WO2020110207A1 - Positioning and conveying device and positioning and conveying method - Google Patents

Positioning and conveying device and positioning and conveying method Download PDF

Info

Publication number
WO2020110207A1
WO2020110207A1 PCT/JP2018/043631 JP2018043631W WO2020110207A1 WO 2020110207 A1 WO2020110207 A1 WO 2020110207A1 JP 2018043631 W JP2018043631 W JP 2018043631W WO 2020110207 A1 WO2020110207 A1 WO 2020110207A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positioning
unit
pallet
electrode tab
Prior art date
Application number
PCT/JP2018/043631
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 戸枝
Original Assignee
株式会社エンビジョンAescジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescジャパン filed Critical 株式会社エンビジョンAescジャパン
Priority to JP2020557440A priority Critical patent/JPWO2020110207A1/en
Priority to PCT/JP2018/043631 priority patent/WO2020110207A1/en
Publication of WO2020110207A1 publication Critical patent/WO2020110207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positioning/conveying device and a positioning/conveying method.
  • the battery module installed in the vehicle has a battery stack in which multiple flat batteries with electrode tabs are stacked.
  • the battery is placed on a pallet and transported to the processing position. If the positioning accuracy of the pallet or a device for transporting the pallet with respect to the machine coordinate is poor, the positioning accuracy of the battery at the processing position may not meet the requirement.
  • Patent Document 1 discloses a method in which a battery has a through hole and a battery is positioned by inserting a positioning pin into the through hole.
  • An object of the present invention is to provide a positioning and transporting device and a positioning and transporting method capable of transporting a battery while maintaining the positioning accuracy of the battery with high precision.
  • the positioning and conveying device that achieves the above object is a positioning and conveying device that positions and conveys a flat battery having an electrode tab.
  • the positioning and transporting device includes a pallet on which the battery is placed, a holding unit that holds the battery on the pallet, a transporting unit that transports the pallet, and a battery that holds the battery and places it on the pallet.
  • the control unit holds the battery by the placement robot, detects the position of the reference portion of the electrode tab in a state of being held by the placement robot by the detection unit, and detects the position of the reference portion of the battery.
  • the position is corrected and aligned so as to match the reference position of the detection unit installed at the preset equipment machine coordinates, the battery is held by the holding unit with respect to the pallet, and the pallet is held by the transfer unit. Transport.
  • the positioning and conveying method according to the present invention which achieves the above object is a positioning and conveying method for positioning and conveying a flat battery provided with an electrode tab.
  • the positioning and conveying method detects the position of the reference part set on the electrode tab of the battery by the detection part, and corrects the position of the reference part to match the reference position of the detection part installed on the machine machine coordinates. And position the battery, hold the battery against the pallet, and transport the pallet.
  • FIG. 3 is a perspective view showing one battery of the battery stack shown in FIG. 2. It is a perspective view which shows the battery before processing an electrode tab. It is a top view which shows the structure of a positioning conveyance apparatus typically. It is a side view which shows typically a mode that a battery is mounted by the positioning conveyance apparatus. It is a top view which shows typically a mode that a positioning conveyance apparatus conveys a battery.
  • FIG. 6 is a side view showing how the position of the reference portion of the electrode tab is detected while the battery is held by the second robot.
  • FIG. 7B is a side view showing a cross section of a main part of a state where the position of the reference part of the electrode tab shown in FIG. It is explanatory drawing which shows the state before correcting the attitude
  • the XYZ axes attached to the figure show the orientation of the battery module 100.
  • the X axis indicates a direction that intersects the stacking direction of the batteries 110 and that is along the longitudinal direction of the batteries 110.
  • the Y axis indicates a direction that intersects the stacking direction of the batteries 110 and is along the lateral direction of the batteries 110.
  • the Z axis represents the stacking direction of the batteries 110.
  • FIG. 1 is a perspective view showing the battery module 100.
  • FIG. 2 is a perspective view showing a part of the battery module 100 shown in FIG. 1 in an exploded manner. First, the battery module 100 including the battery stack 110S will be described.
  • the battery module 100 includes a battery stack 110S formed by stacking a plurality of flat batteries 110 in a module case 120.
  • the module case 120 is composed of four plate members and also functions as a pressurizing unit that pressurizes the battery stack 110S.
  • the plurality of batteries 110 are electrically connected by the bus bar unit 130 while being pressurized by the module case 120.
  • an adhesive or pressure sensitive adhesive is applied between the stacked batteries 110.
  • FIG. 3 is a side view showing a cross section of a main part of the battery module 100.
  • FIG. 4 is a perspective view showing one battery 110 of the battery stack 110S.
  • battery 110 is, for example, a flat lithium ion secondary battery.
  • the battery 110 has a main body 110H in which a power generation element 111 is sealed with a pair of laminate films 112, and a thin plate-shaped electrode tab 113.
  • the power generation element 111 is formed by stacking a positive electrode and a negative electrode via a separator.
  • the power generation element 111 is sealed with a laminate film 112 together with the electrolytic solution.
  • the outer peripheral portion of the laminated film 112 is sealed by a sealing portion 112s joined by heat welding or the like.
  • the laminate film 112 is formed by covering both sides of a metal foil with an insulating sheet.
  • the laminate film 112 is formed by bending both end portions 112d along the longitudinal direction X upward in the laminating direction Z.
  • FIG. 5 is a perspective view showing the battery 110 before the spacers 114 and 115 are arranged. Referring to FIG. 5, the laminate film 112 has connection holes 112a formed at the four corners.
  • the electrode tab 113 is electrically connected to the power generating element 111 and is led out from the laminate film 112 to the outside.
  • the electrode tab 113 has an anode side electrode tab 113A and a cathode side electrode tab 113K. Both the anode-side electrode tab 113A and the cathode-side electrode tab 113K extend from one end portion along the lateral direction Y of the laminate film 112 toward one direction along the longitudinal direction X (left front side in FIG. 4).
  • the electrode tab 113 is bent and formed in an L shape from the base end portion 113c to the tip end portion 113d.
  • a tip portion 113d of the electrode tab 113 is formed in a planar shape so as to face the bus bar 132.
  • the electrode tab 113 is not limited to the L-shape shown in the figure, but has an appropriate shape in relation to the shape of the bus bar 132.
  • the material forming the anode-side electrode tab 113A is, for example, aluminum
  • the material forming the cathode-side electrode tab 113K is, for example, copper.
  • the side provided with the electrode tab 113 is supported by the pair of first spacers 114, and the side not provided with the electrode tab 113 is supported by the pair of second spacers 115.
  • the batteries 110 are stacked while being supported by the spacers 114 and 115.
  • the first spacer 114 has a connecting pin 114a inserted into the connecting hole 112a of the laminate film 112, and the second spacer 115 has a connecting pin 115a inserted into the connecting hole 112a.
  • the spacers 114, 115 are connected to the laminate film 112 by thermally caulking the tips of the connecting pins 114a, 115a.
  • Each of the spacers 114 and 115 is made of insulating reinforced plastic.
  • the first spacer 114 has mounting portions 114b at both ends in the longitudinal direction (transverse direction Y), and the second spacer 115 has mounting portions 115b at both ends in the longitudinal direction (transverse direction Y). is doing.
  • the first spacers 114 contact the mounting portions 114b adjacent to each other in the stacking direction
  • the second spacers 115 contact the mounting portions 115b adjacent to each other in the stacking direction.
  • Pins 114c and 115c are formed on the upper surfaces of the mounting portions 114b and 115b.
  • a hole 114d corresponding to the position of the pin 114c is formed on the lower surface of the mounting portion 114b (see FIG. 3).
  • the first spacer 114 has a supporting portion 114 f that supports the tip portion 113 d of the electrode tab 113 from the side opposite to the bus bar 132.
  • the module case 120 includes an upper pressure plate 121 and a lower pressure plate 122 for vertically pressing the power generating element 111 of each battery 110 of the battery stack 110S, and an upper part of the battery stack 110S in a pressed state. It includes a pair of side plates 123 for fixing the pressure plate 121 and the lower pressure plate 122.
  • the upper pressure plate 121 has a locate hole 121b into which a fastening bolt for fixing the battery module 100 to a pack case (not shown) is inserted.
  • the lower pressurizing plate 122 has a locate hole 122b into which a fastening bolt is inserted.
  • the pair of side plates 123 are welded to the upper pressure plate 121 and the lower pressure plate 122.
  • the material for forming the module case 120 is not particularly limited, but can be formed of, for example, stainless steel.
  • the bus bar unit 130 includes a bus bar 132 that electrically connects the electrode tabs 113 of the batteries 110 that are vertically arranged, a bus bar holder 131 that integrally holds the plurality of bus bars 132, and a protective cover 135 that protects the bus bar 132.
  • the bus bar unit 130 further includes an anode-side terminal 133 that makes the anode-side ends of the plurality of electrically connected batteries 110 face external input/output terminals, and a cathode that makes the cathode-side ends face external input/output terminals. And a side terminal 134.
  • a laser oscillator (not shown) irradiates the bus bar 132 with the laser beam L1.
  • the bus bar 132 and the tip portion 113d of the electrode tab 113 are joined by seam welding or spot welding.
  • the position of the electrode tab 113 and the bus bar 132 should be adjusted so that no gap is created between the electrode tab 113 and the bus bar 132. You have to manage your location.
  • the position of the tip portion 113d of the electrode tab 113 may vary in the stacking direction. Therefore, it is necessary to position the battery 110 at the processing position of the electrode tab 113 with high accuracy and improve the processing accuracy of the electrode tab 113.
  • FIG. 5 is a perspective view showing the battery 110 before processing the electrode tab 113.
  • 6A is a plan view schematically showing the configuration of the positioning and conveying apparatus 10
  • FIG. 6B is a side view schematically showing how the battery 110 is placed by the positioning and conveying apparatus
  • FIG. 6C is a positioning and conveying apparatus 10. It is a top view which shows typically a mode that the battery 110 is conveyed by.
  • FIG. 7A is a side view showing how the position of the reference portion 210 of the electrode tab 113 is detected while the battery 110 is held by the second robot 40.
  • FIG. 7B is a side view showing a cross section of a main part of a state where the position of the reference part 210 of the electrode tab 113 shown in FIG. 7A is detected.
  • the positioning and transporting device 10 is a device that positions the flat battery 110 (see FIG. 5) before processing the electrode tab 113 on the pallet 20 and transports it to the processing position of the electrode tab 113.
  • the electrode tab 113 has reference portions 210 set at at least two places.
  • the configuration of the reference unit 210 is not particularly limited as long as its position can be specified.
  • the reference part 210 can be formed of, for example, a through hole, a blind hole, a notch, or a stamped mark.
  • the reference part 210 of the electrode tab 113 includes a first reference part 211 and a second reference part 212.
  • the first reference portion 211 and the second reference portion 212 are formed from through holes.
  • the first reference portion 211 and the second reference portion 212 are formed on the base end portion 113c of the electrode tab 113.
  • the first reference portion 211 is referred to as the first inspection hole 211
  • the second reference portion 212 is referred to as the second inspection hole 212.
  • the anode side electrode tab 113A has a first inspection hole 211
  • the cathode side electrode tab 113K has a second inspection hole 212.
  • the first inspection hole 211 and the second inspection hole 212 are formed as far apart as possible so that the length of a line segment connecting the center of the first inspection hole 211 and the center of the second inspection hole 212 becomes long. .. This is because the accuracy of the position correction of the battery 110 is improved.
  • the first inspection hole 211 is formed near the right end of the anode side electrode tab 113A
  • the second inspection hole 212 is formed near the left end of the cathode side electrode tab 113K.
  • the positioning and transporting device 10 can be summarized as follows: a battery temporary placement unit 11, a pallet 20 on which a battery 110 is placed, and a clamp 21 (corresponding to a holding unit) that holds the battery 110 on the pallet 20. ), a linear conveyor 30 (corresponding to a transfer unit) that transfers the pallet 20, a second robot 40 (corresponding to a mounting robot) that holds the battery 110 and places it on the pallet 20, and an electrode tab 113 of the battery 110. And a detection unit 50 that detects the position of the reference unit 210 set to.
  • the positioning and transporting device 10 further includes a tab posture holding unit 60 that holds the posture of the electrode tab 113, and a control unit 70 that controls the operations of the clamp 21, the linear conveyor 30, the second robot 40, and the detection unit 50. ing.
  • the control unit 70 holds the battery 110 by the second robot 40, and detects the position of the reference unit 210 of the battery 110 held by the second robot 40 by the detection unit 50. Then, the control unit 70 corrects and positions the position of the reference unit 210 of the battery 110 to the reference position 220 (see FIG. 8A) of the detection unit 50 installed at the preset equipment machine coordinates, and clamps.
  • the battery 110 is held on the pallet 20 by 21 and the pallet 20 is transported by the linear conveyor 30. The details will be described below.
  • the temporary battery holder 11 includes a flat holder 11a for temporarily holding the battery 110, a leveling clamp 11b for clamping the sealing portion 112s of the laminate film 112, and a tab parallel-out clamp 11c for holding the electrode tab 113.
  • the battery 110 is loaded onto the flat stand 11a by the first robot (not shown).
  • the leveling clamp 11b sandwiches the sealing portion 112s of the laminate film 112 and smoothes the deformation of the laminate film 112. As a result, when the battery 110 on the pallet 20 is clamped by the clamp 21, it is less likely that the battery 110 will be misclamped or misaligned due to the clamp, so that the clamping accuracy can be improved.
  • the pallet 20 has a substantially rectangular plate shape, and the battery 110 is placed on the upper surface thereof.
  • Clamps 21 are provided on two opposing sides of the four sides of the pallet 20.
  • the clamp 21 holds the battery 110 with respect to the pallet 20 by sandwiching the sealing portion 112 s of the laminate film 112 with the upper surface of the pallet 20.
  • the clamp 21 of the present embodiment is provided so as to hold two sides of the rectangular frame-shaped sealing portion 112s that extend in a direction intersecting the transport direction (transverse direction Y). ..
  • the clamp 21 has a function of fixing the positioned position of the battery 110 and preventing the battery 110 from moving relative to the pallet 20.
  • Linear conveyor 30 With reference to FIG. 6C, the linear conveyor 30 moves the slider 31, which is a carrier, along a rail 32 extending in the carrying direction (transverse direction Y).
  • the pallet 20 is fixed to the slider 31, and the pallet 20 can be transported in the transport direction by moving the slider 31.
  • a processing device M for cutting and bending the electrode tab 113 is arranged in the middle of the rail 32 to process the electrode tab 113 of the battery 110 transported in the transport direction.
  • the clamp 21 holds the two sides extending in the direction intersecting the transport direction of the sealing portion 112s, so that the battery 110 is prevented from moving relative to the pallet 20. can do.
  • the slider 31 is driven by a linear motor or the like and conveyed to a processing position on the rail 32. Since the position of the slider 31 in the carrying direction is controlled with high accuracy, the displacement of the pallet 20 is unlikely to occur in the carrying direction.
  • the second robot 40 is composed of a general industrial robot with reference to FIG. 6A.
  • a horizontal articulated robot SCARA
  • the second robot 40 holds the battery 110 carried into the flat placing table 11 a, corrects the posture of the held battery 110, and then places the battery 110 on the pallet 20.
  • a handling unit 80 for handling the battery 110 is connected to the tip of the robot arm 40a (see FIG. 6A).
  • the handling unit 80 is a top plate 81, a connecting portion 82 arranged on the upper surface side of the top plate 81 and connected to the robot arm 40a, and a lower surface side of the top plate 81 for holding and releasing the battery 110 freely. It has a holding part 83.
  • the holding portion 83 holds the upper surface side of the main body 110H of the battery 110 at four locations.
  • the holding portion 83 has a main body suction pad 84 for sucking the main body 110H.
  • the main body suction pad 84 has a flexible bellows-shaped cover 84a.
  • the inner space of the cover 84a communicates with a suction device 85 such as a vacuum pump.
  • the cover 84a of the main body suction pad 84 is elastically deformed, and the lower end edge of the cover 84a is pressed against the upper surface of the main body 110H.
  • the suction device 85 is operated.
  • the main body suction pad 84 sucks the main body 110H by negative pressure.
  • the upper surface of the main body 110H is suction-held.
  • the detection unit 50 detects the position of the reference unit 210 of the battery 110 held by the second robot 40, and the battery 110 held by the clamp 21.
  • the second detection unit 52 that detects the position of the reference unit 210 of FIG.
  • the configuration of the detection unit 50 is not particularly limited as long as it can detect the position of the reference unit 210.
  • the detection unit 50 is composed of a camera including a CCD image sensor.
  • the detection unit 50 detects the respective positions of the first inspection hole 211 and the second inspection hole 212 by transmitting the captured image data to the control unit 70 and analyzing the image in the control unit 70.
  • the tab posture holding unit 60 holds the electrode tab 113 when the reference unit 210 of the battery 110 is detected by the detection unit 50.
  • the tab attitude holding portion 60 is configured by a gripping member that grips the tip portion 113d of the electrode tab 113 (the tip side of the reference portion 210).
  • the electrode tab 113 is relatively rigid.
  • the laminate film 112 that is generally applied to the exterior material has flexibility.
  • the current collecting foil of the power generation element 111 to which the electrode tab 113 is connected is extremely thin, and has a very low rigidity as compared with the electrode tab 113. Therefore, as shown in FIG. 7A, when the battery 110 is lifted for handling, the tip portion 113d of the electrode tab 113 hangs down as compared with the main body portion 110H. In such a state, when the reference portion 210 is detected from below, an error occurs as compared with the original position P1 (see FIG. 7B). In order to reduce variations in image position correction, it is necessary to stabilize the posture of the electrode tab 113 during image pickup. Therefore, when the battery 110 is handled and the detection unit 50 detects the position of the reference unit 210, it is necessary to correct the posture of the electrode tab 113.
  • the detection unit 50 detects the position of the reference unit 210 in a state in which the tab posture holding unit 60 holds the electrode tab 113 to correct the posture of the electrode tab 113. By correcting the posture of the electrode tab 113, the position of the reference portion 210 can be accurately detected.
  • the control unit 70 mainly includes a CPU and a memory, and controls the operations of the linear conveyor 30, the second robot 40, the detection unit 50, the tab posture holding unit 60, and the like.
  • the control unit 70 receives the position data of each of the first inspection hole 211 and the second inspection hole 212 detected by the detection unit 50.
  • the control unit 70 also functions as a processing unit of the detection unit 50.
  • the image data captured by the camera of the detector 50 is input to the controller 70, and the controller 70 detects the positions of the first inspection hole 211 and the second inspection hole 212 by analyzing the image data.
  • the control unit 70 controls the operation of the second robot 40 and corrects the posture of the battery 110 held by the second robot 40 or the clamp 21.
  • the correction is performed so that the respective positions of the first inspection hole 211 and the second inspection hole 212 coincide with the reference position 220 of the detection unit 50 installed at the preset equipment machine coordinates.
  • the control unit 70 controls the operation of the linear conveyor 30 and conveys the pallet 20 on which the posture-corrected battery 110 is placed.
  • FIG. 8A is an explanatory diagram showing a state before correcting the attitude of the battery 110
  • FIG. 8B is an explanatory diagram showing a state in which the battery 110 is corrected in the XY biaxial directions
  • FIG. 8C is a continuation of FIG. 8B
  • FIG. 6 is an explanatory diagram showing a state in which the battery 110 is rotationally corrected about the Z axis.
  • the reference portion 210 of the electrode tab 113 includes the first inspection hole 211 and the second inspection hole 212.
  • the reference position 220 is a first reference position 221 that positions the first inspection hole 211, a second reference position 222 that positions the second inspection hole 212, and a line segment that connects the first reference position 221 and the second reference position 222. It includes a third reference position 223 for positioning the midpoint.
  • the control unit 70 positions the midpoint 213 of the line segment connecting the first inspection hole 211 and the second inspection hole 212 based on the detected center position of the first inspection hole 211 and the detected center position of the second inspection hole 212. Ask for.
  • the control unit 70 first determines the correction amount x (mm) in the X direction and the correction amount y (mm) in the Y direction required to position the midpoint 213 at the third reference position 223. Ask. Further, it is necessary to position the first inspection hole 211 at the first reference position 221 and the second inspection hole 212 at the second reference position 222 after the middle point 213 is positioned at the third reference position 223. A correction amount ⁇ (degree) in the rotation direction is obtained.
  • the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 held by the second robot 40 in the XY biaxial directions.
  • the correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction.
  • the control unit 70 controls the operation of the second robot 40, and rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis.
  • the correction amount is the correction amount ⁇ (degrees).
  • control unit 70 matches the first inspection hole 211, the second inspection hole 212, and the midpoint 213 with the first reference position 221, the second reference position 222, and the third reference position 223, respectively.
  • the operation of the second robot 40 is controlled to correct the position of the battery 110.
  • step S101 referring to FIG. 6A, the control unit 70 controls the operation of the first robot, and the battery 110 to be positioned is carried in and temporarily placed on the flat placing table 11a by the first robot.
  • step S102 the control unit 70 controls the operation of the leveling clamp 11b of the battery temporary storage unit 11 to sandwich (clamp) the sealing unit 112s of the laminate film 112 on the flat platform 11a, and the deformation of the laminate film 112. Smooth out. Then, the clamping of the battery 110 by the break-in clamp 11b is released (unclamping). As a result, when the battery 110 on the pallet 20 is clamped by the clamp 21 in the subsequent process, it is less likely that the battery 110 will be misclamped or misaligned due to the clamp, so that the clamping accuracy can be improved.
  • step S103 the control unit 70 controls the operation of the second robot 40 using the following procedure, and causes the handling unit 80 to adsorb and hold the battery 110 on the flat stand 11a.
  • the control unit 70 moves the handling unit 80 at the tip of the robot arm 40a onto the battery 110. Then, the control unit 70 controls the operation of the second robot 40 and lowers the handling unit 80 toward the battery 110 on the carry-in table. As the handling unit 80 descends, the lower end edge of the cover 84a of the main body suction pad 84 contacts the upper surface of the main body 110H. When the handling unit 80 is further lowered, the cover 84a of the main body suction pad 84 is elastically deformed, and the lower end edge of the cover 84a is pressed against the upper surface of the main body 110H. In this state, the control unit 70 operates the suction device 85. The main body suction pad 84 sucks the main body 110H by negative pressure. Through the above procedure, the upper surface of the main body 110H is suction-held by the handling unit 80.
  • step S104 the control unit 70 controls the operation of the second robot 40, raises the handling unit 80, and lifts the adsorbed and held battery 110 from the flat stand 11a.
  • step S105 the control unit 70 controls the operation of the tab paralleling clamp 11c and holds the electrode tab 113 in a state of being gripped from above and below.
  • the tab paralleling clamp 11c can correct the deformation and bending of the electrode tab 113 and the attitude of the electrode tab 113, and the attitude of the electrode tab 113 is kept horizontal to the flat table 11a. Be done.
  • step S106 the control unit 70 controls the operation of the first detection unit 51, and as shown in FIG. 7B, the first inspection hole 211, the second inspection hole 212, and the electrode tabs around these inspection holes 211 and 212.
  • the image of 113 is captured.
  • step S107 the control unit 70 uses the following procedure to determine whether the reference unit 210 of the battery 110 held by the second robot 40 matches the reference position 220.
  • step S107: YES the process proceeds to step S109.
  • step S109 the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected.
  • the image data captured by the first detection unit 51 is input to the control unit 70, and the control unit 70 analyzes the image data to determine the positions of the first inspection hole 211 and the second inspection hole 212. Ask.
  • the control unit 70 obtains the correction amount (x, y, ⁇ ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110.
  • the control unit 70 controls the first inspection hole 211 and the second inspection hole based on the center position of the first inspection hole 211 and the center position of the second inspection hole 212 detected by the detection unit 50. The position of the midpoint 213 of the line segment connecting the hole 212 is obtained.
  • the control unit 70 obtains the correction amount (x, y, ⁇ ) of the attitude of the battery 110.
  • the reference position 220 is a first reference position 221 that positions the first inspection hole 211, a second reference position 222 that positions the second inspection hole 212, and a third reference position 223 that positions the midpoint 213.
  • the control unit 70 obtains a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction required to position the midpoint 213 at the third reference position 223. Further, it is necessary to position the first inspection hole 211 at the first reference position 221 and the second inspection hole 212 at the second reference position 222 after the middle point 213 is positioned at the third reference position 223.
  • a correction amount ⁇ (degree) in the rotation direction is obtained.
  • Step S107 when the correction amount (x, y, ⁇ ) of the attitude of the battery 110 is (0, 0, 0), the control unit 70 causes the reference unit 210 of the battery 110 to coincide with the reference position 220. (Step S107: YES). When the correction amount (x, y, ⁇ ) is not (0, 0, 0), the control unit 70 determines that the reference unit 210 of the battery 110 does not match the reference position 220 (step S107: NO). ..
  • step S108 the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 based on the calculated correction amount (x, y, ⁇ ) (first correction).
  • the control unit 70 corrects the posture of the battery 110 held by the second robot 40 in the XY biaxial directions.
  • the correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction.
  • the control unit 70 rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis.
  • the correction amount is the correction amount ⁇ (degrees).
  • control unit 70 can correct the posture of the battery 110 and align it with the reference position 220.
  • step S109 the control unit 70 controls the operation of the second robot 40 to set the first inspection hole 211, the second inspection hole 212, and the midpoint 213 to the first reference position 221, the second reference position 222, and the second reference position 222, respectively. Then, the battery 110 is placed on the pallet 20 in a state where the battery 110 is aligned with the third reference position 223.
  • the control unit 70 controls the operation of the clamp 21, and the clamp 21 holds the battery 110. Thereby, the battery 110 can be fixed to the pallet 20 so that the position of the battery 110 transported by the linear conveyor 30 does not shift in the transport direction during transportation.
  • step S110 the control unit 70 stops the operation of the suction device 85 and opens the inside of the main body suction pad 84 to the atmosphere. As a result, the suction holding of the main body 110H of the battery 110 by the handling unit 80 is released. The control unit 70 raises the second robot 40 and makes it stand by above the battery 110.
  • step S111 the control unit 70 determines whether the reference unit 210 of the battery 110 held by the clamp 21 matches the reference position 220.
  • the control unit 70 controls the operation of the second detection unit 52 and obtains the correction amount (x, y, ⁇ ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110. If the correction amount (x, y, ⁇ ) of the attitude of the battery 110 is (0, 0, 0), that is, if the reference unit 210 of the battery 110 matches the reference position 220 (step S111: YES), the process is performed. Proceed to step S118. When the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected (step S111: NO), the process proceeds to step S112.
  • step S112 the control unit 70 controls the operation of the second robot 40, lowers the second robot 40, and causes the handling unit 80 to adsorb and hold the battery 110.
  • step S113 the control unit 70 controls the operation of the clamp 21 and releases the clamping of the battery 110 (unclamp). After the battery 110 is suction-held by the handling unit 80 in step S109, the holding of the battery 110 by the clamp 21 is released, so that the battery 110 does not become unconstrained. Therefore, the battery 110 can be moved from the position detected in step S108. It is possible to suppress the displacement of the position.
  • the control unit 70 controls the operation of the second robot 40 and raises the battery 110.
  • step S114 the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 based on the calculated correction amount (x, y, ⁇ ) (second correction).
  • the control unit 70 corrects the attitude of the battery 110 held by the second robot 40 in the XY biaxial directions.
  • the correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction.
  • the control unit 70 rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis.
  • the correction amount is the correction amount ⁇ (degrees).
  • step S115 the control unit 70 controls the operation of the second robot 40 and sets the first inspection hole 211, the second inspection hole 212, and the midpoint 213 to the first reference position 221, the second reference position 222, and the second reference position 222, respectively.
  • the battery 110 is placed on the pallet 20 in a state of being aligned with the third reference position 223. Then, the control unit 70 controls the operation of the clamp 21, and the clamp 21 holds the battery 110.
  • step S116 the control unit 70 stops the operation of the suction device 85 and opens the inside of the main body suction pad 84 to the atmosphere. As a result, the suction holding of the main body 110H of the battery 110 by the handling unit 80 is released. The control unit 70 raises the second robot 40 and makes it stand by above the battery 110.
  • step S117 the control unit 70 determines again whether or not the reference unit 210 of the battery 110 held by the clamp 21 matches the reference position 220.
  • the control unit 70 controls the operation of the second detection unit 52 again to obtain the correction amount (x, y, ⁇ ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110.
  • the correction amount (x, y, ⁇ ) of the attitude of the battery 110 is (0, 0, 0)
  • step S117: YES the process is performed.
  • step S118 When the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected (step S117: NO), the process is returned to step S112, and the second correction of steps S112 to S116 is repeated.
  • control unit 70 corrects the position of the battery 110 until the reference unit 210 of the battery 110 matches the reference position 220.
  • the control unit 70 corrects the position of the battery 110 until the reference unit 210 of the battery 110 matches the reference position 220.
  • the positioning accuracy of the battery 110 at the processing position can be secured, and the processing accuracy of the electrode tab 113 can be improved.
  • step S118 the control unit 70 controls the operations of the second robot 40 and the linear conveyor 30, retracts the second robot 40, and, as shown in FIG. 6C, the pallet on which the attitude-corrected battery 110 is placed. 20 is conveyed in the conveyance direction.
  • the electrode tab 113 is processed by the processing device M arranged in the middle of the linear conveyor 30.
  • the position where the battery is processed by the processing device M is the processing position of the battery 110.
  • the positioning and transporting device 10 of the present embodiment includes the pallet 20 on which the battery 110 is placed, the clamp 21 (holding unit) that holds the battery 110 on the pallet 20, and the linear pallet 20 that transports the pallet 20.
  • a conveyor 30 (conveying unit), a second robot 40 that holds the battery 110 and places it on the pallet 20, a detection unit 50 that detects the position of the reference unit 210 set on the electrode tab 113 of the battery 110, and a control And a section 70.
  • the control unit 70 holds the battery 110 by the second robot 40, detects the position of the reference unit 210 of the battery 110 held by the second robot 40 by the detection unit 50 (first detection unit 51), and The position of the reference portion 210 of the 110 is corrected and positioned by making it coincide with the preset reference position 220 (first correction), the battery 110 is held to the pallet 20 by the clamp 21, and the pallet is held by the linear conveyor 30. 20 is conveyed.
  • the positioning/conveying method of the present embodiment detects the position of the reference portion 210 set on the electrode tab 113 of the battery 110, and corrects the position of the reference portion 210 to the reference position 220 (first correction).
  • the battery 110 is held on the pallet 20, and the pallet 20 is transported.
  • the position of the reference portion 210 provided on the electrode tab 113 of the battery 110 matches the reference position 220, so that the battery 110 can be positioned with respect to the pallet 20 with high accuracy.
  • the battery 110 can be positioned with respect to the pallet 20 with high accuracy.
  • the control unit 70 of the positioning and conveying apparatus 10 controls the operation of the detection unit 50 (second detection unit 52) to further set the position of the reference unit 210 of the battery 110 held by the clamp 21 with respect to the pallet 20. It detects and controls the operation of the second robot 40, and again performs the correction (second correction) for matching the position of the reference portion 210 of the battery 110 with the preset reference position 220 to perform positioning.
  • the position of the reference portion 210 of the electrode tab 113 of the battery 110 is further detected, and the position of the reference portion 210 of the battery 110 is set to a predetermined reference.
  • the correction to match the position 220 is performed again to perform positioning.
  • the position of the battery 110 is corrected again, so that the pallet 20 is reliably positioned with respect to the pallet 20. It can be transported and placed at the processing position of the electrode tab 113. As a result, it is possible to carry the battery 110 while maintaining the positioning accuracy with respect to the processing position of the battery 110 with higher accuracy.
  • the reference portion 210 of the battery 110 includes through holes (first inspection hole 211, second inspection hole 212) provided in at least two places of the electrode tab 113 of the battery 110.
  • the positioning and transporting device 10 further includes a tab posture holding unit 60 that holds the posture of the electrode tab 113 of the battery 110.
  • the control unit 70 causes the detection unit 50 to detect the position of the reference portion 210 of the electrode tab 113 while the tab posture holding unit 60 holds the posture of the electrode tab 113. With such a configuration, the attitude (bending, warping, etc.) of the electrode tab 113 can be reliably corrected, and the detected positional accuracy of the reference portion 210 is improved.
  • the positioning and transporting device 10 further includes a battery temporary storage unit 11 for temporarily storing the battery 110 transported by the second robot 40.
  • the battery temporary storage unit 11 has a leveling clamp 11b that smoothes the deformation of the battery 110 by clamping and unclamping the battery 110.
  • the present invention is not limited to the above-mentioned embodiments, and can be modified as appropriate.
  • the present invention is not limited to this as long as it has the function of holding.
  • the configuration of the tab posture holding unit is not limited to the above-described embodiment as long as it has a function of holding the posture of the electrode tab.
  • the holding part or the tab attitude holding part may be sucked and held, for example, by vacuum suction from a suction port provided in a block material that supports the pallet or the electrode tab, or may be held on the pallet using magnetic force or static electricity. You may.
  • the specific processing of detecting the position of the reference portion of the electrode tab by the detection unit and the specific processing of matching the position of the reference portion with each of the reference positions of the detection unit are limited to the above-mentioned example Instead, it may be modified appropriately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To provide a positioning and conveying device and a positioning and conveying method which are capable of conveying a battery while maintaining high positioning accuracy of the battery. [Solution] A positioning and conveying device 10 comprises: a pallet 20 on which a battery 110 is mounted; a clamp 21 which holds the battery with respect to the pallet; a linear conveyor 30 which conveys the pallet; a mounting robot 40 which holds and mounts the battery on the pallet; a detection unit 50 which detects the position of a reference part 210 set in an electrode tab 113 of the battery; and a control unit 70. The control unit holds the battery by the mounting robot, detects, by the detection unit, the position of the reference part of the battery held by the mounting robot, performs positioning by making a correction for matching the position of the reference part of the battery to a reference position 220 of the detection unit installed at preset facility machine coordinates, holds the battery with respect to the pallet by the clamp, and conveys the pallet by the linear conveyor.

Description

位置決め搬送装置および位置決め搬送方法Positioning/conveying device and positioning/conveying method
 本発明は、位置決め搬送装置および位置決め搬送方法に関する。 The present invention relates to a positioning/conveying device and a positioning/conveying method.
 車両に搭載される電池モジュールは、電極タブを備える扁平な電池を複数枚積層した電池スタックを有している。電極タブを加工する際、電池はパレットに載置されて加工位置まで搬送される。パレットやパレットを搬送する装置等の設備機械座標に対する位置決め精度が悪い場合、電池の加工位置への位置決め精度が要求を満たさない可能性がある。 The battery module installed in the vehicle has a battery stack in which multiple flat batteries with electrode tabs are stacked. When processing the electrode tab, the battery is placed on a pallet and transported to the processing position. If the positioning accuracy of the pallet or a device for transporting the pallet with respect to the machine coordinate is poor, the positioning accuracy of the battery at the processing position may not meet the requirement.
 例えば、下記特許文献1には、電池が貫通穴を有し、該貫通穴に位置決めピンを挿通することによって、電池を位置決めする方法が開示されている。 For example, Patent Document 1 below discloses a method in which a battery has a through hole and a battery is positioned by inserting a positioning pin into the through hole.
特開2014-22325号公報JP, 2014-22325, A
 しかしながら、貫通穴と位置決めピンとの間にはクリアランスが存在する。上記特許文献1の方法でパレットに対する電池の位置決めを行った場合、このクリアランスおよびパレット毎の位置決めピンのばらつきの存在によって、電池の設備機械座標に対する相対的な位置にばらつきが生じる場合がある。特に、電池の電極タブを加工する際は位置決めの要求精度が高いため、僅かなばらつきでも所望の加工精度を得られなくなる可能性がある。 However, there is a clearance between the through hole and the positioning pin. When the battery is positioned with respect to the pallet by the method of Patent Document 1, the relative position of the battery with respect to the machine mechanical coordinates may vary due to the existence of the clearance and the variation of the positioning pin for each pallet. In particular, when processing the electrode tabs of the battery, the required accuracy of positioning is high, so even if there is a slight variation, the desired processing accuracy may not be obtained.
 本発明は、電池の位置決め精度を高精度に維持しつつ搬送できる位置決め搬送装置および位置決め搬送方法を提供することを目的とする。 An object of the present invention is to provide a positioning and transporting device and a positioning and transporting method capable of transporting a battery while maintaining the positioning accuracy of the battery with high precision.
 上記目的を達成する本発明に係る位置決め搬送装置は、電極タブを備える扁平な電池を位置決めして搬送する位置決め搬送装置である。該位置決め搬送装置は、前記電池を載置するパレットと、前記電池を前記パレットに対して保持する保持部と、前記パレットを搬送する搬送部と、前記電池を保持して前記パレットに載置する載置ロボットと、前記電池の前記電極タブに設定された基準部の位置を検出する検出部と、前記保持部、前記搬送部、前記載置ロボットおよび前記検出部の作動を制御する制御部と、を有する。前記制御部は、前記載置ロボットによって前記電池を保持し、前記載置ロボットによって保持された状態の前記電極タブの前記基準部の位置を前記検出部によって検出し、前記電池の前記基準部の位置を予め設定された設備機械座標に据え付けた前記検出部の基準位置に一致させる補正をして位置決めし、前記保持部によって前記電池を前記パレットに対して保持し、前記搬送部によって前記パレットを搬送する。 The positioning and conveying device according to the present invention that achieves the above object is a positioning and conveying device that positions and conveys a flat battery having an electrode tab. The positioning and transporting device includes a pallet on which the battery is placed, a holding unit that holds the battery on the pallet, a transporting unit that transports the pallet, and a battery that holds the battery and places it on the pallet. A placement robot, a detection unit that detects the position of a reference unit that is set on the electrode tab of the battery, and a control unit that controls the operation of the holding unit, the transfer unit, the placement robot, and the detection unit. , With. The control unit holds the battery by the placement robot, detects the position of the reference portion of the electrode tab in a state of being held by the placement robot by the detection unit, and detects the position of the reference portion of the battery. The position is corrected and aligned so as to match the reference position of the detection unit installed at the preset equipment machine coordinates, the battery is held by the holding unit with respect to the pallet, and the pallet is held by the transfer unit. Transport.
 また、上記目的を達成する本発明に係る位置決め搬送方法は、電極タブを備える扁平な電池を位置決めして搬送する位置決め搬送方法である。位置決め搬送方法は、前記電池の前記電極タブに設定された基準部の位置を検出部によって検出し、前記基準部の位置を設備機械座標に据え付けた前記検出部の基準位置に一致させる補正をして位置決めし、前記電池をパレットに対して保持し、前記パレットを搬送する。 The positioning and conveying method according to the present invention which achieves the above object is a positioning and conveying method for positioning and conveying a flat battery provided with an electrode tab. The positioning and conveying method detects the position of the reference part set on the electrode tab of the battery by the detection part, and corrects the position of the reference part to match the reference position of the detection part installed on the machine machine coordinates. And position the battery, hold the battery against the pallet, and transport the pallet.
電池モジュールを示す斜視図である。It is a perspective view which shows a battery module. 図1に示す電池モジュールの一部を分解して示す斜視図である。It is a perspective view which decomposes|disassembles and shows some battery modules shown in FIG. 図1に示す電池モジュールの要部を断面で示す側面図である。It is a side view which shows the principal part of the battery module shown in FIG. 1 in a cross section. 図2に示す電池スタックの一の電池を示す斜視図である。FIG. 3 is a perspective view showing one battery of the battery stack shown in FIG. 2. 電極タブを加工する前の電池を示す斜視図である。It is a perspective view which shows the battery before processing an electrode tab. 位置決め搬送装置の構成を模式的に示す平面図である。It is a top view which shows the structure of a positioning conveyance apparatus typically. 位置決め搬送装置によって電池を載置する様子を模式的に示す側面図である。It is a side view which shows typically a mode that a battery is mounted by the positioning conveyance apparatus. 位置決め搬送装置によって電池を搬送する様子を模式的に示す平面図である。It is a top view which shows typically a mode that a positioning conveyance apparatus conveys a battery. 電池を第2ロボットによって保持した状態において、電極タブの基準部の位置を検出する様子を示す側面図である。FIG. 6 is a side view showing how the position of the reference portion of the electrode tab is detected while the battery is held by the second robot. 図7Aに示す電極タブの基準部の位置を検出する様子の要部を断面で示す側面図である。FIG. 7B is a side view showing a cross section of a main part of a state where the position of the reference part of the electrode tab shown in FIG. 電池の姿勢を補正する前の状態を示す説明図である。It is explanatory drawing which shows the state before correcting the attitude|position of a battery. 電池をX-Yの2軸方向に補正した状態を示す説明図である。It is explanatory drawing which shows the state which corrected the battery to the XY biaxial direction. 図8Bに続けて、電池をZ軸を中心に回転補正した状態を示す説明図である。It is explanatory drawing which shows the state which carried out rotation correction of the battery centering on the Z-axis following FIG. 8B. 位置決め搬送装置による位置決め搬送処理の手順を示すフローチャートである。It is a flow chart which shows a procedure of positioning transportation processing by a positioning transportation device.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals are given to the same members, and duplicate description will be omitted. In the drawings, the size and ratio of each member may be exaggerated to facilitate understanding of the embodiment and may differ from the actual size and ratio.
 図に付したX-Y-Z軸は、電池モジュール100の方位を示している。X軸は、電池110の積層方向と交差し、かつ、電池110の長手方向に沿った方向を示している。Y軸は、電池110の積層方向と交差し、かつ、電池110の短手方向に沿った方向を示している。Z軸は、電池110の積層方向を示している。 The XYZ axes attached to the figure show the orientation of the battery module 100. The X axis indicates a direction that intersects the stacking direction of the batteries 110 and that is along the longitudinal direction of the batteries 110. The Y axis indicates a direction that intersects the stacking direction of the batteries 110 and is along the lateral direction of the batteries 110. The Z axis represents the stacking direction of the batteries 110.
 (電池モジュール100)
 図1は、電池モジュール100を示す斜視図である。図2は、図1に示す電池モジュール100の一部を分解して示す斜視図である。まず、電池スタック110Sを含む電池モジュール100について説明する。
(Battery module 100)
FIG. 1 is a perspective view showing the battery module 100. FIG. 2 is a perspective view showing a part of the battery module 100 shown in FIG. 1 in an exploded manner. First, the battery module 100 including the battery stack 110S will be described.
 図1および図2を参照して、電池モジュール100は、扁平な複数の電池110を積層してなる電池スタック110Sがモジュールケース120内に収納されている。モジュールケース120は、4枚の板部材から構成され、電池スタック110Sを加圧する加圧ユニットとしても機能する。複数の電池110は、モジュールケース120によって加圧された状態において、バスバーユニット130によって電気的に接続される。図示省略するが、積層される電池110同士の間には、接着剤あるいは粘着剤が塗布されている。 With reference to FIGS. 1 and 2, the battery module 100 includes a battery stack 110S formed by stacking a plurality of flat batteries 110 in a module case 120. The module case 120 is composed of four plate members and also functions as a pressurizing unit that pressurizes the battery stack 110S. The plurality of batteries 110 are electrically connected by the bus bar unit 130 while being pressurized by the module case 120. Although not shown, an adhesive or pressure sensitive adhesive is applied between the stacked batteries 110.
 図3は、電池モジュール100の要部を断面で示す側面図である。図4は、電池スタック110Sの一の電池110を示す斜視図である。図3および図4を参照して、電池110は、例えば、扁平なリチウムイオン二次電池である。電池110は、発電要素111を一対のラミネートフィルム112によって封止した本体部110Hと、薄板状の電極タブ113と、を有している。発電要素111は、正極と負極とをセパレータを介して積層して形成されている。発電要素111は、電解液とともにラミネートフィルム112によって封止されている。図4を参照して、ラミネートフィルム112の外周部は、熱溶着等によって接合された封止部112sによって封止されている。 FIG. 3 is a side view showing a cross section of a main part of the battery module 100. FIG. 4 is a perspective view showing one battery 110 of the battery stack 110S. Referring to FIGS. 3 and 4, battery 110 is, for example, a flat lithium ion secondary battery. The battery 110 has a main body 110H in which a power generation element 111 is sealed with a pair of laminate films 112, and a thin plate-shaped electrode tab 113. The power generation element 111 is formed by stacking a positive electrode and a negative electrode via a separator. The power generation element 111 is sealed with a laminate film 112 together with the electrolytic solution. With reference to FIG. 4, the outer peripheral portion of the laminated film 112 is sealed by a sealing portion 112s joined by heat welding or the like.
 ラミネートフィルム112は、絶縁性を備えたシートによって金属箔の両側を覆って構成されている。ラミネートフィルム112は、長手方向Xに沿った両端部112dを、積層方向Zの上方に向かって折り曲げて形成している。図5は、スペーサー114、115を配置する前の電池110を示す斜視図である。図5を参照して、ラミネートフィルム112は、四隅に連結孔112aが形成されている。 The laminate film 112 is formed by covering both sides of a metal foil with an insulating sheet. The laminate film 112 is formed by bending both end portions 112d along the longitudinal direction X upward in the laminating direction Z. FIG. 5 is a perspective view showing the battery 110 before the spacers 114 and 115 are arranged. Referring to FIG. 5, the laminate film 112 has connection holes 112a formed at the four corners.
 図3を参照して、電極タブ113は、発電要素111に電気的に接続され、ラミネートフィルム112から外部に導出されている。図4を参照して、電極タブ113は、アノード側電極タブ113Aと、カソード側電極タブ113Kとを有している。アノード側電極タブ113Aおよびカソード側電極タブ113Kはともに、ラミネートフィルム112の短手方向Yに沿う一端部から、長手方向Xに沿う一方向(図4において左手前側)に向かって伸びている。 Referring to FIG. 3, the electrode tab 113 is electrically connected to the power generating element 111 and is led out from the laminate film 112 to the outside. Referring to FIG. 4, the electrode tab 113 has an anode side electrode tab 113A and a cathode side electrode tab 113K. Both the anode-side electrode tab 113A and the cathode-side electrode tab 113K extend from one end portion along the lateral direction Y of the laminate film 112 toward one direction along the longitudinal direction X (left front side in FIG. 4).
 図3および図4を参照して、電極タブ113は、基端部113cから先端部113dにかけてL字形状に折り曲げ形成されている。電極タブ113の先端部113dは、バスバー132と対面するように面状に形成されている。なお、電極タブ113は図示したL字形状に限定されない、バスバー132の形状との関係において、適宜の形状を有する。アノード側電極タブ113Aの形成材料は、例えば、アルミニウムであり、カソード側電極タブ113Kの形成材料は、例えば、銅である。 With reference to FIGS. 3 and 4, the electrode tab 113 is bent and formed in an L shape from the base end portion 113c to the tip end portion 113d. A tip portion 113d of the electrode tab 113 is formed in a planar shape so as to face the bus bar 132. Note that the electrode tab 113 is not limited to the L-shape shown in the figure, but has an appropriate shape in relation to the shape of the bus bar 132. The material forming the anode-side electrode tab 113A is, for example, aluminum, and the material forming the cathode-side electrode tab 113K is, for example, copper.
 図4を参照して、電池110は、電極タブ113を備えた側が一対の第1スペーサー114によって支持され、電極タブ113を備えていない側が一対の第2スペーサー115によって支持されている。電池110は、各スペーサー114、115によって支持された状態において積層される。第1スペーサー114には、ラミネートフィルム112の連結孔112aに挿通される連結ピン114aが形成され、第2スペーサー115には、連結孔112aに挿通される連結ピン115aが形成されている。連結ピン114a、115aの先端を熱カシメすることによって、各スペーサー114、115は、ラミネートフィルム112に接続される。各スペーサー114、115は、絶縁性を備えた強化プラスチックスから形成される。 Referring to FIG. 4, in the battery 110, the side provided with the electrode tab 113 is supported by the pair of first spacers 114, and the side not provided with the electrode tab 113 is supported by the pair of second spacers 115. The batteries 110 are stacked while being supported by the spacers 114 and 115. The first spacer 114 has a connecting pin 114a inserted into the connecting hole 112a of the laminate film 112, and the second spacer 115 has a connecting pin 115a inserted into the connecting hole 112a. The spacers 114, 115 are connected to the laminate film 112 by thermally caulking the tips of the connecting pins 114a, 115a. Each of the spacers 114 and 115 is made of insulating reinforced plastic.
 第1スペーサー114は、その長手方向(短手方向Y)の両端に載置部114bを有し、第2スペーサー115は、その長手方向(短手方向Y)の両端に載置部115bを有している。電池110を積層するとき、第1スペーサー114は、積層方向に隣り合う載置部114b同士が接触し、第2スペーサー115は、積層方向に隣り合う載置部115b同士が接触する。載置部114b、115bの上面には、ピン114c、115cが形成されている。載置部114bの下面には、ピン114cの位置に対応した穴114dが形成されている(図3を参照)。載置部115bの下面にも同様に、ピン115cの位置に対応した穴(図示省略)が形成されている。載置部114b、115bには、通しボルトを挿通する貫通孔114e、115eが形成されている。第1スペーサー114は、図3に示すように、電極タブ113の先端部113dをバスバー132とは反対側から支持する支持部114fを有している。 The first spacer 114 has mounting portions 114b at both ends in the longitudinal direction (transverse direction Y), and the second spacer 115 has mounting portions 115b at both ends in the longitudinal direction (transverse direction Y). is doing. When stacking the batteries 110, the first spacers 114 contact the mounting portions 114b adjacent to each other in the stacking direction, and the second spacers 115 contact the mounting portions 115b adjacent to each other in the stacking direction. Pins 114c and 115c are formed on the upper surfaces of the mounting portions 114b and 115b. A hole 114d corresponding to the position of the pin 114c is formed on the lower surface of the mounting portion 114b (see FIG. 3). Similarly, a hole (not shown) corresponding to the position of the pin 115c is formed on the lower surface of the mounting portion 115b. Through holes 114e and 115e for inserting the through bolts are formed in the mounting portions 114b and 115b. As shown in FIG. 3, the first spacer 114 has a supporting portion 114 f that supports the tip portion 113 d of the electrode tab 113 from the side opposite to the bus bar 132.
 図2を参照して、モジュールケース120は、電池スタック110Sの各々の電池110の発電要素111を上下から加圧する上部加圧板121と下部加圧板122、および電池スタック110Sを加圧した状態の上部加圧板121および下部加圧板122を固定する一対の側板123を含んでいる。上部加圧板121は、電池モジュール100を図示しないパックケースに対して固定する締結ボルトを挿入するロケート孔121bが形成されている。下部加圧板122も同様に、締結ボルトを挿入するロケート孔122bが形成されている。一対の側板123は、上部加圧板121および下部加圧板122に対して溶接している。モジュールケース120の形成材料は、特に限定されないが、例えば、ステンレスなどから形成することができる。 Referring to FIG. 2, the module case 120 includes an upper pressure plate 121 and a lower pressure plate 122 for vertically pressing the power generating element 111 of each battery 110 of the battery stack 110S, and an upper part of the battery stack 110S in a pressed state. It includes a pair of side plates 123 for fixing the pressure plate 121 and the lower pressure plate 122. The upper pressure plate 121 has a locate hole 121b into which a fastening bolt for fixing the battery module 100 to a pack case (not shown) is inserted. Similarly, the lower pressurizing plate 122 has a locate hole 122b into which a fastening bolt is inserted. The pair of side plates 123 are welded to the upper pressure plate 121 and the lower pressure plate 122. The material for forming the module case 120 is not particularly limited, but can be formed of, for example, stainless steel.
 バスバーユニット130は、上下に並んだ電池110の電極タブ113を電気的に接続するバスバー132と、複数のバスバー132を一体的に保持するバスバーホルダ131と、バスバー132を保護する保護カバー135とを有する。バスバーユニット130はさらに、電気的に接続された複数の電池110のアノード側の終端を外部の入出力端子に臨ませるアノード側ターミナル133と、カソード側の終端を外部の入出力端子に臨ませるカソード側ターミナル134とを有する。 The bus bar unit 130 includes a bus bar 132 that electrically connects the electrode tabs 113 of the batteries 110 that are vertically arranged, a bus bar holder 131 that integrally holds the plurality of bus bars 132, and a protective cover 135 that protects the bus bar 132. Have. The bus bar unit 130 further includes an anode-side terminal 133 that makes the anode-side ends of the plurality of electrically connected batteries 110 face external input/output terminals, and a cathode that makes the cathode-side ends face external input/output terminals. And a side terminal 134.
 図3に示すように、積層した電池110の電極タブ113にバスバー132をレーザー接合するときには、図示しないレーザー発振器は、バスバー132にレーザー光L1を照射する。バスバー132と電極タブ113の先端部113dとは、シーム溶接またはスポット溶接によって接合される。電極タブ113とバスバー132とをレーザー溶接する場合、高品位の溶接品質を確保するために、電極タブ113とバスバー132との間に隙間が生じないように、電極タブ113の位置とバスバー132の位置を管理しなければならない。電極タブ113の曲げ角度などの形状にばらつきがあると、電極タブ113の先端部113dの位置が積層方向にばらつくおそれがある。このため、電池110を電極タブ113の加工位置に高精度に位置決めし、電極タブ113の加工精度を向上することが必要である。 As shown in FIG. 3, when the bus bar 132 is laser-bonded to the electrode tabs 113 of the stacked batteries 110, a laser oscillator (not shown) irradiates the bus bar 132 with the laser beam L1. The bus bar 132 and the tip portion 113d of the electrode tab 113 are joined by seam welding or spot welding. When laser welding the electrode tab 113 and the bus bar 132, in order to secure high quality welding quality, the position of the electrode tab 113 and the bus bar 132 should be adjusted so that no gap is created between the electrode tab 113 and the bus bar 132. You have to manage your location. If there are variations in the shape of the electrode tab 113 such as the bending angle, the position of the tip portion 113d of the electrode tab 113 may vary in the stacking direction. Therefore, it is necessary to position the battery 110 at the processing position of the electrode tab 113 with high accuracy and improve the processing accuracy of the electrode tab 113.
 (位置決め搬送装置10)
 実施形態に係る位置決め搬送装置10を説明する。図5は、電極タブ113を加工する前の電池110を示す斜視図である。図6Aは、位置決め搬送装置10の構成を模式的に示す平面図、図6Bは、位置決め搬送装置10によって電池110を載置する様子を模式的に示す側面図、図6Cは、位置決め搬送装置10によって電池110を搬送する様子を模式的に示す平面図である。図7Aは、電池110を第2ロボット40によって保持した状態において、電極タブ113の基準部210の位置を検出する様子を示す側面図である。図7Bは、図7Aに示す電極タブ113の基準部210の位置を検出する様子の要部を断面で示す側面図である。
(Positioning/conveying device 10)
The positioning and conveying device 10 according to the embodiment will be described. FIG. 5 is a perspective view showing the battery 110 before processing the electrode tab 113. 6A is a plan view schematically showing the configuration of the positioning and conveying apparatus 10, FIG. 6B is a side view schematically showing how the battery 110 is placed by the positioning and conveying apparatus 10, and FIG. 6C is a positioning and conveying apparatus 10. It is a top view which shows typically a mode that the battery 110 is conveyed by. FIG. 7A is a side view showing how the position of the reference portion 210 of the electrode tab 113 is detected while the battery 110 is held by the second robot 40. FIG. 7B is a side view showing a cross section of a main part of a state where the position of the reference part 210 of the electrode tab 113 shown in FIG. 7A is detected.
 位置決め搬送装置10は、電極タブ113を加工する前の扁平な電池110(図5を参照)をパレット20に位置決めして電極タブ113の加工位置まで搬送する装置である。 The positioning and transporting device 10 is a device that positions the flat battery 110 (see FIG. 5) before processing the electrode tab 113 on the pallet 20 and transports it to the processing position of the electrode tab 113.
 図5に示すように、電極タブ113は、少なくとも2箇所に設定された基準部210を有している。基準部210は、その位置を特定できる限りにおいて構成は特に限定されない。基準部210は、例えば、貫通穴、止まり穴、切り欠き、あるいは刻印されたマークなどから構成することができる。 As shown in FIG. 5, the electrode tab 113 has reference portions 210 set at at least two places. The configuration of the reference unit 210 is not particularly limited as long as its position can be specified. The reference part 210 can be formed of, for example, a through hole, a blind hole, a notch, or a stamped mark.
 図5に示す例では、電極タブ113の基準部210は、第1基準部211と第2基準部212とを含んでいる。第1基準部211および第2基準部212は、貫通穴から形成されている。第1基準部211および第2基準部212は、電極タブ113の基端部113cに形成されている。以下の説明においては、第1基準部211を第1検査穴211といい、第2基準部212を第2検査穴212という。アノード側電極タブ113Aは第1検査穴211を有し、カソード側電極タブ113Kは第2検査穴212を有している。第1検査穴211の中心と第2検査穴212の中心とを結ぶ線分の長さが長くなるように、第1検査穴211および第2検査穴212は、できるだけ離間して形成されている。電池110の位置補正の精度が向上するからである。図5を参照して、第1検査穴211は、アノード側電極タブ113Aの右端寄りに形成され、第2検査穴212は、カソード側電極タブ113Kの左端寄りに形成されている。 In the example shown in FIG. 5, the reference part 210 of the electrode tab 113 includes a first reference part 211 and a second reference part 212. The first reference portion 211 and the second reference portion 212 are formed from through holes. The first reference portion 211 and the second reference portion 212 are formed on the base end portion 113c of the electrode tab 113. In the following description, the first reference portion 211 is referred to as the first inspection hole 211, and the second reference portion 212 is referred to as the second inspection hole 212. The anode side electrode tab 113A has a first inspection hole 211, and the cathode side electrode tab 113K has a second inspection hole 212. The first inspection hole 211 and the second inspection hole 212 are formed as far apart as possible so that the length of a line segment connecting the center of the first inspection hole 211 and the center of the second inspection hole 212 becomes long. .. This is because the accuracy of the position correction of the battery 110 is improved. With reference to FIG. 5, the first inspection hole 211 is formed near the right end of the anode side electrode tab 113A, and the second inspection hole 212 is formed near the left end of the cathode side electrode tab 113K.
 図6Aを参照して、位置決め搬送装置10は、概説すると、電池仮置き部11と、電池110を載置するパレット20と、電池110をパレット20に対して保持するクランプ21(保持部に相当)と、パレット20を搬送するリニアコンベア30(搬送部に相当)と、電池110を保持してパレット20に載置する第2ロボット40(載置ロボットに相当)と、電池110の電極タブ113に設定された基準部210の位置を検出する検出部50と、を有している。位置決め搬送装置10はさらに、電極タブ113の姿勢を保持するタブ姿勢保持部60と、クランプ21、リニアコンベア30、第2ロボット40および検出部50の作動を制御する制御部70と、を有している。 With reference to FIG. 6A, the positioning and transporting device 10 can be summarized as follows: a battery temporary placement unit 11, a pallet 20 on which a battery 110 is placed, and a clamp 21 (corresponding to a holding unit) that holds the battery 110 on the pallet 20. ), a linear conveyor 30 (corresponding to a transfer unit) that transfers the pallet 20, a second robot 40 (corresponding to a mounting robot) that holds the battery 110 and places it on the pallet 20, and an electrode tab 113 of the battery 110. And a detection unit 50 that detects the position of the reference unit 210 set to. The positioning and transporting device 10 further includes a tab posture holding unit 60 that holds the posture of the electrode tab 113, and a control unit 70 that controls the operations of the clamp 21, the linear conveyor 30, the second robot 40, and the detection unit 50. ing.
 制御部70は、第2ロボット40によって電池110を保持し、第2ロボット40によって保持された状態の電池110の基準部210の位置を検出部50によって検出する。そして、制御部70は、電池110の基準部210の位置を予め設定された設備機械座標に据え付けた検出部50の基準位置220(図8Aを参照)に一致させる補正をして位置決めし、クランプ21によって電池110をパレット20に対して保持し、リニアコンベア30によってパレット20を搬送する。以下、詳述する。 The control unit 70 holds the battery 110 by the second robot 40, and detects the position of the reference unit 210 of the battery 110 held by the second robot 40 by the detection unit 50. Then, the control unit 70 corrects and positions the position of the reference unit 210 of the battery 110 to the reference position 220 (see FIG. 8A) of the detection unit 50 installed at the preset equipment machine coordinates, and clamps. The battery 110 is held on the pallet 20 by 21 and the pallet 20 is transported by the linear conveyor 30. The details will be described below.
 (電池仮置き部11)
 電池仮置き部11は、電池110を仮置きする平置き台11aと、ラミネートフィルム112の封止部112sをクランプするならしクランプ11bと、電極タブ113を保持するタブ平行出しクランプ11cと、を有する。電池110は、第1ロボット(図示省略)によって平置き台11aの上に搬入される。ならしクランプ11bは、ラミネートフィルム112の封止部112sを挟み込み、ラミネートフィルム112の変形をならす。これにより、パレット20上の電池110をクランプ21でクランプする際に電池110のクランプミスやクランプによる位置ずれが生じにくくなるためクランプ精度を高めることができる。
(Battery temporary storage part 11)
The temporary battery holder 11 includes a flat holder 11a for temporarily holding the battery 110, a leveling clamp 11b for clamping the sealing portion 112s of the laminate film 112, and a tab parallel-out clamp 11c for holding the electrode tab 113. Have. The battery 110 is loaded onto the flat stand 11a by the first robot (not shown). The leveling clamp 11b sandwiches the sealing portion 112s of the laminate film 112 and smoothes the deformation of the laminate film 112. As a result, when the battery 110 on the pallet 20 is clamped by the clamp 21, it is less likely that the battery 110 will be misclamped or misaligned due to the clamp, so that the clamping accuracy can be improved.
 (パレット20)
 パレット20は、図6Aを参照して、略矩形板状であり、上面に電池110を載置する。パレット20の側部の4辺のうち対向する2辺には、クランプ21が設けられている。図6Bに示すように、クランプ21は、ラミネートフィルム112の封止部112sをパレット20の上面との間に挟むことによって、電池110をパレット20に対して保持する。本実施形態のクランプ21は、図6Cに示すように、四角枠状の封止部112sのうち搬送方向(短手方向Y)に交差する方向に延在する2辺を保持するように設けられる。クランプ21は、電池110の位置決めした位置を固定して電池110がパレット20に対して相対的に移動することを防止する機能を有する。
(Pallet 20)
6A, the pallet 20 has a substantially rectangular plate shape, and the battery 110 is placed on the upper surface thereof. Clamps 21 are provided on two opposing sides of the four sides of the pallet 20. As shown in FIG. 6B, the clamp 21 holds the battery 110 with respect to the pallet 20 by sandwiching the sealing portion 112 s of the laminate film 112 with the upper surface of the pallet 20. As shown in FIG. 6C, the clamp 21 of the present embodiment is provided so as to hold two sides of the rectangular frame-shaped sealing portion 112s that extend in a direction intersecting the transport direction (transverse direction Y). .. The clamp 21 has a function of fixing the positioned position of the battery 110 and preventing the battery 110 from moving relative to the pallet 20.
 (リニアコンベア30)
 リニアコンベア30は、図6Cを参照して、搬送台車であるスライダー31を搬送方向(短手方向Y)に延在するレール32に沿って移動させる。スライダー31にはパレット20が固定され、スライダー31が移動することによってパレット20を搬送方向に搬送可能に構成されている。レール32の途中には電極タブ113の切断加工、曲げ加工等の加工装置Mが配置され、搬送方向に搬送される電池110の電極タブ113の加工を行う。
(Linear conveyor 30)
With reference to FIG. 6C, the linear conveyor 30 moves the slider 31, which is a carrier, along a rail 32 extending in the carrying direction (transverse direction Y). The pallet 20 is fixed to the slider 31, and the pallet 20 can be transported in the transport direction by moving the slider 31. A processing device M for cutting and bending the electrode tab 113 is arranged in the middle of the rail 32 to process the electrode tab 113 of the battery 110 transported in the transport direction.
 スライダー31がレール32に沿って移動する際に、パレット20上の電池110には搬送方向に慣性力が働く。本実施形態では、上述したようにクランプ21が封止部112sの搬送方向に交差する方向に延在する2辺を保持するため、電池110がパレット20に対して相対的に移動することを防止することができる。 When the slider 31 moves along the rail 32, an inertial force acts on the battery 110 on the pallet 20 in the carrying direction. In the present embodiment, as described above, the clamp 21 holds the two sides extending in the direction intersecting the transport direction of the sealing portion 112s, so that the battery 110 is prevented from moving relative to the pallet 20. can do.
 スライダー31は、リニアモータ等によって駆動されてレール32の途中の加工位置に搬送される。スライダー31の搬送方向の位置は高精度に制御されるため、搬送方向にはパレット20の位置ずれは生じにくい。 The slider 31 is driven by a linear motor or the like and conveyed to a processing position on the rail 32. Since the position of the slider 31 in the carrying direction is controlled with high accuracy, the displacement of the pallet 20 is unlikely to occur in the carrying direction.
 (第2ロボット40)
 第2ロボット40は、図6Aを参照して、一般的な産業用ロボットから構成されている。例えば、水平方向にアームが動作する水平多関節ロボット(SCARA)などを使用することができる。第2ロボット40は、平置き台11aに搬入された電池110を保持し、保持した電池110の姿勢を補正した後、パレット20の上に載置する。
(Second robot 40)
The second robot 40 is composed of a general industrial robot with reference to FIG. 6A. For example, a horizontal articulated robot (SCARA) in which an arm moves horizontally can be used. The second robot 40 holds the battery 110 carried into the flat placing table 11 a, corrects the posture of the held battery 110, and then places the battery 110 on the pallet 20.
 図7Aを参照して、ロボットアーム40a(図6Aを参照)の先端には、電池110をハンドリングするハンドリングユニット80が接続されている。ハンドリングユニット80は、天板81と、天板81の上面側に配置されロボットアーム40aに接続される接続部82と、天板81の下面側に配置され電池110の保持および保持解除が自在な保持部83とを有している。 Referring to FIG. 7A, a handling unit 80 for handling the battery 110 is connected to the tip of the robot arm 40a (see FIG. 6A). The handling unit 80 is a top plate 81, a connecting portion 82 arranged on the upper surface side of the top plate 81 and connected to the robot arm 40a, and a lower surface side of the top plate 81 for holding and releasing the battery 110 freely. It has a holding part 83.
 保持部83は、4箇所において、電池110の本体部110Hの上面側を保持する。保持部83は、本体部110Hを吸引する本体部用吸引パッド84を有している。本体部用吸引パッド84は、可撓性を有する蛇腹形状のカバー84aを有している。カバー84aの内部空間は、真空ポンプなどの吸引装置85に連通している。第2ロボット40がハンドリングユニット80を平置き台11a上の電池110に向けて下降すると、カバー84aの下端縁が本体部110Hの上面に接触する。第2ロボット40がハンドリングユニット80をさらに下降すると、本体部用吸引パッド84のカバー84aが弾性変形し、カバー84aの下端縁が本体部110Hの上面に押し付けられる。この状態において、吸引装置85が作動される。本体部用吸引パッド84は、負圧によって本体部110Hを吸引する。これによって、本体部110Hの上面が吸着保持される。第2ロボット40によってパレット20の上への電池110の載置が終わると、吸引装置85の作動が停止され、本体部用吸引パッド84内が大気開放される。これによって、本体部110Hの吸着保持が解除される。 The holding portion 83 holds the upper surface side of the main body 110H of the battery 110 at four locations. The holding portion 83 has a main body suction pad 84 for sucking the main body 110H. The main body suction pad 84 has a flexible bellows-shaped cover 84a. The inner space of the cover 84a communicates with a suction device 85 such as a vacuum pump. When the second robot 40 lowers the handling unit 80 toward the battery 110 on the flat table 11a, the lower edge of the cover 84a contacts the upper surface of the main body 110H. When the second robot 40 further lowers the handling unit 80, the cover 84a of the main body suction pad 84 is elastically deformed, and the lower end edge of the cover 84a is pressed against the upper surface of the main body 110H. In this state, the suction device 85 is operated. The main body suction pad 84 sucks the main body 110H by negative pressure. As a result, the upper surface of the main body 110H is suction-held. When the second robot 40 finishes placing the battery 110 on the pallet 20, the operation of the suction device 85 is stopped, and the inside of the main body suction pad 84 is opened to the atmosphere. As a result, the suction holding of the main body 110H is released.
 (検出部50)
 検出部50は、図6Bを参照して、第2ロボット40によって保持された状態の電池110の基準部210の位置を検出する第1検出部51と、クランプ21によって保持された状態の電池110の基準部210の位置を検出する第2検出部52と、を有する。
(Detection unit 50)
6B, the detection unit 50 detects the position of the reference unit 210 of the battery 110 held by the second robot 40, and the battery 110 held by the clamp 21. The second detection unit 52 that detects the position of the reference unit 210 of FIG.
 検出部50は、基準部210の位置を検出することができる限りにおいて構成は特に限定されない。図6Bに示す例では、検出部50は、CCDイメージセンサを備えたカメラによって構成される。検出部50は、撮像した画像データを制御部70に送信し、制御部70において画像解析することによって、第1検査穴211および第2検査穴212のそれぞれの位置を検出する。なお、検出部50が撮像した画像データを画像解析する処理部を有していてもよい。 The configuration of the detection unit 50 is not particularly limited as long as it can detect the position of the reference unit 210. In the example shown in FIG. 6B, the detection unit 50 is composed of a camera including a CCD image sensor. The detection unit 50 detects the respective positions of the first inspection hole 211 and the second inspection hole 212 by transmitting the captured image data to the control unit 70 and analyzing the image in the control unit 70. In addition, you may have the process part which analyzes the image data which the detection part 50 imaged.
 (タブ姿勢保持部60)
 タブ姿勢保持部60は、図7Aおよび図7Bを参照して、検出部50によって電池110の基準部210を検出する際に、電極タブ113を保持する。タブ姿勢保持部60は、図7Bに示すように電極タブ113の先端部113d(基準部210よりも先端側)を把持する把持部材によって構成されている。
(Tab posture holding unit 60)
7A and 7B, the tab posture holding unit 60 holds the electrode tab 113 when the reference unit 210 of the battery 110 is detected by the detection unit 50. As shown in FIG. 7B, the tab attitude holding portion 60 is configured by a gripping member that grips the tip portion 113d of the electrode tab 113 (the tip side of the reference portion 210).
 電極タブ113は、比較的剛性を有している。一方、外装材に一般的に適用されるラミネートフィルム112は可撓性を有している。また、電極タブ113が接続される発電要素111の集電箔は、非常に薄肉であり、電極タブ113に比べて剛性は非常に低い。このため、図7Aに示すように、電池110をハンドリングするために持ち上げると、電極タブ113の先端部113dは、本体部110Hに比べて垂れ下がる。このような状態において、基準部210を下方から検出した場合には、本来の位置P1(図7Bを参照)に比べて誤差が生じる。画像位置補正のばらつきを小さくするため、撮像時の電極タブ113の姿勢の安定化が必要である。したがって、電池110をハンドリングし、検出部50によって基準部210の位置を検出するときには、電極タブ113の姿勢を矯正する必要がある。 The electrode tab 113 is relatively rigid. On the other hand, the laminate film 112 that is generally applied to the exterior material has flexibility. Further, the current collecting foil of the power generation element 111 to which the electrode tab 113 is connected is extremely thin, and has a very low rigidity as compared with the electrode tab 113. Therefore, as shown in FIG. 7A, when the battery 110 is lifted for handling, the tip portion 113d of the electrode tab 113 hangs down as compared with the main body portion 110H. In such a state, when the reference portion 210 is detected from below, an error occurs as compared with the original position P1 (see FIG. 7B). In order to reduce variations in image position correction, it is necessary to stabilize the posture of the electrode tab 113 during image pickup. Therefore, when the battery 110 is handled and the detection unit 50 detects the position of the reference unit 210, it is necessary to correct the posture of the electrode tab 113.
 そこで、タブ姿勢保持部60によって電極タブ113を保持することによって電極タブ113の姿勢を矯正した状態において、検出部50は基準部210の位置を検出する。電極タブ113の姿勢を矯正することによって、基準部210の位置を正確に検出することができる。 Therefore, the detection unit 50 detects the position of the reference unit 210 in a state in which the tab posture holding unit 60 holds the electrode tab 113 to correct the posture of the electrode tab 113. By correcting the posture of the electrode tab 113, the position of the reference portion 210 can be accurately detected.
 (制御部70)
 制御部70は、CPUやメモリを主体に構成され、リニアコンベア30、第2ロボット40、検出部50、タブ姿勢保持部60等の作動を制御する。制御部70は、検出部50によって検出された第1検査穴211および第2検査穴212のそれぞれの位置データが入力される。制御部70は、検出部50の処理部としても機能している。制御部70は、検出部50のカメラによって撮像した画像データが入力され、画像データを画像解析することによって、第1検査穴211および第2検査穴212のそれぞれの位置を検出する。制御部70は、第2ロボット40の作動を制御し、第2ロボット40またはクランプ21が保持する電池110の姿勢を補正する。補正は、第1検査穴211および第2検査穴212のそれぞれの位置を、予め設定された設備機械座標に据え付けた検出部50の基準位置220に一致させるように行なう。制御部70は、リニアコンベア30の作動を制御し、姿勢が補正された電池110を載置したパレット20を搬送する。
(Control unit 70)
The control unit 70 mainly includes a CPU and a memory, and controls the operations of the linear conveyor 30, the second robot 40, the detection unit 50, the tab posture holding unit 60, and the like. The control unit 70 receives the position data of each of the first inspection hole 211 and the second inspection hole 212 detected by the detection unit 50. The control unit 70 also functions as a processing unit of the detection unit 50. The image data captured by the camera of the detector 50 is input to the controller 70, and the controller 70 detects the positions of the first inspection hole 211 and the second inspection hole 212 by analyzing the image data. The control unit 70 controls the operation of the second robot 40 and corrects the posture of the battery 110 held by the second robot 40 or the clamp 21. The correction is performed so that the respective positions of the first inspection hole 211 and the second inspection hole 212 coincide with the reference position 220 of the detection unit 50 installed at the preset equipment machine coordinates. The control unit 70 controls the operation of the linear conveyor 30 and conveys the pallet 20 on which the posture-corrected battery 110 is placed.
 (電池110の姿勢補正)
 図8A、図8B、および図8Cを参照して、電池110の姿勢補正について説明する。図8Aは、電池110の姿勢を補正する前の状態を示す説明図、図8Bは、電池110をX-Yの2軸方向に補正した状態を示す説明図、図8Cは、図8Bに続けて、電池110をZ軸を中心に回転補正した状態を示す説明図である。
(Battery 110 attitude correction)
The attitude correction of the battery 110 will be described with reference to FIGS. 8A, 8B, and 8C. FIG. 8A is an explanatory diagram showing a state before correcting the attitude of the battery 110, FIG. 8B is an explanatory diagram showing a state in which the battery 110 is corrected in the XY biaxial directions, and FIG. 8C is a continuation of FIG. 8B. FIG. 6 is an explanatory diagram showing a state in which the battery 110 is rotationally corrected about the Z axis.
 上述したように、電極タブ113の基準部210は、第1検査穴211と第2検査穴212とを含んでいる。基準位置220は、第1検査穴211を位置させる第1基準位置221、第2検査穴212を位置させる第2基準位置222、および第1基準位置221と第2基準位置222とを結ぶ線分の中点を位置させる第3基準位置223を含んでいる。制御部70は、検出した第1検査穴211の中心位置および第2検査穴212の中心位置に基づいて、第1検査穴211と第2検査穴212とを結ぶ線分の中点213の位置を求める。 As described above, the reference portion 210 of the electrode tab 113 includes the first inspection hole 211 and the second inspection hole 212. The reference position 220 is a first reference position 221 that positions the first inspection hole 211, a second reference position 222 that positions the second inspection hole 212, and a line segment that connects the first reference position 221 and the second reference position 222. It includes a third reference position 223 for positioning the midpoint. The control unit 70 positions the midpoint 213 of the line segment connecting the first inspection hole 211 and the second inspection hole 212 based on the detected center position of the first inspection hole 211 and the detected center position of the second inspection hole 212. Ask for.
 図8Aに示すように、制御部70は、まず、中点213を第3基準位置223に位置させるために必要なX方向の補正量x(mm)、Y方向の補正量y(mm)を求める。さらに、中点213を第3基準位置223に位置させた後に、第1検査穴211を第1基準位置221に位置させ、第2検査穴212を第2基準位置222に位置させるために必要な回転方向の補正量θ(度)を求める。 As shown in FIG. 8A, the control unit 70 first determines the correction amount x (mm) in the X direction and the correction amount y (mm) in the Y direction required to position the midpoint 213 at the third reference position 223. Ask. Further, it is necessary to position the first inspection hole 211 at the first reference position 221 and the second inspection hole 212 at the second reference position 222 after the middle point 213 is positioned at the third reference position 223. A correction amount θ (degree) in the rotation direction is obtained.
 次に、図8Bに示すように、制御部70は、第2ロボット40の作動を制御し、第2ロボット40が保持する電池110の姿勢をX-Yの2軸方向に補正する。補正量は、X方向に補正量x(mm)、Y方向に補正量y(mm)である。 Next, as shown in FIG. 8B, the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 held by the second robot 40 in the XY biaxial directions. The correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction.
 次に、図8Cに示すように、制御部70は、第2ロボット40の作動を制御し、第2ロボット40が保持する電池110の姿勢をZ軸を中心に回転補正する。補正量は、補正量θ(度)である。 Next, as shown in FIG. 8C, the control unit 70 controls the operation of the second robot 40, and rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis. The correction amount is the correction amount θ (degrees).
 このようにして、制御部70は、第1検査穴211、第2検査穴212、および中点213をそれぞれ第1基準位置221、第2基準位置222、および第3基準位置223に一致させるように、第2ロボット40の作動を制御して電池110の位置を補正する。 In this way, the control unit 70 matches the first inspection hole 211, the second inspection hole 212, and the midpoint 213 with the first reference position 221, the second reference position 222, and the third reference position 223, respectively. First, the operation of the second robot 40 is controlled to correct the position of the battery 110.
 (位置決め搬送装置10における電池110の位置決め搬送手順)
 次に、図9を参照して、位置決め搬送装置10における電池110の位置決め手順を説明する。
(Procedure for Positioning and Transferring Battery 110 in Positioning and Transfer Device 10)
Next, the procedure for positioning the battery 110 in the positioning and conveying device 10 will be described with reference to FIG.
 ステップS101において、図6Aを参照して、制御部70は、第1ロボットの作動を制御し、第1ロボットによって位置決め対象の電池110が平置き台11aの上に搬入して仮置きする。 In step S101, referring to FIG. 6A, the control unit 70 controls the operation of the first robot, and the battery 110 to be positioned is carried in and temporarily placed on the flat placing table 11a by the first robot.
 ステップS102において、制御部70は、電池仮置き部11のならしクランプ11bの作動を制御し、平置き台11a上でラミネートフィルム112の封止部112sを挟み込み(クランプ)、ラミネートフィルム112の変形をならす。その後、ならしクランプ11bによる電池110の挟持を解除する(アンクランプ)。これにより、後工程においてパレット20上の電池110をクランプ21でクランプする際に電池110のクランプミスやクランプによる位置ずれが生じにくくなるためクランプ精度を高めることができる。 In step S102, the control unit 70 controls the operation of the leveling clamp 11b of the battery temporary storage unit 11 to sandwich (clamp) the sealing unit 112s of the laminate film 112 on the flat platform 11a, and the deformation of the laminate film 112. Smooth out. Then, the clamping of the battery 110 by the break-in clamp 11b is released (unclamping). As a result, when the battery 110 on the pallet 20 is clamped by the clamp 21 in the subsequent process, it is less likely that the battery 110 will be misclamped or misaligned due to the clamp, so that the clamping accuracy can be improved.
 ステップS103において、制御部70は、以下の手順を用いて、第2ロボット40の作動を制御し、ハンドリングユニット80によって平置き台11a上の電池110を吸着保持する。 In step S103, the control unit 70 controls the operation of the second robot 40 using the following procedure, and causes the handling unit 80 to adsorb and hold the battery 110 on the flat stand 11a.
 まず、制御部70は、図7Aを参照して、ロボットアーム40a先端のハンドリングユニット80を電池110の上に移動させる。そして、制御部70は、第2ロボット40の作動を制御し、ハンドリングユニット80を搬入テーブル上の電池110に向けて下降させる。ハンドリングユニット80の下降に伴って、本体部用吸引パッド84のカバー84aの下端縁が本体部110Hの上面に接触する。ハンドリングユニット80がさらに下降すると、本体部用吸引パッド84のカバー84aが弾性変形し、カバー84aの下端縁が本体部110Hの上面に押し付けられる。この状態において、制御部70は、吸引装置85を作動させる。本体部用吸引パッド84は、負圧によって本体部110Hを吸引する。以上の手順により、本体部110Hの上面がハンドリングユニット80によって吸着保持される。 First, referring to FIG. 7A, the control unit 70 moves the handling unit 80 at the tip of the robot arm 40a onto the battery 110. Then, the control unit 70 controls the operation of the second robot 40 and lowers the handling unit 80 toward the battery 110 on the carry-in table. As the handling unit 80 descends, the lower end edge of the cover 84a of the main body suction pad 84 contacts the upper surface of the main body 110H. When the handling unit 80 is further lowered, the cover 84a of the main body suction pad 84 is elastically deformed, and the lower end edge of the cover 84a is pressed against the upper surface of the main body 110H. In this state, the control unit 70 operates the suction device 85. The main body suction pad 84 sucks the main body 110H by negative pressure. Through the above procedure, the upper surface of the main body 110H is suction-held by the handling unit 80.
 ステップS104において、制御部70は、第2ロボット40の作動を制御し、ハンドリングユニット80を上昇させ、吸着保持した電池110を平置き台11aから持ち上げる。 In step S104, the control unit 70 controls the operation of the second robot 40, raises the handling unit 80, and lifts the adsorbed and held battery 110 from the flat stand 11a.
 ステップS105において、制御部70は、タブ平行出しクランプ11cの作動を制御し、電極タブ113を上下から把持した状態で保持する。これにより、タブ平行出しクランプ11cは、電極タブ113の変形や撓みを矯正し、電極タブ113の姿勢を矯正することができ、電極タブ113の姿勢は平置き台11aに対して水平に保たれる。 In step S105, the control unit 70 controls the operation of the tab paralleling clamp 11c and holds the electrode tab 113 in a state of being gripped from above and below. As a result, the tab paralleling clamp 11c can correct the deformation and bending of the electrode tab 113 and the attitude of the electrode tab 113, and the attitude of the electrode tab 113 is kept horizontal to the flat table 11a. Be done.
 ステップS106において、制御部70は、第1検出部51の作動を制御し、図7Bに示すように、第1検査穴211、第2検査穴212、およびこれら検査穴211、212周辺の電極タブ113を撮像する。 In step S106, the control unit 70 controls the operation of the first detection unit 51, and as shown in FIG. 7B, the first inspection hole 211, the second inspection hole 212, and the electrode tabs around these inspection holes 211 and 212. The image of 113 is captured.
 ステップS107において、制御部70は、以下の手順を用いて、第2ロボット40によって保持された状態の電池110の基準部210が基準位置220に一致するか否かを判断する。電池110の基準部210が基準位置220に一致する場合(ステップS107:YES)、処理をステップS109に進める。電池110の基準部210が基準位置220に一致せず、電池110の姿勢の補正が必要な場合(ステップS107:NO)、処理をステップS108に進める。 In step S107, the control unit 70 uses the following procedure to determine whether the reference unit 210 of the battery 110 held by the second robot 40 matches the reference position 220. When the reference unit 210 of the battery 110 matches the reference position 220 (step S107: YES), the process proceeds to step S109. When the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected (step S107: NO), the process proceeds to step S108.
 まず、第1検出部51によって撮像した画像データが制御部70に入力され、画像データを画像解析することによって、制御部70は、第1検査穴211および第2検査穴212のそれぞれの位置を求める。 First, the image data captured by the first detection unit 51 is input to the control unit 70, and the control unit 70 analyzes the image data to determine the positions of the first inspection hole 211 and the second inspection hole 212. Ask.
 次に、制御部70は、予め設定された電池110の基準位置220に対して、電池110の姿勢の補正量(x、y、θ)を求める。まず、図8Aを参照して、制御部70は、検出部50が検出した第1検査穴211の中心位置および第2検査穴212の中心位置に基づいて、第1検査穴211と第2検査穴212とを結ぶ線分の中点213の位置を求める。 Next, the control unit 70 obtains the correction amount (x, y, θ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110. First, with reference to FIG. 8A, the control unit 70 controls the first inspection hole 211 and the second inspection hole based on the center position of the first inspection hole 211 and the center position of the second inspection hole 212 detected by the detection unit 50. The position of the midpoint 213 of the line segment connecting the hole 212 is obtained.
 次に、制御部70は、電池110の姿勢の補正量(x、y、θ)を求める。基準位置220は、第1検査穴211を位置させる第1基準位置221、第2検査穴212を位置させる第2基準位置222、および中点213を位置させる第3基準位置223である。図8Aに示すように、制御部70は、中点213を第3基準位置223に位置させるために必要なX方向の補正量x(mm)、Y方向の補正量y(mm)を求める。さらに、中点213を第3基準位置223に位置させた後に、第1検査穴211を第1基準位置221に位置させ、第2検査穴212を第2基準位置222に位置させるために必要な回転方向の補正量θ(度)を求める。 Next, the control unit 70 obtains the correction amount (x, y, θ) of the attitude of the battery 110. The reference position 220 is a first reference position 221 that positions the first inspection hole 211, a second reference position 222 that positions the second inspection hole 212, and a third reference position 223 that positions the midpoint 213. As shown in FIG. 8A, the control unit 70 obtains a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction required to position the midpoint 213 at the third reference position 223. Further, it is necessary to position the first inspection hole 211 at the first reference position 221 and the second inspection hole 212 at the second reference position 222 after the middle point 213 is positioned at the third reference position 223. A correction amount θ (degree) in the rotation direction is obtained.
 以上の手順により、電池110の姿勢の補正量(x、y、θ)が(0、0、0)の場合、制御部70は、電池110の基準部210が基準位置220に一致していると判断する(ステップS107:YES)。補正量(x、y、θ)が(0、0、0)でない場合は、制御部70は、電池110の基準部210が基準位置220に一致していないと判断する(ステップS107:NO)。 According to the above procedure, when the correction amount (x, y, θ) of the attitude of the battery 110 is (0, 0, 0), the control unit 70 causes the reference unit 210 of the battery 110 to coincide with the reference position 220. (Step S107: YES). When the correction amount (x, y, θ) is not (0, 0, 0), the control unit 70 determines that the reference unit 210 of the battery 110 does not match the reference position 220 (step S107: NO). ..
 ステップS108において、制御部70は、第2ロボット40の作動を制御し、演算した補正量(x、y、θ)に基づいて、電池110の姿勢を補正する(第1補正)。図8Bに示すように、制御部70は、第2ロボット40が保持する電池110の姿勢をX-Yの2軸方向に補正する。補正量は、X方向に補正量x(mm)、Y方向に補正量y(mm)である。さらに、図8Cに示すように、制御部70は、第2ロボット40が保持する電池110の姿勢をZ軸を中心に回転補正する。補正量は、補正量θ(度)である。 In step S108, the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 based on the calculated correction amount (x, y, θ) (first correction). As shown in FIG. 8B, the control unit 70 corrects the posture of the battery 110 held by the second robot 40 in the XY biaxial directions. The correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction. Further, as shown in FIG. 8C, the control unit 70 rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis. The correction amount is the correction amount θ (degrees).
 これにより、制御部70は、電池110の姿勢を補正し、基準位置220に揃えることができる。 With this, the control unit 70 can correct the posture of the battery 110 and align it with the reference position 220.
 ステップS109において、制御部70は、第2ロボット40の作動を制御して、第1検査穴211、第2検査穴212、および中点213をそれぞれ第1基準位置221、第2基準位置222、および第3基準位置223に一致させた状態において、電池110をパレット20の上に載置する。 In step S109, the control unit 70 controls the operation of the second robot 40 to set the first inspection hole 211, the second inspection hole 212, and the midpoint 213 to the first reference position 221, the second reference position 222, and the second reference position 222, respectively. Then, the battery 110 is placed on the pallet 20 in a state where the battery 110 is aligned with the third reference position 223.
 そして、制御部70は、クランプ21の作動を制御し、クランプ21は電池110を挟持する。これにより、リニアコンベア30によって搬送される電池110の位置が、搬送中に搬送方向にずれないように、電池110をパレット20に固定することができる。 The control unit 70 controls the operation of the clamp 21, and the clamp 21 holds the battery 110. Thereby, the battery 110 can be fixed to the pallet 20 so that the position of the battery 110 transported by the linear conveyor 30 does not shift in the transport direction during transportation.
 ステップS110において、制御部70は、吸引装置85の作動を停止させ、本体部用吸引パッド84内を大気開放する。これによって、ハンドリングユニット80による電池110の本体部110Hの吸着保持が解除される。制御部70は、第2ロボット40を上昇させ、電池110の上に上空待機させる。 In step S110, the control unit 70 stops the operation of the suction device 85 and opens the inside of the main body suction pad 84 to the atmosphere. As a result, the suction holding of the main body 110H of the battery 110 by the handling unit 80 is released. The control unit 70 raises the second robot 40 and makes it stand by above the battery 110.
 ステップS111において、制御部70は、クランプ21によって保持された状態の電池110の基準部210が基準位置220に一致するか否かを判断する。制御部70は、第2検出部52の作動を制御し、予め設定された電池110の基準位置220に対する電池110の姿勢の補正量(x、y、θ)を求める。電池110の姿勢の補正量(x、y、θ)が(0、0、0)の場合、すなわち、電池110の基準部210が基準位置220に一致する場合(ステップS111:YES)、処理をステップS118に進める。電池110の基準部210が基準位置220に一致せず、電池110の姿勢の補正が必要な場合(ステップS111:NO)、処理をステップS112に進める。 In step S111, the control unit 70 determines whether the reference unit 210 of the battery 110 held by the clamp 21 matches the reference position 220. The control unit 70 controls the operation of the second detection unit 52 and obtains the correction amount (x, y, θ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110. If the correction amount (x, y, θ) of the attitude of the battery 110 is (0, 0, 0), that is, if the reference unit 210 of the battery 110 matches the reference position 220 (step S111: YES), the process is performed. Proceed to step S118. When the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected (step S111: NO), the process proceeds to step S112.
 ステップS112において、制御部70は、第2ロボット40の作動を制御し、第2ロボット40を降下させて、ハンドリングユニット80によって電池110を吸着保持する。 In step S112, the control unit 70 controls the operation of the second robot 40, lowers the second robot 40, and causes the handling unit 80 to adsorb and hold the battery 110.
 ステップS113において、制御部70は、クランプ21の作動を制御し、電池110の挟持を解除する(アンクランプ)。ステップS109においてハンドリングユニット80によって電池110を吸着保持した後に、クランプ21による電池110の保持を解除することによって、電池110が拘束されない状態となることがないため、ステップS108において検出した位置から電池110の位置がずれることを抑制することができる。制御部70は、第2ロボット40の作動を制御し、電池110を上昇させる。 In step S113, the control unit 70 controls the operation of the clamp 21 and releases the clamping of the battery 110 (unclamp). After the battery 110 is suction-held by the handling unit 80 in step S109, the holding of the battery 110 by the clamp 21 is released, so that the battery 110 does not become unconstrained. Therefore, the battery 110 can be moved from the position detected in step S108. It is possible to suppress the displacement of the position. The control unit 70 controls the operation of the second robot 40 and raises the battery 110.
 ステップS114において、制御部70は、第2ロボット40の作動を制御し、演算した補正量(x、y、θ)に基づいて、電池110の姿勢を補正する(第2補正)。図8Bに示すように、制御部70は、第2ロボット40が保持する電池110の姿勢をX-Yの2軸方向に補正する。補正量は、X方向に補正量x(mm)、Y方向に補正量y(mm)である。さらに、図8Cに示すように、制御部70は、第2ロボット40が保持する電池110の姿勢をZ軸を中心に回転補正する。補正量は、補正量θ(度)である。 In step S114, the control unit 70 controls the operation of the second robot 40 and corrects the attitude of the battery 110 based on the calculated correction amount (x, y, θ) (second correction). As shown in FIG. 8B, the control unit 70 corrects the attitude of the battery 110 held by the second robot 40 in the XY biaxial directions. The correction amount is a correction amount x (mm) in the X direction and a correction amount y (mm) in the Y direction. Further, as shown in FIG. 8C, the control unit 70 rotationally corrects the attitude of the battery 110 held by the second robot 40 about the Z axis. The correction amount is the correction amount θ (degrees).
 ステップS115において、制御部70は、第2ロボット40の作動を制御し、第1検査穴211、第2検査穴212、および中点213をそれぞれ第1基準位置221、第2基準位置222、および第3基準位置223に一致させた状態において、電池110をパレット20の上に配置する。そして、制御部70は、クランプ21の作動を制御し、クランプ21が電池110を挟持する。 In step S115, the control unit 70 controls the operation of the second robot 40 and sets the first inspection hole 211, the second inspection hole 212, and the midpoint 213 to the first reference position 221, the second reference position 222, and the second reference position 222, respectively. The battery 110 is placed on the pallet 20 in a state of being aligned with the third reference position 223. Then, the control unit 70 controls the operation of the clamp 21, and the clamp 21 holds the battery 110.
 ステップS116において、制御部70は、吸引装置85の作動を停止させ、本体部用吸引パッド84内を大気開放する。これによって、ハンドリングユニット80による電池110の本体部110Hの吸着保持が解除される。制御部70は、第2ロボット40を上昇させ、電池110の上に上空待機させる。 In step S116, the control unit 70 stops the operation of the suction device 85 and opens the inside of the main body suction pad 84 to the atmosphere. As a result, the suction holding of the main body 110H of the battery 110 by the handling unit 80 is released. The control unit 70 raises the second robot 40 and makes it stand by above the battery 110.
 ステップS117において、制御部70は、クランプ21によって保持された状態の電池110の基準部210が基準位置220に一致するか否かを再度判断する。制御部70は、再び第2検出部52の作動を制御し、予め設定された電池110の基準位置220に対する電池110の姿勢の補正量(x、y、θ)を求める。電池110の姿勢の補正量(x、y、θ)が(0、0、0)の場合、すなわち、電池110の基準部210が基準位置220に一致する場合(ステップS117:YES)、処理をステップS118に進める。電池110の基準部210が基準位置220に一致せず、電池110の姿勢の補正が必要な場合(ステップS117:NO)、処理をステップS112に戻し、ステップS112~S116の第2補正を繰り返す。 In step S117, the control unit 70 determines again whether or not the reference unit 210 of the battery 110 held by the clamp 21 matches the reference position 220. The control unit 70 controls the operation of the second detection unit 52 again to obtain the correction amount (x, y, θ) of the attitude of the battery 110 with respect to the preset reference position 220 of the battery 110. When the correction amount (x, y, θ) of the attitude of the battery 110 is (0, 0, 0), that is, when the reference unit 210 of the battery 110 matches the reference position 220 (step S117: YES), the process is performed. Proceed to step S118. When the reference unit 210 of the battery 110 does not match the reference position 220 and the posture of the battery 110 needs to be corrected (step S117: NO), the process is returned to step S112, and the second correction of steps S112 to S116 is repeated.
 このように、制御部70は、電池110の基準部210が基準位置220に一致するまで、電池110の位置の補正を行う。これにより、電池110がパレット20に対して確実に位置決めされた状態で、パレット20を搬送して電極タブ113の加工位置に配置することができる。その結果、電池110の加工位置への位置決め精度を確保し、電極タブ113の加工精度を向上することができる。 In this way, the control unit 70 corrects the position of the battery 110 until the reference unit 210 of the battery 110 matches the reference position 220. As a result, it is possible to transport the pallet 20 and place it at the processing position of the electrode tab 113 while the battery 110 is reliably positioned with respect to the pallet 20. As a result, the positioning accuracy of the battery 110 at the processing position can be secured, and the processing accuracy of the electrode tab 113 can be improved.
 ステップS118において、制御部70は、第2ロボット40およびリニアコンベア30の作動を制御し、第2ロボット40を退避させ、図6Cに示すように、姿勢が補正された電池110を載置したパレット20を搬送方向に搬送する。リニアコンベア30の途中に配置された加工装置Mによって、電極タブ113の加工を行う。この加工装置Mによって加工される際に配置される位置が電池110の加工位置である。 In step S118, the control unit 70 controls the operations of the second robot 40 and the linear conveyor 30, retracts the second robot 40, and, as shown in FIG. 6C, the pallet on which the attitude-corrected battery 110 is placed. 20 is conveyed in the conveyance direction. The electrode tab 113 is processed by the processing device M arranged in the middle of the linear conveyor 30. The position where the battery is processed by the processing device M is the processing position of the battery 110.
 以上説明したように、本実施形態の位置決め搬送装置10は、電池110を載置するパレット20と、電池110をパレット20に対して保持するクランプ21(保持部)と、パレット20を搬送するリニアコンベア30(搬送部)と、電池110を保持してパレット20に載置する第2ロボット40と、電池110の電極タブ113に設定された基準部210の位置を検出する検出部50と、制御部70とを有している。制御部70は、第2ロボット40によって電池110を保持し、第2ロボット40によって保持された状態の電池110の基準部210の位置を検出部50(第1検出部51)によって検出し、電池110の基準部210の位置を、予め設定された基準位置220に一致させる補正(第1補正)をして位置決めし、クランプ21によって電池110をパレット20に対して保持し、リニアコンベア30によってパレット20を搬送する。 As described above, the positioning and transporting device 10 of the present embodiment includes the pallet 20 on which the battery 110 is placed, the clamp 21 (holding unit) that holds the battery 110 on the pallet 20, and the linear pallet 20 that transports the pallet 20. A conveyor 30 (conveying unit), a second robot 40 that holds the battery 110 and places it on the pallet 20, a detection unit 50 that detects the position of the reference unit 210 set on the electrode tab 113 of the battery 110, and a control And a section 70. The control unit 70 holds the battery 110 by the second robot 40, detects the position of the reference unit 210 of the battery 110 held by the second robot 40 by the detection unit 50 (first detection unit 51), and The position of the reference portion 210 of the 110 is corrected and positioned by making it coincide with the preset reference position 220 (first correction), the battery 110 is held to the pallet 20 by the clamp 21, and the pallet is held by the linear conveyor 30. 20 is conveyed.
 また、本実施形態の位置決め搬送方法は、電池110の電極タブ113に設定された基準部210の位置を検出し、基準部210の位置を基準位置220に一致させる補正(第1補正)をして位置決めし、電池110をパレット20に対して保持し、パレット20を搬送する。 Further, the positioning/conveying method of the present embodiment detects the position of the reference portion 210 set on the electrode tab 113 of the battery 110, and corrects the position of the reference portion 210 to the reference position 220 (first correction). The battery 110 is held on the pallet 20, and the pallet 20 is transported.
 上記のような構成によれば、電池110の電極タブ113に設けた基準部210の位置を基準位置220に一致させることによって、電池110をパレット20に対して高精度に位置決めすることができる。電池110のパレット20に対する位置のばらつきが小さくなる結果、電池110の加工位置に対する位置決め精度を高精度に維持しつつ搬送できる。 According to the above configuration, the position of the reference portion 210 provided on the electrode tab 113 of the battery 110 matches the reference position 220, so that the battery 110 can be positioned with respect to the pallet 20 with high accuracy. As a result of reducing the variation in the position of the battery 110 with respect to the pallet 20, it is possible to carry the battery 110 while maintaining the positioning accuracy with respect to the processing position with high accuracy.
 位置決め搬送装置10の制御部70は、検出部50(第2検出部52)の作動を制御して、パレット20に対してクランプ21によって保持された状態の電池110の基準部210の位置をさらに検出し、第2ロボット40の作動を制御して、電池110の基準部210の位置を予め設定された基準位置220に一致させる補正(第2補正)を再び実施して位置決めする。 The control unit 70 of the positioning and conveying apparatus 10 controls the operation of the detection unit 50 (second detection unit 52) to further set the position of the reference unit 210 of the battery 110 held by the clamp 21 with respect to the pallet 20. It detects and controls the operation of the second robot 40, and again performs the correction (second correction) for matching the position of the reference portion 210 of the battery 110 with the preset reference position 220 to perform positioning.
 また、位置決め搬送方法は、電池110をパレット20に対して保持した後に、電池110の電極タブ113の基準部210の位置をさらに検出し、電池110の基準部210の位置を予め設定された基準位置220に一致させる補正(第2補正)を再び実施して位置決めする。 In addition, in the positioning and conveying method, after the battery 110 is held on the pallet 20, the position of the reference portion 210 of the electrode tab 113 of the battery 110 is further detected, and the position of the reference portion 210 of the battery 110 is set to a predetermined reference. The correction to match the position 220 (second correction) is performed again to perform positioning.
 このように、クランプ21によって電池110をパレット20に対して保持した後に、電池110の位置の補正を再度行うことによって、電池110がパレット20に対して確実に位置決めされた状態で、パレット20を搬送して電極タブ113の加工位置に配置することができる。その結果、電池110の加工位置に対する位置決め精度をより高精度に維持しつつ搬送できる。 As described above, after the battery 110 is held on the pallet 20 by the clamp 21, the position of the battery 110 is corrected again, so that the pallet 20 is reliably positioned with respect to the pallet 20. It can be transported and placed at the processing position of the electrode tab 113. As a result, it is possible to carry the battery 110 while maintaining the positioning accuracy with respect to the processing position of the battery 110 with higher accuracy.
 また、電池110の基準部210は、電池110の電極タブ113の少なくとも2箇所に設けられた貫通穴(第1検査穴211、第2検査穴212)を含む。このように構成することによって、検出部50は、確実に電池110の基準部210の位置を特定できるため、電池110をパレット20に対してより一層高精度に位置決めすることができる。 Further, the reference portion 210 of the battery 110 includes through holes (first inspection hole 211, second inspection hole 212) provided in at least two places of the electrode tab 113 of the battery 110. With this configuration, the detection unit 50 can reliably identify the position of the reference unit 210 of the battery 110, and thus the battery 110 can be positioned with higher accuracy on the pallet 20.
 また、位置決め搬送装置10は、電池110の電極タブ113の姿勢を保持するタブ姿勢保持部60をさらに有する。制御部70は、タブ姿勢保持部60によって電極タブ113の姿勢を保持した状態において、検出部50によって電極タブ113の基準部210の位置を検出する。このように構成することによって、電極タブ113の姿勢(撓みや反りなど)を確実に矯正することができ、検出した基準部210の位置精度が向上する。 The positioning and transporting device 10 further includes a tab posture holding unit 60 that holds the posture of the electrode tab 113 of the battery 110. The control unit 70 causes the detection unit 50 to detect the position of the reference portion 210 of the electrode tab 113 while the tab posture holding unit 60 holds the posture of the electrode tab 113. With such a configuration, the attitude (bending, warping, etc.) of the electrode tab 113 can be reliably corrected, and the detected positional accuracy of the reference portion 210 is improved.
 また、位置決め搬送装置10は、第2ロボット40が搬送する電池110を仮置きする電池仮置き部11をさらに有する。電池仮置き部11は、電池110をクランプおよびアンクランプすることによって電池110の変形をならすならしクランプ11bを有する。ならしクランプ11bによって、電池110の変形をならすことによって、後工程においてパレット20上の電池110をクランプ21でクランプする際に電池110のクランプミスやクランプによる位置ずれが生じにくくクランプ精度を高めることができる。 The positioning and transporting device 10 further includes a battery temporary storage unit 11 for temporarily storing the battery 110 transported by the second robot 40. The battery temporary storage unit 11 has a leveling clamp 11b that smoothes the deformation of the battery 110 by clamping and unclamping the battery 110. By smoothing the deformation of the battery 110 by the break-in clamp 11b, when the battery 110 on the pallet 20 is clamped by the clamp 21 in a later process, it is difficult for the battery 110 to be misclamped or misaligned due to the clamp so that the clamping accuracy is improved. You can
 本発明は上述した実施形態に限定されるものではなく、適宜改変することができる。 The present invention is not limited to the above-mentioned embodiments, and can be modified as appropriate.
 例えば、電池をパレットに対して保持する保持部がクランプによって構成される実施形態を示したが、保持する機能を有する限りにおいてこれに限定されない。同様に、タブ姿勢保持部の構成も電極タブの姿勢を保持する機能を有する限りにおいて上述した実施形態に限定されない。保持部やタブ姿勢保持部は、例えば、パレットや電極タブを支持するブロック材に設けた吸着口から真空吸引して吸着保持してもよいし、磁力あるいは静電気を利用してパレットに対して保持してもよい。 For example, although an embodiment has been shown in which the holding unit that holds the battery on the pallet is configured by a clamp, the present invention is not limited to this as long as it has the function of holding. Similarly, the configuration of the tab posture holding unit is not limited to the above-described embodiment as long as it has a function of holding the posture of the electrode tab. The holding part or the tab attitude holding part may be sucked and held, for example, by vacuum suction from a suction port provided in a block material that supports the pallet or the electrode tab, or may be held on the pallet using magnetic force or static electricity. You may.
 また、検出部によって電極タブの基準部の位置を検出する具体的な処理や、基準部の位置を検出部の基準位置のそれぞれに一致させる具体的な処理は、上述した例に限定されるものではなく、適宜改変してよい。 Further, the specific processing of detecting the position of the reference portion of the electrode tab by the detection unit and the specific processing of matching the position of the reference portion with each of the reference positions of the detection unit are limited to the above-mentioned example Instead, it may be modified appropriately.
10    位置決め搬送装置、
11    電池仮置き部、
11a   平置き台、
11b   ならしクランプ、
11c   タブ平行出しクランプ、
20    パレット、
21    クランプ(保持部)、
30    リニアコンベア(搬送部)、
31    スライダー、
40    第2ロボット(載置ロボット)、
40a   ロボットアーム、
50    検出部、
51    第1検出部、
52    第2検出部、
60    タブ姿勢保持部、
70    制御部、
80    ハンドリングユニット、
81    天板、
82    接続部、
83    保持部、
84    本体部用吸引パッド、
84a   カバー、
85    吸引装置、
100   電池モジュール、
110   電池、
110H  本体部、
110S  電池スタック、
111   発電要素、
112   ラミネートフィルム、
113   電極タブ、
113A  アノード側電極タブ、
113K  カソード側電極タブ、
113c  基端部、
113d  先端部、
114   第1スペーサー、
115   第2スペーサー、
132   バスバー、
210   基準部、
211   第1検査穴(第1基準部)、
212   第2検査穴(第2基準部)、
213   中点、
220   基準位置、
221   第1基準位置、
222   第2基準位置、
223   第3基準位置。
10 Positioning and transporting device,
11 Battery temporary storage,
11a Flat stand,
11b leveling clamp,
11c parallel tab clamp,
20 pallets,
21 Clamp (holding part),
30 Linear conveyor (conveyor),
31 slider,
40 Second robot (placement robot),
40a robot arm,
50 detector,
51 first detector,
52 second detector,
60 tab posture holding unit,
70 control unit,
80 handling units,
81 Top plate,
82 connection,
83 holding part,
84 Suction pad for main body,
84a cover,
85 suction device,
100 battery module,
110 batteries,
110H main body,
110S battery stack,
111 power generation element,
112 laminated film,
113 electrode tab,
113A anode side electrode tab,
113K cathode side electrode tab,
113c base end,
113d tip,
114 first spacer,
115 second spacer,
132 busbars,
210 reference part,
211 first inspection hole (first reference portion),
212 second inspection hole (second reference portion),
213 Midpoint,
220 reference position,
221 first reference position,
222 Second reference position,
223 Third reference position.

Claims (9)

  1.  電極タブを備える扁平な電池を位置決めして搬送する位置決め搬送装置であって、
     前記電池を載置するパレットと、
     前記電池を前記パレットに対して保持する保持部と、
     前記パレットを搬送する搬送部と、
     前記電池を保持して前記パレットに載置する載置ロボットと、
     前記電池の前記電極タブに設定された基準部の位置を検出する検出部と、
     前記保持部、前記搬送部、前記載置ロボットおよび前記検出部の作動を制御する制御部と、を有し、
     前記制御部は、前記載置ロボットによって前記電池を保持し、前記載置ロボットによって保持された状態の前記電池の前記基準部の位置を前記検出部によって検出し、前記電池の前記基準部の位置を予め設定された設備機械座標に据え付けた前記検出部の基準位置に一致させる補正をして位置決めし、前記保持部によって前記電池を前記パレットに対して保持し、前記搬送部によって前記パレットを搬送する、位置決め搬送装置。
    A positioning and transporting device for positioning and transporting a flat battery including an electrode tab,
    A pallet for mounting the battery,
    A holder for holding the battery against the pallet,
    A transport unit for transporting the pallet,
    A placement robot that holds the battery and places it on the pallet,
    A detection unit for detecting the position of the reference unit set on the electrode tab of the battery;
    A control unit that controls the operation of the holding unit, the transfer unit, the placement robot, and the detection unit;
    The control unit holds the battery by the placement robot, detects the position of the reference unit of the battery in the state held by the placement robot by the detection unit, and the position of the reference unit of the battery. Is corrected and positioned so as to match the reference position of the detection unit installed at the preset equipment machine coordinates, the battery is held by the holding unit with respect to the pallet, and the pallet is carried by the carrying unit. Positioning and transporting device.
  2.  前記制御部は、
     前記検出部の作動を制御して、前記パレットに対して前記保持部によって保持された状態の前記電池の前記基準部の位置をさらに検出し、
     前記載置ロボットの作動を制御して、前記電池の前記基準部の位置を予め設定された前記基準位置に一致させる補正を再び実施して位置決めする、請求項1に記載の位置決め搬送装置。
    The control unit is
    Controlling the operation of the detection unit to further detect the position of the reference unit of the battery held by the holding unit with respect to the pallet;
    The positioning/conveying apparatus according to claim 1, wherein the positioning robot is controlled by controlling the operation of the placement robot to perform again the correction for matching the position of the reference portion of the battery with the preset reference position.
  3.  前記電池の前記基準部は、前記電池の前記電極タブの少なくとも2箇所に設けられた貫通穴を含む、請求項1または請求項2に記載の位置決め搬送装置。 The positioning/conveying device according to claim 1 or 2, wherein the reference portion of the battery includes through holes provided in at least two positions of the electrode tab of the battery.
  4.  前記電池の前記電極タブの姿勢を保持するタブ姿勢保持部をさらに有し、
     前記制御部は、前記タブ姿勢保持部によって前記電極タブの姿勢を保持した状態において、前記検出部によって前記電極タブの前記基準部の位置を検出する、請求項1~3のいずれか1項に記載の位置決め搬送装置。
    Further comprising a tab attitude holding portion for holding the attitude of the electrode tab of the battery,
    The control unit detects the position of the reference portion of the electrode tab by the detection unit while the posture of the electrode tab is held by the tab posture holding unit. The positioning and transporting device described.
  5.  前記載置ロボットが搬送する前記電池を仮置きする電池仮置き部をさらに有し、
     前記電池仮置き部は、前記電池をクランプおよびアンクランプすることによって前記電池の変形をならすならしクランプを有する、請求項1~4のいずれか1項に記載の位置決め搬送装置。
    The battery further includes a battery temporary storage unit for temporarily storing the battery carried by the mounting robot,
    The positioning/conveying device according to any one of claims 1 to 4, wherein the battery temporary storage unit has a leveling clamp that smoothes the deformation of the battery by clamping and unclamping the battery.
  6.  電極タブを備える扁平な電池を位置決めして搬送する位置決め搬送方法であって、
     前記電池の前記電極タブに設定された基準部の位置を検出部によって検出し、
     前記基準部の位置を設備機械座標に据え付けた前記検出部の基準位置に一致させる補正をして位置決めし、
     前記電池をパレットに対して保持し、
     前記パレットを搬送する、位置決め搬送方法。
    A positioning transfer method for positioning and transferring a flat battery having an electrode tab,
    The position of the reference portion set in the electrode tab of the battery is detected by the detection portion,
    Positioning is performed by correcting the position of the reference unit to match the reference position of the detection unit installed in equipment machine coordinates,
    Holding the battery against a pallet,
    A positioning/conveying method for conveying the pallet.
  7.  前記電池を前記パレットに対して保持した後に、前記電池の前記基準部の位置をさらに検出し、
     前記電池の前記基準部の位置を予め設定された前記基準位置に一致させる補正を再び実施して位置決めする、請求項6に記載の位置決め搬送方法。
    After holding the battery against the pallet, further detecting the position of the reference portion of the battery,
    7. The positioning/conveying method according to claim 6, wherein the position of the reference portion of the battery is aligned by performing a correction to match the preset reference position again.
  8.  前記電池の前記基準部は、前記電池の前記電極タブに設けられた貫通穴を含む、請求項6または請求項7に記載の位置決め搬送方法。 The positioning/conveying method according to claim 6 or 7, wherein the reference portion of the battery includes a through hole provided in the electrode tab of the battery.
  9.  前記基準部の位置を検出するときに、タブ姿勢保持部によって前記電極タブの姿勢を保持する、請求項6~8のいずれか1項に記載の位置決め搬送方法。 The positioning/conveying method according to any one of claims 6 to 8, wherein the attitude of the electrode tab is held by a tab attitude holding unit when the position of the reference unit is detected.
PCT/JP2018/043631 2018-11-27 2018-11-27 Positioning and conveying device and positioning and conveying method WO2020110207A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020557440A JPWO2020110207A1 (en) 2018-11-27 2018-11-27 Positioning transfer device and positioning transfer method
PCT/JP2018/043631 WO2020110207A1 (en) 2018-11-27 2018-11-27 Positioning and conveying device and positioning and conveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043631 WO2020110207A1 (en) 2018-11-27 2018-11-27 Positioning and conveying device and positioning and conveying method

Publications (1)

Publication Number Publication Date
WO2020110207A1 true WO2020110207A1 (en) 2020-06-04

Family

ID=70854139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043631 WO2020110207A1 (en) 2018-11-27 2018-11-27 Positioning and conveying device and positioning and conveying method

Country Status (2)

Country Link
JP (1) JPWO2020110207A1 (en)
WO (1) WO2020110207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113291929A (en) * 2021-05-20 2021-08-24 江苏赫伽力智能科技有限公司 Multi-species intelligent composite robot feeding, discharging and intelligent conveying system
WO2022003368A3 (en) * 2020-07-02 2022-03-17 Arrival Ltd A battery module and a vehicle
CN117585431A (en) * 2024-01-17 2024-02-23 宁德时代新能源科技股份有限公司 Discharging device and discharging control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206046A (en) * 2008-02-29 2009-09-10 Nissan Motor Co Ltd Sheet lamination device and sheet lamination method
JP2010212142A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Device and method for discrimination of battery
WO2011158903A1 (en) * 2010-06-17 2011-12-22 日産自動車株式会社 Workpiece-positioning device and battery manufacturing method
JP2012004074A (en) * 2010-06-21 2012-01-05 Hitachi Setsubi Eng Co Ltd Tab inspection method for cylindrical battery having electrode material with tab inside, tab inspection device used for inspection method, and tab marking device
JP2014103054A (en) * 2012-11-22 2014-06-05 Automotive Energy Supply Corp Method of manufacturing laminating secondary battery and pallet and suction pad for use therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206046A (en) * 2008-02-29 2009-09-10 Nissan Motor Co Ltd Sheet lamination device and sheet lamination method
JP2010212142A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Device and method for discrimination of battery
WO2011158903A1 (en) * 2010-06-17 2011-12-22 日産自動車株式会社 Workpiece-positioning device and battery manufacturing method
JP2012004074A (en) * 2010-06-21 2012-01-05 Hitachi Setsubi Eng Co Ltd Tab inspection method for cylindrical battery having electrode material with tab inside, tab inspection device used for inspection method, and tab marking device
JP2014103054A (en) * 2012-11-22 2014-06-05 Automotive Energy Supply Corp Method of manufacturing laminating secondary battery and pallet and suction pad for use therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003368A3 (en) * 2020-07-02 2022-03-17 Arrival Ltd A battery module and a vehicle
CN113291929A (en) * 2021-05-20 2021-08-24 江苏赫伽力智能科技有限公司 Multi-species intelligent composite robot feeding, discharging and intelligent conveying system
CN117585431A (en) * 2024-01-17 2024-02-23 宁德时代新能源科技股份有限公司 Discharging device and discharging control method
CN117585431B (en) * 2024-01-17 2024-05-17 宁德时代新能源科技股份有限公司 Discharging device and discharging control method

Also Published As

Publication number Publication date
JPWO2020110207A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020110207A1 (en) Positioning and conveying device and positioning and conveying method
JP5223487B2 (en) Thin film workpiece laminating method and laminating apparatus
KR101280069B1 (en) System for Stacking Electrodes
KR101917310B1 (en) Lamination apparatus and lamination method
JP5501066B2 (en) Battery assembly jig
US20060127732A1 (en) Fuel cell stacking method and fuel cell tracking device
JP2012221828A (en) Assembling system of battery, and positioning and conveying device of battery element body
US20200354166A1 (en) Placement device and placement method
EP3955355A1 (en) Multi-plate laminating device for lithium battery cell and laminating method thereof
KR102601162B1 (en) Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method
CN110071333B (en) Lamination device and lamination method
KR20180109576A (en) Electrode stacking method and electrode stacking apparatus performing the same
JP4626170B2 (en) Manufacturing method and apparatus for multilayer electronic component
JP2017226493A (en) Lamination device
JP6929443B2 (en) Battery stack forming device and battery stack forming method
CN111180780B (en) Apparatus for manufacturing a stack of sheet electrodes
JP5374825B2 (en) Fuel cell manufacturing equipment
JP2016195079A (en) Transfer device and transfer device jig
KR200493852Y1 (en) Electrode Lamination Device Comprising Feeding Conveyor
JP6933153B2 (en) Manufacturing method of power storage module
KR20220162455A (en) System for Notching Process of Electrode And Cell Stacking of Secondary Battery
JP2013165038A (en) Battery reinforcement method
CN114725311B (en) Method and apparatus for manufacturing laminated electrode body
WO2022270348A1 (en) Sheet-like workpiece laminating device and method
JP2002298923A (en) Method and device for gauging electrode body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941870

Country of ref document: EP

Kind code of ref document: A1