影画像を操縦者が目視できる状況であれば、操縦者により当該無人航空機12が視認可能な状態であると判定される。一方、HMD10をどの方向に向けても無人航空機12の像を含む操縦者撮影画像を操縦者が目視できない状況であれば、操縦者により当該無人航空機12が視認可能な状態でないと判定される。
 上述の処理例では一般的に、S102に示す処理よりもS103に示す処理の方が、処理負荷が高い。またS102に示す処理よりもS104に示す処理の方が、処理負荷が高い。そのため、S102に示す処理でHMD10の位置と無人航空機12の位置との間の距離が所定の距離以下でないと判定された場合は、処理負荷が高い処理が実行されることなく航空機撮影画像を表示部26に表示させることが可能となる。
 なお、S102~S104に示す処理の順序は図5に示すものに限定されない。S102~S104に示す処理が図5に示すものとは異なる順序で実行されてもよい。またS102~S104に示す処理がすべて実行される必要はない。
 またS102~S104に示す処理は、操縦者により当該無人航空機12が視認可能であるか否かを判定する処理の一例にすぎず、操縦者により当該無人航空機12が視認可能であるか否かを判定する処理はS102~S104に示す処理には限定されない。
 またS106~S108に示す処理が実行されなくてもよい。この場合に例えば、S104に示す処理で操縦者撮影画像が白飛びしていないと判定された際に、表示制御部64が、操縦者撮影画像を表示部26に表示させて、S101に示す処理に戻ってもよい。
 また表示制御部64は、判定部62による判定結果に応じて、表示部26に表示される航空機撮影画像のサイズを制御してもよい。例えばS107及びS108に示す処理において、表示制御部64が、操縦者撮影画像が航空機撮影画像よりも大きく表示されるよう制御してもよい。そしてこの場合にS105に示す処理において、表示制御部64が、航空機撮影画像が操縦者撮影画像よりも大きく表示されるよう制御してもよい。
 あるいは例えばS107及びS108に示す処理において、表示制御部64が、表示部26の全画面に航空機撮影画像が表示され、表示部26の一部に操縦者撮影画像がワイプ表示されるよう制御してもよい。そしてこの場合にS105に示す処理において、表示制御部64が、表示部26の全画面に航空機撮影画像が表示され、表示部26の一部に操縦者撮影画像がワイプ表示されるよう制御してもよい。
 また、表示部26に表示される画像が、航空機撮影画像から操縦者撮影画像に切り替わる場合、又は、操縦者撮影画像から航空機撮影画像に切り替わる場合に、HMD10がその旨を表示出力あるいは音声出力などにより操縦者に通知してもよい。またこの場合に例えば、画像を切り替えるか否かにつき操縦者が選択可能であってもよい。例えば操縦者の操作に応じてHMD10は表示部26に表示される画像を切り替えてもよい。
 また例えば、所定回数連続して、あるいは、所定時間にわたって継続して、操縦者により無人航空機12が視認可能であると判定された場合に、操縦者撮影画像が表示部26に表示されるようにしてもよい。また例えば、所定回数連続して、あるいは、所定時間にわたって継続して、操縦者により無人航空機12が視認可能でないと連続して判定された場合に、航空機撮影画像が表示部26に表示されるようにしてもよい。ここで上述の所定回数や所定時間にヒステリシスが設けられていてもよい。例えば操縦者撮影画像が表示される際の所定回数と航空機撮影画像が表示される際の所定回数とは異なっていてもよい。また例えば操縦者撮影画像が表示される際の所定時間と航空機撮影画像が表示される際の所定時間とは異なっていてもよい。このようにすれば表示される画像が頻繁に切り替わることを防ぐことができる。
 また、S102に示す処理において、操縦者撮影画像が表示されている際の所定の距離と航空機撮影画像が表示されている際の所定の距離とが異なっていてもよい。例えば、操縦者撮影画像が表示されている際の所定の距離よりも航空機撮影画像が表示されている際の所定の距離の方が長くてもよい。あるいは、航空機撮影画像が表示されている際の所定の距離よりも操縦者撮影画像が表示されている際の所定の距離の方が長くてもよい。このようにすれば表示される画像が頻繁に切り替わることを防ぐことができる。
 また案内部66が、矢印の画像に加えて、あるいは、矢印の画像に代えて、「ドローンは左上を飛行しています」「左上を向いてください」などといった、操縦者を案内する文章を表す文字列の画像が配置された案内画像を生成してもよい。そして案内部66が、当該案内画像が重畳された操縦者撮影画像を生成してもよい。また案内部66が、案内画像の重畳に加えて、あるいは、案内画像の重畳に代えて、「ドローンは左上を飛行しています」「左上を向いてください」などといった、操縦者を案内する音声を操縦者に出力してもよい。
 なお、本発明は上述の実施形態に限定されるものではない。
 例えば以上の説明ではHMD10は映像透過型(ビデオシースルー型)のHMD10であることとしたが、本発明は、HMD10が光学透過型(オプティカルシースルー型)のHMD10の場合であっても適用可能である。ここで例えば、表示制御部64が、S105に示す処理では、航空機撮影画像を表示部26に表示させ、S107やS108に示す処理では、航空機撮影画像を表示部26に表示させないよう制御してもよい。航空機撮影画像を表示部26に表示させないよう制御されている場合は、操縦者は、表示部26を透過する実空間の様子を見ることができる。あるいは、S105に示す処理では、航空機撮影画像を大きく表示させ、S107やS108に示す処理では、航空機撮影画像を小さく表示させてもよい。航空機撮影画像の表示が抑制されると、操縦者は無人航空機12を目視しやすくなる。
 なおこの場合、S106に示す処理では、カメラ部30の視野の範囲の代わりに、操縦者の視野の範囲が用いられてもよい。ここで操縦者の視野の範囲は、例えば、操縦者の頭部の姿勢と、所与の操縦者の視野角と、に基づいて特定されてよい。またS102に示す処理における所定の距離は、操縦者の視力に応じて設定されてもよい。またこの場合、カメラ部30により撮影される操縦者撮影画像は、S104に示す処理においてのみ用いられてもよい。
 またこの場合、表示制御部64は、S108に示す処理において、案内画像を表示部26にAR(Augmented Reality)表示させてもよい。
 またS107やS108に示す処理において、表示制御部64が、操縦支援のための情報を表示部26にAR表示させてもよい。この場合、当該情報は無人航空機12の目視の邪魔にならないよう、中央部を避けて配置されたり、透過度が高い状態で配置されたりすることが望ましい。
 また本発明の適用範囲はHMD10にも限定されない。例えば、操縦者がHMD10ではないディスプレイを見ながら無人航空機12を操縦する場面についても本発明は適用可能である。この場合に、HMD10のカメラ部30の代わりに、無人航空機12の離陸地点や着陸地点に設けられたカメラが撮影する画像が操縦者撮影画像として用いられてもよい。また当該カメラは、固定カメラである必要はなく、例えば操縦者が姿勢を制御可能なカメラ(パンチルトカメラ等)であってもよい。
 また本実施形態において、図4に示す機能の一部又は全部が、無人航空機12、又は、操縦端末14において実装されてもよい。
 また、上記の具体的な文字列や数値及び図面中の具体的な文字列や数値は例示であり、これらの文字列や数値には限定されない。

Claims (11)

  1.  飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得する画像取得手段と、
     前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する判定手段と、
     前記判定手段による判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御する表示制御手段と、
     を含むことを特徴とする表示制御システム。
  2.  前記表示制御手段は、前記判定手段による判定結果に応じて、前記表示部に前記航空機撮影画像を表示させるか否かを制御する、
     ことを特徴とする請求項1に記載の表示制御システム。
  3.  前記表示制御手段は、前記判定手段による判定結果に応じて、前記表示部に表示される前記航空機撮影画像のサイズを制御する、
     ことを特徴とする請求項1に記載の表示制御システム。
  4.  前記判定手段は、前記無人航空機と前記操縦者との間の距離に基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する、
     ことを特徴とする請求項1から3のいずれか一項に記載の表示制御システム。
  5.  前記判定手段は、前記航空機撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定する、
     ことを特徴とする請求項1から4のいずれか一項に記載の表示制御システム。
  6.  前記判定手段は、前記操縦者の頭部に配置されたカメラにより撮影される操縦者撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定する、
     ことを特徴とする請求項1から5のいずれか一項に記載の表示制御システム。
  7.  前記表示制御手段は、前記判定手段による判定結果に応じて、前記操縦者が装着するヘッドマウントディスプレイが備える前記表示部における前記航空機撮影画像の表示状態を制御する、
     ことを特徴とする請求項1から6のいずれか一項に記載の表示制御システム。
  8.  前記判定手段は、前記操縦者が装着するヘッドマウントディスプレイが備えるカメラが撮影する操縦者撮影画像に基づいて、前記操縦者により前記無人航空機が視認可能であるか否かを判定し、
     前記表示制御手段は、前記判定手段による判定結果に応じて、前記ヘッドマウントディスプレイが備える前記表示部における前記航空機撮影画像の表示状態を制御する、
     ことを特徴とする請求項1から5のいずれか一項に記載の表示制御システム。
  9.  前記操縦者により前記無人航空機が視認可能であって、前記操縦者が前記無人航空機を目視していない場合に、前記無人航空機を目視できるよう前記操縦者を案内する案内情報を前記操縦者に提供する案内手段、をさらに含む、
     ことを特徴とする請求項1から8のいずれか一項に記載の表示制御システム。
  10.  飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得する画像取得手段と、
     前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定する判定手段と、
     前記判定手段による判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御する表示制御手段と、
     を含むことを特徴とする表示制御装置。
  11.  飛行中の無人航空機が備えるカメラにより撮影される航空機撮影画像を取得するステップと、
     前記無人航空機及び当該無人航空機の操縦者のうちの少なくとも一方に関するセンシングデータに基づいて、当該操縦者により当該無人航空機が視認可能であるか否かを判定するステップと、
     前記判定するステップでの判定結果に応じて、表示部における前記航空機撮影画像の表示状態を制御するステップと、
     を含むことを特徴とする表示制御方法。
PCT/JP2018/044181 2018-11-30 2018-11-30 表示制御システム、表示制御装置及び表示制御方法 WO2020110292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/044181 WO2020110292A1 (ja) 2018-11-30 2018-11-30 表示制御システム、表示制御装置及び表示制御方法
US17/042,928 US12019441B2 (en) 2018-11-30 2018-11-30 Display control system, display control device and display control method
JP2020547432A JP6831949B2 (ja) 2018-11-30 2018-11-30 表示制御システム、表示制御装置及び表示制御方法
CN201880093256.8A CN112105559B (zh) 2018-11-30 2018-11-30 显示控制系统、显示控制装置及显示控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044181 WO2020110292A1 (ja) 2018-11-30 2018-11-30 表示制御システム、表示制御装置及び表示制御方法

Publications (1)

Publication Number Publication Date
WO2020110292A1 true WO2020110292A1 (ja) 2020-06-04

Family

ID=70854147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044181 WO2020110292A1 (ja) 2018-11-30 2018-11-30 表示制御システム、表示制御装置及び表示制御方法

Country Status (4)

Country Link
US (1) US12019441B2 (ja)
JP (1) JP6831949B2 (ja)
CN (1) CN112105559B (ja)
WO (1) WO2020110292A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492115B2 (en) * 2018-11-30 2022-11-08 Rakuten Group, Inc. Unmanned aerial vehicle display control system, display control device and display control method
PL4047434T3 (pl) * 2021-02-19 2024-04-15 Anarky Labs Oy Urządzenie, sposób i oprogramowanie do wspomagania operatora w pilotowaniu drona z użyciem pilota zdalnego sterowania i okularów rozszerzonej rzeczywistości ar
CN113537198B (zh) * 2021-07-31 2023-09-01 北京晟天行科技有限公司 一种无人机图像采集时自动拍照的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349849A1 (en) * 2015-05-26 2016-12-01 Lg Electronics Inc. Eyewear-type terminal and method for controlling the same
WO2017170148A1 (ja) * 2016-03-31 2017-10-05 株式会社ニコン 飛行装置、電子機器およびプログラム
JP2018121267A (ja) * 2017-01-27 2018-08-02 セイコーエプソン株式会社 表示装置、及び、表示装置の制御方法
JP2018164223A (ja) * 2017-03-27 2018-10-18 東芝情報システム株式会社 表示システム
JP2018165066A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 頭部装着型表示装置およびその制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012749B2 (ja) 2002-03-14 2007-11-21 国立大学法人 奈良先端科学技術大学院大学 遠隔操縦システム
KR101529863B1 (ko) 2012-03-25 2015-06-19 인텔 코포레이션 절전을 위한 방법 및 장치
CN103587708B (zh) * 2013-11-14 2016-05-25 上海大学 超小型无人旋翼飞行器野外定点零盲区自主软着陆方法
KR101546717B1 (ko) * 2015-02-23 2015-08-25 김영권 무인비행체가 탑재된 이동통신단말기
JP6682379B2 (ja) 2015-08-06 2020-04-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無人飛行体、飛行制御方法、飛行制御プログラム及び操縦器
WO2017022179A1 (ja) * 2015-08-06 2017-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無人飛行体、飛行制御方法、飛行制御プログラム及び操縦器
JP6633460B2 (ja) * 2015-09-04 2020-01-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通知方法、通知装置及び端末
JP6687488B2 (ja) * 2015-12-24 2020-04-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無人飛行体及びその制御方法
JP6785412B2 (ja) * 2016-07-22 2020-11-18 パナソニックIpマネジメント株式会社 無人航空機システム
US10409276B2 (en) 2016-12-21 2019-09-10 Hangzhou Zero Zero Technology Co., Ltd. System and method for controller-free user drone interaction
CN108664037B (zh) * 2017-03-28 2023-04-07 精工爱普生株式会社 头部佩戴型显示装置以及无人机的操纵方法
US10678238B2 (en) 2017-12-20 2020-06-09 Intel IP Corporation Modified-reality device and method for operating a modified-reality device
US11492115B2 (en) * 2018-11-30 2022-11-08 Rakuten Group, Inc. Unmanned aerial vehicle display control system, display control device and display control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349849A1 (en) * 2015-05-26 2016-12-01 Lg Electronics Inc. Eyewear-type terminal and method for controlling the same
WO2017170148A1 (ja) * 2016-03-31 2017-10-05 株式会社ニコン 飛行装置、電子機器およびプログラム
JP2018121267A (ja) * 2017-01-27 2018-08-02 セイコーエプソン株式会社 表示装置、及び、表示装置の制御方法
JP2018164223A (ja) * 2017-03-27 2018-10-18 東芝情報システム株式会社 表示システム
JP2018165066A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 頭部装着型表示装置およびその制御方法

Also Published As

Publication number Publication date
CN112105559A (zh) 2020-12-18
US20210018911A1 (en) 2021-01-21
JPWO2020110292A1 (ja) 2021-02-15
US12019441B2 (en) 2024-06-25
CN112105559B (zh) 2024-09-13
JP6831949B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6831949B2 (ja) 表示制御システム、表示制御装置及び表示制御方法
JP2001344597A (ja) 融合視界装置
JP2013014318A (ja) 航空機内の合成ビジョンシステムを動作させる方法
US10377487B2 (en) Display device and display control method
KR101408077B1 (ko) 가상 영상을 이용한 무인기 조종 장치 및 방법
US11669088B2 (en) Apparatus, method and software for assisting human operator in flying drone using remote controller
JP7024997B2 (ja) 飛行体操縦システム及び飛行体操縦システムを用いて飛行体を操縦する方法
JP6890759B2 (ja) 飛行経路案内システム、飛行経路案内装置及び飛行経路案内方法
JP6821864B2 (ja) 表示制御システム、表示制御装置及び表示制御方法
KR102173476B1 (ko) 비행 안전 시야 확보를 위한 항공기용 신호처리 시스템
US20210191392A1 (en) Vehicle control system
US20170146800A1 (en) System and method for facilitating cross-checking between flight crew members using wearable displays
US11403058B2 (en) Augmented reality vision system for vehicular crew resource management
KR20180060403A (ko) 영상 기반의 드론 제어장치
JP2021030806A (ja) 操縦支援システム
CN112204351B (zh) 飞行路径引导系统、飞行路径引导装置及飞行路径引导方法
JP2024071414A (ja) 移動体用操縦支援方法及び移動体用操縦支援システム
JP7367930B2 (ja) 移動体用画像表示システム
US20240296581A1 (en) Vehicle control device
KR102019942B1 (ko) 시뮬레이션 멀미 탐지 및 조종객체 제어 장치와 방법
CN117678235A (zh) 可移动平台的控制方法、头戴式设备、系统和存储介质
KR20240126735A (ko) 드론 영상의 ar글래스를 이용한 뷰어 시스템 동작 방법
WO2022175385A1 (en) Apparatus, method and software for assisting human operator in flying drone using remote controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941846

Country of ref document: EP

Kind code of ref document: A1