JP5374825B2 - Fuel cell manufacturing equipment - Google Patents

Fuel cell manufacturing equipment Download PDF

Info

Publication number
JP5374825B2
JP5374825B2 JP2007107237A JP2007107237A JP5374825B2 JP 5374825 B2 JP5374825 B2 JP 5374825B2 JP 2007107237 A JP2007107237 A JP 2007107237A JP 2007107237 A JP2007107237 A JP 2007107237A JP 5374825 B2 JP5374825 B2 JP 5374825B2
Authority
JP
Japan
Prior art keywords
mea
base material
fuel cell
suction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107237A
Other languages
Japanese (ja)
Other versions
JP2008269809A (en
Inventor
克久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007107237A priority Critical patent/JP5374825B2/en
Publication of JP2008269809A publication Critical patent/JP2008269809A/en
Application granted granted Critical
Publication of JP5374825B2 publication Critical patent/JP5374825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池セルの製造装置に関する。 The present invention relates to a manufacturing ZoSo location of the fuel cell.

環境問題や資源問題への対策の一つとして、酸素や空気等の酸化性ガスと、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等とを原料として電気化学反応により化学エネルギを電気エネルギに変換して発電する燃料電池が注目されている。   As one of the countermeasures for environmental problems and resource problems, an electrochemical reaction using an oxidizing gas such as oxygen or air and a reducing gas such as hydrogen or methane (fuel gas) or a liquid fuel such as methanol as raw materials A fuel cell that generates electric power by converting chemical energy into electric energy has attracted attention.

一般的に、固体高分子電解質型燃料電池などの燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly)をセパレータで挟んで構成した燃料電池セルを、複数個積層して構成される。燃料電池セルにおける膜−電極アッセンブリは、高分子イオン交換膜からなる高分子電解質膜の両側に、それぞれ水素極(アノード極)及び空気極(カソード極)を対設した構造をとる。水素極(アノード極)及び空気極(カソード極)は、それぞれ、高分子電解質膜上に形成された触媒層と、さらにその上に形成されたガス拡散層とからなる。すなわち、膜−電極アッセンブリは、高分子電解質膜を触媒層で挟み、さらにガス拡散層で挟んで一体化した構成となっている。   2. Description of the Related Art Generally, a fuel cell such as a solid polymer electrolyte fuel cell is configured by stacking a plurality of fuel cell cells each having a membrane-electrode assembly (MEA) sandwiched between separators. A membrane-electrode assembly in a fuel cell has a structure in which a hydrogen electrode (anode electrode) and an air electrode (cathode electrode) are respectively provided on both sides of a polymer electrolyte membrane made of a polymer ion exchange membrane. Each of the hydrogen electrode (anode electrode) and the air electrode (cathode electrode) includes a catalyst layer formed on the polymer electrolyte membrane and a gas diffusion layer formed thereon. That is, the membrane-electrode assembly has a structure in which the polymer electrolyte membrane is sandwiched between the catalyst layers and further sandwiched between the gas diffusion layers.

ところで、このような構成の燃料電池セルの製造方法については、例えば下記特許文献1に記載のものがある。特許文献1には、保護シートと共にシート状に展開して燃料電池セルの製造装置に供給される電解質膜の少なくとも一方の縁部分に搬送ローラの送り突起に順次係合する搬送穴を設ける一方、同じく燃料電池セルの製造装置に供給されるガス拡散層(若しくは、セパレータ)を搬送する搬送フィルムにも、搬送ローラの送り突起に順次係合する搬送穴を設け、両搬送穴を基準として、ガス拡散層(若しくは、セパレータ)とMEAフィルム(例えば、電解質膜の両面に触媒層を有するフィルム)とを位置決めして組付け、接合させる、といった技術が開示されている。   By the way, about the manufacturing method of the fuel cell of such a structure, there exists a thing of the following patent document 1, for example. In Patent Document 1, while providing a transport hole that is sequentially engaged with a feed protrusion of a transport roller, at least one edge portion of an electrolyte membrane that is developed into a sheet shape together with a protective sheet and is supplied to a fuel cell manufacturing apparatus, Similarly, a transport film that transports the gas diffusion layer (or separator) supplied to the fuel cell manufacturing apparatus is provided with a transport hole that sequentially engages the feed protrusion of the transport roller, and the gas is measured with reference to both transport holes. A technique is disclosed in which a diffusion layer (or separator) and an MEA film (for example, a film having a catalyst layer on both sides of an electrolyte membrane) are positioned, assembled, and bonded.

また、ガス拡散層をガス拡散層搬送パレットに載せて燃料電池セルの製造装置に供給するにあたり、積層した状態でまとめて供給された複数枚のガス拡散層から、吸着パッドを用いて1枚ずつガス拡散層搬送パレットに載せる移載装置について開示されており、この移載装置では、吸着パッドにより1枚ずつガス拡散層を吸着して保持し、ガス拡散層搬送パレットまで搬送して1枚ずつガス拡散層搬送パレット上に載せる技術が適用されている。   Further, when the gas diffusion layer is placed on the gas diffusion layer transport pallet and supplied to the fuel cell manufacturing apparatus, one by one using the adsorption pad from the plurality of gas diffusion layers supplied together in a stacked state. A transfer device for mounting on a gas diffusion layer transport pallet is disclosed. In this transfer device, the gas diffusion layers are adsorbed and held one by one by a suction pad and transported to the gas diffusion layer transport pallet one by one. A technique of placing on a gas diffusion layer transport pallet is applied.

特開2005−183182号公報JP 2005-183182 A

しかしながら、上記従来技術において、積層状態の複数枚のガス拡散層から、吸着パッドによって最上のガス拡散層を1枚だけ取り出して搬送しようとした場合に、ガス拡散層は透気性があるため、その下のガス拡散層も同時に吸着してしまう、すなわち複数枚のガス拡散層を吸着して保持し、搬送してしまうといった事態が生じ得る。   However, in the above prior art, when only one uppermost gas diffusion layer is taken out from a plurality of gas diffusion layers in a stacked state by an adsorption pad and transported, the gas diffusion layer is permeable, so that The lower gas diffusion layer may be adsorbed at the same time, that is, a plurality of gas diffusion layers may be adsorbed, held, and transported.

このような事態が生じると、1枚だけ取り出すべきところを複数枚取り出してしまうことで、燃料電池セルの製造装置に異状が発生したとして製造装置が停止してしまう、あるいは余分に吸着した分のガス拡散層を取り除くのに余計な作業時間を要してしまう、等によって、燃料電池セルの生産性が低下するといった問題が生じる。   When such a situation occurs, by removing a plurality of sheets where only one sheet should be taken out, the production apparatus stops due to occurrence of an abnormality in the production apparatus for the fuel cell, or an extra adsorbed part Due to the extra work time required to remove the gas diffusion layer, there arises a problem that the productivity of the fuel cell decreases.

本発明の目的は、ガス拡散層のようなMEAを構成する基材(MEA用基材)を確実に1枚ずつ搬送可能にする燃料電池セルの製造装置を提供することにある。 An object of the present invention is to provide a manufacturing ZoSo location of the fuel cell to be conveyed one by one reliably base material constituting the MEA and (MEA Yomotozai) such as a gas diffusion layer.

本発明に係る燃料電池セルの製造装置は、電解質膜およびガス拡散層をMEA用基材として含み、積層されたMEA用基材を1枚ずつ吸着保持して搬送し、所定位置にて組付けを行う燃料電池セルの製造装置であってMEA用基材を吸着する中空構造の吸着ハンドであって、中空構造の底面が複数の吸着孔を有して押圧によって上下方向に撓むように弾性変形する弾性プレートである吸着ハンドと、複数枚のMEA用基材が吸着されるのを抑制する吸着抑制手段として、吸着ハンドによってMEA用基材を吸着した状態で、弾性プレートをMEA用基材側に向かって下凸に変形させて次のMEA用基材を積層位置に落とすように、中空構造の下方向に弾性プレートを押圧する押圧手段と、吸着ハンドに吸着保持されたMEA用基材の重量が1枚のMEA用基材の重量であるか否かを計測する荷重センサと、を備えたことを特徴とする。 Apparatus for producing a fuel cell according to the present invention includes an electrolyte membrane and the gas diffusion layer as MEA substrate for to send transportable a laminated MEA substrate for holding one not a One adsorption, in a predetermined position The fuel cell manufacturing apparatus is a hollow structure suction hand that sucks the MEA base material, and the bottom surface of the hollow structure has a plurality of suction holes and is bent vertically by pressing. a suction hand as an elastic plate elastically deforms useless, for suppressing fouling means from MEA substrate for several sheets double is Ru is adsorbed, while adsorbing the MEA for a substrate by suction hand, the elastic plate MEA A pressing means for pressing the elastic plate in the downward direction of the hollow structure and the MEA sucked and held by the suction hand so as to be deformed downwardly toward the base material side and drop the next MEA base material to the stacking position The weight of the base material for A load sensor for measuring whether one or the weight of the MEA substrate for you, comprising the.

また、前記吸着抑制手段として、さらに、吸着ハンドに吸着されたMEA用基材の外縁に媒体を吹き付ける噴出手段を備えると良い。 Moreover, it is good to provide the spraying means which sprays a medium on the outer edge of the base material for MEA adsorbed by the adsorption | suction hand as said adsorption | suction suppression means.

また、MEA用基材をセットする基材セット台の載置面に複数の吸着孔を設け、吸着ハンドにおいて発生する吸着力よりも大きな吸着力を載置面に発生させ、搬送すべきでないMEA用基材をMEA用基材が積層される位置に吸着させておく載置面吸着手段を備えると良い。 In addition, a plurality of suction holes are provided on the mounting surface of the base material set base for setting the MEA base material, and a suction force larger than the suction force generated in the suction hand is generated on the mounting surface and should not be transported. It is preferable to provide a mounting surface adsorbing means for adsorbing the base material for use at a position where the MEA base material is laminated.

本発明によれば、ガス拡散層などのMEA用基材を確実に1枚ずつ搬送することができる。   According to the present invention, the MEA base material such as the gas diffusion layer can be reliably conveyed one by one.

図1は、本発明の実施形態における燃料電池セルの製造装置の構成の一例を示す概略図である。以下、本実施形態における燃料電池セルの製造装置1の構成および動作について説明する。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a fuel cell manufacturing apparatus according to an embodiment of the present invention. Hereinafter, the configuration and operation of the fuel cell manufacturing apparatus 1 according to the present embodiment will be described.

燃料電池セルの製造装置1は、基材セット台10、搬送手段20、基材位置検出手段30、位置決め積層ステージ40、熱圧プレス手段50、接合体取出ステージ60を有する構成となっている。また、搬送手段20、基材位置検出手段30、熱圧プレス手段50などの各部は、制御装置(図示せず)によって動作制御される。   The fuel cell manufacturing apparatus 1 includes a substrate set base 10, a conveying unit 20, a substrate position detecting unit 30, a positioning lamination stage 40, a hot-pressing unit 50, and a joined body extraction stage 60. In addition, the operation of each unit such as the conveying unit 20, the base material position detecting unit 30, and the hot press unit 50 is controlled by a control device (not shown).

基材セット台10は、作業者Mが、燃料電池セル1個分のMEA用基材、すなわち、両面に触媒層を有する電解質膜(以下、単に「電解質膜」という)と、正極ガス拡散層と、負極ガス拡散層と、をラフに位置決めしながら重ねてセットするための台である。作業者Mは、例えば、正極ガス拡散層、両面に触媒層を有する電解質膜、負極ガス拡散層の順に、基材セット台10上に1枚ずつ積層した状態でセットする。   The base material set stand 10 includes an MEA base material for one fuel cell, that is, an electrolyte membrane having catalyst layers on both sides (hereinafter simply referred to as “electrolyte membrane”), and a positive gas diffusion layer. And the negative electrode gas diffusion layer are placed on each other while being roughly positioned. The worker M sets, for example, the positive electrode gas diffusion layer, the electrolyte membrane having the catalyst layers on both surfaces, and the negative electrode gas diffusion layer in the order of being stacked one by one on the base material set base 10.

搬送手段20は、例えば、上記の各MEA用基材を吸着により保持可能な吸着ハンド22を先端に有したロボットアーム等による。吸着ハンド22の詳細な構成については後述する。この吸着ハンド22は、例えばガイドレール26に沿って搬送手段本体部24を図1のY軸方向に移動制御することで、図1のY軸方向に往復移動可能となっている。また、搬送手段本体部24と吸着ハンド22とを連結するアーム部23に、X軸方向に伸縮可能な構造(例えばシリンダピストン構造)を適用することによって、図1のX軸方向にも往復移動可能となっている。さらに、アーム部23と吸着ハンド22との連結部25にも、作業者Mから見て上下方向(Z軸方向)に伸縮可能な構造(例えばシリンダピストン構造)を適用することによって、吸着ハンド22は図1のZ軸方向にも往復移動可能となっている。こうして搬送手段20における吸着ハンド22は、XYZ方向に自在に移動可能な構成となっている。このような構成の搬送手段20は、基材セット台10にセットされた燃料電池セル1個分のMEA用基材を、吸着ハンド22により吸着して保持し、基材セット台10から基材位置検出手段30や位置決め積層ステージ40へと1枚ずつ搬送する。   The transport means 20 is, for example, a robot arm having a suction hand 22 that can hold each MEA base material by suction. The detailed configuration of the suction hand 22 will be described later. The suction hand 22 can be reciprocated in the Y-axis direction of FIG. 1 by controlling the movement of the transport means body 24 along the guide rail 26 in the Y-axis direction of FIG. In addition, by applying a structure (for example, a cylinder piston structure) that can be expanded and contracted in the X-axis direction to the arm part 23 that couples the conveying means main body 24 and the suction hand 22, the reciprocating movement is also performed in the X-axis direction of FIG. 1. It is possible. Furthermore, by applying a structure (for example, a cylinder piston structure) that can be expanded and contracted in the vertical direction (Z-axis direction) as viewed from the operator M to the connecting portion 25 between the arm portion 23 and the suction hand 22, the suction hand 22. Can be reciprocated also in the Z-axis direction of FIG. Thus, the suction hand 22 in the transport unit 20 is configured to be freely movable in the XYZ directions. The transport means 20 having such a configuration sucks and holds the MEA base material for one fuel cell set on the base material set base 10 by the suction hand 22, from the base material set base 10 to the base material. One by one is conveyed to the position detection means 30 and the positioning lamination stage 40.

基材位置検出手段30は、搬送手段20の吸着ハンド22に保持された各MEA用基材の位置を検出するための画像処理装置(図示せず)を有する手段である。基材位置検出手段30は、搬送手段20によるMEA用基材の搬送の度に、画像処理装置により得られた画像を用いて吸着ハンド22に保持される各MEA用基材の位置を検出し、得られたMEA用基材の位置情報を制御装置に出力する。   The base material position detection means 30 is a means having an image processing device (not shown) for detecting the position of each MEA base material held by the suction hand 22 of the transport means 20. The base material position detection means 30 detects the position of each MEA base material held by the suction hand 22 by using the image obtained by the image processing device every time the transport means 20 transports the MEA base material. Then, the positional information of the obtained MEA base material is output to the control device.

そして制御装置は、搬送中のMEA用基材の位置情報に基づいて搬送手段20を制御し、吸着ハンド22に保持される搬送中のMEA用基材を、ズレ補正しながら精度良く位置決めしながら位置決め積層ステージ40に搬送、載置する。   Then, the control device controls the conveying means 20 based on the position information of the MEA base material being transported, and accurately positions the MEA base material being transported held by the suction hand 22 while correcting the displacement. It is conveyed and placed on the positioning lamination stage 40.

こうして基材セット台10にラフにセットされた燃料電池セル1個分のMEA用基材(電解質膜、正極ガス拡散層および負極ガス拡散層)は、それぞれ位置決め積層ステージ40に精度良く位置決めされて積層される。例えば、基材セット台10上に、正極ガス拡散層、電解質膜、負極ガス拡散層の順にラフにセットされた場合、上記のような搬送手段20および基材位置検出手段30の動作によって、負極ガス拡散層、電解質膜、正極ガス拡散層の順に、精度良く位置決めされた状態で、位置決め積層ステージ40に搬送され、順に積層される。   The MEA base material (electrolyte membrane, positive electrode gas diffusion layer and negative electrode gas diffusion layer) for one fuel battery cell roughly set on the base material set base 10 in this way is accurately positioned on the positioning lamination stage 40, respectively. Laminated. For example, when the positive electrode gas diffusion layer, the electrolyte membrane, and the negative electrode gas diffusion layer are roughly set on the base material set base 10 in this order, the negative electrode is operated by the operation of the transport means 20 and the base material position detection means 30 as described above. The gas diffusion layer, the electrolyte membrane, and the positive electrode gas diffusion layer are transported to the positioning stacking stage 40 in a state where the gas diffusion layer, the electrolyte membrane, and the positive electrode gas diffusion layer are accurately positioned, and are sequentially stacked.

位置決め積層ステージ40は、上記のように精度良く位置決めされた状態で燃料電池セル1個分のMEA用基材が積層されるステージである。また、位置決め積層ステージ40は、熱圧プレス手段50との間を往復移動可能な可動式のプレス面盤42を有するステージとなっている。このプレス面盤42は、例えばスライダー(図示せず)によって位置決め積層ステージ40と熱圧プレス手段50との間を往復移動可能になっている。このプレス面盤42の往復移動は、制御装置によって制御される。こうして、プレス面盤42上に位置決めして積層された燃料電池セル1個分のMEA用基材は、プレス面盤42の移動に伴い、熱圧プレス手段50のプレス位置に搬送される(図1中の点線で示す符号42’の状態になる)。   The positioning stacking stage 40 is a stage on which the MEA base material for one fuel cell is stacked in a state where the positioning stacking stage is accurately positioned as described above. The positioning lamination stage 40 is a stage having a movable press face plate 42 that can reciprocate between the hot-pressing means 50. The pressing surface plate 42 can be reciprocated between the positioning lamination stage 40 and the hot-pressing means 50 by, for example, a slider (not shown). The reciprocating movement of the press face plate 42 is controlled by a control device. Thus, the MEA base material for one fuel cell positioned and stacked on the press face plate 42 is transported to the press position of the hot press means 50 as the press face plate 42 moves (see FIG. 1 is in a state indicated by reference numeral 42 'indicated by a dotted line in FIG.

熱圧プレス手段50は、積層された燃料電池セル1個分のMEA用基材を上下方向に熱圧プレスしてMEAを作製する手段である。上記のように位置決めして積層された燃料電池セル1個分のMEA用基材が搬送されてくると、熱圧プレス手段50は、その燃料電池セル1個分のMEA用基材を、上下方向から挟んで熱圧プレスして熱接合する。具体的には、プレス面盤42がプレス下型の役割を果たしつつ、熱圧プレス手段50に備えられたプレス上型が下降することで、熱圧プレスが行われる。こうして、電解質膜を正極ガス拡散層および負極ガス拡散層が挟んだ状態で互いに熱接合されたMEAが作製される。そして、MEAが作製されると、プレス位置にあるプレス面盤42’は、位置決め積層ステージ40に移動し(符号42の状態になり)、これに伴い作製されたMEAも熱圧プレス手段50から位置決め積層ステージ40に搬出される。   The hot-pressing means 50 is means for producing an MEA by hot-pressing the MEA base material for one stacked fuel battery cell in the vertical direction. When the MEA base material for one fuel battery cell positioned and stacked as described above is conveyed, the hot-pressing means 50 moves the MEA base material for one fuel battery cell up and down. It is hot-pressed by sandwiching from the direction and heat-bonded. Specifically, the press face plate 42 plays the role of a lower press mold, and the upper press mold provided in the hot press means 50 is lowered to perform the hot press. In this manner, an MEA that is thermally bonded to each other with the electrolyte membrane sandwiched between the positive electrode gas diffusion layer and the negative electrode gas diffusion layer is manufactured. Then, when the MEA is manufactured, the press face plate 42 ′ at the press position moves to the positioning lamination stage 40 (becomes a state of reference numeral 42), and the MEA manufactured in accordance with this moves from the hot press means 50. It is carried out to the positioning lamination stage 40.

接合体取出ステージ60は、熱圧プレス手段50から搬出されたMEAを取り出すためのステージである。上記のように位置決め積層ステージ40に搬出されたMEAは、例えば上記の搬送手段20により吸着ハンド22で保持されて接合体取出ステージ60に搬送される。これにより、作業者Mは、接合体取出ステージ60でMEAを取り出すことが可能となる。そして、このMEAに対し、後の工程でセパレータを挟んで接合し、1個の燃料電池セルが完成する。   The joined body take-out stage 60 is a stage for taking out the MEA carried out from the hot press means 50. The MEA carried out to the positioning stacking stage 40 as described above is held by the suction hand 22 by, for example, the carrying means 20 and is carried to the joined body take-out stage 60. As a result, the worker M can take out the MEA at the joined body take-out stage 60. Then, the MEA is joined with a separator in a later step, thereby completing one fuel cell.

ここで、本実施形態における搬送手段の吸着ハンド22は、例えば図2のように中空構造となっており、各MEA用基材との吸着面を形成する下面は、後述の押圧により上下方向に撓むように弾性変形する弾性プレート22aで構成されている。この弾性プレート22aには、複数の吸着孔(図示せず)が形成されている。なお、弾性プレート22aとしては、例えばステンレス薄板などが用いられる。   Here, the suction hand 22 of the conveying means in the present embodiment has a hollow structure as shown in FIG. 2, for example, and the lower surface forming the suction surface with each MEA base material is moved up and down by pressing described later. The elastic plate 22a is elastically deformed so as to bend. A plurality of suction holes (not shown) are formed in the elastic plate 22a. For example, a thin stainless plate is used as the elastic plate 22a.

この吸着ハンド22(詳細には、中空構造の吸着ハンド22における内部空間)は、例えば真空ポンプなどのバキューム手段(図示せず)と接続されている。これにより、吸着面とMEA用基材とが接触した状態で、バキューム手段によって吸着ハンド22の内部空間が真空引きされると、MEA用基材は吸着面(すなわち弾性プレート22a)に真空吸着される。   The suction hand 22 (specifically, the internal space of the suction hand 22 having a hollow structure) is connected to a vacuum means (not shown) such as a vacuum pump. Thus, when the internal space of the suction hand 22 is evacuated by the vacuum means in a state where the suction surface and the MEA base material are in contact, the MEA base material is vacuum-sucked on the suction surface (that is, the elastic plate 22a). The

また、吸着ハンド22には、弾性プレート22aを内部から外部に向かって(図では下方に向かって)押す押圧手段22bが設けられており、これにより吸着面を形成する弾性プレート22aは、吸着するMEA用基材に向かって(図では下方に向かって)凸状に変形するようになっている。   The suction hand 22 is provided with pressing means 22b that pushes the elastic plate 22a from the inside toward the outside (downward in the figure), whereby the elastic plate 22a forming the suction surface is sucked. It is deformed in a convex shape toward the MEA base material (downward in the figure).

そして、以上のような構成の吸着ハンド22において、MEA用基材を真空吸着させた状態で、吸着するMEA用基材に向かって凸状に変形させるべく、押圧手段22bを作動させる制御を行う。   In the suction hand 22 having the above-described configuration, the pressing means 22b is controlled to be deformed in a convex shape toward the MEA base material to be suctioned in a state where the MEA base material is vacuum-sucked. .

この制御は、本実施形態において、例えば最上部(すなわち、電解質膜74の上)に積層されたガス拡散層72を搬送する際に有効である。この場合、本来ガス拡散層72を1枚だけ吸着させるべきところをガス拡散層72の他に電解質膜74をも吸着させてしまったとき(図2(a)参照)において、上記の押圧手段22bの制御によれば、余分に吸着した電解質膜74のみが落下し、ガス拡散層を1枚だけ確実に吸着させて搬送することが可能となる(図2(b)参照)。これは、電解質膜74はガス拡散層72に比べて一般的に面積が広く、電解質膜74の弾性による復元力にて剥離力が発生しやすいためである。この剥離力によって、図2(b)に示すように、余分な電解質膜74は点線で示す状態から実線で示す状態となり、落下する。   In this embodiment, this control is effective, for example, when transporting the gas diffusion layer 72 laminated on the uppermost portion (that is, on the electrolyte membrane 74). In this case, when the electrolyte membrane 74 is adsorbed in addition to the gas diffusion layer 72 where only one gas diffusion layer 72 should be adsorbed (see FIG. 2A), the pressing means 22b described above. According to the control, only the excessively adsorbed electrolyte membrane 74 falls, and only one gas diffusion layer can be reliably adsorbed and transported (see FIG. 2B). This is because the electrolyte membrane 74 generally has a larger area than the gas diffusion layer 72, and a peeling force is likely to be generated by the restoring force due to the elasticity of the electrolyte membrane 74. Due to this peeling force, as shown in FIG. 2B, the excess electrolyte membrane 74 changes from the state indicated by the dotted line to the state indicated by the solid line and falls.

なお、複数枚のMEA用基材が吸着しない、すなわち、余分なMEA用基材が吸着しないよう抑制する吸着抑制手段として、吸着ハンド22を上記のような構成にすること以外に、例えば基材セット台10側などに、次のような構成の手段を適用することによっても、同様の効果を得ることが可能となる。   In addition, as a suction suppression means for suppressing a plurality of MEA base materials from adsorbing, that is, preventing an extra MEA base material from adsorbing, the suction hand 22 is configured as described above, for example, a base material. The same effect can be obtained by applying means having the following configuration to the set table 10 side.

例えば基材セット台10側などに、吸着ハンド22に吸着し保持されるMEA用基材の外縁に向かって媒体(例えばエア)を吹き付けるエア噴出手段12を設けておく(図3参照)。これによれば、エアの吹き付けにより、余分に吸着したMEA用基材を剥がすことができる。すなわち、余分に吸着したMEA用基材を落下させて、MEA用基材を1枚だけ確実に吸着させることが一層可能となる。   For example, air jetting means 12 for blowing a medium (for example, air) toward the outer edge of the MEA base material sucked and held by the suction hand 22 is provided on the base material set stand 10 side (see FIG. 3). According to this, the MEA base material adsorbed excessively can be peeled off by blowing air. In other words, it becomes possible to drop the excessively adsorbed MEA base material and reliably adsorb only one MEA base material.

この技術についても、例えば最上部(すなわち、電解質膜74の上)に積層されたガス拡散層72を搬送する際に有効である。この場合、本来ガス拡散層72を1枚だけ吸着させるところ、ガス拡散層72の他に電解質膜74をも吸着させてしまったときにおいて、上記のエア噴出手段12の制御によれば、余分に吸着した電解質膜74はエアによる強制剥離力によって剥離して落下するため、ガス拡散層72を1枚だけ確実に吸着させて搬送することが可能となる。これは、電解質膜74はガス拡散層72に比べて一般的に面積が広く、電解質膜の外縁が下方に垂れる等によって、吸着されたガス拡散層の外縁と電解質膜の外縁との間に隙間ができ、この隙間にエアを吹付けることで強制剥離力が発生するからである。また、図3に示すように、エアの吹き付け時に押圧手段22bによる押圧制御を行うと、押圧制御により、電解質膜74の弾性による復元力にて剥離力が発生し、かつエアを吹付けることで強制剥離力が発生するため、一層、余分な電解質膜74を剥離させ易くなる。   This technique is also effective when, for example, the gas diffusion layer 72 laminated on the uppermost portion (that is, on the electrolyte membrane 74) is transported. In this case, when only one gas diffusion layer 72 is originally adsorbed, when the electrolyte membrane 74 is also adsorbed in addition to the gas diffusion layer 72, according to the control of the air ejection means 12, an extra amount is required. Since the adsorbed electrolyte membrane 74 is peeled off and dropped by the forced peeling force by air, only one gas diffusion layer 72 can be reliably adsorbed and transported. This is because the electrolyte membrane 74 generally has a larger area than the gas diffusion layer 72, and the gap between the outer edge of the adsorbed gas diffusion layer and the outer edge of the electrolyte membrane is caused by the outer edge of the electrolyte membrane hanging downward or the like. This is because forced peeling force is generated by blowing air into the gap. Further, as shown in FIG. 3, when the pressing control by the pressing means 22b is performed when air is blown, a peeling force is generated by the restoring force due to the elasticity of the electrolyte membrane 74 and the air is blown by the pressing control. Since the forced peeling force is generated, it becomes easier to peel off the excess electrolyte membrane 74.

また、基材セット台10の載置面にも、バキューム手段(図示せず)に接続された複数の吸着孔(図示せず)を設けておいても良い(図3参照)。この場合、吸着ハンド22において発生する吸着力よりも大きな吸着力を、基材セット台10の載置面に発生させる。具体的には、例えば最上部(すなわち、電解質膜74の上)に積層されたガス拡散層72のみを搬送する際には、最下部(すなわち、電解質膜74の下)のガス拡散層72のみならずその上の電解質膜74をも吸着させる程度の吸着力を、基材セット台10の載置面に発生させる。   Further, a plurality of suction holes (not shown) connected to a vacuum means (not shown) may be provided on the mounting surface of the base material set base 10 (see FIG. 3). In this case, a suction force larger than the suction force generated in the suction hand 22 is generated on the placement surface of the base material set base 10. Specifically, for example, when only the gas diffusion layer 72 stacked on the uppermost portion (that is, on the electrolyte membrane 74) is transported, only the gas diffusion layer 72 on the lowermost portion (that is, below the electrolyte membrane 74) is transferred. In addition, an adsorption force enough to adsorb the electrolyte membrane 74 thereon is generated on the mounting surface of the base material set base 10.

こうすることで、搬送すべきでないMEA用基材には基材セット台10への吸着力が発生するため、吸着ハンド22に余分なMEA用基材が吸着するのを抑制できる。すなわち、搬送すべきMEA用基材を1枚だけ確実に吸着させることが一層可能となる。   By doing so, an adsorption force to the substrate set base 10 is generated in the MEA base material that should not be transported, so that it is possible to suppress the extra MEA base material from adsorbing to the suction hand 22. That is, it becomes possible to reliably adsorb only one MEA substrate to be transported.

なお、図3によれば、上記の押圧手段22bによる吸着面の凸状変形技術、エア噴出手段12によるエア吹き付け技術、及び基材セット台10による吸着力発生技術を全て組み合わせた構成が示されているが、それぞれ単独で用いても有効である。また、これら3種類の技術の内、いずれか2種類を組み合わせても有効である。しかしながら、図3に示すように、これらの技術を適宜組み合わせることが最も効果的である。   In addition, according to FIG. 3, the structure which combined the convex-shaped deformation | transformation technique of the suction surface by said press means 22b, the air blowing technique by the air ejection means 12, and the suction force generation technique by the base-material set stand 10 is shown. However, it is effective even if each is used alone. It is also effective to combine any two of these three types of technologies. However, as shown in FIG. 3, it is most effective to appropriately combine these techniques.

また、本実施形態における基材セット台10に荷重センサ14を設け、この荷重センサ14により検出される重量情報に基づいて、搬送すべきでないMEA用基材が余分に吸着ハンド22に吸着されていないかを検知するようにしても良い。   Further, a load sensor 14 is provided on the base material set base 10 in the present embodiment, and an MEA base material that should not be transported is adsorbed to the suction hand 22 based on weight information detected by the load sensor 14. You may make it detect whether it exists.

図4は、基材セット台10に荷重センサ14を設けた構成の一例を示す図である。荷重センサ14はシリンダ16により計測時において上昇するようになっている。また、この荷重センサ14において、基材セット台10にラフにセットされるMEA用基材との接触面は、例えば図4のように十字状に形成されている。なお、図4(a)における点線は、基材セット台10の上に載置したMEA用基材の位置を示す。   FIG. 4 is a diagram illustrating an example of a configuration in which the load sensor 14 is provided on the base material set base 10. The load sensor 14 is raised by the cylinder 16 during measurement. Further, in the load sensor 14, the contact surface with the MEA base material that is roughly set on the base material setting base 10 is formed in a cross shape as shown in FIG. 4, for example. In addition, the dotted line in Fig.4 (a) shows the position of the base material for MEA mounted on the base-material set stand 10. FIG.

そして、以下のような手順で荷重センサ14による検知を行う。   And the detection by the load sensor 14 is performed in the following procedures.

まず、作業者Mが基材セット台10上にMEA用基材をセットし(図5(a)参照)、しかる後に、シリンダ16により荷重センサ14を上昇させ、セットした燃料電池セル1個分のMEA用基材の総重量を計測し(図5(b)参照)、制御装置に出力する。   First, the worker M sets the MEA base material on the base material setting table 10 (see FIG. 5A), and then raises the load sensor 14 by the cylinder 16 to correspond to one set fuel cell. The total weight of the MEA base material is measured (see FIG. 5B) and output to the control device.

次に、荷重センサ14を一旦下降させてから吸着ハンド22によるMEA用基材の吸着保持動作を行い(図5(c)参照)、その後に、荷重センサ14を再度上昇させて、基材セット台10上に残っているMEA用基材の重量を計測し(図5(d)参照)、制御装置に出力する。   Next, the load sensor 14 is once lowered, and then the suction holding operation of the MEA base material by the suction hand 22 is performed (see FIG. 5C), and then the load sensor 14 is lifted again to set the base material. The weight of the MEA base material remaining on the table 10 is measured (see FIG. 5D) and output to the control device.

そして、制御装置は、吸着ハンド22によるMEA用基材の吸着保持動作の前後における重量の差を演算し、予め制御装置に登録されている各MEA用基材の重量と、演算により得られた差分値とを比較する。   Then, the control device calculates the difference in weight before and after the adsorption holding operation of the MEA base material by the suction hand 22, and is obtained by calculating the weight of each MEA base material registered in advance in the control device. Compare the difference value.

この比較により、差分値が登録済みのMEA用基材の重量と略同一である場合には、吸着ハンド22により、MEA用基材を1枚だけ吸着保持したと判定できる。   As a result of this comparison, when the difference value is substantially the same as the weight of the registered MEA base material, it can be determined by the suction hand 22 that only one MEA base material has been sucked and held.

また、差分値が登録済みのMEA用基材の重量よりも小さい場合には、吸着ハンド22により保持すべきMEA用基材が吸着保持されていないと判定できる。   When the difference value is smaller than the weight of the registered MEA base material, it can be determined that the MEA base material to be held by the suction hand 22 is not sucked and held.

また、差分値が登録済みのMEA用基材の重量よりも大きい場合には、吸着ハンド22により保持すべきでない余分なMEA用基材をも吸着保持したと判定できる(図5(d)の状態)。   Further, when the difference value is larger than the weight of the registered MEA base material, it can be determined that the extra MEA base material that should not be held by the suction hand 22 is also sucked and held (in FIG. 5D). State).

以上のように、吸着ハンド22によるMEA用基材の吸着保持動作が行われる度に、荷重センサ14を用い、搬送すべきでないMEA用基材が余分に吸着ハンド22に吸着されていないかを重量情報に基づいて検知することで、保持状態異状(保持すべきMEA用基材が吸着保持されていない、あるいは、保持すべきでない余分なMEA用基材をも吸着保持した)を防止でき、MEA用基材を1枚だけ確実に吸着させることが一層可能となる。   As described above, whenever the suction holding operation of the MEA base material by the suction hand 22 is performed, the load sensor 14 is used to check whether the MEA base material that should not be transported is excessively sucked by the suction hand 22. By detecting based on the weight information, it is possible to prevent a holding state abnormality (the MEA substrate to be held is not sucked and held, or an extra MEA substrate that should not be held is also sucked and held), It is further possible to reliably adsorb only one MEA substrate.

ここで、荷重センサ14からの重量情報に基づき保持状態異状と判定した場合には、警告等などの警告手段により作業者Mに知らせたり、あるいは、制御装置が搬送手段20に対して、吸着ハンド22によるMEA用基材の吸着保持動作をリトライさせたりする等の制御を行ったりしても良い。   Here, when it is determined that the holding state is abnormal based on the weight information from the load sensor 14, the operator M is notified by warning means such as a warning, or the control device notifies the conveying means 20 to the suction hand. Control such as retrying the adsorption holding operation of the MEA base material by 22 may be performed.

なお、上記の実施形態では、燃料電池セル1個分のMEA用基材をそれぞれ1枚ずつ搬送する場合を一例として説明しているが、本発明の技術は、この場合に限らず他の場合においても適用可能である。例えば、積層状態の複数枚のガス拡散層から最上のガス拡散層を1枚だけ取り出して搬送する場合など、同種の被搬送物が積層された中から最上部の被搬送物を1枚だけ取り出して搬送する場合にも十分適用可能である。   In the above-described embodiment, the case where one MEA base material for one fuel cell is transported one by one is described as an example. However, the technology of the present invention is not limited to this case and may be used in other cases. It is also applicable to. For example, when only one uppermost gas diffusion layer is taken out from a plurality of stacked gas diffusion layers and transported, only one uppermost transported object is picked up from the same type of transported objects stacked. It can be sufficiently applied to the case of transporting.

本発明の実施の形態に係る燃料電池セルの製造装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the manufacturing apparatus of the fuel cell concerning embodiment of this invention. 図1の燃料電池セルの製造装置における搬送手段の吸着ハンドの構成の一例を示す図であり、図2(a)は吸着面変形前、図2(b)は吸着面変形後の状態を示す。It is a figure which shows an example of a structure of the adsorption | suction hand of the conveyance means in the manufacturing apparatus of the fuel cell of FIG. 1, Fig.2 (a) shows the state after adsorption surface deformation | transformation, FIG.2 (b) shows the state after adsorption surface deformation | transformation. . 図2の吸着ハンドに加え、他の吸着抑制手段を適用した構成の一例を示す図である。It is a figure which shows an example of the structure which applied the other suction suppression means in addition to the suction hand of FIG. 図1の燃料電池セルの製造装置における基材セット台の構成の一例を示す図である。It is a figure which shows an example of a structure of the base-material set stand in the manufacturing apparatus of the fuel cell of FIG. 図4の基材セット台の動作を示す図であり、図5(a)はMEA用基材セット時、図5(b)はMEA用基材の総重量計測時、図5(c)は吸着保持動作時、図5(d)は吸着保持動作後のMEA用基材の重量計測時における状態を示す。It is a figure which shows operation | movement of the base-material set stand of FIG. 4, Fig.5 (a) is the time of the base-material set for MEA, FIG.5 (b) is the time of the total weight measurement of the base material for MEA, FIG.5 (c) is FIG. FIG. 5D shows a state at the time of weight measurement of the MEA base material after the suction holding operation during the suction holding operation.

符号の説明Explanation of symbols

1 燃料電池セルの製造装置、10 基材セット台、12 エア噴出手段、20 搬送手段、22 吸着ハンド、22a 弾性プレート、22b 押圧手段、23 アーム部、24 搬送手段本体部、25 連結部、26 ガイドレール、30 基材位置検出手段、40 位置決め積層ステージ、42,42’ プレス面盤、50 熱圧プレス手段、60 接合体取出ステージ、72 ガス拡散層、74 電解質膜。   DESCRIPTION OF SYMBOLS 1 Fuel cell manufacturing apparatus, 10 base material set stand, 12 air ejection means, 20 conveyance means, 22 adsorption | suction hand, 22a elastic plate, 22b press means, 23 arm part, 24 conveyance means main-body part, 25 connection part, 26 Guide rail, 30 Substrate position detection means, 40 Positioning lamination stage, 42, 42 'Press face plate, 50 Hot-pressing means, 60 Joined body extraction stage, 72 Gas diffusion layer, 74 Electrolyte membrane.

Claims (3)

電解質膜およびガス拡散層をMEA用基材として含み、積層されたMEA用基材を1枚ずつ吸着保持して搬送し、所定位置にて組付けを行う燃料電池セルの製造装置であって
MEA用基材を吸着する中空構造の吸着ハンドであって、中空構造の底面が複数の吸着孔を有して押圧によって上下方向に撓むように弾性変形する弾性プレートである吸着ハンドと、
数枚のMEA用基材が吸着されるのを抑制する吸着抑制手段として、吸着ハンドによってMEA用基材を吸着した状態で、弾性プレートをMEA用基材側に向かって下凸に変形させて次のMEA用基材を積層位置に落とすように、中空構造の下方向に弾性プレートを押圧する押圧手段と、
吸着ハンドに吸着保持されたMEA用基材の重量が1枚のMEA用基材の重量であるか否かを計測する荷重センサと、
を備えたことを特徴とする燃料電池セルの製造装置。
Comprising an electrolyte membrane and the gas diffusion layer as MEA substrate for to send transportable a laminated MEA substrate for holding one not a One adsorption, in the manufacturing apparatus for a fuel cell cell to be assembled at a predetermined position There ,
A suction hand having a hollow structure for sucking the MEA base material, the suction hand being an elastic plate that has a plurality of suction holes and is elastically deformed so as to bend vertically by pressing;
As suppressing fouling it means that the number of sheets of MEA substrate for double is Ru is adsorbed, while adsorbing the MEA for a substrate by suction hand, deformed into the downward convex towards the elastic plate to the MEA for the substrate side Pressing means for pressing the elastic plate in the downward direction of the hollow structure so as to drop the next MEA substrate to the lamination position ;
A load sensor for measuring whether or not the weight of the MEA substrate sucked and held by the suction hand is the weight of one MEA substrate;
An apparatus for manufacturing a fuel cell, comprising:
請求項1に記載の燃料電池セルの製造装置において、
前記吸着抑制手段として、さらに、吸着ハンドに吸着されたMEA用基材の外縁に媒体を吹き付ける噴出手段を備えることを特徴とする燃料電池セルの製造装置。
In the fuel cell manufacturing apparatus according to claim 1,
The fuel cell manufacturing apparatus, further comprising: an ejection unit that sprays a medium on the outer edge of the MEA base material adsorbed by the adsorption hand as the adsorption suppression unit.
請求項1に記載の燃料電池セルの製造装置において、
MEA用基材をセットする基材セット台の載置面に複数の吸着孔を設け、吸着ハンドにおいて発生する吸着力よりも大きな吸着力を載置面に発生させ、搬送すべきでないMEA用基材をMEA用基材が積層される位置に吸着させておく載置面吸着手段を備えることを特徴とする燃料電池セルの製造装置。
In the fuel cell manufacturing apparatus according to claim 1,
An MEA base that should not be transported by providing a plurality of suction holes on the mounting surface of the base material setting table for setting the MEA base material and generating a suction force larger than the suction force generated by the suction hand on the mounting surface. An apparatus for manufacturing a fuel cell, comprising a mounting surface adsorbing means for adsorbing a material at a position where the MEA base material is laminated.
JP2007107237A 2007-04-16 2007-04-16 Fuel cell manufacturing equipment Expired - Fee Related JP5374825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107237A JP5374825B2 (en) 2007-04-16 2007-04-16 Fuel cell manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107237A JP5374825B2 (en) 2007-04-16 2007-04-16 Fuel cell manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2008269809A JP2008269809A (en) 2008-11-06
JP5374825B2 true JP5374825B2 (en) 2013-12-25

Family

ID=40049085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107237A Expired - Fee Related JP5374825B2 (en) 2007-04-16 2007-04-16 Fuel cell manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5374825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063019A (en) * 2014-03-03 2016-10-26 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428931B (en) * 2012-07-10 2016-04-20 日产自动车株式会社 The grasping device of gasket for fuel cell
KR101684506B1 (en) * 2014-09-22 2016-12-20 현대자동차 주식회사 Method for testing feeding fuel cell stack and apparatus for producing fuel cell stack using it
DE102021206205A1 (en) 2021-06-17 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method of making an electrochemical cell unit
CN114204045B (en) * 2021-10-26 2023-08-22 东风汽车集团股份有限公司 Preparation equipment and system of fuel cell membrane electrode
JP7197043B1 (en) 2022-04-20 2022-12-27 トヨタ自動車株式会社 Method for manufacturing water electrolysis cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116034A (en) * 1990-09-06 1992-04-16 Fuji Photo Film Co Ltd Sheet leafing device
JPH05246565A (en) * 1992-03-09 1993-09-24 Nec Kansai Ltd Paper sheet separating conveying device
JP3251741B2 (en) * 1993-09-22 2002-01-28 キヤノン株式会社 Sheet feeding device and sheet physical property detecting device
JP2887725B2 (en) * 1994-03-04 1999-04-26 日産ディーゼル工業株式会社 Automatic sheet material feeder
JP2000177857A (en) * 1998-12-11 2000-06-27 Dainippon Printing Co Ltd Guard sheet feeding device and guard sheet separating method
JP2003024537A (en) * 2001-07-13 2003-01-28 Heiwa Corp Decorative sheet feeding equipment for manufacturing game machine
JP2003200373A (en) * 2001-12-28 2003-07-15 Ishikawajima Harima Heavy Ind Co Ltd Flat plate suction device
JP2006294314A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Device and method for sucking and carrying membrane-electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063019A (en) * 2014-03-03 2016-10-26 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
JPWO2015133097A1 (en) * 2014-03-03 2017-04-06 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN111640980A (en) * 2014-03-03 2020-09-08 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2008269809A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
KR101734271B1 (en) Automatic stack system for fuel cell
JP5374825B2 (en) Fuel cell manufacturing equipment
JP5223487B2 (en) Thin film workpiece laminating method and laminating apparatus
US11011760B2 (en) Fuel cell separator conveying device
US6756146B2 (en) Apparatus and method for automatically stacking fuel cell material layers
US20060127732A1 (en) Fuel cell stacking method and fuel cell tracking device
JP6354869B2 (en) Sheet laminating apparatus and sheet laminating method
KR100925957B1 (en) Vaccum adsorption type moving apparatus for fuel cell separator
JP2011204612A (en) Electrode plate manufacturing apparatus
KR20210059640A (en) Manufacturing device and manufacturing method for subgasket added membrane electrode assembly
KR101702419B1 (en) Apparatus for Fabricating the Laminated Body of Fuel Cell
JP5932619B2 (en) Manufacturing method of multilayer secondary battery and suction pad used therefor
JP2006294314A (en) Device and method for sucking and carrying membrane-electrode assembly
KR100925958B1 (en) Automatic loading apparatus for fuel cell separator
KR100986484B1 (en) Automatic stacking system for fuel cell stack and method thereof
WO2020110207A1 (en) Positioning and conveying device and positioning and conveying method
JP5298453B2 (en) Method and apparatus for manufacturing fuel cell
KR102521783B1 (en) Manufacturing device and manufacturing method for subgasket added membrane electrode assembly, and subgasket added membrane electrode assembly
JP2020114767A (en) Method for transporting thin plate member for fuel cell
JP6929443B2 (en) Battery stack forming device and battery stack forming method
JP6003812B2 (en) Manufacturing method of fuel cell
JP2003022810A (en) Membrane/electrode assembly conveying device for fuel cell
JP7258683B2 (en) MEMBRANE ELECTRODE ASSEMBLY WITH SUBGASKET, MANUFACTURING APPARATUS AND SUBGASKET BASE MATERIAL
JP2021034306A (en) Transfer device for plate-shaped member for fuel cell
KR101724139B1 (en) apparatus for formation stack of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5374825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees